1
|
Abrham Y, Zeng S, Lin W, Lo C, Beckert A, Evans L, Dunn M, Giang B, Thakkar K, Roman J, Blanc PD, Arjomandi M. Self-report underestimates the frequency of the acute respiratory exacerbations of COPD but is associated with BAL neutrophilia and lymphocytosis: an observational study. BMC Pulm Med 2024; 24:433. [PMID: 39223571 PMCID: PMC11367895 DOI: 10.1186/s12890-024-03239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
RATIONALE Research studies typically quantify acute respiratory exacerbation episodes (AECOPD) among people with chronic obstructive pulmonary disease (COPD) based on self-report elicited by survey questionnaire. However, AECOPD quantification by self-report could be inaccurate, potentially rendering it an imprecise tool for identification of those with exacerbation tendency. OBJECTIVE Determine the agreement between self-reported and health records-documented quantification of AECOPD and their association with airway inflammation. METHODS We administered a questionnaire to elicit the incidence and severity of respiratory exacerbations in the three years preceding the survey among current or former heavy smokers with or without diagnosis of COPD. We then examined electronic health records (EHR) of those with COPD and those without (tobacco-exposed persons with preserved spirometry or TEPS) to determine whether the documentation of the three-year incidence of moderate to very severe respiratory exacerbations was consistent with self-report using Kappa Interrater statistic. A subgroup of participants also underwent bronchoalveolar lavage (BAL) to quantify their airway inflammatory cells. We further used multivariable regressions analysis to estimate the association between respiratory exacerbations and BAL inflammatory cell composition with adjustment for covariates including age, sex, height, weight, smoking status (current versus former) and burden (pack-years). RESULTS Overall, a total of 511 participants completed the questionnaire, from whom 487 had EHR available for review. Among the 222 participants with COPD (70 ± 7 years-old; 96% male; 70 ± 38 pack-years smoking; 42% current smoking), 57 (26%) reported having any moderate to very severe AECOPD (m/s-AECOPD) while 66 (30%) had EHR documentation of m/s-AECOPD. However, 42% of those with EHR-identified m/s-AECOPD had none by self-report, and 33% of those who reported m/s-AECOPD had none by EHR, suggesting only moderate agreement (Cohen's Kappa = 0.47 ± 0.07; P < 0.001). Nevertheless, self-reported and EHR-identified m/s-AECOPD events were both associated with higher BAL neutrophils (ß ± SEM: 3.0 ± 1.1 and 1.3 ± 0.5 per 10% neutrophil increase; P ≤ 0.018) and lymphocytes (0.9 ± 0.4 and 0.7 ± 0.3 per 10% lymphocyte increase; P ≤ 0.041). Exacerbation by either measure combined was associated with a larger estimated effect (3.7 ± 1.2 and 1.0 ± 0.5 per 10% increase in neutrophils and lymphocytes, respectively) but was not statistically significantly different compared to the self-report only approach. Among the 184 TEPS participants, there were fewer moderate to very severe respiratory exacerbations by self-report (n = 15 or 8%) or EHR-documentation (n = 9 or 5%), but a similar level of agreement as those with COPD was observed (Cohen's Kappa = 0.38 ± 0.07; P < 0.001). DISCUSSION While there is modest agreement between self-reported and EHR-identified m/s-AECOPD, events are missed by relying on either method alone. However, m/s-AECOPD quantified by self-report or health records is associated with BAL neutrophilia and lymphocytosis.
Collapse
Affiliation(s)
- Yorusaliem Abrham
- Medical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Siyang Zeng
- Medical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, USA
| | - Wendy Lin
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Colin Lo
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Alexander Beckert
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Laurel Evans
- Medical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Michelle Dunn
- Medical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Brian Giang
- Medical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Krish Thakkar
- Medical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Julian Roman
- Medical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Paul D Blanc
- Medical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Mehrdad Arjomandi
- Medical Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Choi JY, Rhee CK. It is high time to discard a cut-off of 0.70 in the diagnosis of COPD. Expert Rev Respir Med 2024; 18:709-719. [PMID: 39189795 DOI: 10.1080/17476348.2024.2397480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) has traditionally been diagnosed based on the criterion of an FEV1/FVC <0.70. However, this definition has limitations as it may only detect patients with later-stage disease, when pathologic changes have become irreversible. Consequently, it potentially omits individuals with early-stage disease, in whom the pathologic changes could be delayed or reversed. AREAS COVERED This narrative review summarizes recent evidence regarding early-stage COPD, which may not fulfill the spirometric criteria but nonetheless exhibits features of COPD or is at risk of future COPD progression. EXPERT OPINION A comprehensive approach, including symptoms assessment, various physiologic tests, and radiologic features, is required to diagnose COPD. This approach is necessary to identify currently underdiagnosed patients and to halt disease progression in at- risk patients.
Collapse
Affiliation(s)
- Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Çolak Y, Løkke A, Marott JL, Lange P, Vestbo J, Nordestgaard BG, Afzal S. Low smoking exposure and development and prognosis of COPD over four decades: a population-based cohort study. Eur Respir J 2024; 64:2400314. [PMID: 38936967 DOI: 10.1183/13993003.00314-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND A diagnosis of COPD is mainly considered in individuals with >10 pack-years of smoking. We tested the hypothesis that low smoking exposure, below the critical threshold of 10 pack-years, increases risk of COPD and leads to poor prognosis. METHODS We followed non-obstructed adult smokers from the Copenhagen City Heart Study for COPD, defined as a forced expiratory volume in 1 s (FEV1)/forced vital capacity <0.70 and FEV1 <80% predicted, and for related clinical outcomes. First, we followed individuals for 5 years according to baseline smoking for risk of developing COPD, and thereafter for up to four decades for severe exacerbations and death. RESULTS In 6098 non-obstructed smokers, 1781 (29%) developed COPD after 5 years of follow-up: 23% of individuals with <10 pack-years of smoking at baseline, 26% of those with 10-19.9 pack-years, 30% of those with 20-39.9 pack-years and 39% of those with ≥40 pack-years. During four decades of follow-up, we recorded 620 exacerbations and 5573 deaths. Compared to individuals without COPD with <10 pack‑years of smoking, multivariable adjusted hazard ratios (HRs) for exacerbations were 1.94 (95% CI 1.36-2.76) in those without COPD and ≥10 pack-years, 2.83 (95% CI 1.72-4.66) in those with COPD and <10 pack-years, 4.34 (95% CI 2.93-6.43) in those with COPD and 10-19.9 pack-years, 4.39 (95% CI 2.98-6.46) in those with COPD and 20-39.9 pack-years and 4.98 (95% CI 3.11-7.97) in those with COPD and ≥40 pack-years. Corresponding HRs for all-cause mortality were 1.20 (95% CI 1.10-1.32), 1.31 (95% CI 1.13-1.53), 1.59 (95% CI 1.40-1.79), 1.81 (95% CI 1.62-2.03) and 1.81 (95% CI 1.55-2.10). CONCLUSION Low smoking exposure below the critical threshold of 10 pack-years increases risk of COPD in middle-aged adults within 5 years, and these individuals have increased risk of severe exacerbation and early death over four decades.
Collapse
Affiliation(s)
- Yunus Çolak
- Department of Respiratory Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Løkke
- Department of Medicine, Southern Denmark University Hospital - Little Belt Hospital, Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Jacob L Marott
- The Copenhagen City Heart Study, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Peter Lange
- Department of Respiratory Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, and Manchester University NHS Foundation Trust, Manchester, UK
| | - Børge G Nordestgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen City Heart Study, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| |
Collapse
|
4
|
Abstract
Whereas COPD is currently defined as the presence of spirometric obstruction, the pathologic changes in individuals at risk including chronic mucus hypersecretion and emphysema have been recognized for centuries. At the same time, we have struggled to define criteria that would help us identify patients at an early stage, prior to the development of pulmonary function abnormality. The concept of GOLD 0 was introduced in the hopes that symptoms would help to identify those at greatest risk for progression. While symptoms are a risk factor, in particular chronic bronchitis, the term was abandoned as the majority of individuals at risk who progress to COPD do not have symptoms. Since then, the related terms pre-COPD and early COPD have been introduced. They are similar in that the term pre-COPD identifies individuals based on symptoms, physiologic, or radiographic abnormality that do not meet criteria for COPD but are clearly at risk. The term early COPD extends that concept further, focusing on individuals who have early physiologic or radiographic abnormality but at the same time are young, thereby excluding those with late mild disease who may be less likely to progress. Whereas individuals with early COPD are now being recruited for observational studies, we are still challenged with determining the best way to identify patients at risk who should undergo additional testing as well as developing specific therapies for patients with early-stage disease.
Collapse
Affiliation(s)
- Bo Young Lee
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - MeiLan K Han
- Division of Pulmonary & Critical Care, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
5
|
Wu F, Zheng Y, Zhao N, Peng J, Deng Z, Yang H, Tian H, Xiao S, Wen X, Huang P, Dai C, Lu L, Zhou K, Wu X, Fan H, Li H, Sun R, Yang C, Chen S, Huang J, Yu S, Zhou Y, Ran P. Clinical features and 1-year outcomes of chronic bronchitis in participants with normal spirometry: results from the ECOPD study in China. BMJ Open Respir Res 2023; 10:10/1/e001449. [PMID: 37028909 PMCID: PMC10083876 DOI: 10.1136/bmjresp-2022-001449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Evidence regarding clinical features and outcomes of individuals with non-obstructive chronic bronchitis (NOCB) remains scarce, especially in never-smokers. We aimed to investigate the clinical features and 1-year outcomes of individuals with NOCB in the Chinese population. METHODS We obtained data on participants in the Early Chronic Obstructive Pulmonary Disease Study who had normal spirometry (post-bronchodilator forced expiratory volume in 1 s/forced vital capacity ≥0.70). NOCB was defined as chronic cough and sputum production for at least 3 months for two consecutive years or more at baseline in participants with normal spirometry. We assessed the differences in demographics, risk factors, lung function, impulse oscillometry, CT imaging and frequency of acute respiratory events between participants with and without NOCB. RESULTS NOCB was present in 13.1% (149/1140) of participants with normal spirometry at baseline. Compared with participants without NOCB, those with NOCB had a higher proportion of men and participants with smoke exposure, occupational exposure, family history of respiratory diseases and worse respiratory symptoms (all p<0.05), but there was no significant difference in lung function. Never-smokers with NOCB had higher rates of emphysema than those without NOCB, but airway resistance was similar. Ever-smokers with NOCB had greater airway resistance than those without NOCB, but emphysema rates were similar. During 1-year follow-up, participants with NOCB had a significantly increased risk of acute respiratory events compared with participants who did not have NOCB, after adjustment for confounders (risk ratio 2.10, 95% CI 1.32 to 3.33; p=0.002). These results were robust in never-smokers and ever-smokers. CONCLUSIONS Never-smokers and ever-smokers with NOCB had more chronic obstructive pulmonary disease-related risk factors, evidence of airway disease and greater risk of acute respiratory events than those without NOCB. Our findings support expanding the criteria defining pre-COPD to include NOCB.
Collapse
Affiliation(s)
- Fan Wu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| | - Youlan Zheng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ningning Zhao
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jieqi Peng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| | - Zhishan Deng
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huajing Yang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Heshen Tian
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shan Xiao
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiang Wen
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Peiyu Huang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Cuiqiong Dai
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lifei Lu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kunning Zhou
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaohui Wu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huanhuan Fan
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Haiqing Li
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruiting Sun
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Changli Yang
- Department of Pulmonary and Critical Care Medicine, Wengyuan County People's Hospital, Shaoguan, People's Republic of China
| | - Shengtang Chen
- Medical Imaging Center, Wengyuan County People's Hospital, Shaogguan, People's Republic of China
| | - Jianhui Huang
- Department of Internal Medicine, Lianping County People's Hospital, Heyuan, People's Republic of China
| | - Shuqing Yu
- Lianping County Hospital of Traditional Chinese Medicine, Heyuan, People's Republic of China
| | - Yumin Zhou
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| | - Pixin Ran
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Han MK, Ye W, Wang D, White E, Arjomandi M, Barjaktarevic IZ, Brown SA, Buhr RG, Comellas AP, Cooper CB, Criner GJ, Dransfield MT, Drescher F, Folz RJ, Hansel NN, Kalhan R, Kaner RJ, Kanner RE, Krishnan JA, Lazarus SC, Maddipati V, Martinez FJ, Mathews A, Meldrum C, McEvoy C, Nyunoya T, Rogers L, Stringer WW, Wendt CH, Wise RA, Wisniewski SR, Sciurba FC, Woodruff PG. Bronchodilators in Tobacco-Exposed Persons with Symptoms and Preserved Lung Function. N Engl J Med 2022; 387:1173-1184. [PMID: 36066078 PMCID: PMC9741866 DOI: 10.1056/nejmoa2204752] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Many persons with a history of smoking tobacco have clinically significant respiratory symptoms despite an absence of airflow obstruction as assessed by spirometry. They are often treated with medications for chronic obstructive pulmonary disease (COPD), but supporting evidence for this treatment is lacking. METHODS We randomly assigned persons who had a tobacco-smoking history of at least 10 pack-years, respiratory symptoms as defined by a COPD Assessment Test score of at least 10 (scores range from 0 to 40, with higher scores indicating worse symptoms), and preserved lung function on spirometry (ratio of forced expiratory volume in 1 second [FEV1] to forced vital capacity [FVC] ≥0.70 and FVC ≥70% of the predicted value after bronchodilator use) to receive either indacaterol (27.5 μg) plus glycopyrrolate (15.6 μg) or placebo twice daily for 12 weeks. The primary outcome was at least a 4-point decrease (i.e., improvement) in the St. George's Respiratory Questionnaire (SGRQ) score (scores range from 0 to 100, with higher scores indicating worse health status) after 12 weeks without treatment failure (defined as an increase in lower respiratory symptoms treated with a long-acting inhaled bronchodilator, glucocorticoid, or antibiotic agent). RESULTS A total of 535 participants underwent randomization. In the modified intention-to-treat population (471 participants), 128 of 227 participants (56.4%) in the treatment group and 144 of 244 (59.0%) in the placebo group had at least a 4-point decrease in the SGRQ score (difference, -2.6 percentage points; 95% confidence interval [CI], -11.6 to 6.3; adjusted odds ratio, 0.91; 95% CI, 0.60 to 1.37; P = 0.65). The mean change in the percent of predicted FEV1 was 2.48 percentage points (95% CI, 1.49 to 3.47) in the treatment group and -0.09 percentage points (95% CI, -1.06 to 0.89) in the placebo group, and the mean change in the inspiratory capacity was 0.12 liters (95% CI, 0.07 to 0.18) in the treatment group and 0.02 liters (95% CI, -0.03 to 0.08) in the placebo group. Four serious adverse events occurred in the treatment group, and 11 occurred in the placebo group; none were deemed potentially related to the treatment or placebo. CONCLUSIONS Inhaled dual bronchodilator therapy did not decrease respiratory symptoms in symptomatic, tobacco-exposed persons with preserved lung function as assessed by spirometry. (Funded by the National Heart, Lung, and Blood Institute and others; RETHINC ClinicalTrials.gov number, NCT02867761.).
