1
|
Lovén K, Hagvall L, Rex J, Nilsson CA, Malmborg V, Pagels J, Strandberg B, Hedmer M. Characterization of exposure to air pollutants for workers in and around fires. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024:1-17. [PMID: 39418654 DOI: 10.1080/15459624.2024.2406244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Firefighters can be occupationally exposed to a wide range of airborne pollutants during fire-extinguishing operations. The overall study aim was to characterize occupational exposure to smoke for several groups of workers responding to fires, with specific aims to determine the correlations between exposure markers and to biologically assess their systemic exposure to polycyclic aromatic hydrocarbons (PAHs) in urine. Personal exposure measurements of equivalent black carbon (eBC), elemental carbon (EC), organic carbon (OC), nitrogen dioxide (NO2), PAHs, lung deposited surface area (LDSA), and particle number concentration (PNC) of ultrafine particles were performed on firefighters, observers, and post-fire workers during firefighting exercises. Urine samples were collected before and after exposure and analyzed for PAH metabolites. Additional routes for PAH skin exposure were investigated by wipe sampling on defined surfaces: equipment, personal protective equipment (PPE), and vehicles. Among workers without PPE, observers generally had higher exposures than post-fire workers. The observers and post-fire workers had an occupational exposure to smoke measured e.g. as EC of 7.3 µg m-3 and 1.9 µg m-3, respectively. There was a good agreement between measurements of carbonaceous particles measured as EC from filters and as eBC with high time resolution, especially for the observers and post-fire workers. Ultrafine particle exposure measured as LDSA was two times higher for observers compared to the post-fire workers. The urinary levels of PAH metabolites were generally higher in firefighters and observers compared to post-fire workers. Investigation of PAH contamination on firefighters' PPE revealed high PAH contamination on surfaces with frequent skin contact both before and after cleaning. Exposure to smoke can be assessed with several different exposure markers. For workers residing unprotected around fire scenes, there can be high peak exposures depending on their behavior concerning the smoke plume. Several workers had high urinary PAH metabolite concentrations even though they were exposed to low air concentrations of PAHs, indicating skin absorption of PAH as a plausible exposure route.
Collapse
Affiliation(s)
- Karin Lovén
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Lina Hagvall
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Johannes Rex
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Carina A Nilsson
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Vilhelm Malmborg
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Joakim Pagels
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Maria Hedmer
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| |
Collapse
|
2
|
Zhang A, Luo X, Li Y, Yan L, Lai X, Yang Q, Zhao Z, Huang G, Li Z, Wu Q, Wang J. Epigenetic changes driven by environmental pollutants in lung carcinogenesis: a comprehensive review. Front Public Health 2024; 12:1420933. [PMID: 39440184 PMCID: PMC11493668 DOI: 10.3389/fpubh.2024.1420933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality globally, with environmental pollutants identified as significant risk factors, especially for nonsmokers. The intersection of these pollutants with epigenetic mechanisms has emerged as a critical area of interest for understanding the etiology and progression of lung cancer. Epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs, can induce alterations in gene expression without affecting the DNA sequence and are influenced by environmental factors, contributing to the transformation of normal cells into malignant cells. This review assessed the literature on the influence of environmental pollutants on lung cancer epigenetics. A comprehensive search across databases such as PubMed, Web of Science, Cochrane Library, and Embase yielded 3,254 publications, with 22 high-quality papers included for in-depth analysis. These studies demonstrated the role of epigenetic markers, such as DNA methylation patterns of genes like F2RL3 and AHRR and alterations in the miRNA expression profiles, as potential biomarkers for lung cancer diagnosis and treatment. The review highlights the need to expand research beyond homogenous adult male groups typically found in high-risk occupational environments to broader population demographics. Such diversification can reduce biases and enhance the relevance of findings to various clinical contexts, fostering the development of personalized preventive and therapeutic measures. In conclusion, our findings underscore the potential of innovative epigenetic therapies, such as DNA demethylating drugs and histone modification agents, to counter environmental toxins' carcinogenic effects. The growing interest in miRNA therapies and studies aiming to correct aberrant methylation patterns indicate significant strides toward better lung cancer management and a healthier future for global communities.
Collapse
Affiliation(s)
- Aijia Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuexing Luo
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yu Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Lunchun Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Department of Comprehensive Surgery, Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Guangdong-Macao in-Depth Cooperation Zone in Hengqin, Hengqin, China
| | - Xin Lai
- Department of Traditional Chinese Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianxu Yang
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Guanghui Huang
- Faculty of Humanities and Arts, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Zheng Li
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Malin Igra A, Trask M, Rahman SM, Dreij K, Lindh C, Krais AM, Persson LÅ, Rahman A, Kippler M. Maternal exposure to polycyclic aromatic hydrocarbons during pregnancy and timing of pubertal onset in a longitudinal mother-child cohort in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2024; 189:108798. [PMID: 38875814 DOI: 10.1016/j.envint.2024.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND In experimental studies, several polycyclic aromatic hydrocarbons (PAHs) have shown endocrine disrupting properties, but very few epidemiological studies have examined their impact on pubertal development and results have been heterogenous. OBJECTIVE To explore if maternal PAH exposure during pregnancy was associated with the offspring's timing of pubertal onset. METHODS We studied 582 mother-daughter dyads originating from a population-based cohort in a rural setting in Bangladesh. Maternal urinary samples, collected in early pregnancy (on average, gestational week 8), were analyzed for monohydroxylated metabolites of phenanthrene (1-OH-Phe, Σ2-,3-OH-Phe, and 4-OH-Phe), fluorene (Σ2-,3-OH-Flu), and pyrene (1-OH-Pyr) using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The girls were interviewed on two separate occasions concerning date of menarche, as well as breast and pubic hair development according to Tanner. Associations were assessed using Kaplan-Meier analysis and multivariable-adjusted Cox proportional hazards regression or ordered logistic regression. RESULTS In early pregnancy, the mothers' median urinary concentrations of Σ1-,2-,3-,4-OH-Phe, Σ2-,3-OH-Flu, and 1-OH-Pyr were 3.25 ng/mL, 2.0 ng/mL, and 2.3 ng/mL respectively. At the second follow-up, 78 % of the girls had reached menarche, and the median age of menarche was 12.7 ± 0.81 years. Girls whose mothers belonged to the second and third quintiles of ΣOH-Phe metabolites had a higher rate of menarche, indicating a younger menarcheal age (HR 1.39; 95 % CI 1.04, 1.86, and HR 1.41; 95 % CI 1.05, 1.88, respectively), than girls of mothers in the lowest quintile. This trend was not observed in relation to either breast or pubic hair development. None of the other maternal urinary PAH metabolites or the sum of all thereof in early pregnancy were associated with age at menarche or pubertal stage. CONCLUSIONS Indications of non-monotonic associations of prenatal phenanthrene exposure with the daughters' age of menarche were found, warranting further investigation.
