1
|
Weiss ST, Mirzakhani H, Carey VJ, O'Connor GT, Zeiger RS, Bacharier LB, Stokes J, Litonjua AA. Prenatal vitamin D supplementation to prevent childhood asthma: 15-year results from the Vitamin D Antenatal Asthma Reduction Trial (VDAART). J Allergy Clin Immunol 2024; 153:378-388. [PMID: 37852328 DOI: 10.1016/j.jaci.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
This article provides an overview of the findings obtained from the Vitamin D Antenatal Asthma Reduction Trial (VDAART) spanning a period of 15 years. The review covers various aspects, including the trial's rationale, study design, and initial intent-to-treat analyses, as well as an explanation of why those analyses did not achieve statistical significance. Additionally, the article delves into the post hoc results obtained from stratified intent-to-treat analyses based on maternal vitamin D baseline levels and genotype-stratified analyses. These results demonstrate a statistically significant reduction in asthma among offspring aged 3 and 6 years when comparing vitamin D supplementation (4400 IU/d) to the standard prenatal multivitamin with vitamin D (400 IU/d). Furthermore, these post hoc analyses found that vitamin D supplementation led to a decrease in total serum IgE levels and improved lung function in children compared to those whose mothers received a placebo alongside the standard prenatal multivitamin with vitamin D. Last, the article concludes with recommendations regarding the optimal dosing of vitamin D for pregnant women to prevent childhood asthma as well as suggestions for future trials in this field.
Collapse
Affiliation(s)
- Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| | - Hooman Mirzakhani
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Vincent J Carey
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - George T O'Connor
- Department of Medicine, Pulmonary Centre, Boston Medical Centre, Boston University, Boston, Mass
| | - Robert S Zeiger
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, Calif
| | - Leonard B Bacharier
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tenn
| | - Jeffrey Stokes
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Washington University, St Louis, Mo
| | - Augusto A Litonjua
- Department of Pediatrics Golisano Children's Hospital, Pediatric Pulmonary Division, University of Rochester Medical School, Rochester, NY
| |
Collapse
|
2
|
Kachroo P, Stewart ID, Kelly RS, Stav M, Mendez K, Dahlin A, Soeteman DI, Chu SH, Huang M, Cote M, Knihtilä HM, Lee-Sarwar K, McGeachie M, Wang A, Wu AC, Virkud Y, Zhang P, Wareham NJ, Karlson EW, Wheelock CE, Clish C, Weiss ST, Langenberg C, Lasky-Su JA. Metabolomic profiling reveals extensive adrenal suppression due to inhaled corticosteroid therapy in asthma. Nat Med 2022; 28:814-822. [PMID: 35314841 PMCID: PMC9350737 DOI: 10.1038/s41591-022-01714-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/24/2022] [Indexed: 02/02/2023]
Abstract
The application of large-scale metabolomic profiling provides new opportunities for realizing the potential of omics-based precision medicine for asthma. By leveraging data from over 14,000 individuals in four distinct cohorts, this study identifies and independently replicates 17 steroid metabolites whose levels were significantly reduced in individuals with prevalent asthma. Although steroid levels were reduced among all asthma cases regardless of medication use, the largest reductions were associated with inhaled corticosteroid (ICS) treatment, as confirmed in a 4-year low-dose ICS clinical trial. Effects of ICS treatment on steroid levels were dose dependent; however, significant reductions also occurred with low-dose ICS treatment. Using information from electronic medical records, we found that cortisol levels were substantially reduced throughout the entire 24-hour daily period in patients with asthma who were treated with ICS compared to those who were untreated and to patients without asthma. Moreover, patients with asthma who were treated with ICS showed significant increases in fatigue and anemia as compared to those without ICS treatment. Adrenal suppression in patients with asthma treated with ICS might, therefore, represent a larger public health problem than previously recognized. Regular cortisol monitoring of patients with asthma treated with ICS is needed to provide the optimal balance between minimizing adverse effects of adrenal suppression while capitalizing on the established benefits of ICS treatment.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Rachel S Kelly