Collapse
Affiliation(s)
- MeiLan K Han
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Wen Ye
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Di Wang
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Emily White
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Mehrdad Arjomandi
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Igor Z Barjaktarevic
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Stacey-Ann Brown
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Russell G Buhr
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Alejandro P Comellas
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Christopher B Cooper
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Gerard J Criner
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Mark T Dransfield
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Frank Drescher
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Rodney J Folz
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Nadia N Hansel
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Ravi Kalhan
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Robert J Kaner
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Richard E Kanner
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Jerry A Krishnan
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Stephen C Lazarus
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Veeranna Maddipati
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Fernando J Martinez
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Anne Mathews
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Catherine Meldrum
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Charlene McEvoy
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Toru Nyunoya
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Linda Rogers
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - William W Stringer
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Christine H Wendt
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Robert A Wise
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Stephen R Wisniewski
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Frank C Sciurba
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| | - Prescott G Woodruff
- From the Division of Pulmonary and Critical Care (M.K.H., C. Meldrum) and the School of Public Health (W.Y., D.W., E.W.), University of Michigan, Ann Arbor; the Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine (M.A., S.C.L., P.G.W.) and the Cardiovascular Research Institute (S.C.L., P.G.W.), University of California San Francisco, and the San Francisco Veterans Affairs (VA) Healthcare System (M.A.) - both in San Francisco; the Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA (I.Z.B., R.G.B., C.B.C.), and the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center (W.W.S.) - both in Los Angeles; the Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore (S.-A.B., N.N.H., R.A.W.); the Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City (A.P.C.); the Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia (G.J.C.); the Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham (M.T.D.); Geisel School of Medicine at Dartmouth and Pulmonary and Critical Care Medicine, VA Medical Center, White River Junction, VT (F.D.); the Division of Pulmonary, Critical Care, and Sleep Medicine, Houston Methodist Academic Medicine Associates, Houston (R.J.F.); the Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine (R.K.), and the Breathe Chicago Center, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago (J.A.K.) - both in Chicago; the Department of Genetic Medicine (R.J.K.) and Joan and Sanford I. Weill Department of Medicine (R.J.K., F.J.M.), Weill Cornell Medicine and New York-Presbyterian Hospital, and the Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai (L.R.) - both in New York; the Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City (R.E.K.); East Carolina University, Greenville (V.M.), and Duke University School of Medicine, Durham (A.M.) - both in North Carolina; HealthPartners Institute, Bloomington (C. McEvoy), and Minneapolis VA Healthcare System, Minneapolis (C.H.W.) - both in Minnesota; and the Division of Pulmonary, Allergy, and Critical Care Medicine (T.N., F.C.S.) and Epidemiology Data Center (S.R.W.), University of Pittsburgh, Pittsburgh
| |
Collapse
|
7
|
Casara A, Turato G, Marin-Oto M, Semenzato U, Biondini D, Tinè M, Bernardinello N, Cocconcelli E, Cubero P, Balestro E, Spagnolo P, Marin JM, Cosio MG, Saetta M, Bazzan E. Chronic Bronchitis Affects Outcomes in Smokers without Chronic Obstructive Pulmonary Disease (COPD). J Clin Med 2022; 11:jcm11164886. [PMID: 36013126 PMCID: PMC9410001 DOI: 10.3390/jcm11164886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background. Chronic bronchitis (CB) importantly affects outcomes in smokers with COPD, but the effects on smokers without COPD are less well known and less emphasized. The aim of our study was to investigate the possible effects of CB on clinical outcomes in smokers without COPD (noCOPD) and compare them with the effects in smokers with COPD (COPD). Methods. For that purpose, we studied 511 smokers, 302 with and 209 without COPD, followed for 10 years in an academic COPD ambulatory setting. Chronic bronchitis was defined as the presence of cough and sputum production for at least 3 months in each of two consecutive years. All subjects underwent clinical and functional examination with spirometry, diffusion capacity (DLco), 6-min walking test (6MWT), mMRC Dyspnoea Scale, COPD Assessment Test (CAT), and recording of annual frequency of exacerbations. All-cause mortality during follow-up was recorded. Results. 27% of noCOPD and 45% of COPD had CB. noCOPD with CB had lower FEV1 and DLco, worse 6MWT, more dyspnoea, a higher number of exacerbations and lower survival than noCOPD without CB. CB did not affect FEV1 decline in noCOPD but it significantly did in COPD. Conclusions. The presence of chronic bronchitis in smokers without COPD will significantly affect symptoms, quality of life, and survival, underlining the importance of recognizing the condition and managing it accordingly.
Collapse
Affiliation(s)
- Alvise Casara
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Graziella Turato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Marta Marin-Oto
- Respiratory Service, Hospital Clinico Universitario, 50009 Zaragoza, Spain
| | - Umberto Semenzato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Mariaenrica Tinè
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Nicol Bernardinello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Elisabetta Cocconcelli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Pablo Cubero
- Translational Research Unit (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
| | - Elisabetta Balestro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Paolo Spagnolo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Josè M. Marin
- Translational Research Unit (IIS Aragón), Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
- Department of Medicine, University of Zaragoza School of Medicine, 50009 Zaragoza, Spain
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QU 000004, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
- Correspondence:
| |
Collapse
|
8
|
Çolak Y, Nordestgaard BG, Lange P, Vestbo J, Afzal S. Prognosis of Patients with Chronic Obstructive Pulmonary Disease Not Eligible for Major Clinical Trials. Am J Respir Crit Care Med 2022; 206:271-280. [PMID: 35438616 PMCID: PMC9890252 DOI: 10.1164/rccm.202110-2441oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Rationale: Randomized controlled trials only include a subset of patients with chronic obstructive pulmonary disease (COPD) fulfilling strict inclusion criteria. Thus, most patients with COPD in a real-world setting do not have the necessary evidence to support treatment effectiveness. Objectives: To test the hypotheses that most individuals with COPD in the general population are not represented in major clinical trials despite clinically significant disease with exacerbations and early death. Methods: In 105,630 adults from a Danish contemporary population-based cohort, we defined COPD as age 40 or more years, chronic respiratory symptoms, history of smoking exposure, and airflow limitation with FEV1/FVC < 0.70. Outcomes included acute exacerbations and all-cause mortality. Symptomatic smokers without COPD were used as a reference group. Measurements and Main Results: Of all, 7,516 (7%) and 16,079 (15%) were symptomatic smokers with and without COPD. Only 44% of those with COPD were eligible for major clinical trials when applying FEV1 < 80% predicted, smoking history of 10 or more pack-years, and no comorbid asthma as common inclusion criteria. During the median 8.9 years of follow-up, we observed 2,130 acute exacerbations and 3,973 deaths in symptomatic smokers. Compared with symptomatic smokers without COPD, multivariable-adjusted hazard ratios for exacerbations were 7.45 (95% confidence interval, 5.41-10.3) and 29.0 (21.1-39.8) in those with COPD, respectively, excluded and eligible for clinical trials. Corresponding hazard ratios for all-cause mortality were 1.21 (1.11-1.31) and 1.67 (1.54-1.81), respectively. Conclusions: More than half of individuals with COPD in the general population are excluded from major clinical trials; however, these individuals have a clinically significant disease with exacerbations and early death compared with symptomatic smokers without COPD.
Collapse
Affiliation(s)
- Yunus Çolak
- Department of Respiratory Medicine,,The Copenhagen General Population Study, and,Department of Clinical Medicine, Faculty of Health and Medical Sciences, and
| | - Børge G. Nordestgaard
- The Copenhagen General Population Study, and,Department of Clinical Biochemistry, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark;,Department of Clinical Medicine, Faculty of Health and Medical Sciences, and
| | - Peter Lange
- Department of Respiratory Medicine,,The Copenhagen General Population Study, and,Department of Clinical Medicine, Faculty of Health and Medical Sciences, and,Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; and
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, and Manchester University National Health Service Foundation Trust, Manchester, United Kingdom
| | - Shoaib Afzal
- The Copenhagen General Population Study, and,Department of Clinical Biochemistry, Copenhagen University Hospital – Herlev and Gentofte, Copenhagen, Denmark;,Department of Clinical Medicine, Faculty of Health and Medical Sciences, and
| |
Collapse
|
9
|
Wen X, Peng J, Zheng Y, Liu J, Tian H, Wu F, Wang Z, Yang H, Deng Z, Xiao S, Huang P, Xu J, Dai C, Zhao N, Lu L, Dai J, Li B, Ran P, Zhou Y. Predictors of High Sputum Eosinophils in Chronic Obstructive Pulmonary Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:413-426. [PMID: 35797445 PMCID: PMC9448012 DOI: 10.15326/jcopdf.2022.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Eosinophils are involved in the development of chronic obstructive pulmonary disease (COPD) and inhaled corticosteroid responsiveness. We evaluated clinical predictors of high sputum eosinophil levels in a COPD cohort in China. METHODS We conducted an observational, prospective, population-based, cross-sectional study. Participants were tested for COPD and underwent spirometry, computed tomography scans, and a blood test. Participants also produced induced sputum and responded to an information-gathering questionnaire. High sputum eosinophils were defined as ≥3.0%. Multivariate logistic regression was used to identify predictors of high sputum eosinophil levels. RESULTS We recruited 895 patients with complete and quality control data. The median percentage of sputum eosinophil abundance was 2.00% (interquartile range: 0.75-5.00) and the prevalence of COPD with high sputum eosinophils was 38.0%. Covariance analysis indicated that the high sputum eosinophil group had lower lung function, more severe emphysema, and air trapping. Multivariate logistic regression indicated that high blood eosinophil levels, severe respiratory symptoms, being a former smoker, and a family history of respiratory diseases were associated with high sputum eosinophil levels. CONCLUSION High blood eosinophil levels, severe respiratory symptoms, being a former smoker, and a family history of respiratory diseases may be predictors of high sputum eosinophil levels in Chinese COPD patients. High sputum eosinophils were associated with lower lung function, more emphysema, and gas trapping.
Collapse
Affiliation(s)
- Xiang Wen
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Co-first authors, both authors contributed equally to the work
| | - Jieqi Peng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Co-first authors, both authors contributed equally to the work
| | - Youlan Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Co-first authors, both authors contributed equally to the work
| | - Jiaxing Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Heshen Tian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihui Wang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajing Yang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhishan Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiyu Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianwu Xu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cuiqiong Dai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lifei Lu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianwei Dai
- Guangzhou Medical University , Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bing Li
- Guangzhou Medical University , Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-Island, Guangzhou, China
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bio-Island, Guangzhou, China
| |
Collapse
|
10
|
Alhabeeb FF, Whitmore G, Vandemheen KL, FitzGerald JM, Bergeron C, Lemière C, Boulet LP, Field SK, Penz E, McIvor RA, Gupta S, Mayers I, Bhutani M, Hernandez P, Lougheed D, Licskai CJ, Azher T, Cote A, Ainslie M, Fraser I, Mahdavian M, Aaron SD. Disease burden in individuals with symptomatic undiagnosed asthma or COPD. Respir Med 2022; 200:106917. [DOI: 10.1016/j.rmed.2022.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
|
11
|
Mkorombindo T, Dransfield MT. Pre-chronic obstructive pulmonary disease: a pathophysiologic process or an opinion term? Curr Opin Pulm Med 2022; 28:109-114. [PMID: 34907960 DOI: 10.1097/mcp.0000000000000854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Current guidelines does not include current or former smokers who do not have spirometric airflow limitation in their diagnostic or therapeutic algorithms for chronic obstructive pulmonary disease (COPD). The purpose of this review is to outline the burden of respiratory morbidity in this population and to discuss the potential utility of their classification as pre-COPD. RECENT FINDINGS It is increasingly clear that patients with a history of exposure to cigarette smoke or other environmental pollutants may have substantial lung pathology and respiratory impairment even in the absence of airflow limitation, as detected by spirometry. Not all of these patients will develop airflow limitation, but many will have considerable respiratory morbidity and a comparable prognosis to those with classical, spirometrically defined COPD. The use of the term pre-COPD may allow for the identification of these individuals in order to target preventive and earlier therapeutic strategies. SUMMARY Spirometry is not adequately sensitive to identify many current and former smokers and other exposed populations with significant lung pathology and respiratory symptoms. Though the pathologic processes present in these patients differ, the earlier identification of this pre-COPD population may foster the development of more effective and disease-modifying treatments.