Collapse
Affiliation(s)
| | - Mercedes Trask
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Syed Moshfiqur Rahman
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christian Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Annette M Krais
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Lars-Åke Persson
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; London School of Hygiene and Tropical Medicine, London, UK
| | - Anisur Rahman
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Chen H, Cao Y, Qin W, Lin K, Yang Y, Liu C, Ji H. Machine learning models for predicting thermal desorption remediation of soils contaminated with polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172173. [PMID: 38575004 DOI: 10.1016/j.scitotenv.2024.172173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Among various remediation methods for organic-contaminated soil, thermal desorption stands out due to its broad treatment range and high efficiency. Nonetheless, analyzing the contribution of factors in complex soil remediation systems and deducing the results under multiple conditions are challenging, given the complexities arising from diverse soil properties, heating conditions, and contaminant types. Machine learning (ML) methods serve as a powerful analytical tool that can extract meaningful insights from datasets and reveal hidden relationships. Due to insufficient research on soil thermal desorption for remediation of organic sites using ML methods, this study took organic pollutants represented by polycyclic aromatic hydrocarbons (PAHs) as the research object and sorted out a comprehensive data set containing >700 data points on the thermal desorption of soil contaminated with PAHs from published literature. Several ML models, including artificial neural network (ANN), random forest (RF), and support vector regression (SVR), were applied. Model optimization and regression fitting centered on soil remediation efficiency, with feature importance analysis conducted on soil and contaminant properties and heating conditions. This approach enabled the quantitative evaluation and prediction of thermal desorption remediation effects on soil contaminated with PAHs. Results indicated that ML models, particularly the RF model (R2 = 0.90), exhibited high accuracy in predicting remediation efficiency. The hierarchical significance of the features within the RF model is elucidated as follows: heating conditions account for 52 %, contaminant properties for 28 %, and soil properties for 20 % of the model's predictive power. A comprehensive analysis suggests that practical applications should emphasize heating conditions for efficient soil remediation. This research provides a crucial reference for optimizing and implementing thermal desorption in the quest for more efficient and reliable soil remediation strategies.
Collapse
Affiliation(s)
- Haojia Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| | - Yudong Cao
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| | - Wei Qin
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| | - Kunsen Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China.
| | - Yan Yang
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China.
| | - Changqing Liu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of Guangdong University of Technology, Shantou 515041, China
| |
Collapse
|
5
|
Grundeken M, Gustin K, Vahter M, Delaval M, Barman M, Sandin A, Sandberg AS, Wold AE, Broberg K, Kippler M. Toxic metals and essential trace elements in placenta and their relation to placental function. ENVIRONMENTAL RESEARCH 2024; 248:118355. [PMID: 38295973 DOI: 10.1016/j.envres.2024.118355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Placental function is essential for fetal development, but it may be susceptible to malnutrition and environmental stressors. OBJECTIVE To assess the impact of toxic and essential trace elements in placenta on placental function. METHODS Toxic metals (cadmium, lead, mercury, cobalt) and essential elements (copper, manganese, zinc, selenium) were measured in placenta of 406 pregnant women in northern Sweden using ICP-MS. Placental weight and birth weight were obtained from hospital records and fetoplacental weight ratio was used to estimate placental efficiency. Placental relative telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were determined by quantitative PCR (n = 285). Single exposure-outcome associations were evaluated using linear or spline regression, and joint associations and interactions with Bayesian kernel machine regression (BKMR), all adjusted for sex, maternal smoking, and age or BMI. RESULTS Median cadmium, mercury, lead, cobalt, copper, manganese, zinc, and selenium concentrations in placenta were 3.2, 1.8, 4.3, 2.3, 1058, 66, 10626, and 166 μg/kg, respectively. In the adjusted regression, selenium (>147 μg/kg) was inversely associated with placental weight (B: -158; 95 % CI: -246, -71, per doubling), as was lead at low selenium (B: -23.6; 95 % CI: -43.2, -4.0, per doubling). Manganese was positively associated with placental weight (B: 41; 95 % CI: 5.9, 77, per doubling) and inversely associated with placental efficiency (B: -0.01; 95 % CI: -0.019, -0.004, per doubling). Cobalt was inversely associated with mtDNAcn (B: -11; 95 % CI: -20, -0.018, per doubling), whereas all essential elements were positively associated with mtDNAcn, individually and joint. CONCLUSION Among the toxic metals, lead appeared to negatively impact placental weight and cobalt decreased placental mtDNAcn. Joint essential element concentrations increased placental mtDNAcn. Manganese also appeared to increase placental weight, but not birth weight. The inverse association of selenium with placental weight may reflect increased transport of selenium to the fetus in late gestation.
Collapse
Affiliation(s)
- Marijke Grundeken
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klara Gustin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Delaval
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Malin Barman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Sweden
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Dept, Of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Moazami TN, Jørgensen RB, Svendsen KVH, Teigen KA, Hegseth MN. Personal exposure to gaseous and particulate phase polycyclic aromatic hydrocarbons (PAHs) and nanoparticles and lung deposited surface area (LDSA) for soot among Norwegian chimney sweepers. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:24-34. [PMID: 37756361 DOI: 10.1080/15459624.2023.2264349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) of high molecular weight from chimney soot can cause cancer among chimney sweepers. These sweepers may also be exposed to high concentrations of nanosized particles, which can cause significant inflammatory responses due to their relatively greater surface area per mass. In this study, the authors aimed to assess the exposure profiles of airborne personal exposure to gaseous and particulate PAHs, and real-time samples of the particle number concentrations (PNCs), particle sizes, and lung-deposited surface areas (LDSAs), for chimney sweepers in Norway. Additionally, the authors aimed to assess the task-based exposure concentrations of PNCs, sizes, and LDSAs while working on different tasks. The results are based on personal samples of particulate PAHs (n = 68), gaseous PAHs (n = 28), and real-time nanoparticles (n = 8) collected from 17 chimney sweepers. Samples were collected during a "typical work week" of chimney sweeping and fire safety inspections, then during a "massive soot" week, where larger sweeping missions took place. Significantly higher PAH concentrations were measured during the "massive soot" week compared to the "typical work week," however, the time-weighted average (TWA) (8-hr) of all gaseous and particulate PAHs ranged from 0.52 to 4.47 µg/m3 and 0.49 to 2.50 µg/m3, respectively, well below the Norwegian occupational exposure limit (OEL) of 40 µg/m3. The PNCs were high during certain activities, such as emptying the vacuum cleaner. Additionally, during 2 days of sweeping in a waste sorting facility, the TWAs of the PNCs were 3.6 × 104 and 7.1 × 104 particles/cm3 on the first and second days, respectively, which were near and above the proposed nano reference limit TWA value of 4.0 × 104 particles/cm3 proposed by the International Workshop on Nano Reference Values. The corresponding TWAs of the LDSAs were 49.5 and 54.5 µm2/cm3, respectively. The chimney sweepers seemed aware of the potential health risks associated with exposure, and suitable personal protective equipment was used. However, the PNCs reported for the activities show that when the activities change or increase, the PNCs' TWAs can become unacceptably high.
Collapse
Affiliation(s)
- Therese Nitter Moazami
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTennesseeU), Trondheim, Norway
| | - Rikke Bramming Jørgensen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTennesseeU), Trondheim, Norway
| | - Kristin V Hirsch Svendsen
- Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology (NTennesseeU), Trondheim, Norway
| | - Krister Aune Teigen
- Department of Occupational and Environmental Medicine, University Hospital of North Norway (UiT), Tromsø, Norway
| | - Marit Nøst Hegseth
- Department of Occupational and Environmental Medicine, University Hospital of North Norway (UiT), Tromsø, Norway
| |
Collapse
|
7
|
Zhao X, Gao J, Zhai L, Yu X, Xiao Y. Recent Evidence on Polycyclic Aromatic Hydrocarbon Exposure. Healthcare (Basel) 2023; 11:1958. [PMID: 37444793 DOI: 10.3390/healthcare11131958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
This review provides a comprehensive conclusion of the relationship between the intake of various polycyclic aromatic hydrocarbons (PAHs) and different dietary patterns, pointing to the accompanying potential health risks. To achieve this, existing pertinent research was collected and analyzed. The collation revealed that the concentration of PAHs in food and their dietary patterns were diverse in different regions. Specifically, the concentration of PAHs in food was found to be related to the level of pollution in the area, including soil, air, and water pollution, which is then accumulated through the food chain into food that can be ingested directly by the human body, resulting in malformations in offspring, increased risk of cancer, and gene mutation. Guidebooks and dietary surveys were consulted to uncover disparities in dietary patterns, which indicated regional variations in taste preferences, traditional foods, and eating habits. Different regions are spatially categorized in this assessment by cities, countries, and continents. Notably, smoking and grilling are two of the food processing methods most likely to produce high levels of PAHs. To prevent excessive intake of PAHs from food items and attain a higher quality of life, more health education is urgently needed to promote healthy eating patterns.