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Meryl Stav
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Mendez
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Dahlin
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Djøra I Soeteman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Health Decision Science, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Su H Chu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mengna Huang
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Margaret Cote
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanna M Knihtilä
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen Lee-Sarwar
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael McGeachie
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alberta Wang
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ann Chen Wu
- Harvard Pilgrim Health Care Institute and Department of Population Medicine, Harvard Medical School, Boston, MA, USA
| | - Yamini Virkud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pei Zhang
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institute, Stockholm, Sweden
| | | | - Elizabeth W Karlson
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig E Wheelock
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry 2, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | | | - Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jessica A Lasky-Su
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Sunde RB, Thorsen J, Pedersen CET, Stokholm J, Bønnelykke K, Chawes B, Bisgaard H. Prenatal tobacco exposure and risk of asthma and allergy outcomes in childhood. Eur Respir J 2022; 59:2100453. [PMID: 34244319 DOI: 10.1183/13993003.00453-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/21/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Harmful effects of prenatal tobacco exposure and possible interaction with 17q12-21 genetic variants have been shown for some asthma outcomes in childhood, whereas findings related to allergy outcomes are more inconsistent. This study aimed to examine the effect of prenatal tobacco exposure and relation to 17q12-21 genotype on a wide array of asthma and allergy-related outcomes in early childhood. METHODS Prenatal tobacco exposure was determined by maternal smoking during the third trimester (yes/no) in 411 children from the phenotyped Copenhagen Prospective Studies on Asthma in Childhood 2000 (COPSAC2000) birth cohort with clinical follow-up to age 7 years. The rs7216389 single nucleotide polymorphism was used as main representative of the 17q12-21 locus. Asthma end-points included asthma diagnosis, exacerbations, episodes with troublesome lung symptoms and lower respiratory tract infections, spirometry, plethysmography, bronchial responsiveness to methacholine, exercise and cold dry air. Allergy-related endpoints included aeroallergen sensitisation, allergic rhinitis, fractional exhaled nitric oxide, blood eosinophil count and urine eosinophil protein X levels. Statistical analyses were done using Cox regression, linear regression, logistic regression and quasi-Poisson regression. RESULTS Prenatal tobacco exposure increased the risk of asthma (adjusted hazard ratio (aHR) 2.05, 95% CI 1.13-3.73; p=0.02), exacerbations (aHR 3.76, 95% CI 2.05-6.91; p<0.001), number of LRTIs (adjusted incidence rate ratio 1.87, 95% CI 1.34-2.55; p<0.001), and was associated with decreased spirometry indices (forced expiratory volume in 1 s (FEV1) adjusted mean difference (aMD) -0.07 L, 95% CI -0.13- -0.005 L, p=0.03; maximal mid-expiratory flow aMD -0.19 L·s-1, -0.34- -0.04 L·s-1, p=0.01) and increased bronchial responsiveness to methacholine (provocative dose of methacholine causing a 20% drop in FEV1 adjusted geometric mean ratio 0.55, 95% CI 0.31-0.96; p=0.04). In contrast, there was no association with any allergy-related end-points. The effect on asthma depended on 17q12-21 genotype with an increased risk only among children without risk alleles. CONCLUSION Prenatal tobacco exposure was associated with asthma dependent on 17q12-21 genotype and with exacerbations, lung function and bronchial responsiveness, but not with any allergy-related outcomes. This suggests that tobacco exposure in utero leads to adverse lung developmental/structural effects rather than susceptibility to develop allergy and type 2 inflammation.