Collapse
Affiliation(s)
- Takudzwa Mkorombindo
- Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
12
|
Mkorombindo T, Balkissoon R. Journal Club-Respiratory Impairment With A Preserved Spirometric Ratio. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2022; 9:103-110. [PMID: 35090103 PMCID: PMC8893968 DOI: 10.15326/jcopdf.2022.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Takudzwa Mkorombindo
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama, Birmingham, Alabama, United States
| | | |
Collapse
|
13
|
Oh AL, Mularski RA, Barjaktarevic I, Barr RG, Bowler RP, Comellas AP, Cooper CB, Criner GJ, Han MK, Hansel NN, Hoffman EA, Kanner RE, Krishnan JA, Paine R, Parekh TM, Peters SP, Christenson SA, Woodruff PG. Defining Resilience to Smoking-related Lung Disease: A Modified Delphi Approach from SPIROMICS. Ann Am Thorac Soc 2021; 18:1822-1831. [PMID: 33631079 PMCID: PMC8641833 DOI: 10.1513/annalsats.202006-757oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Rationale: Diagnosis of chronic obstructive pulmonary disease (COPD) relies on abnormal spirometry. However, spirometry may underestimate the effects of smoking, missing smokers with respiratory disease who have minimal or no airflow obstruction. Objectives: To develop a multidimensional definition of a lung-related "resilient smoker" that is useful in research studies and then identify a resilient smoker subgroup in the SPIROMICS (SubPopulations and InteRmediate Outcome Measures In COPD Study) cohort using this definition. Methods: We performed a three-round modified Delphi survey among a panel of COPD experts to identify and reach a consensus on clinical and radiographic domains to be included in a lung-related resilient smoker definition. Consensus on domains of resilience was defined as ⩾80% of experts voting "agree" or "strongly agree" on a 5-point Likert scale. The Delphi-derived definition of resilience was applied to SPIROMICS to identify resilient smokers, whom we then characterized using known biomarkers of COPD. Results: Consensus was achieved on 6 of 12 diagnostic items, which include cough and sputum production, dyspnea, radiographic measures of emphysema and small airways disease, exacerbations, and decline in forced expiratory volume in 1 second. Although 892 SPIROMICS participants were classified as smokers with preserved lung function by spirometry, only 149 participants (16.7%) qualified as resilient smokers by our definition. Blood biomarker expression of CRP (C-reactive protein) and sTNFRSF1A (soluble tumor necrosis receptor factor1A) was lower in resilient than nonresilient smokers (P = 0.02 and P = 0.03). Conclusions: A Delphi-derived consensus definition of resilient smoker identified 83.3% of smokers with preserved spirometry as "nonresilient" based on the presence of adverse effects of smoking on the lung. Resilient smokers were biologically distinct from nonresilient smokers based on CRP measurements. Clinical trial registered with ClinicalTrials.gov (NCT01969344).
Collapse
Affiliation(s)
- Anita L. Oh
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Francisco, San Francisco, California
| | - Richard A. Mularski
- The Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon
| | - Igor Barjaktarevic
- Divison of Pulmonary and Critical Care, David Geffen School of Medicine, University of California, Los Angeles, California
| | - R. Graham Barr
- Department of Medicine and Epidemiology, Columbia University Medical Center, New York, New York
| | - Russell P. Bowler
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, Colorado
| | - Alejandro P. Comellas
- Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Christopher B. Cooper
- Divison of Pulmonary and Critical Care, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Gerard J. Criner
- Division of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Richard E. Kanner
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - Jerry A. Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - Trisha M. Parekh
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Stephen P. Peters
- Pulmonary, Critical Care, Allergy, and Immunologic Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Francisco, San Francisco, California
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
14
|
Kirby M, Smith BM, Tanabe N, Hogg JC, Coxson HO, Sin DD, Bourbeau J, Tan WC. Computed tomography total airway count predicts progression to COPD in at-risk smokers. ERJ Open Res 2021; 7:00307-2021. [PMID: 34708120 PMCID: PMC8542990 DOI: 10.1183/23120541.00307-2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
There is limited understanding of how to identify people at high risk of developing COPD. Our objective was to investigate the association between computed tomography (CT) total airway count (TAC) and incident COPD over 3 years among ever-smokers from the population-based Canadian Cohort Obstructive Lung Disease (CanCOLD) study. CT and spirometry were acquired in ever-smokers at baseline; spirometry was repeated at 3-year follow-up. CT TAC was generated by summing all airway segments in the segmented airway tree (VIDA Diagnostics, Inc.). CT airway wall area, wall thickness for a theoretical airway with 10 mm perimeter (Pi10), and low attenuation areas below −856 HU (LAA856) were also measured. Logistic and mixed effects regression models were constructed to determine the association for CT measurements with development of COPD and forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) decline, respectively. Among 316 at-risk participants evaluated at baseline (65±9 years, 40% female, 18±19 pack-years), incident COPD was detected in 56 participants (18%) over a median 3.1±0.6 years of follow-up. Among CT measurements, only TAC was associated with incident COPD (p=0.03), where a 1-sd decrement in TAC increased the odds ratio for incident COPD by a factor of two. In a multivariable linear regression model, reduced TAC was significantly associated with greater longitudinal FEV1/FVC decline (p=0.03), but no other measurements were significant. CT TAC predicts incident COPD in at-risk smokers, indicating that smokers exhibit early structural changes associated with COPD prior to abnormal spirometry. Computed tomography (CT) total airway count (TAC) predicts incident COPD in at-risk smokers, indicating that smokers exhibit early airway remodelling prior to abnormal spirometry and that CT TAC is a potential tool to help identify smokers at increased risk of COPDhttps://bit.ly/2UTw3I4
Collapse
Affiliation(s)
- Miranda Kirby
- Dept of Physics, Ryerson University, Toronto, ON, Canada.,UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Benjamin M Smith
- Dept of Medicine, McGill University, Montreal, QC, Canada.,Dept of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada.,Dept of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Naoya Tanabe
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - James C Hogg
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Harvey O Coxson
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Don D Sin
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Jean Bourbeau
- Montreal Chest Institute of the Royal Victoria Hospital, McGill University Health Centre, Montreal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Wan C Tan
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
15
|
Wouters EFM, Breyer MK, Breyer-Kohansal R, Hartl S. COPD Diagnosis: Time for Disruption. J Clin Med 2021; 10:4660. [PMID: 34682780 PMCID: PMC8539379 DOI: 10.3390/jcm10204660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Articulating a satisfactory definition of a disease is surprisingly difficult. Despite the alarming individual, societal and economic burden of chronic obstructive pulmonary disease (COPD), diagnosis is still largely based on a physiologically dominated disease conception, with spirometrically determined airflow limitation as a cardinal feature of the disease. The diagnostic inaccuracy and insensitivity of this physiological disease definition is reviewed considering scientific developments of imaging of the respiratory system in particular. Disease must be approached as a fluid concept in response to new scientific and medical discoveries, but labelling as well as mislabelling someone as diseased, will have enormous individual, social and financial implications. Nosology of COPD urgently needs to dynamically integrate more sensitive diagnostic procedures to detect the breadth of abnormalities early in the disease process. Integration of broader information for the identification of abnormalities in the respiratory system is a cornerstone for research models of underlying pathomechanisms to create a breakthrough in research.
Collapse
Affiliation(s)
- Emiel F. M. Wouters
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria; (M.K.B.); (R.B.-K.); (S.H.)
- Department of Respiratory Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Marie K. Breyer
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria; (M.K.B.); (R.B.-K.); (S.H.)
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria; (M.K.B.); (R.B.-K.); (S.H.)
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria; (M.K.B.); (R.B.-K.); (S.H.)
| |
Collapse
|
16
|
Liang Z, Zhong N, Chen R, Ma Q, Sun Y, Wen F, Tal-Singer R, Miller BE, Yates J, Song J, Compton C, Ji B, Wu L, Yang Y, Jones P, Zheng J. Investigation of the Clinical, Radiological and Biological Factors Associated with Disease Progression, Phenotypes and Endotypes of COPD in China (COMPASS): study design, protocol and rationale. ERJ Open Res 2021; 7:00201-2021. [PMID: 34527722 PMCID: PMC8435791 DOI: 10.1183/23120541.00201-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023] Open
Abstract
COPD is heterogeneous, and its presentation varies between countries. The major COPD cohort studies have only been performed in Western populations; the disease is not well characterised in other regions. The COMPASS (Investigation of the Clinical, Radiological and Biological Factors, Humanistic and Healthcare Utilisation Burden Associated with Disease Progression, Phenotypes and Endotypes of COPD in China; NCT04853225) is a prospective, 2.5-year-long, multi-centre, longitudinal, observational study with three aims: 1) to characterise stable and exacerbation phenotypes/endotypes in terms of clinical characteristics, blood and sputum biomarkers, lung microbiome and lung imaging; 2) to understand the relevance of markers of COPD disease progression identified in Western cohorts to Chinese patients; and 3) to characterise treatment pathways and healthcare resource utilisation. COMPASS will recruit 2000 participants, of which 1700 will be in Global Initiative for Chronic Obstructive Lung Disease (GOLD) Grades I–IV (n=700, 700, 200 and 100, respectively), 180 participants with chronic bronchitis without airflow limitation and 120 never-smoker healthy controls. Study visits will be at baseline, 6, 18 and 30 months and at exacerbation. Assessments include lung function, exacerbation frequency, health status, blood biomarkers and, in a sub-cohort of 400 patients, chest high-resolution computed tomography, additional blood and sputum biomarkers, airway micro-, viral- and myco-biome, and physical activity. COMPASS will establish a unique clinical and biological dataset in a well-characterised cohort of individuals with COPD in China, with a particular focus on milder patients. As the first study of its kind attempting to understand the disease in an Asian setting, it will provide valuable insights into regional and ethnic differences in COPD. COMPASS, a prospective, multicentre, observational study of Chinese patients with COPD, will characterise stable and exacerbation phenotypes/endotypes, treatment pathways and HRU, and investigate COPD progression biomarkers' relevance to these patientshttps://bit.ly/3dyIpf1
Collapse
Affiliation(s)
- Zhenyu Liang
- State Key Laboratory of Respiratory Disease and National Clinical Research Center of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease and National Clinical Research Center of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- Pulmonary and Critical Care Dept, Shenzhen Institute of Respiratory Diseases, First Affiliated Hospital of South University of Science and Technology of China (Shenzhen People's Hospital), Shenzhen, Guangdong, China
| | - Qianli Ma
- Chronic Respiratory Disease Care Centre, The North Kuanren General Hospital, Chongqing, China
| | - Yongchang Sun
- Dept of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Dept of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Ruth Tal-Singer
- GlaxoSmithKline, Collegeville, PA, USA.,No longer employees of GSK but were during the design of this study
| | - Bruce E Miller
- GlaxoSmithKline, Collegeville, PA, USA.,No longer employees of GSK but were during the design of this study
| | - Julie Yates
- GlaxoSmithKline, Research Triangle Park, NC, USA.,No longer employees of GSK but were during the design of this study
| | - Jie Song
- GlaxoSmithKline, Research and Development, Shanghai, China
| | | | - Beulah Ji
- GlaxoSmithKline, Research and Development, Shanghai, China
| | - Li Wu
- GlaxoSmithKline, Research and Development, Shanghai, China
| | - Yang Yang
- GlaxoSmithKline, Research and Development, Shanghai, China
| | | | - Jinping Zheng
- State Key Laboratory of Respiratory Disease and National Clinical Research Center of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Toren K, Schiöler L, Lindberg A, Andersson A, Behndig AF, Bergström G, Blomberg A, Caidahl K, Engvall J, Eriksson M, Hamrefors V, Janson C, Kylhammar D, Lindberg E, Lindén A, Malinovschi A, Persson HL, Sandelin M, Eriksson Ström J, Tanash HA, Vikgren J, Östgren CJ, Wollmer P, Sköld CM. Chronic airflow limitation and its relation to respiratory symptoms among ever-smokers and never-smokers: a cross-sectional study. BMJ Open Respir Res 2021; 7:7/1/e000600. [PMID: 32759170 PMCID: PMC7409993 DOI: 10.1136/bmjresp-2020-000600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The diagnosis of chronic obstructive pulmonary disease is based on the presence of persistent respiratory symptoms and chronic airflow limitation (CAL). CAL is based on the ratio of forced expiratory volume in 1 s to forced vital capacity (FEV1:FVC) after bronchodilation, and FEV1:FVC less than the fifth percentile is often used as a cut-off for CAL. The aim was to investigate if increasing percentiles of FEV1:FVC were associated with any respiratory symptom (cough with phlegm, dyspnoea or wheezing) in a general population sample of never-smokers and ever-smokers. METHODS In a cross-sectional study comprising 15 128 adults (50-64 years), 7120 never-smokers and 8008 ever-smokers completed a respiratory questionnaire and performed FEV1 and FVC after bronchodilation. We calculated their z-scores for FEV1:FVC and defined the fifth percentile using the Global Lung Function Initiative (GLI) reference value, GLI5 and increasing percentiles up to GLI25. We analysed the associations between different strata of percentiles and prevalence of any respiratory symptom using multivariable logistic regression for estimation of OR. RESULTS Among all subjects, regardless of smoking habits, the odds of any respiratory symptom were elevated up to the GLI15-20 strata. Among never-smokers, the odds of any respiratory symptom were elevated at GLI<5 (OR 3.57, 95% CI 2.43 to 5.23) and at GLI5-10 (OR 2.57, 95% CI 1.69 to 3.91), but not at higher percentiles. Among ever-smokers, the odds of any respiratory symptom were elevated from GLI<5 (OR 4.64, 95% CI 3.79 to 5.68) up to GLI≥25 (OR 1.33, 95% CI 1.00 to 1.75). CONCLUSIONS The association between percentages of FEV1:FVC and respiratory symptoms differed depending on smoking history. Our results support a higher percentile cut-off for FEV1:FVC for never-smokers and, in particular, for ever-smokers.
