1
|
Reynolds C, Ross C, Cullinan P, Blanc P. Silicosis initially presenting with empyema. Occup Med (Lond) 2024; 74:458-460. [PMID: 38856490 PMCID: PMC11419702 DOI: 10.1093/occmed/kqae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
The current global outbreak of artificial stone silicosis is a recrudescence of a major occupational disease in the context of a novel exposure source. Respirable crystalline silica exposure, even without frank pneumoconiosis, is associated with an increased risk of respiratory infection. Empyema is a well-recognized complication of bacterial pneumonia; pneumonia among working-age adults, in turn, has been epidemiologically linked to occupational exposure to fumes and dust, including silica. A connection between empyema and silica dust inhalation has not been reported, however, whether through antecedent pneumonia or another mechanism. We describe a case of silicosis initially presenting with empyema in a 31-year-old Computerized Numerical Control stone-cutting machine operator who had heavy exposure to artificial stone and other rock dust.
Collapse
Affiliation(s)
- C Reynolds
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - C Ross
- Imperial College Healthcare NHS Trust, London, UK
| | - P Cullinan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - P Blanc
- University of California San Francisco School of Medicine, San Francisco, California, USA
| |
Collapse
|
2
|
Udah DC, Bakarey AS, Anetor GO, Omabe M, Edem VF, Ademowo OG, Anetor JI. Increased cancer risk in HIV-infected individuals occupationally exposed to chemicals: Depression of p53 as the key driver. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002841. [PMID: 39042631 PMCID: PMC11265661 DOI: 10.1371/journal.pgph.0002841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
The growing exposure to occupational chemicals and the spread of human immunodeficiency virus (HIV) infection are major global health issues. However, there is little data on the carcinogenic risk profile of HIV-infected individuals who have been occupationally exposed to chemical mixtures. This study therefore investigated the levels of cancer risk biomarkers in HIV-infected individuals exposed to occupational chemicals, exploring the relationship between apoptotic regulatory and oxidative response markers as a measure of cancer risk. Study participants (mean age 38.35±0.72 years) were divided into four groups according to their HIV status and occupational chemical exposure: 62 HIV-positive exposed (HPE), 66 HIV-positive unexposed (HPU), 60 HIV-negative exposed (HNE), and 60 HIV-negative unexposed (HNU). Serum p53, β-cell lymphoma-2 (bcl2), 8-hydroxydeoxyguanosine (8-OHdG), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured using standard methods. Clusters of differentiation 4 (CD4+) T-lymphocytes were enumerated using flow cytometry. Serum p53 and bcl2 levels in HPE (0.91±0.11ng/ml and 122.37±15.77ng/ml) were significantly lower than HNU (1.49±0.15ng/ml and 225.52±33.67ng/ml) (p < 0.05), respectively. Wildtype p53 and bcl2 were positively and significantly correlated with 8-OHdG (r = 0.35, p<0.001; r = 0.36, p<0.001) and SOD (r = 0.38, p<0.001; r = 0.39, p<0.001). After controlling for gender, age, BMI, and cigarette smoking, both HIV status and SOD activity were significantly associated with wildtype p53 and bcl2 (p < 0.05). Malondialdehyde was significantly higher in the HPE (0.72 ± 0.01 mg/ml) than in the HNE (0.68 ± 0.01 mg/ml) and HNU (0.67 ± 0.01 mg/ml) groups (p < 0.05). The HPE group showed significantly lower CD4 counts than the HNE and HNU groups. Individuals who are HIV-infected and occupationally exposed to chemicals have a constellation of depressed immunity, elevated oxidative stress, and loss of tumour suppressive functions, which together intensify cancer risk, providing valuable scientific and public health bases for preventive measures in this vulnerable population.
Collapse
Affiliation(s)
- Donald C. Udah
- Department of Chemical Pathology, Laboratory for Toxicology and Micronutrient Metabolism, College of Medicine, University of Ibadan, Ibadan, Nigeria
- JSI Research & Training Institute Inc. (JSI), Abuja, Nigeria
| | - Adeleye S. Bakarey
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gloria O. Anetor
- Department of Public Health Science, Faculty of Health Sciences, National Open University of Nigeria (NOUN), Abuja, Nigeria
| | - Maxwell Omabe
- Department of Medical Laboratory Sciences, School of Biomedical Science, Faculty of Health Science, Ebonyi State University, Nigeria
| | - Victory F. Edem
- Department of Immunology, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G. Ademowo
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - John I. Anetor
- Department of Chemical Pathology, Laboratory for Toxicology and Micronutrient Metabolism, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
3
|
Murgia N, Akgun M, Blanc PD, Costa JT, Moitra S, Muñoz X, Toren K, Ferreira AJ. Issue 3-The occupational burden of respiratory diseases, an update. Pulmonology 2024:S2531-0437(24)00045-X. [PMID: 38704309 DOI: 10.1016/j.pulmoe.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION AND AIMS Workplace exposures are widely known to cause specific occupational diseases such as silicosis and asbestosis, but they also can contribute substantially to causation of common respiratory diseases. In 2019, the American Thoracic Society (ATS) and the European Respiratory Society (ERS) published a joint statement on the occupational burden of respiratory diseases. Our aim on this narrative review is to summarise the most recent evidence published after the ATS/ERS statement as well as to provide information on traditional occupational lung diseases that can be useful for clinicians and researchers. RESULTS Newer publications confirm the findings of the ATS/ERS statement on the role of workplace exposure in contributing to the aetiology of the respiratory diseases considered in this review (asthma, COPD, chronic bronchitis, idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, infectious pneumonia). Except for COPD, chronic bronchitis and infectious pneumonia, the number of publications in the last 5 years for the other diseases is limited. For traditional occupational lung diseases such as silicosis and asbestosis, there are old as well as novel sources of exposure and their burden continues to be relevant, especially in developing countries. CONCLUSIONS Occupational exposure remains an important risk factor for airways and interstitial lung diseases, causing occupational lung diseases and contributing substantially in the aetiology of common respiratory diseases. This information is critical for public health professionals formulating effective preventive strategies but also for clinicians in patient care. Effective action requires shared knowledge among clinicians, researchers, public health professionals, and policy makers.