Collapse
Affiliation(s)
- Rikke Bjersand Sunde
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Dept of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Dept of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Kachroo P, Sordillo JE, Lutz SM, Weiss ST, Kelly RS, McGeachie MJ, Wu AC, Lasky-Su JA. Pharmaco-Metabolomics of Inhaled Corticosteroid Response in Individuals with Asthma. J Pers Med 2021; 11:jpm11111148. [PMID: 34834499 PMCID: PMC8622526 DOI: 10.3390/jpm11111148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolomic indicators of asthma treatment responses have yet to be identified. In this study, we aimed to uncover plasma metabolomic profiles associated with asthma exacerbations while on inhaled corticosteroid (ICS) treatment. We determined whether these profiles change with age from adolescence to adulthood. We utilized data from 170 individuals with asthma on ICS from the Mass General Brigham Biobank to identify plasma metabolites associated with asthma exacerbations while on ICS and examined potential effect modification of metabolite-exacerbation associations by age. We used liquid chromatography-high-resolution mass spectrometry-based metabolomic profiling. Sex-stratified analyses were also performed for the significant associations. The age range of the participating individuals was 13-43 years with a mean age of 33.5 years. Of the 783 endogenous metabolites tested, eight demonstrated significant associations with exacerbation after correction for multiple comparisons and adjusting for potential confounders (Bonferroni p value < 6.2 × 10-4). Potential effect modification by sex was detected for fatty acid metabolites, with males showing a greater reduction in their metabolite levels with ICS exacerbation. Thirty-eight metabolites showed suggestive interactions with age on exacerbation (nominal p-value < 0.05). Our findings demonstrate that plasma metabolomic profiles differ for individuals who experience asthma exacerbations while on ICS. The differentiating metabolites may serve as biomarkers of ICS response and may highlight metabolic pathways underlying ICS response variability.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Joanne E. Sordillo
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (S.M.L.); (A.C.W.)
| | - Sharon M. Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (S.M.L.); (A.C.W.)
| | - Scott T. Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Rachel S. Kelly
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Michael J. McGeachie
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
| | - Ann Chen Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA; (J.E.S.); (S.M.L.); (A.C.W.)
| | - Jessica A. Lasky-Su
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (P.K.); (S.T.W.); (R.S.K.); (M.J.M.)
- Correspondence: ; Tel.: +1-617-875-9992
| |
Collapse
|
5
|
Decrue F, Gorlanova O, Usemann J, Frey U. Lung functional development and asthma trajectories. Semin Immunopathol 2020; 42:17-27. [PMID: 31989229 DOI: 10.1007/s00281-020-00784-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2020] [Indexed: 01/06/2023]
Abstract
Early life environmental risk factors are associated with chronic respiratory morbidity in child- and adulthood. A possible mechanism for this sustained effect is their influence on early life lung functional growth and development, a susceptible phase of rapid lung growth with increased plasticity. We summarize evidence of hereditary and environmental ante-, peri-, and early postnatal factors on lung functional development, such as air pollution, tobacco exposure, nutrition, intrauterine growth retardation, prematurity, early life infections, microbiome, and allergies and their effect on lung functional trajectories. While some of the factors (e.g., prematurity) directly impair lung growth, the influence of many environmental factors is mediated through inflammatory processes (e.g., recurrent infections or oxidative stress). The timing and nature of these influences and their impact result in degrees of impaired maximal lung functional capacity in early adulthood; and they potentially impact future long-term respiratory morbidity such as chronic asthma or chronic obstructive airway disease (COPD). We discuss possibilities to prevent or modify such early abnormal lung functional growth trajectories and the need for future studies and prevention programs.
Collapse
Affiliation(s)
- Fabienne Decrue
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Olga Gorlanova
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland
| | - Jakob Usemann
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.,Division of Respiratory Medicin, University Children's Hospital Zurich, Zurich, Switzerland
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, 4056, Basel, Switzerland.