Collapse
Affiliation(s)
- Kjell Toren
- Occupational and Environmental Medicine/School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden .,Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linus Schiöler
- Occupational and Environmental Medicine/School of Public Health and Community Medicine, University of Gothenburg, Goteborg, Sweden
| | - Anne Lindberg
- Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anders Andersson
- COPD center, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Göran Bergström
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Kenneth Caidahl
- Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jan Engvall
- Center of Medical Image Science and Visualization, Linköping University, Linköping, Sweden.,Clinical Physiology, Linköping University, Linköping, Sweden
| | - Maria Eriksson
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Viktor Hamrefors
- Clinical Sciences, Lund University, Lund, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory Medicine, Uppsala University, Uppsala, Sweden
| | - David Kylhammar
- Clinical Physiology, Linköping University, Linköping, Sweden
| | - Eva Lindberg
- Department of Medical Sciences: Respiratory Medicine, Uppsala University, Uppsala, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Hans Lennart Persson
- Department of Respiratory Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Martin Sandelin
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jonas Eriksson Ström
- Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Hanan A Tanash
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Jenny Vikgren
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carl Johan Östgren
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Per Wollmer
- Clinical Physiology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - C Magnus Sköld
- Department of Medicine, Respiratory Medicine Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
18
|
Han MK, Agusti A, Celli BR, Criner GJ, Halpin DMG, Roche N, Papi A, Stockley RA, Wedzicha J, Vogelmeier CF. From GOLD 0 to Pre-COPD. Am J Respir Crit Care Med 2021; 203:414-423. [PMID: 33211970 PMCID: PMC7885837 DOI: 10.1164/rccm.202008-3328pp] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, University of Barcelona, August Pi i Sunyer Biomedical Research Institute, Biomedical Research Networking Center on Respiratory Diseases, Madrid, Spain
| | - Bartolome R Celli
- Department of Medicine, Pulmonary, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - David M G Halpin
- College of Medicine and Health, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Nicolas Roche
- Respiratory Medicine, Cochin Hospital, APHP.Centre-University of Paris, Cochin Institute (UMR1016), Paris, France
| | - Alberto Papi
- Respiratory Division, Department of Translational Medicine, School of Medicine, University of Ferrara, Ferrera, Italy
| | - Robert A Stockley
- Lung Investigation Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Jadwiga Wedzicha
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom; and
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| |
Collapse
|
19
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder with significant morbidity and mortality. Despite its prevalence, COPD is underdiagnosed, and many patients do not receive a diagnosis until the disease is clinically advanced. Recent basic science and clinical research have focused on the early physiologic and pathobiologic changes in COPD with the hopes of improving diagnosis, providing targets for disease-modifying therapy, and identifying patients most likely to benefit from early intervention. Available treatments for COPD have grown substantially in the past 20 years with the introduction of new oral and inhaled medications as well as novel surgical and bronchoscopic procedures. This article summarizes some of the recent advances in our understanding of disease pathogenesis and treatment paradigms.
Collapse
Affiliation(s)
- Michael C Ferrera
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA; , ,
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA; , ,
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA; , ,
| |
Collapse
|
20
|
Erdal M, Johannessen A, Bakke P, Gulsvik A, Eagan TM, Nielsen R. Incremental costs of COPD exacerbations in GOLD stage 2+ COPD in ever-smokers of a general population. RESPIRATORY MEDICINE: X 2020. [DOI: 10.1016/j.yrmex.2020.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Omori H, Higashi N, Nawa T, Fukui T, Kaise T, Suzuki T. Chronic Cough and Phlegm in Subjects Undergoing Comprehensive Health Examination in Japan - Survey of Chronic Obstructive Pulmonary Disease Patients Epidemiology in Japan (SCOPE-J). Int J Chron Obstruct Pulmon Dis 2020; 15:765-773. [PMID: 32346287 PMCID: PMC7167268 DOI: 10.2147/copd.s237568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/21/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to estimate the prevalence of subjects with chronic cough and phlegm and describe their characteristics including the presence or absence of airflow limitation among the general population in Japan. Subjects and Methods This was an observational cross-sectional survey targeting multiple regions of Japan. Subjects aged 40 years or above who were undergoing comprehensive health examination were recruited. The existence of chronic cough and phlegm, airflow limitation, and treatment for respiratory diseases were examined. Chronic cough and phlegm were defined as having both symptoms for at least 3 months of the year and for at least 2 consecutive years, or as receiving any treatment for chronic bronchitis at the time of recruitment. Airflow limitation was defined as forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) less than 0.7. Results In a total of 22,293 subjects, 380 subjects (1.7%) had chronic cough and phlegm. Among these 380 subjects, 21.8% received treatment for a respiratory disease, and 11.6% had airflow limitation. Compared to subjects without both chronic cough and phlegm but with airflow limitation, subjects with chronic cough and phlegm without airflow limitation were younger, more likely to be current smokers (39.6%), and had higher total scores on a chronic obstructive pulmonary disease (COPD) assessment test (CAT). Scores of CAT questions 1-4 (cough, phlegm, chest tightness, breathlessness, respectively) were higher in subjects with chronic cough and phlegm regardless of airflow limitation. Conclusion This study demonstrated that subjects identified to have chronic cough and phlegm in comprehensive health examination settings were symptomatic, while most of them did not receive any treatment for respiratory diseases and did not have airflow limitation. Screening subjects for chronic cough and phlegm in a comprehensive health examination followed by a detailed examination of screened subjects could be an effective approach for better management of chronic cough and phlegm. Smoking cessation should be included in the management, in consideration that around 40% of subjects with chronic cough and phlegm were current smokers.
Collapse
Affiliation(s)
- Hisamitsu Omori
- Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Takeshi Nawa
- Department of Internal Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Toshiki Fukui
- Center for Preventive Medical Treatment, Olive Takamatsu Medical Clinic, Takamatsu, Japan
| | - Toshihiko Kaise
- Japan Development Division, GlaxoSmithKline K.K., Tokyo, Japan
| | - Takeo Suzuki
- Japan Development Division, GlaxoSmithKline K.K., Tokyo, Japan
| |
Collapse
|
22
|
Han MK, Ye W, Kim DY, Woodruff P. Design of the Redefining Therapy in Early COPD Study. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:382-389. [PMID: 32989941 DOI: 10.15326/jcopdf.7.4.2020.0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redefining Therapy in Early COPD (RETHINC) is a 12-week multicenter, randomized, double-blind, placebo-controlled, parallel-group study to assess the efficacy and safety of indacaterol/glycopyrrolate 27.5/15.6 mcg inhaled twice daily in symptomatic current and former smokers with respiratory symptoms as defined by COPD Assessment Test (CAT) score ≥ 10 despite preserved spirometry defined by post-bronchodilator forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) ratio ≥ 0.70. Recruitment began in July 2017 with the goal of enrolling 580 participants. The baseline examination includes spirometry (with slow and forced maneuvers) and symptom questionnaires. A follow-up phone call at 4 weeks assesses symptoms and safety. The second and final visit at week 12 includes spirometry before and after study drug (hourly over 3 hours) and follow-up symptom questionnaires. The primary endpoint is the proportion of individuals who experience a 4-unit improvement in St George's Respiratory Questionnaire (SGRQ) score at 12 weeks without treatment failure, defined as an increase in lower respiratory symptoms necessitating treatment with active, long-acting inhaled bronchodilators, corticosteroids or antibiotics. Key secondary endpoints include the proportion of individuals with a 2-unit improvement in the CAT score; 1-unit improvement in the Baseline Dyspnea Index (BDI) and Transition Dyspnea Index (TDI), both a 4-unit improvement in SGRQ and a 1-unit improvement in BDI/TDI; and mean change in SGRQ, CAT and BDI/TDI. Other secondary endpoints include area under the curve 0-3 hours for FEV1 after study drug, change from baseline in trough inspiratory capacity, forced expiratory flow 25%-75% of FVC (FEF25-75) iso-volume FEF25-75 and mean change in symptoms and rescue medication use based on daily diary. We anticipate results to be available in 2021. This paper describes the RETHINC study and explains the rationale behind it.
Collapse
Affiliation(s)
- MeiLan K Han
- Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor
| | - Wen Ye
- School of Public Health, University of Michigan, Ann Arbor
| | - Dong-Yun Kim
- National Institutes of Health, Bethesda, Maryland
| | - Prescott Woodruff
- Division of Pulmonary and Critical Care, University of California, San Francisco
| | | |
Collapse
|
23
|
Parekh TM, Bhatia S, Cherrington A, Kim YI, Lambert A, Iyer A, Regan EA, DeMeo DL, Han M, Dransfield MT. Factors influencing decline in quality of life in smokers without airflow obstruction: The COPDGene study. Respir Med 2020; 161:105820. [PMID: 31759270 PMCID: PMC7534974 DOI: 10.1016/j.rmed.2019.105820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Current and former smokers with normal spirometry and with Preserved Ratio Impaired Spirometry (PRISm) experience respiratory events similar to chronic obstructive pulmonary disease (COPD) exacerbations. Exacerbations significantly reduce quality of life (QoL) in COPD patients however the effect of respiratory exacerbations on QoL in these groups is unknown. We hypothesized that exacerbations and change in exacerbation status would predict QoL decline among normal spirometry and PRISm participants in COPDGene. METHODS COPDGene is a multicenter, longitudinal study in the U.S. designed to identify genetic determinants of COPD. We enrolled study subjects in Phase 1 of COPDGene and performed multivariable logistic regression models to determine independent predictors of decline in quality of life [>4 points on the St George's Respiratory Questionnaire (SGRQ)]. Separate analyses were performed for current and former smokers with normal spirometry and PRISm. Frequent exacerbator status was defined by > 2 moderate or >1 severe exacerbations in the year prior to the baseline and year 5 follow-up visits. RESULTS Independent predictors of QoL deterioration included current smoking, higher exacerbation frequency, and a change from infrequent to frequent exacerbation status (REF: infrequent to infrequent exacerbation status) in both groups [PRISm (OR = 3.15,95%CI, 1.67-5.94), normal spirometry (OR = 4.72,95%CI, 3.25-6.86)]. A change from frequent to infrequent exacerbation status did not lower the odds of QoL decline in either cohort. CONCLUSION Continued smoking and the onset of frequent exacerbations were predictors of QoL decline in smokers with normal spirometry and PRISm. Further studies are needed to identify modifiable factors associated with decline in QoL in smokers.
Collapse
Affiliation(s)
- Trisha M Parekh
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, USA.
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, USA
| | - Andrea Cherrington
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, USA
| | - Young-Il Kim
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, USA
| | - Allison Lambert
- Division of Pulmonary, Critical Care, And Sleep Medicine, University of Washington, Spokane, WA, USA
| | - Anand Iyer
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, USA
| | | | - Dawn L DeMeo
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - MeiLan Han
- Division of Pulmonary, Allergy, and Critical Care, University of Michigan, Ann Arbor, MI, USA
| | - Mark T Dransfield
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama at Birmingham, USA; Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
24
|
Tan WC, Bourbeau J, Aaron SD, Hogg JC, Maltais F, Hernandez P, Marciniuk DD, Chapman KR, To T, FitzGerald JM, Walker BL, Road J, Zheng L, Zhou G, Yau T, Benedetti A, O'Donnell D, Sin DD. The effects of marijuana smoking on lung function in older people. Eur Respir J 2019; 54:13993003.00826-2019. [PMID: 31537703 DOI: 10.1183/13993003.00826-2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/06/2019] [Indexed: 11/05/2022]
Abstract
BACKGROUND Previous studies have associated marijuana exposure with increased respiratory symptoms and chronic bronchitis among long-term cannabis smokers. The long-term effects of smoked marijuana on lung function remain unclear. METHODS We determined the association of marijuana smoking with the risk of spirometrically defined chronic obstructive pulmonary disease (COPD) (post-bronchodilator forced expiratory volume in 1 s (FEV1)/forced vital capacity ratio <0.7) in 5291 population-based individuals and the rate of decline in FEV1 in a subset of 1285 males and females, aged ≥40 years, who self-reported use (or non-use) of marijuana and tobacco cigarettes and performed spirometry before and after inhaled bronchodilator on multiple occasions. Analysis for the decline in FEV1 was performed using random mixed effects regression models adjusted for age, sex and body mass index. Heavy tobacco smoking and marijunana smoking was defined as >20 pack-years and >20 joint-years, respectively. RESULTS ∼20% of participants had been or were current marijuana smokers with most having smoked tobacco cigarettes in addition (83%). Among heavy marijuana users, the risk of COPD was significantly increased (adjusted OR 2.45, 95% CI 1.55-3.88). Compared to never-smokers of marijuana and tobacco, heavy marijuana smokers and heavy tobacco smokers experienced a faster decline in FEV1 by 29.5 mL·year-1 (p=0.0007) and 21.1 mL·year-1 (p<0.0001), respectively. Those who smoked both substances experienced a decline of 32.31 mL·year-1 (p<0.0001). INTERPRETATION Heavy marijuana smoking increases the risk of COPD and accelerates FEV1 decline in concomitant tobacco smokers beyond that observed with tobacco alone.