Collapse
Affiliation(s)
- N Murgia
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| | - M Akgun
- Department of Chest Diseases, School of Medicine, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - P D Blanc
- Division of Occupational, Environmental, and Climate Medicine, Department of Medicine, University of California San Francisco, California, USA
| | - J T Costa
- Faculdade de Medicina da Universidade do Porto, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - S Moitra
- Alberta Respiratory Centre and Division of Pulmonary Medicine, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - X Muñoz
- Servicio de Neumología, Hospital Vall d'Hebron, Barcelona, Spain
| | - K Toren
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A J Ferreira
- Faculty of Medicine, University of Coimbra. Coimbra, Portugal
| |
Collapse
|
4
|
Mohammed AN, Yadav N, Kaur P, Jandarov R, Yadav JS. Immunomodulation of susceptibility to pneumococcal pneumonia infection in mouse lungs exposed to carbon nanoparticles via dysregulation of innate and adaptive immune responses. Toxicol Appl Pharmacol 2024; 483:116820. [PMID: 38218205 DOI: 10.1016/j.taap.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Carbon nanotubes (CNTs) are emerging pollutants of occupational and environmental health concern. While toxicological mechanisms of CNTs are emerging, there is paucity of information on their modulatory effects on susceptibility to infections. Here, we investigated cellular and molecular events underlying the effect of multi-walled CNT (MWCNT) exposure on susceptibility to Streptococcus pneumoniae infection in our 28-day sub-chronic exposure mouse model. Data indicated reduced phagocytic function in alveolar macrophages (AMs) from MWCNT-exposed lungs evidenced by lower pathogen uptake in 1-h infection assay. At 24-h post-infection, intracellular pathogen count in exposed AMs showed 2.5 times higher net increase (2-fold in vehicle- versus 5-fold in MWCNT-treated), indicating a greater rate of intracellular multiplication and/or survival due to MWCNT exposure. AMs from MWCNT-exposed lungs exhibited downregulation of pathogen-uptake receptors CD163, Phosphatidyl-serine receptor (Ptdsr), and Macrophage scavenger receptors class A type 1 (Msr1) and type 2 (MSr2). In whole lung, MWCNT exposure shifted the macrophage polarization state towards the immunosuppressive phenotype M2b and increased the CD11c+ dendritic cell population required to activate the adaptive immune response. Notably, the MWCNT pre-exposure dysregulated T-cell immunity, evidenced by diminished CD4 and Th17 response, and exacerbated Th1 and Treg responses (skewed Th17/Treg ratio), thereby favoring the pneumococcal infection. Overall, these findings indicated that MWCNT exposure compromises both innate and adaptive immunity leading to diminished host lung defense against pneumonia infection. To our knowledge, this is the first report on an immunomodulatory role of CNT pre-exposure on pneumococcal infection susceptibility due to dysregulation of both innate and adaptive immunity targets.
Collapse
Affiliation(s)
- Afzaal Nadeem Mohammed
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA 22908-0738, USA
| | - Perminder Kaur
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Roman Jandarov
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jagjit Singh Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Riccò M, Ferraro P, Zaffina S, Camisa V, Marchesi F, Gori D. Vaccinating Welders against Pneumococcus: Evidence from a Systematic Review and Meta-Analysis. Vaccines (Basel) 2023; 11:1495. [PMID: 37766171 PMCID: PMC10535919 DOI: 10.3390/vaccines11091495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Workers occupationally exposed to welding dusts and fumes have been suspected to be at increased risk of invasive pneumococcal disease (IPD). Since the 2010s, the United Kingdom Department of Health and the German Ständige Impfkommission (STIKO) actively recommend welders undergo immunization with the 23-valent polysaccharide (PPV23) pneumococcal vaccine, but this recommendation has not been extensively shared by international health authorities. The present meta-analysis was therefore designed to collect available evidence on the occurrence of pneumococcal infection and IPD among welders and workers exposed to welding fumes, in order to ascertain the effective base of evidence for this recommendation. PubMed, Embase and MedRxiv databases were searched without a timeframe restriction for the occurrence of pneumococcal infections and IPD among welders and workers exposed to metal dusts, and articles meeting the inclusion criteria were included in a random-effect meta-analysis model. From 854 entries, 14 articles (1.6%) underwent quantitative analysis, including eight retrospective studies (publication range: 1980-2010), and six reports of professional clusters in shipbuilding (range: 2017-2020). Welders had an increased likelihood of developing IPD compared with non-welders (odds ratio 2.59, 95% CI 2.00-3.35, I2 = 0%, p = 0.58), and an increased likelihood of dying from IPD (standardized mortality ratio (SMR) 2.42, 95% CI 1.96-2.99, I2 = 0%, p = 0.58). Serotype typing was available for 72 cases, 60.3% of which were represented by serotype 4, followed by 12F (19.2%) and serotype 8 (8.2%). Although the available data derive from a limited number of studies, available results suggest that pneumococcal vaccination should be recommended for workers exposed to welding fumes, and vaccination strategies should consider the delivery of recombinant formulates in order to combine the direct protection against serotypes of occupational interest with the mucosal immunization, reducing the circulation of the pathogen in occupational settings characterized by close interpersonal contact.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, Italy
| | - Pietro Ferraro
- Occupational Medicine Unit, Direzione Sanità, Italian Railways’ Infrastructure Division, RFI SpA, I-00161 Rome, Italy;
| | - Salvatore Zaffina
- Occupational Medicine Unit, Bambino Gesù Children’s Hospital IRCCS, I-00152 Rome, Italy; (S.Z.); (V.C.)
| | - Vincenzo Camisa
- Occupational Medicine Unit, Bambino Gesù Children’s Hospital IRCCS, I-00152 Rome, Italy; (S.Z.); (V.C.)