| |
Collapse
|
6
|
Wang RS, Croteau-Chonka DC, Silverman EK, Loscalzo J, Weiss ST, Hall KT. Pharmacogenomics and Placebo Response in a Randomized Clinical Trial in Asthma. Clin Pharmacol Ther 2019; 106:1261-1267. [PMID: 31557306 DOI: 10.1002/cpt.1646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
Genetic variation may differentially modify drug and placebo treatment effects in randomized clinical trials. In asthma, although lung function and asthma control improvements are commonplace with placebo, pharmacogenomics of placebo vs. drug response remains unexamined. In a genomewide association study of subjective and objective outcomes with placebo treatment in Childhood Asthma Management Program of nedocromil/budesonide vs. placebo (N = 604), effect estimates for lead single nucleotide polymorphisms (SNPs) were compared across arms. The coughing/wheezing lead SNP, rs2392165 (β = 0.94; P = 1.10E-07) mapped to BBS9, a gene implicated in lung development that contains a lung function expression quantitative trait locus. The effect was attenuated with budesonide (Pinteraction = 1.48E-07), but not nedocromil (Pinteraction = 0.06). The lead forced vital capacity SNP, rs12930749 (β = -5.80; P = 1.47E-06), mapped to KIAA0556, a locus genomewide associated with respiratory diseases. The rs12930749 effect was attenuated with budesonide (Pinteraction = 1.32E-02) and nedocromil (Pinteraction = 1.09E-02). Pharmacogenomic analysis revealed differential effects with placebo and drug treatment that could potentially guide precision drug development in asthma.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - J Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn T Hall
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Reese SE, Xu CJ, den Dekker HT, Lee MK, Sikdar S, Ruiz-Arenas C, Merid SK, Rezwan FI, Page CM, Ullemar V, Melton PE, Oh SS, Yang IV, Burrows K, Söderhäll C, Jima DD, Gao L, Arathimos R, Küpers LK, Wielscher M, Rzehak P, Lahti J, Laprise C, Madore AM, Ward J, Bennett BD, Wang T, Bell DA, Vonk JM, Håberg SE, Zhao S, Karlsson R, Hollams E, Hu D, Richards AJ, Bergström A, Sharp GC, Felix JF, Bustamante M, Gruzieva O, Maguire RL, Gilliland F, Baïz N, Nohr EA, Corpeleijn E, Sebert S, Karmaus W, Grote V, Kajantie E, Magnus MC, Örtqvist AK, Eng C, Liu AH, Kull I, Jaddoe VWV, Sunyer J, Kere J, Hoyo C, Annesi-Maesano I, Arshad SH, Koletzko B, Brunekreef B, Binder EB, Räikkönen K, Reischl E, Holloway JW, Jarvelin MR, Snieder H, Kazmi N, Breton CV, Murphy SK, Pershagen G, Anto JM, Relton CL, Schwartz DA, Burchard EG, Huang RC, Nystad W, Almqvist C, Henderson AJ, Melén E, Duijts L, Koppelman GH, London SJ. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J Allergy Clin Immunol 2019; 143:2062-2074. [PMID: 30579849 PMCID: PMC6556405 DOI: 10.1016/j.jaci.2018.11.043] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/01/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Epigenetic mechanisms, including methylation, can contribute to childhood asthma. Identifying DNA methylation profiles in asthmatic patients can inform disease pathogenesis. OBJECTIVE We sought to identify differential DNA methylation in newborns and children related to childhood asthma. METHODS Within the Pregnancy And Childhood Epigenetics consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or cross-sectionally in school-aged children. We also identified differentially methylated regions. RESULTS In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, false discovery rate < 0.05) in relation to asthma development. In a cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (false discovery rate < 0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports a regulatory effect on gene expression at many asthma-associated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2. CONCLUSION Novel loci differentially methylated in newborns represent potential biomarkers of risk of asthma by school age. Cross-sectional associations in children can reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children was substantially replicated in eosinophils and respiratory epithelium.
Collapse
Affiliation(s)
- Sarah E Reese
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Cheng-Jian Xu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Herman T den Dekker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mi Kyeong Lee
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Sinjini Sikdar
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Carlos Ruiz-Arenas
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon K Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway; Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Phillip E Melton
- Curtin/UWA Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia
| | - Sam S Oh
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Ivana V Yang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Kimberley Burrows
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Dereje D Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Lu Gao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Ryan Arathimos
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Leanne K Küpers
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Catherine Laprise
- Centre intégré universitaire de santé et de services sociaux du Saguenay, Saguenay, Quebec, Canada; Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - Anne-Marie Madore
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada
| | - James Ward
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Brian D Bennett
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Tianyuan Wang
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Douglas A Bell
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Judith M Vonk
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Siri E Håberg
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Shanshan Zhao
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Elysia Hollams
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Adam J Richards
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Gemma C Sharp
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Janine F Felix
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mariona Bustamante
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC; Department of Community and Family Medicine, Duke University Medical Center, Durham, NC
| | - Frank Gilliland
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Nour Baïz
- Epidemiology of Allergic and Respiratory Diseases Department, IPLESP, INSERM and UPMC Sorbonne Université, Paris, France
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Eva Corpeleijn
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sylvain Sebert
- Biocenter Oulu, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Genomics of Complex Diseases, School of Public Health, Imperial College London, London, United Kingdom
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Eero Kajantie
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland; Department of Obstetrics and Gynaecology, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Maria C Magnus
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anne K Örtqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | | | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordi Sunyer
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC; Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases Department, IPLESP, INSERM and UPMC Sorbonne Université, Paris, France
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth B Binder
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Ga; Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Eva Reischl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Muenchen, Munich, Germany
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, United Kingdom; Biocenter Oulu, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nabila Kazmi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC; Nicholas School of the Environment, Duke University, Durham, NC
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Josep Maria Anto
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Caroline L Relton
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - David A Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, Calif
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Wenche Nystad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - A John Henderson
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC.