Collapse
Affiliation(s)
- Wan C Tan
- The University of British Columbia, Center for Heart Lung Innovation, St Pauls's Hospital, Vancouver, BC, Canada
| | - Jean Bourbeau
- Research Institute McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Shawn D Aaron
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James C Hogg
- The University of British Columbia, Center for Heart Lung Innovation, St Pauls's Hospital, Vancouver, BC, Canada
| | - François Maltais
- Institut Universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - Paul Hernandez
- Dept of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Darcy D Marciniuk
- Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kenneth R Chapman
- Toronto General Hospital Research Institute, University of Toronto, Toronto, ON, Canada
| | - Teresa To
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - J Mark FitzGerald
- University of British Columbia, Dept of Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | | | - Jeremy Road
- University of British Columbia, Dept of Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - Liyun Zheng
- The University of British Columbia, Center for Heart Lung Innovation, St Pauls's Hospital, Vancouver, BC, Canada
| | - Guohai Zhou
- The University of British Columbia, Center for Heart Lung Innovation, St Pauls's Hospital, Vancouver, BC, Canada
| | - Trevor Yau
- The University of British Columbia, Center for Heart Lung Innovation, St Pauls's Hospital, Vancouver, BC, Canada
| | - Andrea Benedetti
- Research Institute McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Denis O'Donnell
- Division of Respiratory and Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - Don D Sin
- The University of British Columbia, Center for Heart Lung Innovation, St Pauls's Hospital, Vancouver, BC, Canada
| | | | | |
Collapse
|
25
|
Abstract
Despite being a major cause of morbidity and mortality, chronic obstructive pulmonary disease (COPD) is frequently undiagnosed. Yet the burden of disease among the undiagnosed is significant, as these individuals experience symptoms, exacerbations, and excess mortality compared to those without COPD. The U.S. Preventive Services Task Force recommends against routine screening of asymptomatic individuals with spirometry. Hence, case-finding approaches are needed. A recently developed instrument, the five-item COPD Assessment in Primary Care to Identify Undiagnosed Respiratory Disease and Exacerbation Risk questionnaire plus peak expiratory flow, demonstrates good sensitivity and specificity for distinguishing cases from control subjects and is being studied prospectively in primary care settings to determine its impact on patient outcomes. However, finding the undiagnosed is only half the battle. Mounting evidence suggests significant COPD-like respiratory burden among individuals without airflow obstruction. Many experience dyspnea, mucus production, and exacerbation events and have emphysema and airway abnormalities on computed tomographic (CT) imaging of the chest. However, it is still unclear how to best treat these individuals and which individuals go on to develop spirometric obstruction. These challenges underline the importance of defining what constitutes "early disease." A recently proposed definition characterizes early COPD as either: 1) airflow limitation, 2) compatible CT imaging abnormalities, or 3) accelerated forced expiratory volume in 1 second decline in persons younger than 50 years and with greater than a 10 pack-year smoking history. Although it is recognized that this definition does not encompass all individuals who will develop COPD, it is an attempt to identify a group of individuals with most rapid decline to better understand mechanisms of disease development and where disease-modifying interventions are most likely to be successful. Ultimately, leveraging tools such as chest CT imaging, the electronic medical record, and machine learning algorithms may aid in the identification of such individuals.
Collapse
|
26
|
Rethinking Chronic Obstructive Pulmonary Disease. Chronic Pulmonary Insufficiency and Combined Cardiopulmonary Insufficiency. Ann Am Thorac Soc 2019; 15:S30-S34. [PMID: 29461894 DOI: 10.1513/annalsats.201708-667kv] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Almost 70 years ago, Drs. Baldwin, Cournand, and Richards defined chronic pulmonary insufficiency by the presence of respiratory symptoms, radiologic evidence of pulmonary emphysema on chest radiography, and physiologic gas trapping. A decade later, airflow obstruction on spirometry was added to the definition and insufficiency became a disease. Contemporary studies are reviving the diagnostic approach described by these early luminaries, with researchers finding that symptomatic smokers with preserved spirometry have increased exacerbations and that smokers and non-smokers with normal spirometry but emphysema on chest computed tomography have increased mortality. Hence, the Baldwin-Cournand-Richards concept of disease defined by respiratory symptoms, radiologic findings, and physiology-regardless of spirometric criteria-is being rediscovered. Baldwin, Cournand, and Richards also stated that "functionally, it is obvious that the pulmonary and circulatory apparatus are one unit," and they defined combined cardiopulmonary insufficiency as chronic pulmonary insufficiency with (left or right) cardiac and pulmonary artery enlargement. They appreciated the complexity of these interactions, which include the potential role of gas trapping in heart failure with reduced ejection fraction; the impact of emphysema on blood flow in heart failure with preserved ejection fraction; multiple contributions to cor pulmonale with increased pulmonary artery pressure; and cor pulmonale parvus in emphysema; all of which may be amenable to specific therapeutic interventions. Given the complexity of heart-lung interactions originally identified by Baldwin, Cournand, and Richards and the potentially large therapeutic opportunities, large-scale studies are still warranted to find specific therapies for subphenotypes of combined cardiopulmonary insufficiency.
Collapse
|
27
|
Çolak Y, Nordestgaard BG, Vestbo J, Lange P, Afzal S. Prognostic significance of chronic respiratory symptoms in individuals with normal spirometry. Eur Respir J 2019; 54:13993003.00734-2019. [PMID: 31248954 DOI: 10.1183/13993003.00734-2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022]
Abstract
Normal spirometry is often used to preclude airway disease in individuals with unspecific respiratory symptoms. We tested the hypothesis that chronic respiratory symptoms are associated with respiratory hospitalisations and death in individuals with normal spirometry without known airway disease.We included 108 246 randomly chosen individuals aged 20-100 years from a Danish population-based cohort study. Normal spirometry was defined as a pre-bronchodilator forced expiratory volume in 1 s/forced vital capacity ratio ≥0.70. Chronic respiratory symptoms included dyspnoea, chronic mucus hypersecretion, wheezing and cough. Individuals with known airway disease, i.e. chronic obstructive pulmonary disease and/or asthma, were excluded (n=10 291). We assessed risk of hospitalisations due to exacerbations of airway disease and pneumonia, and respiratory and all-cause mortality, from 2003 through 2018.52 999 individuals had normal spirometry without chronic respiratory symptoms and 30 890 individuals had normal spirometry with chronic respiratory symptoms. During follow-up, we observed 1037 hospitalisations with exacerbation of airway disease, 5743 hospitalisations with pneumonia and 8750 deaths, of which 463 were due to respiratory disease. Compared with individuals with normal spirometry without chronic respiratory symptoms, multivariable adjusted hazard ratios for individuals with normal spirometry with chronic respiratory symptoms were 1.62 (95% CI 1.20-2.18) for exacerbation hospitalisations, 1.26 (95% CI 1.17-1.37) for pneumonia hospitalisations, 1.59 (95% CI 1.22-2.06) for respiratory mortality and 1.19 (95% CI 1.13-1.25) for all-cause mortality. There was a positive dose-response relationship between number of symptoms and risk of outcomes. Results were similar after 2 years of follow-up, for never-smokers alone, and for each symptom separately.Chronic respiratory symptoms are associated with respiratory hospitalisations and death in individuals with normal spirometry without known airway disease.
Collapse
Affiliation(s)
- Yunus Çolak
- Dept of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Dept of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Peter Lange
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Section of Epidemiology, Dept of Public Health, University of Copenhagen, Copenhagen, Denmark.,Section of Respiratory Medicine, Dept of Internal Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Shoaib Afzal
- Dept of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark .,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Hawari FI, Obeidat NA, Abu Alhalawa M, Al-Busaidi Z, Amara B, Baddar S, Elhabiby M, Elkholy H. Respiratory health and quality of life in young exclusive, habitual smokers - a comparison of waterpipe smokers, cigarette smokers and non-smokers. Int J Chron Obstruct Pulmon Dis 2019; 14:1813-1824. [PMID: 31496680 PMCID: PMC6698154 DOI: 10.2147/copd.s205050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
Purpose Waterpipe (WP) use has become a global trend in young populations. However, there are few well-controlled studies focusing specifically on the chronic effects of exclusive WP use on young adults’ respiratory health. We sought to compare in young adults the burden of respiratory symptoms in regular WP smokers (WPS) relative to regular cigarette smokers (CS, positive controls) and non-smokers (negative controls); and to evaluate differences in health-related quality of life between the three groups. Method We implemented a cross-sectional survey in college campuses across four countries (Egypt, Jordan, Morocco and Oman). Purposive sampling was employed to identify habitual (regular) healthy WPS (smoked 3 or more WP per week for 3 or more years); CS (smoked 5 or more cigarettes daily for 3 or more years); and non-smokers. Respiratory symptoms were assessed using the European Community Respiratory Health Survey and the American Thoracic Society and the Division of Lung Diseases Questionnaire. Health-related quality of life was measured using the Short-Form 12. Demographic, environmental and lifestyle factors also were measured. Result The analytic sample included 135 WPS, 303 CS, and 300 non-smokers. Either tobacco group had significantly greater proportions of males than the non-smoker group. A significantly lower proportion of non-smokers (than either tobacco group) was overweight or obese. Average numbers of reported respiratory symptoms were 5.1, 5.8, and 2.9 in WPS, CS, and non-smokers, respectively. In multivariable regressions controlling for environmental exposures, body mass index, and physical activity, WPS and CS exhibited significantly higher rates of respiratory symptoms than non-smokers (1.6 times greater and 1.9 times greater rate of respiratory symptoms than non-smokers, respectively). Non-smokers reported significantly higher scores for general health relative to either WPS or CS. Conclusion Relative to their young non-smoking counterparts, young habitual WPS exhibit a significant burden of respiratory symptoms that is comparable to that observed with CS. Young WPS (and CS), despite their age, may be well on their way to developing respiratory disease.
Collapse
Affiliation(s)
- F I Hawari
- Cancer Control Office, King Hussein Cancer Center, School of Medicine, University of Jordan , Amman, Jordan
| | - N A Obeidat
- Cancer Control Office, King Hussein Cancer Center , Amman, Jordan
| | - M Abu Alhalawa
- Cancer Control Office, King Hussein Cancer Center , Amman, Jordan
| | - Z Al-Busaidi
- Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - B Amara
- Faculty of Medicine, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - S Baddar
- Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - M Elhabiby
- Department of Neurology and Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - H Elkholy
- Department of Neurology and Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
29
|
Cheng T, Li Y, Pang S, Wan H, Shi G, Cheng Q, Li Q, Pan Z, Huang S. Normal lung attenuation distribution and lung volume on computed tomography in a Chinese population. Int J Chron Obstruct Pulmon Dis 2019; 14:1657-1668. [PMID: 31413560 PMCID: PMC6662163 DOI: 10.2147/copd.s187596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 05/10/2019] [Indexed: 01/17/2023] Open
Abstract
Backgroud and objectives: Although lung attenuation distribution and lung volume on computed tomography (CT) have been widely used in evaluating COPD and interstitial lung disease, there are only a few studies regarding the normal range of these indices, especially in Chinese subjects. We aimed to describe the normal range of lung attenuation distribution and lung volume based on CT. Methods: Subjects with normal lung function and basically normal chest CT findings (derivation group) at Ruijin Hospital, Shanghai (from January 2010 to June 2014) were included according to inclusion and exclusion criteria. The range of the percentage of lung volume occupied by low attenuation areas (LAA%), percentile of the histogram of attenuation values (Perc n), and total lung volume were analyzed. Relationships of these measures with demographic variables were evaluated. Participants who underwent chest CT examination for disease screening and had basically normal CT findings served as an external validation group. Results: The number of subjects in the derivation group and external validation groups were 564 and 1,787, respectively. Mean total lung volumes were 4,468±1,271 mL and 4,668±1,192 mL, and median LAA%(-950 HU) was 0.19 (0.03–0.43) and 0.17 (0.01–0.41), in the derivation and external validation groups, respectively. Reference equations for lung volume and attenuation distribution (LAA% using -1,000–210 HU, Perc 1 to Perc 98) were generated: Lung volume (mL) = -1.015 *10^4+605.3*Sex (1= male, 0= female)+92.61*Height (cm) –12.99*Weight (kg) ±1766; LAA% (-950 HU)=[0.2027+0.05926*Sex (1= male, 0= female) –4.111*10^-3*Weight (kg) +4.924*10^-3*Height (cm) +8.504*10^-4*Age]^7.341–0.05; Upper limit of normal range: [0.2027+0.05926*Sex-4.111*10^-3*Weight+4.924*10^-3*Height+8.504*10^-4*Age+0.1993]^7.341–0.05. Conclusion: This large population-based retrospective study demonstrated the normal range of LAA%, Perc n, and total lung volume measured on CT scans among subjects with normal lung function and CT findings. Reference equations are provided.