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, I-43126 Parma, Italy;
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, I-40126 Bologna, Italy;
| |
Collapse
|
6
|
Torén K, Albin M, Bergström T, Murgia N, Alderling M, Schiöler L, Åberg M. Occupational risks associated with severe COVID-19 disease and SARS-CoV-2 infection - a Swedish national case-control study conducted from October 2020 to December 2021. Scand J Work Environ Health 2023; 49:386-394. [PMID: 37417898 PMCID: PMC10789521 DOI: 10.5271/sjweh.4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVE This study aimed to investigate whether workplace factors and occupations are associated with SARS-CoV-2 infection or severe COVID-19 in the later waves of the pandemic. METHODS We studied 552 562 cases with a positive test for SARS-CoV-2 in the Swedish registry of communicable diseases, and 5985 cases with severe COVID-19 based on hospital admissions from October 2020 to December 2021. Four population controls were assigned the index dates of their corresponding cases. We linked job histories to job-exposure matrices to assess the odds for different transmission dimensions and different occupations. We used adjusted conditional logistic analyses to estimate odds ratios (OR) for severe COVID-19 and SARS-CoV-2 with 95% confidence intervals (CI). RESULTS The highest OR for severe COVID-19 were for: regular contact with infected patients, (OR 1.37, 95% CI 1.23-1.54), close physical proximity (OR 1.47, 95% CI 1.34-1.61), and high exposure to diseases or infections (OR 1.72, 95% CI 1.52-1.96). Mostly working outside had lower OR (OR 0.77, 95% CI 0.57-1.06). The odds for SARS-CoV-2 when mostly working outside were similar (OR 0.83, 95% CI 0.80-0.86). The occupation with the highest OR for severe COVID-19 (compared with low-exposure occupations) was certified specialist physician (OR 2.05, 95% CI 1.31-3.21) among women and bus and tram drivers (OR 2.04, 95% CI 1.49-2.79) among men. CONCLUSIONS Contact with infected patients, close proximity and crowded workplaces increase the risks for severe COVID-19 and SARS-CoV-2 infection. Outdoor work is associated with decreased odds for SARS-CoV-2 infection and severe COVID-19.
Collapse
Affiliation(s)
- Kjell Torén
- School of Public Health and Community Medicine, The Sahlgrenska Academy, University of Gothenburg, Box 414, SE-405 30 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
7
|
Torén K, Albin M, Bergström T, Alderling M, Schioler L, Åberg M. Occupational risks for infection with influenza A and B: a national case-control study covering 1 July 2006-31 December 2019. Occup Environ Med 2023:oemed-2022-108755. [PMID: 37193595 DOI: 10.1136/oemed-2022-108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVES We investigated whether crowded workplaces, sharing surfaces and exposure to infections were factors associated with a positive test for influenza virus. METHODS We studied 11 300 cases with a positive test for influenza A and 3671 cases of influenza B from Swedish registry of communicable diseases. Six controls for each case were selected from the population registry, with each control being assigned the index date of their corresponding case. We linked job histories to job-exposure matrices (JEMs), to assess different transmission dimensions of influenza and risks for different occupations compared with occupations that the JEM classifies as low exposed. We used adjusted conditional logistic analyses to estimate the ORs for influenza with 95% CI. RESULTS The highest odds were for influenza were: regular contact with infected patients (OR 1.64, 95% CI 1.54 to 1.73); never maintained social distance (OR 1.51, 95% CI 1.43 to 1.59); frequently sharing materials/surfaces with the general public (OR 1.41, 95% CI 1.34 to 1.48); close physical proximity (OR 1.54, 95% CI 1.45 to 1.62) and high exposure to diseases or infections (OR 1.54, 95% CI 1.44 to 1.64). There were small differences between influenza A and influenza B. The five occupations with the highest odds as compared with low exposed occupations were: primary care physicians, protective service workers, elementary workers, medical and laboratory technicians, and taxi drivers. CONCLUSIONS Contact with infected patients, low social distance and sharing surfaces are dimensions that increase risk for influenza A and B. Further safety measures are needed to diminish viral transmission in these contexts.
Collapse
Affiliation(s)
- Kjell Torén
- Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
- Occupational and Environmental Medicine Department of Medicine, Sahlgrenska University Hospital, Goteborg, Sweden
| | - Maria Albin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases/Virology, University of Gothenburg, Goteborg, Sweden
| | - Magnus Alderling
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linus Schioler
- Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
| | - Maria Åberg
- Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
| |
Collapse
|
8
|
Quintana-Sosa M, León-Mejía G, Narváez DM, Suarez-Arnedo A, Restrepo HGD, De Moya YS, Ruiz-Benitez M, Valencia KF, Trindade C, Miranda-Guevara A, Dias J, Henriques JAP, da Silva J. Association of buccal micronucleus cytome assay (BMNCyt) biomarkers with inorganic element concentration and genetic polymorphisms in welders. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104025. [PMID: 36460284 DOI: 10.1016/j.etap.2022.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Welding fumes are classified as carcinogenic to humans. The aim of the present study was to measure buccal micronucleus cytome assay biomarkers and to evaluate their association with inorganic elements and genetic polymorphisms (XRCC1, OGG1, XRCC3, GSTM1, and GSTT1) in welders (n = 98) and control individuals (n = 100). Higher levels of DNA damage and cell death were observed in the exposed group. Also, a significant correlation between the frequency of micronuclei and Na, Si, Cl, Ti, Cr, Zn and Mg concentrations. The formation of micronuclei, binucleated cells, cell death was associated with polymorphisms in repair pathways. The OGG1Ser326Cys and XRCC3 241Thr/Met genotypes were associated with cell death. Individuals with GSTM1 null genotype had a higher frequency of micronuclei. These results demonstrate that the deleterious effects of exposure to welding fumes are exacerbated by lifestyle habits, and genetic polymorphisms can influence DNA damage and cell death.
Collapse
Affiliation(s)
- Milton Quintana-Sosa
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Grethel León-Mejía
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| | - Diana M Narváez
- Laboratorio de Genética Humana, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Yurina Sh De Moya
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Karen Franco Valencia
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Cristiano Trindade
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Alvaro Miranda-Guevara
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Johnny Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil; Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA) & Universidade La Salle (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|
9
|
Torén K, Albin M, Alderling M, Schiöler L, Åberg M. Transmission factors and exposure to infections at work and invasive pneumococcal disease. Am J Ind Med 2023; 66:65-74. [PMID: 36385261 PMCID: PMC10100104 DOI: 10.1002/ajim.23439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Working in close contacts with coworkers or the general public may be associated with transmission of invasive pneumococcal disease (IPD). We investigated whether crowded workplaces, sharing surfaces, and exposure to infections were factors associated with IPD. METHODS We studied 3,968 cases of IPD, and selected six controls for each case from the Swedish population registry with each control being assigned the index date of their corresponding case. We linked job histories to job-exposure matrices to assess different transmission dimensions of pneumococci, as well as occupational exposure to fumes. We used adjusted conditional logistic analyses to estimate the odds ratios (ORs) for IPD with 95% confidence intervals (95% CI). RESULTS ORs for IPD for the different transmission dimensions were increased moderately but were statistically significant. Compared to home-working or working alone, the highest odds was for Working mostly outside, or partly inside (OR 1.19, 95% CI 1.04-1.38). Estimates were higher in men for all dimensions, compared to women. The odds for IPD for Working mostly outside, or partly inside were 1.33 (95% CI 1.13-1.56) and 0.79 (95% CI 0.55-1.14) for men and women, respectively. Higher odds were seen for all transmission dimensions among those exposed to fumes, although CIs included unity. Contact with ill or infected patients did not increase the odds for IPD. CONCLUSION IPD was associated with working in close contact with coworkers or the general public, and with outside work, especially for men. Contact with infected patients or persons was not associated with IPD.