Collapse
Affiliation(s)
- Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Jiuhe Gao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Lingzi Zhai
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| |
Collapse
|
8
|
Rahman SM, Malin Igra A, Essig JY, Ekström EC, Dreij K, Trask M, Lindh C, Arifeen SE, Rahman A, Krais AM, Kippler M. Polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy and child anthropometry from birth to 10 years of age: Sex-specific evidence from a cohort study in rural Bangladesh. ENVIRONMENTAL RESEARCH 2023; 227:115787. [PMID: 36997043 DOI: 10.1016/j.envres.2023.115787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have endocrine disrupting properties and they cross the placental barrier, but studies on gestational exposure and child anthropometry are inconclusive. We aimed to elucidate the impact of early gestational PAH exposure on anthropometry from birth to 10 years of age in 1295 mother-child pairs from a nested sub-cohort of the MINIMat trial in Bangladesh. Several PAH metabolites [1-hydroxyphenanthrene (1-OH-Phe), Σ2-,3-hydroxyphenanthrene (Σ2-,3-OH-Phe), 4-hydroxyphenanthrene (4-OH-Phe), 1-hydroxypyrene (1-OH-Pyr), Σ2-,3-hydroxyfluorene (Σ2-,3-OH-Flu)] were quantified in spot urine collected around gestational week 8 using LC-MS/MS. Child weight and height were measured at 19 occasions from birth to 10 years. Multivariable-adjusted regression models were used to assess associations of maternal PAH metabolites (log2-transformed) with child anthropometry. The median concentration of 1-OH-Phe, Σ2-,3-OH-Phe, 4-OH-Phe, 1-OH-Pyr and Σ2-,3-OH-Flu was 1.5, 1.9, 0.14, 2.5, and 2.0 ng/mL, respectively. All maternal urinary PAH metabolites were positively associated with newborn weight and length and all associations were more pronounced in boys than in girls (p interaction for all <0.14). In boys, the strongest associations were observed with Σ2-,3-OH-Phe and Σ2-,3-OH-Flu for which each doubling increased mean birth weight by 41 g (95% CI: 13; 69 and 12; 70) and length by 0.23 cm (0.075; 0.39) and 0.21 cm (0.045; 0.37), respectively. Maternal urinary PAH metabolites were not associated with child anthropometry at 10 years. In longitudinal analysis, however, maternal urinary PAH metabolites were positively associated with boys' weight-for-age (WAZ) and height-for-age Z-scores (HAZ) from birth to 10 years, but only the association of 4-OH-Phe with HAZ was significant (B: 0.080 Z-scores; 95% CI 0.013, 0.15). No associations were observed with girls' WAZ or HAZ. In conclusion, gestational PAH exposure was positively associated with fetal and early childhood growth, especially in boys. Further studies are needed to confirm causality and to explore long-term health effects.
Collapse
Affiliation(s)
- Syed Moshfiqur Rahman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Julie Y Essig
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mercedes Trask
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Christian Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Shams El Arifeen
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Anisur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Annette M Krais
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Jiménez-Garza O, Ghosh M, Barrow TM, Godderis L. Toxicomethylomics revisited: A state-of-the-science review about DNA methylation modifications in blood cells from workers exposed to toxic agents. Front Public Health 2023; 11:1073658. [PMID: 36891347 PMCID: PMC9986591 DOI: 10.3389/fpubh.2023.1073658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Epigenetic marks have been proposed as early changes, at the subcellular level, in disease development. To find more specific biomarkers of effect in occupational exposures to toxicants, DNA methylation studies in peripheral blood cells have been performed. The goal of this review is to summarize and contrast findings about DNA methylation in blood cells from workers exposed to toxicants. Methods A literature search was performed using PubMed and Web of Science. After first screening, we discarded all studies performed in vitro and in experimental animals, as well as those performed in other cell types other than peripheral blood cells. Results: 116 original research papers met the established criteria, published from 2007 to 2022. The most frequent investigated exposures/labor group were for benzene (18.9%) polycyclic aromatic hydrocarbons (15.5%), particulate matter (10.3%), lead (8.6%), pesticides (7.7%), radiation (4.3%), volatile organic compound mixtures (4.3%), welding fumes (3.4%) chromium (2.5%), toluene (2.5%), firefighters (2.5%), coal (1.7%), hairdressers (1.7%), nanoparticles (1.7%), vinyl chloride (1.7%), and others. Few longitudinal studies have been performed, as well as few of them have explored mitochondrial DNA methylation. Methylation platforms have evolved from analysis in repetitive elements (global methylation), gene-specific promoter methylation, to epigenome-wide studies. The most reported observations were global hypomethylation as well as promoter hypermethylation in exposed groups compared to controls, while methylation at DNA repair/oncogenes genes were the most studied; studies from genome-wide studies detect differentially methylated regions, which could be either hypo or hypermethylated. Discussion Some evidence from longitudinal studies suggest that modifications observed in cross-sectional designs may be transitory; then, we cannot say that DNA methylation changes are predictive of disease development due to those exposures. Conclusion Due to the heterogeneity in the genes studied, and scarcity of longitudinal studies, we are far away from considering DNA methylation changes as biomarkers of effect in occupational exposures, and nor can we establish a clear functional or pathological correlate for those epigenetic modifications associated with the studied exposures.
Collapse
Affiliation(s)
- Octavio Jiménez-Garza
- Health Sciences Institute, Autonomous University of Hidalgo State, Pachuca Hidalgo, Mexico
| | - Manosij Ghosh
- Environment and Health Department, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Timothy M Barrow
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Lode Godderis
- Environment and Health Department, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Tsuboi Y, Yamada H, Munetsuna E, Fujii R, Yamazaki M, Ando Y, Mizuno G, Hattori Y, Ishikawa H, Ohashi K, Hashimoto S, Hamajima N, Suzuki K. Intake of vegetables and fruits rich in provitamin A is positively associated with aryl hydrocarbon receptor repressor DNA methylation in a Japanese population. Nutr Res 2022; 107:206-217. [PMID: 36334347 DOI: 10.1016/j.nutres.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
DNA methylation can be affected by numerous lifestyle factors, including diet. Tobacco smoking induces aryl hydrocarbon receptor repressor (AHRR) DNA hypomethylation, which increases the risk of lung and other cancers. However, no lifestyle habits that might increase or restore percentage of AHRR DNA methylation have been identified. We hypothesized that dietary intakes of vegetables/fruits and serum carotenoid concentrations are related to AHRR DNA methylation. A total of 813 individuals participated in this cross-sectional study. A food frequency questionnaire was used to assess dietary intake of vegetables and fruits. AHRR DNA methylation in peripheral blood mononuclear cells were measured using pyrosequencing method. In men, dietary fruit intake was significantly and positively associated with AHRR DNA methylation among current smokers (P for trend = .034). A significant positive association of serum provitamin A with AHRR DNA methylation was observed among current smokers (men: standardized β = 0.141 [0.045 to 0.237], women: standardized β = 0.570 [0.153 to 0.990]). However, compared with never smokers with low provitamin A concentrations, percentages of AHRR DNA methylation were much lower among current smokers, even those with high provitamin A concentrations (men: β = -19.1% [-33.8 to -19.8], women: β = -6.0% [-10.2 to -1.7]). Dietary intake of vegetables and fruits rich in provitamin A may increase percentage of AHRR DNA methylation in current smokers. However, although we found a beneficial effect of provitamin A on AHRR DNA methylation, this beneficial effect could not completely remove the effect of smoking on AHRR DNA demethylation.