Collapse
Affiliation(s)
- Ting Cheng
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yong Li
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Shuai Pang
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - HuanYing Wan
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - GuoChao Shi
- Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - QiJian Cheng
- Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - QingYun Li
- Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - ZiLai Pan
- Department of Radiology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - ShaoGuang Huang
- Institute of Respiratory Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Department of Respiratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Singh D, D'Urzo AD, Donohue JF, Kerwin EM. Weighing the evidence for pharmacological treatment interventions in mild COPD; a narrative perspective. Respir Res 2019; 20:141. [PMID: 31286970 PMCID: PMC6615221 DOI: 10.1186/s12931-019-1108-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
There is increasing focus on understanding the nature of chronic obstructive pulmonary disease (COPD) during the earlier stages. Mild COPD (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1 or the now-withdrawn GOLD stage 0) represents an early stage of COPD that may progress to more severe disease. This review summarises the disease burden of patients with mild COPD and discusses the evidence for treatment intervention in this subgroup. Overall, patients with mild COPD suffer a substantial disease burden that includes persistent or potentially debilitating symptoms, increased risk of exacerbations, increased healthcare utilisation, reduced exercise tolerance and physical activity, and a higher rate of lung function decline versus controls. However, the evidence for treatment efficacy in these patients is limited due to their frequent exclusion from clinical trials. Careful assessment of disease burden and the rate of disease progression in individual patients, rather than a reliance on spirometry data, may identify patients who could benefit from earlier treatment intervention.
Collapse
Affiliation(s)
- Dave Singh
- University of Manchester, Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, M23 9QZ, UK.
| | - Anthony D D'Urzo
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James F Donohue
- Division of Pulmonary Diseases & Critical Care Medicine, University of North Carolina Pulmonary Critical Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
31
|
Opina MTD, Nicklas BJ, Lovato JF, Files DC, Kritchevsky SB, Moore WC. Association of Symptoms of Obstructive Lung Disease and All-Cause Mortality in Older Adult Smokers. J Am Geriatr Soc 2019; 67:2116-2122. [PMID: 31250432 DOI: 10.1111/jgs.16052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVES This study aims to investigate the impact of respiratory symptoms in current and former smokers with and without obstructive lung disease (OLD) on all-cause mortality. DESIGN Secondary analysis in a prospective cohort (the Health, Aging and Body Composition study). SETTING Memphis, Tennessee, and Pittsburgh, Pennsylvania. PARTICIPANTS Black and white men and women with a history of current and former smoking (N = 596; 63% male and 37% female) aged 70-79 years followed for 13 years. Participants were categorized into 4 mutually exclusive groups based on symptom profile and forced expiratory volume in the 1st second to forced vital capacity ratio. The groups were Less Dyspnea-No OLD (N = 196), More Dyspnea-No OLD (N = 104), Less Dyspnea-With OLD (N = 162), and More Dyspnea-With OLD (N = 134). MEASUREMENTS All-cause mortality. RESULTS Overall, 53% in Less Dyspnea-No OLD, 63% in More Dyspnea-No OLD, 67% in Less Dyspnea-With OLD, and 84% in More Dyspnea-With OLD died within the 13- year follow up period (log-rank χ2 = 44.4, P < .0001). The hazard ratio was highest for participants with OLD, both with (HR =1.91, 95% CI 1.44 - 2.54; P < .0001) and without dyspnea (HR = 1.52, 95% CI 1.15 - 2.02; p = .004). Participants without OLD but with dyspnea had a similar risk of death to subjects who had OLD but fewer symptoms. CONCLUSIONS OLD is associated with high risk of death with different risk profiles based on symptom group. Patients with symptoms of shortness of breath without OLD should be considered an at-risk group given their similar mortality to those with OLD with minimal symptoms. J Am Geriatr Soc 67:2116-2122, 2019.
Collapse
Affiliation(s)
- Maria Theresa D Opina
- Section on Pulmonary, Critical Care, Allergy, and Immunologic Disease, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Sticht Center on Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barbara J Nicklas
- Sticht Center on Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - James F Lovato
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Daniel C Files
- Section on Pulmonary, Critical Care, Allergy, and Immunologic Disease, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Sticht Center on Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Stephen B Kritchevsky
- Sticht Center on Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Wendy C Moore
- Section on Pulmonary, Critical Care, Allergy, and Immunologic Disease, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Sticht Center on Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
32
|
Fu SN, Dao MC, Wong CKH, Yu WC. SF-6D utility scores of smokers and ex-smokers with or without respiratory symptoms attending primary care clinics. Health Qual Life Outcomes 2019; 17:48. [PMID: 30876466 PMCID: PMC6419835 DOI: 10.1186/s12955-019-1115-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 02/27/2019] [Indexed: 11/10/2022] Open
Abstract
Introduction The aim of this paper is to find out generic preference-based Short-Form 6 Dimensions (SF-6D) utility scores of smokers and ex-smokers with varying cigarette exposure, with and without respiratory symptoms. Methods Seven hundred thirty one people aged ≥30 with a history of smoking who attended 5 public primary care clinics completed a cross-sectional survey using SF-6D utility score, Breathlessness, Cough, and Sputum Scale (BCSS©) and office spirometry. Results Most of the subjects were men (92.5%) in an older age group (mean age 62.2 ± 11.7 years). About half of them (48.3%) were current smokers while the other half (51.7%) were ex-smokers. More than half of them (54.2%) reported mild respiratory symptoms (mean BCSS score 0.95 ± 1.12). The most common symptoms were sputum (45.1%), followed by cough (34.2%) and breathlessness (6.0%). The SF-6D overall utility score was 0.850 ± 0.106. The subjects reported significantly lower SF-6D scores when they had breathlessness (0.752 ± 0.138; p = < 0.001), cough (0.836 ± 0.107; p = 0.007), sputum (0.838 ± 0.115; p = 0.004) or any of the above symptom (0.837 ± 0.113; p < 0.001). In both groups of current smokers and ex-smokers, there was no statistically significant difference in the scores among light, moderate or heavy smokers. In the Tobit regression model of factors affecting SF-6D utility score, subjects who reported more respiratory symptoms (i.e. higher BCSS©) had lower SF-6D scores (B = − 0.018 ± 0.007, p < 0.001), while men had higher SF-6D scores than women (B = 0.037 ± 0.031, p = 0.019). Subjects who attended middle or high school had higher SF-6D score than those attended the University or above. The presence of airflow obstruction was not associated with the score. Conclusions The study yielded SF-6D utility scores of smokers and ex-smokers with different reported cigarette exposure, which could be useful in future clinical studies and cost-effectiveness analysis.
Collapse
Affiliation(s)
- Sau-Nga Fu
- Department of Family Medicine & Primary Health Care, Kowloon West Cluster, Hospital Authority, Hong Kong Special Administration Region, China. .,Present Address: G/F, Ha Kwai Chung General Outpatient Department, 77 Lai Cho Road, Kwai Chung, N.T., Hong Kong Special Administration Region, China.
| | - Man-Chi Dao
- Department of Family Medicine & Primary Health Care, Kowloon West Cluster, Hospital Authority, Hong Kong Special Administration Region, China
| | - Carlos King-Ho Wong
- Department of Family Medicine & Primary Care, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administration Region, China
| | - Wai-Cho Yu
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administration Region, China
| |
Collapse
|
33
|
Kim V, Aaron SD. What is a COPD exacerbation? Current definitions, pitfalls, challenges and opportunities for improvement. Eur Respir J 2018; 52:13993003.01261-2018. [PMID: 30237306 DOI: 10.1183/13993003.01261-2018] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic illness that can be periodically punctuated by exacerbations, characterised by acute worsening of symptoms, including increased dyspnoea, cough, sputum production and sputum purulence. COPD exacerbations are common and have important clinical and economic consequences, including lost work productivity, increased utilisation of healthcare resources, temporary or permanent reductions in lung function and exercise capacity, hospitalisation, and sometimes death. Over the past two decades, clinicians and researchers have broadened their treatment goals for COPD to extend beyond improving lung function and symptoms, and have begun to address the importance of preventing and reducing exacerbations. However, despite the best efforts of clinicians and guideline committees, current definitions of COPD exacerbations are imperfect and fraught with problems. The cardinal symptoms of a COPD exacerbation are nonspecific and can result from acute cardiorespiratory illnesses other than COPD. A proposed definition, which may be more specific than current definitions, suggests that COPD exacerbation be defined as an acute or subacute worsening of dyspnoea (≥5 on a visual analogue scale that ranges from 0 to 10) sometimes but not necessarily accompanied by increased cough, sputum volume and/or sputum purulence. Necessary laboratory criteria for an exacerbation include oxygen desaturation ≤4% below that of stable state, elevated levels of circulating blood neutrophils or eosinophils (≥9000 neutrophils·mm-3 or ≥2% blood eosinophils) and elevated C-reactive protein (≥3 mg·L-1), without evidence of pneumonia or pulmonary oedema on chest radiography and with negative laboratory test results for other aetiologies. Herein, we discuss the current state of the art with respect to how we define COPD exacerbations, associated pitfalls and challenges, and opportunities for improvement.
Collapse
Affiliation(s)
- Victor Kim
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shawn D Aaron
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
34
|
Oelsner EC, Balte PP, Cassano PA, Couper D, Enright PL, Folsom AR, Hankinson J, Jacobs DR, Kalhan R, Kaplan R, Kronmal R, Lange L, Loehr LR, London SJ, Navas Acien A, Newman AB, O’Connor GT, Schwartz JE, Smith LJ, Yeh F, Zhang Y, Moran AE, Mwasongwe S, White WB, Yende S, Barr RG. Harmonization of Respiratory Data From 9 US Population-Based Cohorts: The NHLBI Pooled Cohorts Study. Am J Epidemiol 2018; 187:2265-2278. [PMID: 29982273 PMCID: PMC6211239 DOI: 10.1093/aje/kwy139] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic lower respiratory diseases (CLRDs) are the fourth leading cause of death in the United States. To support investigations into CLRD risk determinants and new approaches to primary prevention, we aimed to harmonize and pool respiratory data from US general population-based cohorts. Data were obtained from prospective cohorts that performed prebronchodilator spirometry and were harmonized following 2005 ATS/ERS standards. In cohorts conducting follow-up for noncardiovascular events, CLRD events were defined as hospitalizations/deaths adjudicated as CLRD-related or assigned relevant administrative codes. Coding and variable names were applied uniformly. The pooled sample included 65,251 adults in 9 cohorts followed-up for CLRD-related mortality over 653,380 person-years during 1983-2016. Average baseline age was 52 years; 56% were female; 49% were never-smokers; and racial/ethnic composition was 44% white, 22% black, 28% Hispanic/Latino, and 5% American Indian. Over 96% had complete data on smoking, clinical CLRD diagnoses, and dyspnea. After excluding invalid spirometry examinations (13%), there were 105,696 valid examinations (median, 2 per participant). Of 29,351 participants followed for CLRD hospitalizations, median follow-up was 14 years; only 5% were lost to follow-up at 10 years. The NHLBI Pooled Cohorts Study provides a harmonization standard applied to a large, US population-based sample that may be used to advance epidemiologic research on CLRD.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Body Weights and Measures
- Bronchiectasis/epidemiology
- Bronchiectasis/physiopathology
- Chronic Disease
- Cohort Studies
- Ethnicity/statistics & numerical data
- Female
- Hispanic or Latino/statistics & numerical data
- Hospitalization/statistics & numerical data
- Humans
- Indians, North American/statistics & numerical data
- Inhalation Exposure/statistics & numerical data
- Lung Diseases, Obstructive/epidemiology
- Lung Diseases, Obstructive/ethnology
- Lung Diseases, Obstructive/mortality
- Lung Diseases, Obstructive/physiopathology
- Male
- Middle Aged
- National Heart, Lung, and Blood Institute (U.S.)/organization & administration
- National Heart, Lung, and Blood Institute (U.S.)/standards
- Phenotype
- Racial Groups/statistics & numerical data
- Respiratory Function Tests
- Risk Factors
- Smoking/epidemiology
- Socioeconomic Factors
- United States/epidemiology
- White People/statistics & numerical data
- Young Adult
Collapse
Affiliation(s)
- Elizabeth C Oelsner
- Division of General Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Pallavi P Balte
- Division of General Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Patricia A Cassano
- Division of Nutritional Sciences, Weill Cornell Medical College, Ithaca, New York
| | - David Couper
- Collaborative Studies Coordinating Center, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Paul L Enright
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona
| | - Aaron R Folsom
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | | | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | | | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, New York
| | - Richard Kronmal
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington
| | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado, Denver, Colorado
| | - Laura R Loehr
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie J London
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Ana Navas Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Anne B Newman
- Department of Epidemiology, Pitt Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George T O’Connor
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts
| | - Joseph E Schwartz
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stony Brook University, Stony Brook, New York
| | | | - Fawn Yeh
- Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yiyi Zhang
- Division of General Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Andrew E Moran
- Division of General Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | | | - Wendy B White
- Jackson Heart Study, Undergraduate Training and Education Center, Tougaloo College, Tougaloo, Mississippi
| | - Sachin Yende
- Division of Pulmonary and Critical Care, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - R Graham Barr
- Division of General Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
35
|
Sin DD, Schellenberg RR. A letter from 'O Canada'. Respirology 2018; 24:186-187. [PMID: 30332712 DOI: 10.1111/resp.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Don D Sin
- UBC Centre for Heart Lung Innovation (HLI), St. Paul's Hospital, Vancouver, BC, Canada.,Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - R Robert Schellenberg
- UBC Centre for Heart Lung Innovation (HLI), St. Paul's Hospital, Vancouver, BC, Canada.,Division of Allergy and Clinical Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Park HJ, Byun MK, Rhee CK, Kim K, Kim HJ, Yoo KH. Significant predictors of medically diagnosed chronic obstructive pulmonary disease in patients with preserved ratio impaired spirometry: a 3-year cohort study. Respir Res 2018; 19:185. [PMID: 30249256 PMCID: PMC6154818 DOI: 10.1186/s12931-018-0896-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022] Open
Abstract
Background Preserved ratio impaired spirometry (PRISm) is an incompletely understood respiratory condition. We investigated the incidence and significant predictive factors of chronic obstructive pulmonary disease (COPD) in PRISm patients. Methods From 11,922 subjects registered in the Korea National Health and Nutrition Examination Survey, never or light smokers, young subjects, and those already medically diagnosed with COPD (defined by ICD-10 code and prescribed medication) were excluded. The 2666 remaining subjects were categorized into PRISm (normal forced expiratory volume in the first second [FEV1]/force vital capacity [FVC] [≥ 0.7] and low FEV1 (< 80%); n = 313); normal (n = 1666); and unrevealed COPD groups (FEV1/FVC ratio < 0.7; n = 687). These groups were compared using matched Health Insurance Review and Assessment Service data over a 3-year follow-up. Results COPD incidence in PRISm patients (17/1000 person-year [PY]) was higher than that in normal subjects (4.3/1000 PY; P < 0.001), but lower than that in unrevealed COPD patients (45/1000 PY; P < 0.001). PRISm patients visited hospitals, took COPD medication, and incurred hospitalization costs more frequently than normal subjects, but less frequently than unrevealed COPD patients. In the overall sample, age, FVC, FEV1, dyspnea, and wheezing were significant predictors of COPD, but in PRISm patients, only age (OR, 1.14; P = 0.002) and wheezing (OR, 4.56; P = 0.04) were significant predictors. Conclusion PRISm patients are likely to develop COPD, and should be monitored carefully, especially older patients and those with wheezing, regardless of lung function.