| |
Collapse
|
8
|
Nawroth JC, Barrile R, Conegliano D, van Riet S, Hiemstra PS, Villenave R. Stem cell-based Lung-on-Chips: The best of both worlds? Adv Drug Deliv Rev 2019; 140:12-32. [PMID: 30009883 PMCID: PMC7172977 DOI: 10.1016/j.addr.2018.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Pathologies of the respiratory system such as lung infections, chronic inflammatory lung diseases, and lung cancer are among the leading causes of morbidity and mortality, killing one in six people worldwide. Development of more effective treatments is hindered by the lack of preclinical models of the human lung that can capture the disease complexity, highly heterogeneous disease phenotypes, and pharmacokinetics and pharmacodynamics observed in patients. The merger of two novel technologies, Organs-on-Chips and human stem cell engineering, has the potential to deliver such urgently needed models. Organs-on-Chips, which are microengineered bioinspired tissue systems, recapitulate the mechanochemical environment and physiological functions of human organs while concurrent advances in generating and differentiating human stem cells promise a renewable supply of patient-specific cells for personalized and precision medicine. Here, we discuss the challenges of modeling human lung pathophysiology in vitro, evaluate past and current models including Organs-on-Chips, review the current status of lung tissue modeling using human pluripotent stem cells, explore in depth how stem-cell based Lung-on-Chips may advance disease modeling and drug testing, and summarize practical consideration for the design of Lung-on-Chips for academic and industry applications.
Collapse
Affiliation(s)
| | | | | | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | | |
Collapse
|
9
|
Sordillo JE, Switkowski KM, Coull BA, Schwartz J, Kloog I, Gibson H, Litonjua AA, Bobb J, Koutrakis P, Rifas-Shiman SL, Oken E, Gold DR. Relation of Prenatal Air Pollutant and Nutritional Exposures with Biomarkers of Allergic Disease in Adolescence. Sci Rep 2018; 8:10578. [PMID: 30002468 PMCID: PMC6043562 DOI: 10.1038/s41598-018-28216-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Prenatal exposures may be critical for immune system development, with consequences for allergic disease susceptibility. We examined associations of prenatal exposures (nutrient intakes and air pollutants) with allergic disease biomarkers in adolescence. We used data from 857 mother-child pairs in Project Viva, a Massachusetts-based pre-birth cohort. Outcomes of interest at follow-up (median age 12.9 years) were fractional exhaled nitric oxide (FeNO) and total serum IgE. We applied Bayesian Kernel Machine Regression analyses to estimate multivariate exposure-response functions, allowing for exposure interactions. Exposures were expressed as z-scores of log-transformed data and we report effects in % change in FeNO or IgE z-score per increase in exposure from the 25th to 75th percentile. FeNO levels were lower with higher intakes of prenatal vitamin D (-16.15%, 95% CI: -20.38 to -2.88%), folate from foods (-3.86%, 95% CI: -8.33 to 0.83%) and n-3 PUFAs (-9.21%, 95% CI -16.81 to -0.92%). Prenatal air pollutants were associated with higher FeNO and IgE, with the strongest associations detected for PM2.5 with IgE (25.6% increase, 95% CI 9.34% to 44.29%). We identified a potential synergistic interaction (p = 0.02) between vitamin E (food + supplements) and PM2.5; this exposure combination was associated with further increases in FeNO levels.