Collapse
Affiliation(s)
- Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan, 470-1192.
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Aichi, Japan, 470-1192.
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan, 470-1192.
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan, 470-1192.
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa, Japan, 761-0123.
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan, 470-1192.
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Ota, Tokyo, Japan, 144-8535.
| | - Yuji Hattori
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan, 470-1192.
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan, 470-1192.
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan, 470-1192.
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Aichi, Japan, 470-1192.
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan, 466-8550.
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Aichi, Japan, 470-1192.
| |
Collapse
|
11
|
Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 213:113677. [PMID: 35714684 DOI: 10.1016/j.envres.2022.113677] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in ambient air is an escalating concern worldwide because of their ability to cause cancer and induce permanent changes in the genetic material. Growing evidence implies that during early life-sensitive stages, the risk of progression of acute and chronic diseases depends on epigenetic changes initiated by the influence of environmental cues. Several reports deciphered the relationship between exposure to environmental chemicals and epigenetics, and have known toxicants that alter the epigenetic states. Amongst PAHs, benzo[a]pyrene (B[a]P) is accepted as a group 1 cancer-causing agent by the International Agency for the Research on Cancer (IARC). B[a]P is a well-studied pro-carcinogen that is metabolically activated by the aryl hydrocarbon receptor (AhR)/cytochrome P450 pathway. Cytochrome P450 plays a pivotal role in the stimulation step, which is essential for DNA adduct formation. Accruing evidence suggests that epigenetic alterations assume a fundamental part in PAH-promoted carcinogenesis. This interaction between PAHs and epigenetic factors results in an altered profile of these marks, globally and locus-specific. Some of the epigenetic changes due to exposure to PAHs lead to increased disease susceptibility and progression. It is well understood that exposure to environmental carcinogens, such as PAH triggers disease pathways through changes in the genome. Several evidence reported due to the epigenome-wide association studies, that early life adverse environmental events may trigger widespread and persistent variations in transcriptional profiling. Moreover, these variations respond to DNA damage and/or a consequence of epigenetic modifications that need further investigation. Growing evidence has associated PAHs with epigenetic variations involving alterations in DNA methylation, histone modification, and micro RNA (miRNA) regulation. Epigenetic alterations to PAH exposure were related to chronic diseases, such as pulmonary disease, cardiovascular disease, endocrine disruptor, nervous system disorder, and cancer. This hormetic response gives a novel perception concerning the toxicity of PAHs and the biological reaction that may be a distinct reliance on exposure. This review sheds light on understanding the latest evidence about how PAHs can alter epigenetic patterns and human health. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PAHs exposure must be performed to find new targets and disease biomarkers. In spite of the current limitations, numerous evidence supports the perception that epigenetics grips substantial potential for advancing our knowledge about the molecular mechanisms of environmental toxicants, also for predicting health-associated risks due to environmental circumstances exposure and individual susceptibility.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Institute for Public Health, Washington University in St. Louis, St. Louis, MO, 63110, USA; Veterans Affairs St. Louis Hospital, St. Louis, MO, 63106, USA.
| |
Collapse
|
12
|
Gren L, Krais AM, Assarsson E, Broberg K, Engfeldt M, Lindh C, Strandberg B, Pagels J, Hedmer M. Underground emissions and miners' personal exposure to diesel and renewable diesel exhaust in a Swedish iron ore mine. Int Arch Occup Environ Health 2022; 95:1369-1388. [PMID: 35294627 PMCID: PMC9273542 DOI: 10.1007/s00420-022-01843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Underground diesel exhaust exposure is an occupational health risk. It is not known how recent intensified emission legislation and use of renewable fuels have reduced or altered occupational exposures. We characterized these effects on multipollutant personal exposure to diesel exhaust and underground ambient air concentrations in an underground iron ore mine. METHODS Full-shift personal sampling (12 workers) of elemental carbon (EC), nitrogen dioxide (NO2), polycyclic aromatic hydrocarbons (PAHs), and equivalent black carbon (eBC) was performed. The study used and validated eBC as an online proxy for occupational exposure to EC. Ambient air sampling of these pollutants and particle number size distribution and concentration were performed in the vicinity of the workers. Urine samples (27 workers) were collected after 8 h exposure and analyzed for PAH metabolites and effect biomarkers (8-oxodG for DNA oxidative damage, 4-HNE-MA for lipid peroxidation, 3-HPMA for acrolein). RESULTS The personal exposures (geometric mean; GM) of the participating miners were 7 µg EC m-3 and 153 µg NO2 m-3, which are below the EU occupational exposure limits. However, exposures up to 94 µg EC m-3 and 1200 µg NO2 m-3 were observed. There was a tendency that the operators of vehicles complying with sharpened emission legislation had lower exposure of EC. eBC and NO2 correlated with EC, R = 0.94 and R = 0.66, respectively. No correlation was found between EC and the sum of 16 priority PAHs (GM 1790 ng m-3). Ratios between personal exposures and ambient concentrations were similar and close to 1 for EC and NO2, but significantly higher for PAHs. Semi-volatile PAHs may not be effectively reduced by the aftertreatment systems, and ambient area sampling did not predict the personal airborne PAHs exposure well, neither did the slightly elevated concentration of urinary PAH metabolites correlate with airborne PAH exposure. CONCLUSION Miners' exposures to EC and NO2 were lower than those in older studies indicating the effect of sharpened emission legislation and new technologies. Using modern vehicles with diesel particulate filter (DPF) may have contributed to the lower ambient underground PM concentration and exposures. The semi-volatile behavior of the PAHs might have led to inefficient removal in the engines aftertreatment systems and delayed removal by the workplace ventilation system due to partitioning to indoor surfaces. The results indicate that secondary emissions can be an important source of gaseous PAH exposure in the mine.
Collapse
Affiliation(s)
- Louise Gren
- Ergonomics and Aerosol Technology, LTH, Lund University, 221 00 Lund, Sweden
| | - Annette M. Krais
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | - Eva Assarsson
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | - Malin Engfeldt
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 81 Lund, Sweden
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 81 Lund, Sweden
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, LTH, Lund University, 221 00 Lund, Sweden
| | - Maria Hedmer
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
- Department of Occupational and Environmental Medicine, Region Skåne, 223 81 Lund, Sweden
| |
Collapse
|
13
|
Boom YJ, Enfrin M, Grist S, Giustozzi F. Recycled plastic modified bitumen: Evaluation of VOCs and PAHs from laboratory generated fumes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155037. [PMID: 35395294 DOI: 10.1016/j.scitotenv.2022.155037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
A key aspect when investigating the use of recycled plastics in bitumen relates considerably to the issues relating to occupational, health and safety for humans and the environment from a fuming and emissions perspective. This research investigates laboratory-generated fumes in the forms of volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) generated from producing polymer modified bitumen using five different types of recycled plastics. A comparative analysis of recycled plastic modified bitumen fumes was conducted based on a series of optimized parameters, including working temperatures (160 °C, 180 °C and 200 °C) and polymer contents (1%, 2%, 4% and 6% by weight of bitumen) against neat bitumen and polymer-modified bitumen. Forty-eight volatile organic compounds (VOCs) and sixteen polycyclic aromatic hydrocarbons (PAHs) were quantified using gas chromatography-mass spectrometry (GC-MS). The results from the comparative analysis revealed that the incorporation of recycled plastics could reduce overall emissions from both VOCs and PAHs perspectives. The reduction in emissions can be attributed to the enhancement in thermal stability of the bitumen blend when recycled plastics are added. The reduction rate is heavily dependent on the type and source of recycled plastics used in the blending process. Furthermore, a specific compound concentration analysis of the top-four weighted compounds emitted reveals that the total concentration of emissions can be deceiving as specific compounds can spike when adding recycled plastics in bitumen despite a reduction trend for the overall concentration.