Collapse
Affiliation(s)
- Kjell Torén
- School of Public Health and Community Medicine, Institute of Medicine, The Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medicine, Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.,Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Alderling
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linus Schiöler
- School of Public Health and Community Medicine, Institute of Medicine, The Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- School of Public Health and Community Medicine, Institute of Medicine, The Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Regionhälsan, Gothenburg, Sweden
| |
Collapse
|
10
|
Beentjes D, Shears RK, French N, Neill DR, Kadioglu A. Mechanistic Insights into the Impact of Air Pollution on Pneumococcal Pathogenesis and Transmission. Am J Respir Crit Care Med 2022; 206:1070-1080. [PMID: 35649181 PMCID: PMC9704843 DOI: 10.1164/rccm.202112-2668tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of pneumonia and bacterial meningitis. A number of recent studies indicate an association between the incidence of pneumococcal disease and exposure to air pollution. Although the epidemiological evidence is substantial, the underlying mechanisms by which the various components of air pollution (particulate matter and gases such as NO2 and SO2) can increase susceptibility to pneumococcal infection are less well understood. In this review, we summarize the various effects air pollution components have on pneumococcal pathogenesis and transmission; exposure to air pollution can enhance host susceptibility to pneumococcal colonization by impairing the mucociliary activity of the airway mucosa, reducing the function and production of key antimicrobial peptides, and upregulating an important pneumococcal adherence factor on respiratory epithelial cells. Air pollutant exposure can also impair the phagocytic killing ability of macrophages, permitting increased replication of S. pneumoniae. In addition, particulate matter has been shown to activate various extra- and intracellular receptors of airway epithelial cells, which may lead to increased proinflammatory cytokine production. This increases recruitment of innate immune cells, including macrophages and neutrophils. The inflammatory response that ensues may result in significant tissue damage, thereby increasing susceptibility to invasive disease, because it allows S. pneumoniae access to the underlying tissues and blood. This review provides an in-depth understanding of the interaction between air pollution and the pneumococcus, which has the potential to aid the development of novel treatments or alternative strategies to prevent disease, especially in areas with high concentrations of air pollution.
Collapse
Affiliation(s)
- Daan Beentjes
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca K Shears
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Torén K, Naidoo RN, Blanc PD. Pneumococcal pneumonia on the job: Uncovering the past story of occupational exposure to metal fumes and dust. Am J Ind Med 2022; 65:517-524. [PMID: 35352358 PMCID: PMC9311681 DOI: 10.1002/ajim.23352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/09/2022]
Abstract
The objectives of this study are to elucidate the early history of risk for pneumococcal pneumonia from occupational exposure to metal fumes and dusts, and to demonstrate the importance of searching older literature when performing reviews. We performed manual searching for articles in the Library of the Surgeon General's Office (the precursor to Index Medicus), in the Hathi Trust database, in PubMed, andby screening reference lists in literature appearing before the introduction of PubMed. An early body of literature, from the 1890s onward, recognized that pneumonia was linked to "Thomas slag," a steel industry byproduct containing iron, manganese, and lime. Researchers, mainly in Germany, showed that workers in metal-dust-exposed occupations, especially using manganese, manifested an increased incidence of pneumococcal pneumonia. An outbreak of pneumococcal pneumonia in the 1930s implicated manganese fume in its etiology. In the immediate post-World War II period, there was a brief flurry of interest in pneumonia from exposure to potassium permanganate that was soon dismissed as a chemical pneumonitis. After a hiatus of two decades, epidemiologic investigations drew attention to the pneumonia risks of welding and related metal fume exposure, bringing renewed interest to the forgotten role of pneumococcal pneumonia as an occupational disease. Occupational or environmental inhalation of manganese, iron, or irritants may be causally related to increased pneumococcal pneumonia risk. In particular, the risk associated with manganese seems to be overlooked in recent literature. An important conclusion is the importance of obtaining additional evidence through a deeper assessment of the literature in a broad historical context.
Collapse
Affiliation(s)
- Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Department of Occupational and Environmental MedicineSahlgrenska University HospitalGothenburgSweden,Discipline of Occupational and Environmental HealthUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Rajen N. Naidoo
- Discipline of Occupational and Environmental HealthUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Paul D. Blanc
- Department of Medicine, Division of Occupational and Environmental MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
12
|
Parks CG, Costenbader KH, Long S, Hofmann JN, Beane FLE, Sandler DP. Pesticide use and risk of systemic autoimmune diseases in the Agricultural Health Study. ENVIRONMENTAL RESEARCH 2022; 209:112862. [PMID: 35123967 PMCID: PMC9205340 DOI: 10.1016/j.envres.2022.112862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) risk has been associated with pesticide use, but evidence on specific pesticides or other agricultural exposures is lacking. We investigated history of pesticide use and risk of SLE and a related disease, Sjögren's syndrome (SS), in the Agricultural Health Study. METHODS The study sample (N = 54,419, 52% male, enrolled in 1993-1997) included licensed pesticide applicators from North Carolina and Iowa and spouses who completed any of the follow-up questionnaires (1999-2003, 2005-2010, 2013-2015). Self-reported cases were confirmed by medical records or medication use (total: 107 incident SLE or SS, 79% female). We examined ever use of 31 pesticides and farm tasks and exposures reported at enrollment in association with SLE/SS, using Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (CI), with age as the timescale and adjusting for gender, state, and correlated pesticides. RESULTS In older participants (>62 years), SLE/SS was associated with ever use of the herbicide metribuzin (HR 5.33; 95%CI 2.19, 12.96) and applying pesticides 20+ days per year (2.97; 1.20, 7.33). Inverse associations were seen for petroleum oil/distillates (0.39; 0.18, 0.87) and the insecticide carbaryl (0.56; 0.36, 0.87). SLE/SS was inversely associated with having a childhood farm residence (0.59; 0.39, 0.91), but was not associated with other farm tasks/exposures (except welding, HR 2.65; 95%CI 0.96, 7.35). CONCLUSIONS These findings suggest that some agricultural pesticides may be associated with higher or lower risk of SLE/SS. However, the overall risk associated with farming appears complex, involving other factors and childhood exposures.