Collapse
Affiliation(s)
- Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro Gangnam-gu, Seoul, 06273, Korea
| | - Min Kwang Byun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro Gangnam-gu, Seoul, 06273, Korea.
| | - Chin Kook Rhee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyungjoo Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyung Jung Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro Gangnam-gu, Seoul, 06273, Korea
| | - Kwang-Ha Yoo
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Agusti A, Faner R, Celli B, Rodriguez-Roisin R. Precision medicine in COPD exacerbations. THE LANCET RESPIRATORY MEDICINE 2018; 6:657-659. [DOI: 10.1016/s2213-2600(18)30296-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 01/13/2023]
|
38
|
Johnson KM, Tan WC, Bourbeau J, Sin DD, Sadatsafavi M. The diagnostic performance of patient symptoms in screening for COPD. Respir Res 2018; 19:147. [PMID: 30075717 PMCID: PMC6090694 DOI: 10.1186/s12931-018-0853-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/26/2018] [Indexed: 11/24/2022] Open
Abstract
It is recommended that screening for COPD be restricted to symptomatic individuals, but supporting evidence is lacking. We determined the performance of wheeze, cough, phlegm, and dyspnea in discriminating COPD versus non-COPD in a population-based sample of 1332 adults. Area Under the Receiver Operating Curves (AUC) indicated that symptoms had modest performance whether assessed individually (AUCs 0.55–0.62), or in combination (AUC for number of symptoms as the predictor 0.64). AUC improved with the inclusion of multiple other factors (AUC 0.71). Restricting screening to symptomatic individuals is unlikely to substantially improve the yield of general population screening for undiagnosed COPD.
Collapse
Affiliation(s)
- Kate M Johnson
- Respiratory Evaluation Sciences Program, Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Wan C Tan
- Centre for Heart Lung Innovation (the James Hogg Research Centre), St. Paul's Hospital, Vancouver, Canada
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University, Montreal, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation (the James Hogg Research Centre), St. Paul's Hospital, Vancouver, Canada.,Institute for Heart and Lung Health, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Mohsen Sadatsafavi
- Respiratory Evaluation Sciences Program, Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada. .,Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Institute, Vancouver, Canada. .,Institute for Heart and Lung Health, Department of Medicine, The University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
39
|
Pu CY, Quesada N, Nunez Lopez R, Aryal K, Tulaimat A. The clinical implications of tests confirming COPD in subjects hospitalized with exacerbations. Hosp Pract (1995) 2018; 47:59-65. [PMID: 29757037 DOI: 10.1080/21548331.2018.1475998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND The diagnosis of COPD in patients hospitalized for AECOPD can be confirmed by spirometry showing obstruction or radiographs showing emphysema. The evidence for COPD is sometimes absent or contradicts this diagnosis. The inaccurate attribution of the exacerbation to COPD can lead to suboptimal care and worse outcome. OBJECTIVES We determined if the presence of tests that confirm the diagnosis of COPD has any implications on the course of the hospitalization and readmission rate. METHODS We selected subjects hospitalized between 2012 and 2014 for AECOPD. We divided them into four hierarchical, mutually exclusive groups based on the presence of tests that confirm the diagnosis of COPD: spirometry (COPDSPIRO), radiology (COPDRAD), clinical diagnosis (COPDCLIN), and no COPD by spirometry (NotCOPD). We compared the presentation, hospital course, outcome, and readmission rate between the four groups. RESULTS We identified 974 subjects: COPDSPIRO 22%, COPDRAD 24%, COPDCLIN 46% and 7% NotCOPD. The vital signs, use of respiratory support, admission to the MICU, and length of stay were similar between the groups. The age, gender, BMI, presence of comorbidities, and readmission rate were different between the groups. The NotCOPD group had the highest BMI (38 kg/m2), comorbidities, and 30-day all-cause readmission (17%). Logistic regression showed that serum creatinine and presence of any comorbidity were the independent predictors of 30-day all-cause readmission. CONCLUSION COPD was confirmed by spirometry or radiographs in half of the subjects hospitalized for AECOPD. The presence of confirmation did not influence the hospital course. The presence of confirmation was associated with different readmission rate, but was accounted for by the presence of comorbidities.
Collapse
Affiliation(s)
- Chan Yeu Pu
- a Department of Medicine , Cook County Health and Hospitals System , Chicago , Illinois , USA
| | - Nancy Quesada
- b Division of Pulmonary , Critical Care and Sleep Medicine, Cook County Health and Hospitals System , Chicago , Illinois , USA
| | - Richard Nunez Lopez
- a Department of Medicine , Cook County Health and Hospitals System , Chicago , Illinois , USA
| | - Karmapath Aryal
- a Department of Medicine , Cook County Health and Hospitals System , Chicago , Illinois , USA
| | - Aiman Tulaimat
- b Division of Pulmonary , Critical Care and Sleep Medicine, Cook County Health and Hospitals System , Chicago , Illinois , USA
| |
Collapse
|
40
|
Kurmi OP, Li L, Davis KJ, Wang J, Bennett DA, Chan KH, Yang L, Chen Y, Guo Y, Bian Z, Chen J, Wei L, Jin D, Collins R, Peto R, Chen Z. Excess risk of major vascular diseases associated with airflow obstruction: a 9-year prospective study of 0.5 million Chinese adults. Int J Chron Obstruct Pulmon Dis 2018; 13:855-865. [PMID: 29563785 PMCID: PMC5846305 DOI: 10.2147/copd.s153641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background China has high COPD rates, even among never-regular smokers. Little is known about nonrespiratory disease risks, especially vascular morbidity and mortality after developing airflow obstruction (AFO) in Chinese adults. Objective We aimed to investigate the prospective association of prevalent AFO with major vascular morbidity and mortality. Materials and methods In 2004-2008, a nationwide prospective cohort study recruited 512,891 men and women aged 30-79 years from 10 diverse localities across China, tracking cause-specific mortality and coded episodes of hospitalization for 9 years. Cox regression yielded adjusted HRs for vascular diseases comparing individuals with spirometry-defined prevalent AFO at baseline to those without. Results Of 489,382 participants with no vascular disease at baseline, 6.8% had AFO, with prevalence rising steeply with age. Individuals with prevalent AFO had significantly increased vascular mortality (n=1,429, adjusted HR 1.29, 95% CI 1.21-1.36). There were also increased risks of hemorrhagic stroke (n=823, HR 1.18, 95% CI 1.09-1.27), major coronary events (n=635, HR 1.33, 95% CI 1.22-1.45), and heart failure (n=543, HR 2.19, 95% CI 1.98-2.41). For each outcome, the risk increased progressively with increasing COPD severity and persisted among never-regular smokers. Conclusion Among adult Chinese, AFO was associated with significantly increased risks of major vascular morbidity and mortality. COPD management should be integrated with vascular disease prevention and treatment programs to improve long-term prognosis.
Collapse
Affiliation(s)
- Om P Kurmi
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Kourtney J Davis
- Real World Evidence and Epidemiology, GlaxoSmithKline, Collegeville, PA, USA
| | - Jenny Wang
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Derrick A Bennett
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ka Hung Chan
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing China
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing China
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Liuping Wei
- NCDs Prevention and Control Department, Liuzhou CDC, Liuzhou, China
| | - Donghui Jin
- NCDs Prevention and Control Department, Hunan CDC, Changsha, China
| | - Rory Collins
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Richard Peto
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Gershon AS, Thiruchelvam D, Chapman KR, Aaron SD, Stanbrook MB, Bourbeau J, Tan W, To T. Health Services Burden of Undiagnosed and Overdiagnosed COPD. Chest 2018; 153:1336-1346. [PMID: 29425675 DOI: 10.1016/j.chest.2018.01.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 01/15/2018] [Accepted: 01/26/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Misdiagnosis of COPD is common. The goal of this study was to quantify the health services burden of undiagnosed and overdiagnosed COPD in a real-world, North American population. METHODS A population-based cohort study was conducted. Presence of COPD using spirometry was ascertained in randomly selected adults aged ≥ 40 years from Ontario, Canada, who participated in the Canadian Obstructive Lung Disease study. The presence of physician-diagnosed COPD was ascertained for the same subjects by using linked health administrative data. Participants were then categorized into four groups: correctly diagnosed, undiagnosed, overdiagnosed, and no COPD according to either criteria. Age- and sex-standardized rates of hospitalizations, ED visits, and ambulatory care visits in each group were determined and compared. RESULTS Of 1,403 participants, 13.7% had undiagnosed COPD, 5.1% were overdiagnosed, and 3.7% had correctly diagnosed COPD. Subjects with overdiagnosed COPD had significantly higher rates of hospitalizations, ED visits, and ambulatory care visits, and subjects with moderate to severe undiagnosed COPD had higher rates of hospitalizations, than subjects in the non-COPD population. CONCLUSIONS Undiagnosed and overdiagnosed COPD contribute to significant health care burden. Given that misdiagnosed COPD was fivefold more common than correctly diagnosed COPD, these findings point to a substantial misdiagnosis-associated burden of disease that might be prevented, at least in part, with a correct diagnosis.
Collapse
Affiliation(s)
- Andrea S Gershon
- Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Institute for Clinical Evaluative Sciences, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada.
| | | | - Kenneth R Chapman
- University of Toronto, Toronto, ON, Canada; Asthma and Airway Centre, Toronto Western Hospital, Toronto, ON, Canada
| | - Shawn D Aaron
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Matthew B Stanbrook
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada; Asthma and Airway Centre, Toronto Western Hospital, Toronto, ON, Canada
| | - Jean Bourbeau
- McGill University, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Wan Tan
- University of British Columbia, UBC James Hogg Research Centre, Institute for Heart Lung Health, St. Paul's Hospital, Vancouver, BC, Canada
| | - Teresa To
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
42
|
Classifying Chronic Lower Respiratory Disease Events in Epidemiologic Cohort Studies. Ann Am Thorac Soc 2018; 13:1057-66. [PMID: 27088163 DOI: 10.1513/annalsats.201601-063oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE One in 12 adults has chronic obstructive pulmonary disease or asthma. Acute exacerbations of these chronic lower respiratory diseases (CLRDs) are a major cause of morbidity and mortality. Valid approaches to classifying cases and exacerbations in the general population are needed to facilitate prevention research. OBJECTIVES To assess the feasibility, reproducibility, and performance of a protocol to identify CLRD cases and exacerbations triggering emergency department (ED) visits or hospitalizations in cohorts of patients derived from general populations of adults. METHODS A protocol was developed to classify CLRD cases and severe exacerbations on the basis of review of medical records. ED and inpatient medical records were ascertained prospectively in the Hispanic Community Health Study/Study of Latinos, and inpatient records were retrospectively identified by administrative codes in the Multi-Ethnic Study of Atherosclerosis. "Probable" exacerbations were defined as a physician's diagnosis of CLRD with acute respiratory symptoms. "Highly probable" exacerbations additionally required systemic corticosteroid therapy, and "definite" exacerbations required airflow limitation or evidence of CLRD on imaging studies. Adjudicated results were compared with CLRD cases identified by spirometry and self-report, and with an administrative definition of exacerbations. MEASUREMENTS AND MAIN RESULTS Protocol-based classification was completed independently by two physicians for 216 medical records (56 ED visits and 61 hospitalizations in the Hispanic Community Health Study/Study of Latinos; 99 hospitalizations in the Multi-Ethnic Study of Atherosclerosis). Reviewer disagreement occurred in 2-5% of cases and 4-8% of exacerbations. Eighty-nine percent of records were confirmed as at least probable CLRD cases. Fifty-six percent of confirmed CLRD cases had airflow limitation on the basis of baseline study spirometry. Of records that described CLRD as the primary discharge diagnosis code, an acute exacerbation was confirmed as at least probable for 96% and as highly probable or definite for 77%. Only 50% of records with CLRD as a secondary code were confirmed, although such records accounted for over half of all confirmed exacerbations. CONCLUSIONS CLRD cases and severe exacerbations without preceding documentation of airflow limitation are identified frequently in population-based cohorts of persons. A primary discharge diagnosis of CLRD is specific but insensitive for defining exacerbations. Protocol-based classification of medical records may be appropriate to supplement and to validate identification of CLRD cases and exacerbations in general population studies. Clinical trials registered with www.clinicaltrials.gov (NCT00005487 and NCT02060344).