Collapse
Affiliation(s)
- Yeong Jia Boom
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia
| | - Marie Enfrin
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia
| | - Stephen Grist
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia
| | - Filippo Giustozzi
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia.
| |
Collapse
|
14
|
Fathollahi A, Makoundou C, Coupe SJ, Sangiorgi C. Leaching of PAHs from rubber modified asphalt pavements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153983. [PMID: 35189212 DOI: 10.1016/j.scitotenv.2022.153983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The present study aimed to, for the first time, quantify the total content of 16 priority EPA PAHs in end-of-life tyre derived crumb rubber granulates and various manufactured rubberised asphalt mix designs. After identifying the availability of 16 EPA PAHs, the leaching behaviour of rubberised asphalt specimens, were evaluated using the Dynamic Surface Leaching Test (DSLT) based on CEN/TS 16637-2:2014 standard. This was prior to modelling the release mechanisms of PAHs by utilizing a mathematical diffusion-controlled leaching model. According to the results, the total content of 16 EPA PAHs in crumb rubber granulates ranged between 0.061 and 8.322 μg/g, which were associated with acenaphthene and pyrene, respectively. The total content of PAHs in rubberised asphalt specimens varied between 0.019 and 4.992 μg/g depending on the volume of crumb rubber granulates in the asphalt concrete mix design, and type of binder. Results of the leaching experiments revealed that the highest leached PAHs were benzo[b]fluoranthene, benzo[k]fluoranthene and naphthalene with a 64-days cumulative release per specimen surface area > 1 μg/m2. Acenaphthylene, fluoranthene, fluorene and indeno[1,2,3-c,d]pyrene were released in cumulative concentrations between 0.1 and 1 μg/m2. The PAHs with a cumulative release potential below 0.1 μg/m2 during DSLT were benzo[a]anthracene, benzo[a]pyrene, benzo[g,h,i]perylene and chrysene. The diffusion coefficients, which were calculated by mathematical modelling of DSLT data, revealed that the leaching process of 16 EPA PAHs from surface of rubberised asphalt concrete mix designs fitted all the criteria set by the NEN 7345 standard for diffusion-controlled leaching during all stages of leaching experiments.
Collapse
Affiliation(s)
- Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | - Christina Makoundou
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy
| | - Stephen J Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Cesare Sangiorgi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy
| |
Collapse
|
15
|
Yu Z, Wang H, Zhang X, Gong S, Liu Z, Zhao N, Zhang C, Xie X, Wang K, Liu Z, Wang JS, Zhao X, Zhou J. Long-term environmental surveillance of PM2.5-bound polycyclic aromatic hydrocarbons in Jinan, China (2014-2020): Health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127766. [PMID: 34916105 DOI: 10.1016/j.jhazmat.2021.127766] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/10/2023]
Abstract
We established long-term surveillance sites in Jinan city to monitor PM2.5 particles (PM2.5) and PM2.5-bound PAHs (2014-2020). The range of PM2.5 was 15-230 µg/m3. The average annual ƩPAH16 were 433 ± 271 ng/m3 (industrial area) and 299 ± 171.8 ng/m3 (downtown). PAHs captured in winter accounted for 61.5% (industrial area) and 59.1% (downtown) of total PAHs. A hazardous seasonal benzo[a]pyrene level was detected in 2015-2016 winter as 14.03 ng/m3 (14 folds of EU standard). The dominant PM2.5-bound PAHs were benzo[b]fluoranthene (24-26%), chrysene (19-20%), benzo[g,h,i]perylene (15%), Indeno(1,2,3-cd)pyrene (12%) and Benzo[a]pyrene (10%). Toxic equivalent quotients of PAHs were 4.93 ng/m3 (industrial area) and 3.13 ng/m3 (downtown). Excess cancer risks (ECRs) were 4.3 × 10-4 ng/m3 and 2.7 × 10-4 ng/m3, respectively. The ECRs exceeded EPA regulatory limit of 1 × 10-6 ng/m3 largely. Non-negligible excess lifetime cancer risks were found as 36 and 26 related cancer incidences per 1,000,000 people. Consistently, local prevalence of lung cancer raise from 56.97/100,000 to 72.38/100,000; the prevalence of thyroid cancer raise from 10.12/100,000 to 45.26/100,000 from 2014 to 2020. Our findings suggest an urgent need to investigate the adverse health effects of PAHs on local population and we call for more strictly restriction on coal consumption and traffic tail gas emission.
Collapse
Affiliation(s)
- Zhigang Yu
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Hong Wang
- Clinical Laboratory, Jinan Hospital, 250013, China.
| | - Xin Zhang
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Shuping Gong
- Institute of Chronic and Non-communicable Disease, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Zhen Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, 250022, China.
| | - Ning Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Cuiqin Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Xiaorui Xie
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Kaige Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Zhong Liu
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| |
Collapse
|
16
|
Shen F, Li D, Chen J. Mechanistic toxicity assessment of fine particulate matter emitted from fuel combustion via pathway-based approaches in human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150214. [PMID: 34571223 DOI: 10.1016/j.scitotenv.2021.150214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Fuel exhaust particulate matter (FEPM) is an important source of air pollution worldwide. However, the comparative and mechanistic toxicity of FEPMs emitted from combustion of different fuels is still not fully understood. This study employed pathway-based approaches via human cells to evaluate mechanistic toxicity of FEPMs. The results showed that FEPMs caused concentration-dependent (0.1-200 μg/mL) cytotoxicity and oxidative stress. FEPMs at low concentration (10 μg/mL) induced cell cycle arrest in S and G2 phases, while high level of FEPMs (200 μg/mL) caused cell cycle arrest in G1 phase. Different FEPMs induced distinct expression profiles of toxicity-related genes, illustrating different toxic mechanisms. Furthermore, FEPMs inhibited the phosphorylation of protein kinase A (PKA), which related with reproductive toxicity. Spearman rank correlations among the chemicals carried by FEPMs and the toxic effects revealed that PAHs and metals promoted cell cycle arrest in the G1 phase and suppressed PKA activity. Furthermore, PAHs (Nap and Acy) and metals (Al and Pb) in FEPMs were highly and positively correlated with the expression of genes involved in apoptosis, ER stress, metal stress and inflammation. Our findings offered more mechanistic information of FEPMs at the level of subcellular toxicity and help to better understand their potential health effects.