Collapse
Affiliation(s)
- C G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - K H Costenbader
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Long
- Westat, Rockville, MD, USA
| | - J N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Freeman L E Beane
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - D P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
13
|
Murgia N, Gambelunghe A. Occupational COPD-The most under-recognized occupational lung disease? Respirology 2022; 27:399-410. [PMID: 35513770 PMCID: PMC9321745 DOI: 10.1111/resp.14272] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by exposure to noxious particles and gases. Smoking is the main risk factor, but other factors are also associated with COPD. Occupational exposure to vapours, gases, dusts and fumes contributes to the development and progression of COPD, accounting for a population attributable fraction of 14%. Workplace pollutants, in particular inorganic dust, can initiate airway damage and inflammation, which are the hallmarks of COPD pathogenesis. Occupational COPD is still underdiagnosed, mainly due to the challenges of assessing the occupational component of the disease in clinical settings, especially if other risk factors are present. There is a need for specific education and training for clinicians, and research with a focus on evaluating the role of occupational exposure in causing COPD. Early diagnosis and identification of occupational causes is very important to prevent further decline in lung function and to reduce the health and socio-economic burden of COPD. Establishing details of the occupational history by general practitioners or respiratory physicians could help to define the occupational burden of COPD for individual patients, providing the first useful interventions (smoking cessation, best therapeutic management, etc.). Once patients are diagnosed with occupational COPD, there is a wide international variation in access to specialist occupational medicine and public health services, along with limitations in workplace and income support. Therefore, a strong collaboration between primary care physicians, respiratory physicians and occupational medicine specialists is desirable to help manage COPD patients' health and social issues.
Collapse
Affiliation(s)
- Nicola Murgia
- Section of Occupational Medicine, Respiratory Diseases and Toxicology, University of Perugia, Perugia, Italy
| | - Angela Gambelunghe
- Section of Occupational Medicine, Respiratory Diseases and Toxicology, University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
Shrestha D, Massey N, Bhat SM, Jelesijević T, Sahin O, Zhang Q, Bailey KL, Poole JA, Charavaryamath C. Nrf2 Activation Protects Against Organic Dust and Hydrogen Sulfide Exposure Induced Epithelial Barrier Loss and K. pneumoniae Invasion. Front Cell Infect Microbiol 2022; 12:848773. [PMID: 35521223 PMCID: PMC9062039 DOI: 10.3389/fcimb.2022.848773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Agriculture workers report various respiratory symptoms owing to occupational exposure to organic dust (OD) and various gases. Previously, we demonstrated that pre-exposure to hydrogen sulfide (H2S) alters the host response to OD and induces oxidative stress. Nrf2 is a master-regulator of host antioxidant response and exposures to toxicants is known to reduce Nrf2 activity. The OD exposure-induced lung inflammation is known to increase susceptibility to a secondary microbial infection. We tested the hypothesis that repeated exposure to OD or H2S leads to loss of Nrf2, loss of epithelial cell integrity and that activation of Nrf2 rescues this epithelial barrier dysfunction. Primary normal human bronchial epithelial (NHBE) cells or mouse precision cut-lung slices (PCLS) were treated with media, swine confinement facility organic dust extract (ODE) or H2S or ODE+H2S for one or five days. Cells were also pretreated with vehicle control (DMSO) or RTA-408, a Nrf2 activator. Acute exposure to H2S and ODE+H2S altered the cell morphology, decreased the viability as per the MTT assay, and reduced the Nrf2 expression as well as increased the keap1 levels in NHBE cells. Repeated exposure to ODE or H2S or ODE+H2S induced oxidative stress and cytokine production, decreased tight junction protein occludin and cytoskeletal protein ezrin expression, disrupted epithelial integrity and resulted in increased Klebsiella pneumoniae invasion. RTA-408 (pharmacological activator of Nrf2) activated Nrf2 by decreasing keap1 levels and reduced ODE+H2S-induced changes including reversing loss of barrier integrity, inflammatory cytokine production and microbial invasion in PCLS but not in NHBE cell model. We conclude that Nrf2 activation has a partial protective function against ODE and H2S.
Collapse
Affiliation(s)
- Denusha Shrestha
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Nyzil Massey
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Sanjana Mahadev Bhat
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States
| | - Tomislav Jelesijević
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Qijing Zhang
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Kristina L. Bailey
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jill A. Poole
- Department of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chandrashekhar Charavaryamath
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- *Correspondence: Chandrashekhar Charavaryamath,
| |
Collapse
|
15
|
de Perio MA, Hendricks KA, Dowell CH, Bower WA, Burton NC, Dawson P, Schrodt CA, Salzer JS, Marston CK, Feldmann K, Hoffmaster AR, Antonini JM. Welder’s Anthrax: A Review of an Occupational Disease. Pathogens 2022; 11:pathogens11040402. [PMID: 35456077 PMCID: PMC9029013 DOI: 10.3390/pathogens11040402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Since 1997, nine cases of severe pneumonia, caused by species within the B. cereus group and with a presentation similar to that of inhalation anthrax, were reported in seemingly immunocompetent metalworkers, with most being welders. In seven of the cases, isolates were found to harbor a plasmid similar to the B. anthracis pXO1 that encodes anthrax toxins. In this paper, we review the literature on the B. cereus group spp. pneumonia among welders and other metalworkers, which we term welder’s anthrax. We describe the epidemiology, including more information on two cases of welder’s anthrax in 2020. We also describe the health risks associated with welding, potential mechanisms of infection and pathological damage, prevention measures according to the hierarchy of controls, and clinical and public health considerations. Considering occupational risk factors and controlling exposure to welding fumes and gases among workers, according to the hierarchy of controls, should help prevent disease transmission in the workplace.