Collapse
|
43
|
[Over-diagnosis of chronic obstructive pulmonary disease in Primary Care. Prevalence and determining factors]. Semergen 2017; 43:557-564. [PMID: 28526439 DOI: 10.1016/j.semerg.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/06/2016] [Accepted: 11/11/2016] [Indexed: 11/23/2022]
Abstract
INTRODUCTION COPD under-diagnosis is common in Primary Health Care medicine, due to the low use of spirometry, but there is less information about over-diagnosis of the disease in patients that have a clinical diagnosis of COPD. OBJECTIVE The main objective of the study was to investigate the prevalence of COPD over-diagnosis in Primary Care medicine. Secondary objectives were to determine the factors associated with an incorrect clinical diagnosis of COPD and to analyse whether the pharmacological treatment is different for patients with correct or incorrect diagnosis. METHOD A prospective, observational, cross-sectional study was conducted using the spirometry results of 206 patients with a clinical diagnosis of COPD, with no prior lung function testing, and who were treated with inhaled therapy. Characteristics and treatment of patients with a correct or incorrect COPD diagnosis were compared. RESULTS The prevalence of COPD over-diagnosis was 42.7% in the study population. Factors associated with an incorrect diagnosis were female sex (P<.0001), obesity (P=.009), absence of smoking history (P<.0001), lower age (P=.001), and less severe dyspnoea (P=.001). Long-acting muscarinic agents were more frequently prescribed to patients with a correct COPD diagnosis. There were no other differences regarding inhaled therapies between both groups. CONCLUSIONS Over-diagnosis is a frequent phenomenon in patients with a clinical diagnosis of COPD managed in Primary Care medicine. There are different features between patients with a correct and incorrect diagnosis. Spirometry is an essential tool to reduce COPD over-diagnosis.
Collapse
|
44
|
Noel F, Lorenzo A. [How to recognize an acute COPD exacerbation?]. Rev Mal Respir 2017; 34:349-352. [PMID: 28476414 DOI: 10.1016/j.rmr.2017.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F Noel
- Département de médecine générale, faculté médecine Paris Descartes, 24, rue du Faubourg-St.-Jacques, 75014 Paris, France
| | - A Lorenzo
- Département de médecine générale, faculté médecine Paris Descartes, 24, rue du Faubourg-St.-Jacques, 75014 Paris, France.
| |
Collapse
|
45
|
Arnason JW, Murphy JC, Kooi C, Wiehler S, Traves SL, Shelfoon C, Maciejewski B, Dumonceaux CJ, Lewenza WS, Proud D, Leigh R. Human β-defensin-2 production upon viral and bacterial co-infection is attenuated in COPD. PLoS One 2017; 12:e0175963. [PMID: 28489911 PMCID: PMC5425185 DOI: 10.1371/journal.pone.0175963] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/03/2017] [Indexed: 01/21/2023] Open
Abstract
Viral-bacterial co-infections are associated with severe exacerbations of COPD. Epithelial antimicrobial peptides, including human β-defensin-2 (HBD-2), are integral to innate host defenses. In this study, we examined how co-infection of airway epithelial cells with rhinovirus and Pseudomonas aeruginosa modulates HBD-2 expression, and whether these responses are attenuated by cigarette smoke and in epithelial cells obtained by bronchial brushings from smokers with normal lung function or from COPD patients. When human airway epithelial cells from normal lungs were infected with rhinovirus, Pseudomonas aeruginosa, or the combination, co-infection with rhinovirus and bacteria resulted in synergistic induction of HBD-2 (p<0.05). The combination of virus and flagellin replicated this synergistic increase (p<0.05), and synergy was not seen using a flagella-deficient mutant Pseudomonas (p<0.05). The effects of Pseudomonas aeruginosa were mediated via interactions of flagellin with TLR5. The effects of HRV-16 depended upon viral replication but did not appear to be mediated via the intracellular RNA helicases, retinoic acid-inducible gene-I or melanoma differentiation-associated gene-5. Cigarette smoke extract significantly decreased HBD-2 production in response to co-infection. Attenuated production was also observed following co-infection of cells obtained from healthy smokers or COPD patients compared to healthy controls (p<0.05). We conclude that co-exposure to HRV-16 and Pseudomonas aeruginosa induces synergistic production of HBD-2 from epithelial cells and that this synergistic induction of HBD-2 is reduced in COPD patients. This may contribute to the more severe exacerbations these patients experience in response to viral-bacterial co-infections.
Collapse
Affiliation(s)
- Jason W. Arnason
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - James C. Murphy
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Cora Kooi
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Shahina Wiehler
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Suzanne L. Traves
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Christopher Shelfoon
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Barbara Maciejewski
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Curtis J. Dumonceaux
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - W. Shawn Lewenza
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - David Proud
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
46
|
Roversi S, Corbetta L, Clini E. GOLD 2017 recommendations for COPD patients: toward a more personalized approach. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40749-017-0024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Martinez CH, Murray S, Barr RG, Bleecker E, Bowler RP, Christenson SA, Comellas AP, Cooper CB, Couper D, Criner GJ, Curtis JL, Dransfield MT, Hansel NN, Hoffman EA, Kanner RE, Kleerup E, Krishnan JA, Lazarus SC, Leidy NK, O’Neal W, Martinez FJ, Paine R, Rennard SI, Tashkin DP, Woodruff PG. Respiratory Symptoms Items from the COPD Assessment Test Identify Ever-Smokers with Preserved Lung Function at Higher Risk for Poor Respiratory Outcomes. An Analysis of the Subpopulations and Intermediate Outcome Measures in COPD Study Cohort. Ann Am Thorac Soc 2017; 14:636-642. [PMID: 28459622 PMCID: PMC5427740 DOI: 10.1513/annalsats.201610-815oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/23/2016] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Ever-smokers without airflow obstruction scores greater than or equal to 10 on the COPD Assessment Test (CAT) still have frequent acute respiratory disease events (exacerbation-like), impaired exercise capacity, and imaging abnormalities. Identification of these subjects could provide new opportunities for targeted interventions. OBJECTIVES We hypothesized that the four respiratory-related items of the CAT might be useful for identifying such individuals, with discriminative ability similar to CAT, which is an eight-item questionnaire used to assess chronic obstructive pulmonary disease impact, including nonrespiratory questions, with scores ranging from 0 to 40. METHODS We evaluated ever-smoker participants in the Subpopulations and Intermediate Outcomes in COPD Study without airflow obstruction (FEV1/FVC ≥0.70; FVC above the lower limit of normal). Using the area under the receiver operating characteristic curve, we compared responses to both CAT and the respiratory symptom-related CAT items (cough, phlegm, chest tightness, and breathlessness) and their associations with longitudinal exacerbations. We tested agreement between the two strategies (κ statistic), and we compared demographics, lung function, and symptoms among subjects identified as having high symptoms by each strategy. RESULTS Among 880 ever-smokers with normal lung function (mean age, 61 yr; 52% women) and using a CAT cutpoint greater than or equal to 10, we classified 51.8% of individuals as having high symptoms, 15.3% of whom experienced at least one exacerbation during 1-year follow-up. After testing sensitivity and specificity of different scores for the first four questions to predict any 1-year follow-up exacerbation, we selected cutpoints of 0-6 as representing a low burden of symptoms versus scores of 7 or higher as representing a high burden of symptoms for all subsequent comparisons. The four respiratory-related items with cutpoint greater than or equal to 7 selected 45.8% participants, 15.6% of whom experienced at least one exacerbation during follow-up. The two strategies largely identified the same individuals (agreement, 88.5%; κ = 0.77; P < 0.001), and the proportions of high-symptoms subjects who had severe dyspnea were similar between CAT and the first four CAT questions (25.9% and 26.8%, respectively), as were the proportions reporting impaired quality of life (66.9% and 70.5%, respectively) and short walking distance (22.4% and 23.1%, respectively). There was no difference in area under the receiver operating characteristic curve to predict 1-year follow-up exacerbations (CAT score ≥10, 0.66; vs. four respiratory items from CAT ≥7 score, 0.65; P = 0.69). Subjects identified by either method also had more depression/anxiety symptoms, poor sleep quality, and greater fatigue. CONCLUSIONS Four CAT items on respiratory symptoms identified high-risk symptomatic ever-smokers with preserved spirometry as well as the CAT did. These data suggest that simpler strategies can be developed to identify these high-risk individuals in primary care.
Collapse
Affiliation(s)
- Carlos H. Martinez
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Susan Murray
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - R. Graham Barr
- Department of Medicine and
- Department of Epidemiology, Columbia University Medical Center, New York, New York
| | - Eugene Bleecker
- Center for Genomics and Personalized Medicine Research, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | | | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Alejandro P. Comellas
- Division of Pulmonary, Critical Care and Occupational Medicine, Department of Internal Medicine
| | - Christopher B. Cooper
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | | | - Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Medicine Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Mark T. Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine and
- UAB Lung Health Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Eric A. Hoffman
- Department of Radiology, and
- Department of Biomedical Engineering, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Richard E. Kanner
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Eric Kleerup
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jerry A. Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, Illinois
| | - Stephen C. Lazarus
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Nancy K. Leidy
- Office of Scientific Affairs, Evidera, Bethesda, Maryland
| | - Wanda O’Neal
- Department of Internal Medicine, Weill Cornell Medical College, New York, New York; and
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Donald P. Tashkin
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - for the Subpopulations and Intermediate Outcome Measures in COPD Study Investigators
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
- School of Public Health, University of Michigan, Ann Arbor, Michigan
- Department of Medicine and
- Department of Epidemiology, Columbia University Medical Center, New York, New York
- Center for Genomics and Personalized Medicine Research, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
- Department of Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
- Division of Pulmonary, Critical Care and Occupational Medicine, Department of Internal Medicine
- Department of Radiology, and
- Department of Biomedical Engineering, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Biostatistics and
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Medicine Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan
- Division of Pulmonary, Allergy and Critical Care Medicine and
- UAB Lung Health Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, Illinois
- Office of Scientific Affairs, Evidera, Bethesda, Maryland
- Department of Internal Medicine, Weill Cornell Medical College, New York, New York; and
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
48
|
Thomson NC. Asthma and smoking-induced airway disease without spirometric COPD. Eur Respir J 2017; 49:49/5/1602061. [PMID: 28461294 DOI: 10.1183/13993003.02061-2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022]
Abstract
Due to the high prevalence rates of cigarette smoking and asthma, current and ex-smokers frequently develop chronic airway disease without spirometric evidence of chronic obstructive pulmonary disease (COPD), either alone or associated with asthma. This review considers the classification, clinical outcomes, inflammatory and imaging variables, phenotypes, and management of current and ex-smokers with airway disease without COPD, focusing on overlaps in those with and without asthma. These individuals have more respiratory symptoms, worse quality of life, increased exacerbation rates, reduced lung function and more comorbidities than never-smokers with asthma or healthy never-smokers. As well as clinical features, airway inflammatory and structural changes in smoking-induced airway disease without COPD overlap with those found in smokers with asthma. Cigarette smoking is associated with worse clinical outcomes in some phenotypes of asthma. Management involves public health measures to control exposure to tobacco smoke, personal advice on smoking cessation and the use of appropriate targeted therapies, although evidence is limited on their effectiveness. Understanding the mechanisms, natural history and management of current and ex-smokers with asthma and smoking-induced airway disease without COPD is a priority for future research.
Collapse
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
49
|
Subclinical Carotid Atherosclerosis in COPD Cases and Control Smokers: Analysis in Relation with COPD Exacerbations and Exacerbation-like Episodes. Lung 2017; 195:185-191. [DOI: 10.1007/s00408-017-9986-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
50
|
Rodriguez-Roisin R, Han MK, Vestbo J, Wedzicha JA, Woodruff PG, Martinez FJ. Chronic Respiratory Symptoms with Normal Spirometry. A Reliable Clinical Entity? Am J Respir Crit Care Med 2017; 195:17-22. [DOI: 10.1164/rccm.201607-1376pp] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|