Collapse
Affiliation(s)
- Fanglin Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Fudan Tyndall Center, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
17
|
Zhou S, Zhu Q, Liu H, Jiang S, Zhang X, Peng C, Yang G, Li J, Cheng L, Zhong R, Zeng Q, Miao X, Lu Q. Associations of polycyclic aromatic hydrocarbons exposure and its interaction with XRCC1 genetic polymorphism with lung cancer: A case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118077. [PMID: 34523522 DOI: 10.1016/j.envpol.2021.118077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Humans are extensively exposed to polycyclic aromatic hydrocarbons (PAHs) daily via multiple pathways. Epidemiological studies have demonstrated that occupational exposure to PAHs increases the risk of lung cancer, but related studies in the general population are limited. Hence, we conducted a case-control study among the Chinese general population to investigate the associations between PAHs exposure and lung cancer risk and analyze the modifications of genetic polymorphisms in DNA repair genes. In this study, we enrolled 122 lung cancer cases and 244 healthy controls in Wuhan, China. Urinary PAHs metabolites were determined by gas chromatography-mass spectrometry, and rs25487 in X-ray repair cross-complementation 1 (XRCC1) gene was genotyped by the Agena Bioscience MassARRAY System. Then, multivariable logistic regression models were performed to estimate the potential associations. We found that urinary hydroxynaphthalene (OH-Nap), hydroxyphenanthrene (OH-Phe) and the sum of hydroxy PAHs (∑OH-PAHs) levels were significantly higher in lung cancer cases than those in controls. After adjusting for gender, age, BMI, smoking status, smoking pack-years, drinking status and family history, urinary ∑OH-Nap and ∑OH-Phe levels were positively associated with lung cancer risk, with dose-response relationships. Compared with those in the lowest tertiles, individuals in the highest tertiles of ∑OH-Nap and ∑OH-Phe had a 2.13-fold (95% CI: 1.10, 4.09) and 2.45-fold (95% CI: 1.23, 4.87) increased risk of lung cancer, respectively. Effects of gender, age, smoking status and smoking pack-years on the associations of PAHs exposure with lung cancer risk were shown in the subgroup analysis. Furthermore, associations of urinary ∑OH-Nap and ∑OH-PAHs levels with lung cancer risk were modified by XRCC1 rs25487 (Pinteraction ≤ 0.025), and were more pronounced in wild-types of rs25487. These findings suggest that environmental exposure to naphthalene and phenanthrene is associated with increased lung cancer risk, and polymorphism of XRCC1 rs25487 might modify the naphthalene exposure-related lung cancer effect.
Collapse
Affiliation(s)
- Shuang Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qiuqi Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Huimin Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Shunli Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, 133 Hehua Road, Jining, Shandong, 272067, China
| | - Xu Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Cheng Peng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Guanlin Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qiang Zeng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qing Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
18
|
Wang T, Wang W, Li W, Duan H, Xu C, Tian X, Zhang D. Genome-wide DNA methylation analysis of pulmonary function in middle and old-aged Chinese monozygotic twins. Respir Res 2021; 22:300. [PMID: 34809630 PMCID: PMC8609861 DOI: 10.1186/s12931-021-01896-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Previous studies have determined the epigenetic association between DNA methylation and pulmonary function among various ethnics, whereas this association is largely unknown in Chinese adults. Thus, we aimed to explore epigenetic relationships between genome-wide DNA methylation levels and pulmonary function among middle-aged Chinese monozygotic twins. METHODS The monozygotic twin sample was drawn from the Qingdao Twin Registry. Pulmonary function was measured by three parameters including forced expiratory volume the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. Linear mixed effect model was used to regress the methylation level of CpG sites on pulmonary function. After that, we applied Genomic Regions Enrichment of Annotations Tool (GREAT) to predict the genomic regions enrichment, and used comb-p python library to detect differentially methylated regions (DMRs). Gene expression analysis was conducted to validate the results of differentially methylated analyses. RESULTS We identified 112 CpG sites with the level of P < 1 × 10-4 which were annotated to 40 genes. We identified 12 common enriched pathways of three pulmonary function parameters. We detected 39 DMRs located at 23 genes, of which PRDM1 was related to decreased pulmonary function, and MPL, LTB4R2, and EPHB3 were related to increased pulmonary function. The gene expression analyses validated DIP2C, ASB2, SLC6A5, and GAS6 related to decreased pulmonary function. CONCLUSION Our DNA methylation sequencing analysis on identical twins provides new references for the epigenetic regulation on pulmonary function. Several CpG sites, genes, biological pathways and DMRs are considered as possible crucial to pulmonary function.
Collapse
Affiliation(s)
- Tong Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, People's Republic of China.,Qingdao Institute of Preventive Medicine, Qingdao, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the College of Public Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao, 266071, Shandong Province, People's Republic of China.
| |
Collapse
|
19
|
Liu K, Jiang J, Lin Y, Liu W, Zhu X, Zhang Y, Jiang H, Yu K, Liu X, Zhou M, Yuan Y, Long P, Wang Q, Zhang X, He M, Chen W, Guo H, Wu T. Exposure to polycyclic aromatic hydrocarbons, DNA methylation and heart rate variability among non-current smokers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117777. [PMID: 34265559 DOI: 10.1016/j.envpol.2021.117777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/28/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure is associated with heart rate variability (HRV) reduction, a widely used marker of cardiovascular autonomic dysfunction. The role of DNA methylation in the relationship between PAHs exposure and decreased HRV is largely unknown. This study aims to explore epigenome-wide DNA methylation changes associated with PAHs exposure and further evaluate their associations with HRV alternations among non-current smokers. We measured 10 mono-hydroxylated PAHs (OH-PAHs) in urine and DNA methylation levels in blood leukocytes among participants from three panels of Chinese non-current smokers (152 in WHZH, 99 in SY, and 53 in COW). We conducted linear regression analyses between DNA methylation and OH-PAHs metabolites with adjustment for age, gender, body mass index, drinking, blood cell counts, and surrogate variables in each panel separately, and combined the results by using inverse-variance weighted fixed-effect meta-analysis to obtain estimates of effect size. The median value of total OH-PAHs ranged from 0.92 × 10-2 in SY panel (62.6% men) to 13.82 × 10-2 μmol/mmol creatinine in COW panel (43.4% men). The results showed that methylation levels of cg18223625 (COL20A1) and cg07805771 (SLC16A1) were significantly or marginally significantly associated with urinary 2-hydroxynaphthalene [β(SE) = 0.431(0.074) and 0.354(0.068), FDR = 0.016 and 0.056, respectively], while methylation level of cg09235308 (PLEC1) was positively associated with urinary total OH-PAHs [β(SE) = 0.478(0.079), FDR = 0.004]. Hypermethylations of cg18223625, cg07805771, and cg09235308 were inversely associated with HRV indices among the WHZH and COW non-current smokers. However, we did not observe significant epigenome-wide associations for the other 9 urinary OH-PAHs. These findings provide new evidence that PAHs exposure is linked to differential DNA methylation, which may help better understand the influences of PAHs exposure on HRV alternations.
Collapse
Affiliation(s)
- Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhui Lin
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyan Zhu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Suzhou Center for Disease Prevention and Control, Suzhou, 215004, China
| | - Yizhi Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haijing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuezhen Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiuhong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
20
|
Liu Y, Chen Y, Sha R, Li Y, Xu T, Hu X, Xu L, Xie Q, Zhao B. A new insight into the role of aryl hydrocarbon receptor (AhR) in the migration of glioblastoma by AhR-IL24 axis regulation. ENVIRONMENT INTERNATIONAL 2021; 154:106658. [PMID: 34082239 DOI: 10.1016/j.envint.2021.106658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Cancer occurrence and development are closely related to the environment. Aryl hydrocarbon receptor (AhR) is an important receptor mediating the toxic effects of many environmental compounds, and is also involved in regulating tumor cell migration. Glioblastoma is the most malignant glioma and exhibits high motility, but the effects of AhR on the migration of glioblastoma are still unclear. We aimed to understand the role of AhR in the migration of this type of tumor cell and to explore the underlying molecular mechanism. In cultured human neuroblastoma cells (U87), we found that AhR overexpression or knockdown increased or suppressed the migration ability of U87 cells, respectively. Furthermore, inhibition of basal activation of the AhR pathway suppressed migration ability, suggesting a positive correlation between endogenous activity of the AhR pathway and cell migration. When the AhR pathway was activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 6-formyl [3,2-b] carbazole (FICZ), the migration of U87 cells was inhibited by inducing the expression of a tumor suppressor, IL24, which is a downstream responsive gene of AhR activation. Moreover, a similar AhR-IL24-dependent mechanism for migration inhibition of TCDD was documented in a breast cancer cell line and a lung cancer cell line. This study demonstrated that AhR plays important roles in regulating the migration of glioblastoma, and the induction of the AhR-IL24 axis mediates the inhibition of migration in response to TCDD or FICZ treatment.