Collapse
Affiliation(s)
- Marie A. de Perio
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA
- Correspondence: or ; Tel.: +1-513-841-4116
| | - Katherine A. Hendricks
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (K.A.H.); (W.A.B.); (C.K.M.); (A.R.H.)
| | - Chad H. Dowell
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA
| | - William A. Bower
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (K.A.H.); (W.A.B.); (C.K.M.); (A.R.H.)
| | - Nancy C. Burton
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Patrick Dawson
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA; (N.C.B.); (K.F.)
| | - Caroline A. Schrodt
- Office of Science, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Johanna S. Salzer
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Chung K. Marston
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (K.A.H.); (W.A.B.); (C.K.M.); (A.R.H.)
| | - Karl Feldmann
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Alex R. Hoffmaster
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (K.A.H.); (W.A.B.); (C.K.M.); (A.R.H.)
| | - James M. Antonini
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| |
Collapse
|
16
|
Gladstone RA, Siira L, Brynildsrud OB, Vestrheim DF, Turner P, Clarke SC, Srifuengfung S, Ford R, Lehmann D, Egorova E, Voropaeva E, Haraldsson G, Kristinsson KG, McGee L, Breiman RF, Bentley SD, Sheppard CL, Fry NK, Corander J, Toropainen M, Steens A. International links between Streptococcus pneumoniae vaccine serotype 4 sequence type (ST) 801 in Northern European shipyard outbreaks of invasive pneumococcal disease. Vaccine 2022; 40:1054-1060. [PMID: 34996643 PMCID: PMC8820377 DOI: 10.1016/j.vaccine.2021.10.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/01/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pneumococcal disease outbreaks of vaccine preventable serotype 4 sequence type (ST)801 in shipyards have been reported in several countries. We aimed to use genomics to establish any international links between them. METHODS Sequence data from ST801-related outbreak isolates from Norway (n = 17), Finland (n = 11) and Northern Ireland (n = 2) were combined with invasive pneumococcal disease surveillance from the respective countries, and ST801-related genomes from an international collection (n = 41 of > 40,000), totalling 106 genomes. Raw data were mapped and recombination excluded before phylogenetic dating. RESULTS Outbreak isolates were relatively diverse, with up to 100 SNPs (single nucleotide polymorphisms) and a common ancestor estimated around the year 2000. However, 19 Norwegian and Finnish isolates were nearly indistinguishable (0-2 SNPs) with the common ancestor dated around 2017. CONCLUSION The total diversity of ST801 within the outbreaks could not be explained by recent transmission alone, suggesting that harsh environmental and associated living conditions reported in the shipyards may facilitate invasion of colonising pneumococci. However, near identical strains in the Norwegian and Finnish outbreaks does suggest that transmission between international shipyards also contributed to those outbreaks. This indicates the need for improved preventative measures in this working population including pneumococcal vaccination.
Collapse
Affiliation(s)
- R A Gladstone
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - L Siira
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - O B Brynildsrud
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - D F Vestrheim
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - P Turner
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - S C Clarke
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia; Centre for Translational Research, IMU Institute for Research, Development and Innovation (IRDI), Kuala Lumpur, Malaysia
| | | | - R Ford
- Papua New Guinea Institute of Medical Research, PO Box 60, Goroka 441, Eastern Highlands Province, Papua New Guinea
| | - D Lehmann
- Telethon Kids Institute, the University of Western Australia, Perth, WA, Australia
| | - E Egorova
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - E Voropaeva
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - G Haraldsson
- Department of Clinical Microbiology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland and Faculty of Medicine, University of Iceland
| | - K G Kristinsson
- Department of Clinical Microbiology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland and Faculty of Medicine, University of Iceland
| | - L McGee
- Centers for Disease Control and Prevention, Atlanta, USA
| | - R F Breiman
- Emory Global Health Institute, Atlanta, USA; Rollins School Public Health, Emory University, USA
| | - S D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - C L Sheppard
- Vaccine Preventable Bacteria Section, Public Health England - National Infection Service, London, United Kingdom
| | - N K Fry
- Vaccine Preventable Bacteria Section, Public Health England - National Infection Service, London, United Kingdom; Immunisation and Countermeasures Division, Public Health England - National Infection Service, London, United Kingdom
| | - J Corander
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - M Toropainen
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - A Steens
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
17
|
Torén K, Blanc PD, Naidoo R, Murgia N, Stockfelt L, Schiöler L. Cumulative occupational exposure to inorganic dust and fumes and invasive pneumococcal disease with pneumonia. Int Arch Occup Environ Health 2022; 95:1797-1804. [PMID: 35262802 PMCID: PMC9489545 DOI: 10.1007/s00420-022-01848-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/24/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Occupational exposure to inorganic dust and fumes in the year preceding disease has been associated with increased pneumococcal pneumonia risk, but the impact of prior cumulative exposure has not been characterized. METHODS We studied 3184 cases of invasive pneumococcal disease with pneumonia. The case index date was the day the infection was diagnosed. We selected six controls for each case from the Swedish population registry; each control was assigned the index date of their corresponding case. We linked job histories to a job-exposure matrix to calculate a cumulative exposure index, intensity-years, by multiplying the duration (maximum 5 years) of each exposure with the level of exposure (0 for unexposed, 1 for low and 4 for high). We used conditional logistic analyses to estimate the odds ratio (OR) of invasive pneumococcal disease with pneumonia adjusted for comorbidities, educational level, income and other occupational exposures. RESULTS Taking other occupational exposures into account, greater than 5 intensity-years of exposure to silica dust or to fumes was each associated with increased odds for invasive pneumococcal disease with pneumonia (OR 2.53, 95% CI 1.49-4.32) and (OR 2.24, 95% CI 1.41-3.55), respectively. Five intensity-years or less of exposure to silica dust or fumes manifested lower odds (OR 1.45, 95% CI 1.20-1.76) and (OR 1.05, 95% CI 0.94-1.16), respectively. CONCLUSION This study adds evidence that the risk of pneumococcal pneumonia increases with increasing cumulative exposure to dust and fumes, indicating the importance of cumulative exposure.