Collapse
Affiliation(s)
- Joanne E Sordillo
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Karen M Switkowski
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joel Schwartz
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Itai Kloog
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Heike Gibson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Bobb
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
Parr CL, Magnus MC, Karlstad Ø, Holvik K, Lund-Blix NA, Haugen M, Page CM, Nafstad P, Ueland PM, London SJ, Håberg SE, Nystad W. Vitamin A and D intake in pregnancy, infant supplementation, and asthma development: the Norwegian Mother and Child Cohort. Am J Clin Nutr 2018; 107:789-798. [PMID: 29722838 PMCID: PMC6692651 DOI: 10.1093/ajcn/nqy016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Background Western diets may provide excess vitamin A, which is potentially toxic and could adversely affect respiratory health and counteract benefits from vitamin D. Objective The aim of this study was to examine child asthma at age 7 y in relation to maternal intake of vitamins A and D during pregnancy, infant supplementation with these vitamins, and their potential interaction. Design We studied 61,676 school-age children (born during 2002-2007) from the Norwegian Mother and Child Cohort with data on maternal total (food and supplement) nutrient intake in pregnancy (food-frequency questionnaire validated against biomarkers) and infant supplement use at age 6 mo (n = 54,142 children). Linkage with the Norwegian Prescription Database enabled near-complete follow-up (end of second quarter in 2015) for dispensed medications to classify asthma. We used log-binomial regression to calculate adjusted RRs (aRRs) for asthma with 95% CIs. Results Asthma increased according to maternal intake of total vitamin A [retinol activity equivalents (RAEs)] in the highest (≥2031 RAEs/d) compared with the lowest (≤779 RAEs/d) quintile (aRR: 1.21; 95% CI: 1.05, 1.40) and decreased for total vitamin D in the highest (≥13.6 µg/d) compared with the lowest (≤3.5 µg/d) quintile (aRR: 0.81; 95% CI: 0.67, 0.97) during pregnancy. No association was observed for maternal intake in the highest quintiles of both nutrients (aRR: 0.99; 95% CI: 0.83, 1.18) and infant supplementation with vitamin D or cod liver oil. Conclusions Excess vitamin A (≥2.5 times the recommended intake) during pregnancy was associated with increased risk, whereas vitamin D intake close to recommendations was associated with a reduced risk of asthma in school-age children. No association for high intakes of both nutrients suggests antagonistic effects of vitamins A and D. This trial was registered at http://www.clinicaltrials.gov as NCT03197233.
Collapse
Affiliation(s)
- Christine L Parr
- Division of Mental and Physical Health
- Department of Nursing and Health Promotion, OsloMet–Oslo Metropolitan University, Oslo, Norway
| | - Maria C Magnus
- Division of Mental and Physical Health
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | | | | | - Nicolai A Lund-Blix
- Division of Mental and Physical Health
- Division of Pediatric and Adolescent Medicine, Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | | | | | - Per Nafstad
- Division of Mental and Physical Health
- Department of Community Medicine, University of Oslo, Oslo, Norway
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Department of Health and Human Services, Research Triangle Park, NC
| | - Siri E Håberg
- Division of Mental and Physical Health
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
11
|
Hizawa N. Clinical approaches towards asthma and chronic obstructive pulmonary disease based on the heterogeneity of disease pathogenesis. Clin Exp Allergy 2017; 46:678-87. [PMID: 27009427 DOI: 10.1111/cea.12731] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are each heterogeneous disease classifications that include several clinical and pathophysiological phenotypes. This heterogeneity complicates characterization of each disease and, in some cases, hinders the selection of appropriate treatment. Therefore, in recent years, emphasis has been placed on improving our understanding of the various phenotypes of asthma and of COPD and identifying biomarkers for each phenotype. Likewise, the concept of the endotype has been gaining acceptance; an endotype is a disease subtype that is defined by unique or distinctive functional or pathophysiological mechanisms. Endotypes of asthma or COPD may be primarily characterized by increased susceptibility to type 2 inflammation, increased susceptibility to viral infections, bacterial colonization or impaired lung development. The 'Dutch hypothesis' is as follows: gene variants underlying particular endotypes interact with detrimental environmental stimuli (e.g. smoking, viral infection and air pollution) and contribute to the ultimate development of asthma, COPD or both. Novel approaches that involve multidimensional assessment should facilitate identification and management of the components that generate this heterogeneity. Ultimately, patients with chronic inflammatory lung diseases may be treated based on these endotypes as determined by the respective biomarkers that correspond to individual endotypes instead of on disease labels such as asthma, COPD or even asthma-COPD overlap syndrome (ACOS).