Collapse
Affiliation(s)
- Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Wu Y, Qie R, Cheng M, Zeng Y, Huang S, Guo C, Zhou Q, Li Q, Tian G, Han M, Zhang Y, Wu X, Li Y, Zhao Y, Yang X, Feng Y, Liu D, Qin P, Hu D, Hu F, Xu L, Zhang M. Air pollution and DNA methylation in adults: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117152. [PMID: 33895575 DOI: 10.1016/j.envpol.2021.117152] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 05/24/2023]
Abstract
This systematic review and meta-analysis aimed to investigate the association between air pollution and DNA methylation in adults from published observational studies. PubMed, Web of Science and Embase databases were systematically searched for available studies on the association between air pollution and DNA methylation published up to March 9, 2021. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). Meta-analysis was used to summarize the combined estimates for the association between air pollutants and global DNA methylation levels. Heterogeneity was assessed with the Cochran Q test and quantified with the I2 statistic. In total, 38 articles were included in this study: 16 using global methylation, 18 using candidate genes, and 11 using EWAS, with 7 studies using more than one approach. Meta-analysis revealed an imprecise but inverse association between exposure to PM2.5 and global DNA methylation (for each 10-μg/m3 PM2.5, combined estimate: 0.39; 95% confidence interval: 0.97 - 0.19). The candidate-gene results were consistent for the ERCC3 and SOX2 genes, suggesting hypermethylation in ERCC3 associated with benzene and that in SOX2 associated with PM2.5 exposure. EWAS identified 201 CpG sites and 148 differentially methylated regions that showed differential methylation associated with air pollution. Among the 307 genes investigated in 11 EWAS, a locus in nucleoredoxin gene was found to be positively associated with PM2.5 in two studies. Current meta-analysis indicates that PM2.5 is imprecisely and inversely associated with DNA methylation. The candidate-gene results consistently suggest hypermethylation in ERCC3 associated with benzene exposure and that in SOX2 associated with PM2.5 exposure. The Kyoto Encyclopedia of Genes and Genomes (KEGG) network analyses revealed that these genes were associated with African trypanosomiasis, Malaria, Antifolate resistance, Graft-versus-host disease, and so on. More evidence is needed to clarify the association between air pollution and DNA methylation.
Collapse
Affiliation(s)
- Yuying Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ranran Qie
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Min Cheng
- Department of Cardiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yunhong Zeng
- Center for Health Management, The Affiliated Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Shengbing Huang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chunmei Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Qionggui Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Quanman Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Gang Tian
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Minghui Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yanyan Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Xiaoyan Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yang Li
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Yang Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xingjin Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yifei Feng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dechen Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Pei Qin
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Lidan Xu
- Department of Nutrition, The Second Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Gunn V, Håkansta C, Vignola E, Matilla-Santander N, Kreshpaj B, Wegman DH, Hogstedt C, Ahonen EQ, Muntaner C, Baron S, Bodin T. Initiatives addressing precarious employment and its effects on workers' health and well-being: a protocol for a systematic review. Syst Rev 2021; 10:195. [PMID: 34193280 PMCID: PMC8244669 DOI: 10.1186/s13643-021-01728-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Precarious employment is a significant determinant of population health and health inequities and has complex public health consequences both for a given nation and internationally. Precarious employment is conceptualized as a multi-dimensional construct including but not limited to employment insecurity, income inadequacy, and lack of rights and protection in the employment relation, which could affect both informal and formal workers. The purpose of this review is to identify, appraise, and synthesize existing research on the effectiveness of initiatives aiming to or having the potential to eliminate, reduce, or mitigate workers' exposure to precarious employment conditions and its effects on the health and well-being of workers and their families. METHODS The electronic databases searched (from January 2000 onwards) are Scopus, Web of Science Core Collection, and PubMed, along with three institutional databases as sources of grey literature. We will include any study (e.g. quantitative, qualitative, or mixed-methods design) evaluating the effects of initiatives that aim to or have the potential to address workers' exposure to precarious employment or its effects on the health and well-being of workers and their families, whether or not such initiatives were designed specifically to address precarious employment. The primary outcomes will be changes in (i) the prevalence of precarious employment and workers' exposure to precarious employment and (ii) the health and well-being of precariously employed workers and their families. No secondary outcomes will be included. Given the large body of evidence screened, the initial screening of each study will be done by one reviewer, after implementing several strategies to ensure decision-making consistency across reviewers. The screening of full-text articles, data extraction, and critical appraisal will be done independently by two reviewers. Potential conflicts will be resolved through discussion. Established checklists will be used to assess a study's methodological quality or bias. A narrative synthesis will be employed to describe and summarize the included studies' characteristics and findings and to explore relationships both within and between the included studies. DISCUSSION We expect that this review's findings will provide stakeholders interested in tackling precarious employment and its harmful health effects with evidence on effectiveness of solutions that have been implemented to inform considerations for adaptation of these to their unique contexts. In addition, the review will increase our understanding of existing research gaps and enable us to make recommendations to address them. Our work aligns with the sustainable development agenda to protect workers, promote decent work and economic growth, eliminate poverty, and reduce inequalities. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020187544 .
Collapse
Affiliation(s)
- Virginia Gunn
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm Region, Sweden.
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada.
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON, Canada.
| | - Carin Håkansta
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm Region, Sweden
- Working Life Science, Karlstad University, Karlstad, Sweden
| | - Emilia Vignola
- CUNY Graduate School of Public Health & Health Policy, New York, USA
| | - Nuria Matilla-Santander
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm Region, Sweden
| | - Bertina Kreshpaj
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm Region, Sweden
| | | | - Christer Hogstedt
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm Region, Sweden
| | - Emily Q Ahonen
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
| | - Carles Muntaner
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Sherry Baron
- Barry Commoner Center for Health and the Environment, Queens College, City University of New York, New York, USA
| | - Theo Bodin
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm Region, Sweden
| |
Collapse
|
23
|
Krais AM, Essig JY, Gren L, Vogs C, Assarsson E, Dierschke K, Nielsen J, Strandberg B, Pagels J, Broberg K, Lindh CH, Gudmundsson A, Wierzbicka A. Biomarkers after Controlled Inhalation Exposure to Exhaust from Hydrogenated Vegetable Oil (HVO). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6492. [PMID: 34208511 PMCID: PMC8296316 DOI: 10.3390/ijerph18126492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/23/2023]
Abstract
Hydrogenated vegetable oil (HVO) is a renewable diesel fuel used to replace petroleum diesel. The organic compounds in HVO are poorly characterized; therefore, toxicological properties could be different from petroleum diesel exhaust. The aim of this study was to evaluate the exposure and effective biomarkers in 18 individuals after short-term (3 h) exposure to HVO exhaust and petroleum diesel exhaust fumes. Liquid chromatography tandem mass spectrometry was used to analyze urinary biomarkers. A proximity extension assay was used for the measurement of inflammatory proteins in plasma samples. Short-term (3 h) exposure to HVO exhaust (PM1 ~1 µg/m3 and ~90 µg/m3 for vehicles with and without exhaust aftertreatment systems, respectively) did not increase any exposure biomarker, whereas petroleum diesel exhaust (PM1 ~300 µg/m3) increased urinary 4-MHA, a biomarker for p-xylene. HVO exhaust from the vehicle without exhaust aftertreatment system increased urinary 4-HNE-MA, a biomarker for lipid peroxidation, from 64 ng/mL urine (before exposure) to 141 ng/mL (24 h after exposure, p < 0.001). There was no differential expression of plasma inflammatory proteins between the HVO exhaust and control exposure group. In conclusion, short-term exposure to low concentrations of HVO exhaust did not increase urinary exposure biomarkers, but caused a slight increase in lipid peroxidation associated with the particle fraction.