Collapse
Affiliation(s)
- Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30, Gothenburg, Sweden. .,Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa.
| | - Paul D. Blanc
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California, San Francisco, CA USA
| | - Rajen Naidoo
- Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa
| | - Nicola Murgia
- Section of Occupational Medicine, Respiratory Diseases and Toxicology, University of Perugia, Perugia, Italy
| | - Leo Stockfelt
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30 Gothenburg, Sweden ,Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linus Schiöler
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 414, 405 30 Gothenburg, Sweden
| |
Collapse
|
18
|
Kisiel MA, Zhou X, Björnsson E, Holm M, Dahlman-Höglund A, Wang J, Svanes C, Norbäck D, Franklin KA, Malinovschi A, Johannessen A, Schlünssen V, Janson C. The risk of respiratory tract infections and antibiotic use in a general population and among people with asthma. ERJ Open Res 2021; 7:00429-2021. [PMID: 34853783 PMCID: PMC8628194 DOI: 10.1183/23120541.00429-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Aim The aim of this study was to investigate occupational, environmental, early life and other risk factors associated with respiratory infections and antibiotics use in a general population and among asthmatic individuals. Method This study included 15 842 participants of the Respiratory Health in Northern Europe (RHINE) study aged 25–54 years from five Nordic countries, who answered a questionnaire covering respiratory outcomes, exposures, demographic characteristics and numbers of infections and courses of antibiotics in the last 12 months. Multiple logistic regression with and without adjustment for age, sex, smoking status, body mass index and centre were used to study the risk of infection and antibiotics in relation to asthma, and also the association between infection and antibiotics and occupations. Results In the whole population, 11.6% reported having three or more respiratory infections, and 14.7% had used antibiotics because of respiratory tract infections within the last year. Asthmatic participants reported tripled odds for such infections (adjusted OR 2.98, 95% CI 2.53–3.52) and antibiotics use (adjusted OR 3.67, 95% CI 3.18–4.24) as compared to non-asthmatic participants. Both in the general and the asthmatic population, female sex, obesity and exposure to building dampness were associated with respiratory infections. Female sex and current smoking and living in Tartu were associated with antibiotic use. The use of antibiotics was doubled in people hospitalised for severe respiratory infection in childhood. Conclusion In this study we identified several factors associated with increased respiratory infections and use of antibiotics in a general population and among asthmatic individuals. The frequency of respiratory infections and subsequent antibiotic treatment were increased among those with asthma. The main findings of this study are that asthmatics reported three times higher odds for respiratory tract infections and more than three times higher odds for subsequent antibiotics than subjects without asthmahttps://bit.ly/3hwsH67
Collapse
Affiliation(s)
- Marta A Kisiel
- Dept of Medical Sciences: Environmental and Occupational Medicine, Uppsala University, Uppsala, Sweden
| | - Xingwu Zhou
- Dept of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden.,Dept of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | | | - Mathias Holm
- Section of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Dahlman-Höglund
- Section of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Juan Wang
- Dept of Medical Sciences: Environmental and Occupational Medicine, Uppsala University, Uppsala, Sweden
| | - Cecilie Svanes
- Dept of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway.,Dept of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Dan Norbäck
- Dept of Medical Sciences: Environmental and Occupational Medicine, Uppsala University, Uppsala, Sweden
| | - Karl A Franklin
- Dept of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Andrei Malinovschi
- Dept of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Ane Johannessen
- Dept of Global Public Health and Primary Care, Centre for International Health, University of Bergen, Bergen, Norway
| | - Vivi Schlünssen
- Dept of Public Health, Danish Ramazzini Centre, Aarhus University and the National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Christer Janson
- Dept of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Inhaled Corticosteroids Use and Risk of Invasive Pneumococcal Disease in a Population-based Study. Ann Am Thorac Soc 2021; 17:1570-1575. [PMID: 32649216 PMCID: PMC7706606 DOI: 10.1513/annalsats.202004-352oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rationale: The use of inhaled corticosteroids (ICS) is associated with increased pneumonia risk, but the risk of invasive pneumococcal disease (IPD) associated with ICS is not characterized. Objectives: The aim was to test the hypothesis that the use of ICS increases the risk of IPD. Methods: Cases were persons 20–65 years of age included in a Swedish national registry of invasive infection caused by Streptococcus pneumoniae classified as any IPD as well as the subset of IPD with pneumonia. The case index date was the day the infection was diagnosed. Six control subjects for each case (matched for sex, age, and region) were selected from the Swedish National Population Registry and were assigned the index date of their corresponding case. Current and past users of ICS were defined by the last prescriptions dispensed within 60 or 61–365 days of the index date. Nonusers were defined as those with no dispensed prescription the last 365 days. Current users were characterized by use of fluticasone or budesonide. We used conditional logistic analysis, including matching and covariates, to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) of IPD, IPD with pneumonia, and IPD without pneumonia associated with current or past use of ICS. Results: Current use of ICS increased the risk for IPD and IPD with pneumonia (OR, 1.71; 95% CI, 1.39–2.10 and OR, 1.94; 95% CI, 1.53–2.47, respectively), but there was no statistical association between current use of ICS and IPD without pneumonia (OR, 1.18; 95% CI 0.78–1.80). Past use of ICS increased the risk for IPD and IPD with pneumonia but not for IPD without pneumonia. Among current ICS users, the odds for IPD were similar for budesonide (OR, 1.34; 95% CI, 1.14–1.57) and fluticasone (OR, 1.41; 95% CI, 1.04–1.90). Among current ICS users, the odds for IPD with pneumonia were slightly higher but of similar magnitude for both budesonide and for fluticasone. Conclusions: ICS use is associated with an increased risk of IPD and IPD with pneumonia. The risk is driven by IPD with pneumonia. We found similar risks for budesonide and fluticasone.