Collapse
Affiliation(s)
- N Hizawa
- Faculty of Medicine, Department of Pulmonary Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Yang IV, Lozupone CA, Schwartz DA. The environment, epigenome, and asthma. J Allergy Clin Immunol 2017; 140:14-23. [PMID: 28673400 DOI: 10.1016/j.jaci.2017.05.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022]
Abstract
Asthma prevalence has been on the increase, especially in North America compared with other continents. However, the prevalence of asthma differs worldwide, and in many countries the prevalence is stable or decreasing. This highlights the influence of environmental exposures, such as allergens, air pollution, and the environmental microbiome, on disease etiology and pathogenesis. The epigenome might provide the unifying mechanism that translates the influence of environmental exposures to changes in gene expression, respiratory epithelial function, and immune cell skewing that are hallmarks of asthma. In this review we will introduce the concept of the environmental epigenome in asthmatic patients, summarize previous publications of relevance to this field, and discuss future directions.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colo.
| | - Catherine A Lozupone
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo
| | - David A Schwartz
- Department of Medicine, University of Colorado, School of Medicine, Aurora, Colo; National Jewish Health, Denver, Colo; Department of Immunology, University of Colorado, Denver, Colo
| |
Collapse
|
13
|
Kho AT, Chhabra D, Sharma S, Qiu W, Carey VJ, Gaedigk R, Vyhlidal CA, Leeder JS, Tantisira KG, Weiss ST. Age, Sexual Dimorphism, and Disease Associations in the Developing Human Fetal Lung Transcriptome. Am J Respir Cell Mol Biol 2017; 54:814-21. [PMID: 26584061 DOI: 10.1165/rcmb.2015-0326oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The fetal origins of disease hypothesis suggests that variations in the course of prenatal lung development may affect life-long pulmonary function growth, decline, and pathobiology. Many studies support the existence of differences in the developing lung trajectory in males and females, and sex-specific differences in the prevalence of chronic lung diseases, such as asthma and bronchopulmonary dysplasia. The objectives of this study were to investigate the early developing fetal lung for transcriptomic correlates of postconception age (maturity) and sex, and their associations with chronic lung diseases. We analyzed whole-lung transcriptome profiles of 61 females and 78 males at 54-127 days postconception (dpc) from nonsmoking mothers using unsupervised principal component analysis and supervised linear regression models. We identified dominant transcriptomic correlates for postconception age and sex with corresponding gene sets that were enriched for developing lung structural and functional ontologies. We observed that the transcriptomic sex difference was not a uniform global time shift/lag, rather, lungs of males appear to be more mature than those of females before 96 dpc, and females appear to be more mature than males after 96 dpc. The age correlate gene set was consistently enriched for asthma and bronchopulmonary dysplasia genes, but the sex correlate gene sets were not. Despite sex differences in the developing fetal lung transcriptome, postconception age appears to be more dominant than sex in the effect of early fetal lung developments on disease risk during this early pseudoglandular phase of development.