Collapse
Affiliation(s)
- Annette M. Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Julie Y. Essig
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Louise Gren
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| | - Carolina Vogs
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden;
| | - Eva Assarsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Katrin Dierschke
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Jörn Nielsen
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Joakim Pagels
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, SE-22363 Lund, Sweden; (J.Y.E.); (E.A.); (K.D.); (J.N.); (B.S.); (K.B.); (C.H.L.)
| | - Anders Gudmundsson
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| | - Aneta Wierzbicka
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, SE-22100 Lund, Sweden; (L.G.); (J.P.); (A.G.); (A.W.)
- NanoLund, Center for Nanoscience, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
24
|
Sun K, Song Y, He F, Jing M, Tang J, Liu R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145403. [PMID: 33582342 DOI: 10.1016/j.scitotenv.2021.145403] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most widely distributed persistent organic pollutants (POPs) in the environmental media. PAHs have been widely concerned due to their significant health risk and adverse effects to human and animals. Currently, the main sources of PAHs in the environment are the incomplete combustion of fossil fuels, as well as municipal waste incineration and agricultural non-surface source emissions. In this work, the scope of our attention includes 16 typical PAHs themselves without involving their metabolites and industrial by-products. Exposure of human and animals to PAHs can lead to a variety of adverse effects, including carcinogenicity and teratogenicity, genotoxicity, reproductive- and endocrine-disrupting effects, immunotoxicity and neurotoxicity, the type and severity of which depend on a variety of factors. On the other hand, the regulatory effect of microplastics (MPs) on the bio-toxicity and bioaccumulation capacity of PAHs has now gradually attracted attention. We critically reviewed the adsorption capacity and mechanisms of MPs on PAHs as well as the effects of MPs on PAHs toxicity, thus highlighting the importance of paying attention to the joint bio-toxicity caused by PAHs-MPs interactions. In addition, due to the extensive nature of the common exposure pathway of PAHs and ultraviolet ray, an accurate understanding of biological processes exposed to both PAHs and UV light is necessary to develop effective protective strategies. Finally, based on the above critical review, we highlighted the research gaps and pointed out the priority of further studies.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province 250022, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
25
|
Alhamdow A, Zettergren A, Kull I, Hallberg J, Andersson N, Ekström S, Berglund M, Wheelock CE, Essig YJ, Krais AM, Georgelis A, Lindh CH, Melén E, Bergström A. Low-level exposure to polycyclic aromatic hydrocarbons is associated with reduced lung function among Swedish young adults. ENVIRONMENTAL RESEARCH 2021; 197:111169. [PMID: 33857464 DOI: 10.1016/j.envres.2021.111169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to adverse pulmonary effects. However, the impact of low-level environmental PAH exposure on lung function in early adulthood remains uncertain. OBJECTIVES To evaluate the associations between urinary PAH metabolites and lung function parameters in young adults. METHODS Urinary metabolites of pyrene, phenanthrene, and fluorene were analysed in 1000 young adults from Sweden (age 22-25 years) using LC-MS/MS. Lung function and eosinophilic airway inflammation were measured by spirometry and exhaled nitric oxide fraction (FeNO), respectively. Linear regression analysis was used to evaluate associations between PAH metabolites and the outcomes. RESULTS Median urinary concentrations of 1-OH-pyrene, ∑OH-phenanthrene, and ∑OH-fluorene were 0.066, 0.36, 0.22 μg/L, respectively. We found inverse associations of ∑OH-phenanthrene and ∑OH-fluorene with FEV1 and FVC, as well as between 1-OH-pyrene and FEV1/FVC ratio (adjusted P < 0.05; all participants). An increase of 1% in ∑OH-fluorene was associated with a decrease of 73 mL in FEV1 and 59 mL in FVC. In addition, ∑OH-phenanthrene concentrations were, in a dose-response manner, inversely associated with FEV1 (B from -109 to -48 compared with the lowest quartile of ∑OH-phenanthrene; p trend 0.004) and FVC (B from -159 to -102 compared with lowest quartile; p-trend <0.001). Similar dose-response associations were also observed between ∑OH-fluorene and FEV1 and FVC, as well as between 1-OH-pyrene and FEV1/FVC (p-trend <0.05). There was no association between PAH exposure and FeNO, nor was there an interaction with smoking, sex, or asthma. CONCLUSION Low-level PAH exposure was, in a dose-response manner, associated with reduced lung function in young adults. Our findings have public health implications due to i) the widespread occurrence of PAHs in the environment and ii) the clinical relevance of lung function in predicting all-cause and cardiovascular disease mortality.
Collapse
Affiliation(s)
- Ayman Alhamdow
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden
| | - Anna Zettergren
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden
| | - Inger Kull
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Sachs' Children's and Youth Hospital, Södersjukhuset, SE, 11883, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, SE, 11883, Stockholm, Sweden
| | - Jenny Hallberg
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Sachs' Children's and Youth Hospital, Södersjukhuset, SE, 11883, Stockholm, Sweden
| | - Niklas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden
| | - Sandra Ekström
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, SE, 11365, Stockholm, Sweden
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, SE, 17165, Stockholm, Sweden
| | - Yona J Essig
- Division of Occupational and Environmental Medicine, Lund University, SE, 22363, Lund, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Lund University, SE, 22363, Lund, Sweden
| | - Antonios Georgelis
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, SE, 11365, Stockholm, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Lund University, SE, 22363, Lund, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Sachs' Children's and Youth Hospital, Södersjukhuset, SE, 11883, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, SE, 11883, Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, SE, 17177, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, SE, 11365, Stockholm, Sweden.
| |
Collapse
|
26
|
Ochoa-Martínez ÁC, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN. Lead (Pb) exposure is associated with changes in the expression levels of circulating miRNAS (miR-155, miR-126) in Mexican women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103598. [PMID: 33516900 DOI: 10.1016/j.etap.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The environmental contamination with lead (Pb) is considered a critical issue worldwide. Therefore, this study aimed to evaluate the expression levels of circulating miRNAs (miR-155, miR-126, and miR-145) in Mexican women exposed to Pb. Blood lead levels (BLL) were assessed in enrolled women (n = 190) using an atomic absorption method. Also, serum miRNAs expression levels were quantified through a real-time PCR assay. A mean BLL of 10.5 ± 4.50 μg/dL was detected. Overexpression of miR-155 was detected in highly exposed women. Besides, a significant simple positive relationship (p < 0.05) was found between BLL and serum miR-155 expression levels. Additionally, a significant inverse correlation (p < 0.05) was determined between BLL and serum miR-126 expression levels, as downregulation of miR-126 expression levels was observed in highly exposed women. The findings in this study are the concern, as epigenetic changes detected may represent a connection between health illnesses and Pb exposure.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Sandra Teresa Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Leticia Carrizales-Yáñez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|