Collapse
|
20
|
Acke S, Couvreur S, Bramer WM, Schmickler MN, De Schryver A, Haagsma JA. Global infectious disease risks associated with occupational exposure among non-healthcare workers: a systematic review of the literature. Occup Environ Med 2021; 79:63-71. [PMID: 34035182 PMCID: PMC8685622 DOI: 10.1136/oemed-2020-107164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/03/2022]
Abstract
Objectives Employees in non-healthcare occupations may be in several ways exposed to infectious agents. Improved knowledge about the risks is needed to identify opportunities to prevent work-related infectious diseases. The objective of the current study was to provide an updated overview of the published evidence on the exposure to pathogens among non-healthcare workers. Because of the recent SARS-CoV-2 outbreaks, we also aimed to gain more evidence about exposure to several respiratory tract pathogens. Methods Eligible studies were identified in MEDLINE, Embase and Cochrane between 2009 and 8 December 2020. The protocol was registered with International Prospective Register of Systematic Reviews (CRD42019107265). An additional quality assessment was applied according to the Equator network guidelines. Results The systematic literature search yielded 4620 papers of which 270 met the selection and quality criteria. Infectious disease risks were described in 37 occupational groups; 18 of them were not mentioned before. Armed forces (n=36 pathogens), livestock farm labourers (n=31), livestock/dairy producers (n=26), abattoir workers (n=22); animal carers and forestry workers (both n=16) seemed to have the highest risk. In total, 111 pathogen exposures were found. Many of these occupational groups (81.1%) were exposed to respiratory tract pathogens. Conclusion Many of these respiratory tract pathogens were readily transmitted where employees congregate (workplace risk factors), while worker risk factors seemed to be of increasing importance. By analysing existing knowledge of these risk factors, identifying new risks and susceptible risk groups, this review aimed to raise awareness of the issue and provide reliable information to establish more effective preventive measures.
Collapse
Affiliation(s)
- Sofie Acke
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Research and Development, Mensura Occupational Health Services, Brussel, Belgium
| | - Simon Couvreur
- Department of Twin Research, King's College London, London, UK
| | | | | | - Antoon De Schryver
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Juanita A Haagsma
- Department of Public Health, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
21
|
García-Marín LM, Campos AI, Martin NG, Cuéllar-Partida G, Rentería ME. Inference of causal relationships between sleep-related traits and 1,527 phenotypes using genetic data. Sleep 2021; 44:5893494. [PMID: 32805044 DOI: 10.1093/sleep/zsaa154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVE Sleep is essential for both physical and mental health, and there is a growing interest in understanding how different factors shape individual variation in sleep duration, quality and patterns, or confer risk for sleep disorders. The present study aimed to identify novel inferred causal relationships between sleep-related traits and other phenotypes, using a genetics-driven hypothesis-free approach not requiring longitudinal data. METHODS We used summary-level statistics from genome-wide association studies and the latent causal variable (LCV) method to screen the phenome and infer causal relationships between seven sleep-related traits (insomnia, daytime dozing, easiness of getting up in the morning, snoring, sleep duration, napping, and morningness) and 1,527 other phenotypes. RESULTS We identify 84 inferred causal relationships. Among other findings, connective tissue disorders increase insomnia risk and reduce sleep duration; depression-related traits increase insomnia and daytime dozing; insomnia, napping, and snoring are affected by obesity and cardiometabolic traits and diseases; and working with asbestos, thinner, or glues may increase insomnia risk, possibly through an increased risk of respiratory disease or socio-economic related factors. CONCLUSION Overall, our results indicate that changes in sleep variables are predominantly the consequence, rather than the cause, of other underlying phenotypes and diseases. These insights could inform the design of future epidemiological and interventional studies in sleep medicine and research.
Collapse
Affiliation(s)
- Luis M García-Marín
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Adrián I Campos
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas G Martin
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gabriel Cuéllar-Partida
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Genetic Epidemiology Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Global Brain Health Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Occupational Respiratory Infections. Clin Chest Med 2020; 41:739-751. [PMID: 33153691 DOI: 10.1016/j.ccm.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Occupational respiratory infections can be caused by bacterial, viral, and fungal pathogens. Transmission in occupational settings can occur from other humans, animals, or the environment, and occur in various occupations and industries. In this article, we describe 4 occupationally acquired respiratory infections at the focus of NIOSH investigations over the last decade: tuberculosis (TB), influenza, psittacosis, and coccidioidomycosis. We highlight the epidemiology, clinical manifestations, occupational risk factors, and prevention measures.
Collapse
|
23
|
Sigurdardottir V, Jacobsson L, Schiöler L, Svärd A, Dehlin M, Toren K. Occupational exposure to inorganic dust and risk of gout: a population-based study. RMD Open 2020; 6:rmdopen-2020-001178. [PMID: 32683325 PMCID: PMC7425113 DOI: 10.1136/rmdopen-2020-001178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/04/2020] [Accepted: 06/07/2020] [Indexed: 11/24/2022] Open
Abstract
Background Risk factors operating independently of hyperuricemia could be of importance in determining why only a minority of people with hyperuricemia develop gout. Exposure to inorganic dust has been linked to other inflammatory diseases and could influence the development of gout. Objectives To evaluate if occupational exposure to inorganic dust increases the risk of gout. Methods Individuals aged 30–65 years with a first gout diagnosis in 2006–2012 in the population-based healthcare database of the Western Swedish Healthcare Region (VEGA) and population controls matched by age and sex were included. Data on occupation was collected from the Swedish occupational register. Exposure status was assigned by means of a job exposure matrix. Data on gout-related comorbidities was collected from VEGA. Alcohol use disorder and obesity were related both to gout and exposure to inorganic dust and were adjusted for in multivariate analyses. ORs were calculated using conditional logistic regression. Results 5042 gout cases and 20 682 controls were included. Exposure to inorganic dust was associated with gout in both unadjusted (OR 1.12, 95% CI 1.04 to 1.20) and multivariate (OR 1.08, 95% CI 1.00 to 1.16) analyses of the whole population. In sex-stratified multivariate analyses, dust exposure was significantly associated with gout in women (adjusted OR 1.26, 95% CI 1.05 to 1.51), but not in men (adjusted OR 1.05, 95% CI 0.97 to 1.13). Conclusions We describe for the first time an association between exposure to inorganic dust and gout. After adjusting for confounders, the findings were statistically significant for women but not for men.
Collapse
Affiliation(s)
- Valgerdur Sigurdardottir
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden .,Center for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Lennart Jacobsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Linus Schiöler
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Anna Svärd
- Center for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Mats Dehlin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kjell Toren
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Goteborg, Sweden
| |
Collapse
|