Collapse
Affiliation(s)
- Alvin T Kho
- 1 Children's Hospital Informatics Program, Boston Children's Hospital, Boston, Massachusetts.,2 Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,3 Harvard Medical School, Boston, Massachusetts; and
| | - Divya Chhabra
- 2 Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,3 Harvard Medical School, Boston, Massachusetts; and
| | - Sunita Sharma
- 2 Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,3 Harvard Medical School, Boston, Massachusetts; and.,4 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Weiliang Qiu
- 2 Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,3 Harvard Medical School, Boston, Massachusetts; and
| | - Vincent J Carey
- 2 Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,3 Harvard Medical School, Boston, Massachusetts; and
| | - Roger Gaedigk
- 5 Division of Pediatric Clinical Pharmacology and Medical Toxicology, Children's Mercy Hospital and Clinics, Kansas City, Missouri; and
| | - Carrie A Vyhlidal
- 5 Division of Pediatric Clinical Pharmacology and Medical Toxicology, Children's Mercy Hospital and Clinics, Kansas City, Missouri; and
| | - J Steven Leeder
- 5 Division of Pediatric Clinical Pharmacology and Medical Toxicology, Children's Mercy Hospital and Clinics, Kansas City, Missouri; and
| | - Kelan G Tantisira
- 2 Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,3 Harvard Medical School, Boston, Massachusetts; and
| | - Scott T Weiss
- 2 Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,3 Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
14
|
Abstract
Recent years have witnessed critical contributions to our understanding of the determinants and long-term implications of lung function development. In this article, we review studies that have contributed to advances in understanding lung function development and its critical importance for lung health into adult life. In particular, we have focused on early life determinants that include genetic factors, perinatal events, environmental exposures, lifestyle, infancy lower respiratory tract infections, and persistent asthma phenotypes. Longitudinal studies have conclusively demonstrated that lung function deficits that are established by school age may track into adult life and increase the risk of adult lung obstructive diseases, such as chronic obstructive pulmonary disease. Furthermore, these contributions have provided initial evidence in support of a direct influence by early life events on an accelerated decline of lung function and an increased susceptibility to its environmental determinants well into adult life. As such, we argue that future health-care programs based on precision medicine approaches that integrate deep phenotyping with tailored medication and advice to patients should also foster optimal lung function growth to be fully effective.
Collapse
Affiliation(s)
- Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA.,ISGlobal Center for Research in Environmental Epidemiology, Barcelona, Spain
| |
Collapse
|
15
|
Wolsk HM, Harshfield BJ, Laranjo N, Carey VJ, O'Connor G, Sandel M, Strunk RC, Bacharier LB, Zeiger RS, Schatz M, Hollis BW, Weiss ST, Litonjua AA. Vitamin D supplementation in pregnancy, prenatal 25(OH)D levels, race, and subsequent asthma or recurrent wheeze in offspring: Secondary analyses from the Vitamin D Antenatal Asthma Reduction Trial. J Allergy Clin Immunol 2017; 140:1423-1429.e5. [PMID: 28285844 DOI: 10.1016/j.jaci.2017.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nutrient trials differ from drug trials because participants have varying circulating levels at entry into the trial. OBJECTIVE We sought to study the effect of a vitamin D intervention in pregnancy between subjects of different races and the association between 25-hydroxyvitamin D3 (25[OH]D) levels in pregnancy and the risk of asthma/recurrent wheeze in offspring. METHODS The Vitamin D Antenatal Asthma Reduction Trial is a randomized trial of pregnant women at risk of having children with asthma randomized to 4400 international units/d vitamin D or placebo plus 400 international units/d vitamin D. Asthma and recurrent wheezing until age 3 years were recorded. RESULTS African American (AA) women (n = 312) had lower initial levels of 25(OH)D (mean [SD], 17.6 ng/mL [8.3 ng/mL]) compared with non-AA women (n = 400; 27.1 ng/mL [9.7 ng/mL], P < .001). No racial difference was found from vitamin D supplementation in pregnancy on asthma/recurrent wheezing in offspring (P for interaction = .77). Having an initial level of greater than 30 ng/mL and being randomized to the intervention group was associated with the lowest risk for asthma/recurrent wheeze by age 3 years compared with having an initial level of less than 20 ng/mL and receiving placebo (adjusted odds ratio, 0.42; 95% CI, 0.19-0.91). CONCLUSIONS We did not find differences between AA and non-AA mothers in the effect of maternal vitamin D supplementation and asthma/recurrent wheeze in offspring at 3 years. Maternal supplementation of vitamin D, particularly in mothers with initial 25(OH)D levels of greater than 30 ng/mL, reduced asthma/recurrent wheeze in the offspring through age 3 years, suggesting that higher vitamin D status beginning in early pregnancy is necessary for asthma/recurrent wheeze prevention in early life.
Collapse
Affiliation(s)
- Helene M Wolsk
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass; COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin J Harshfield
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Nancy Laranjo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Vincent J Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - George O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Megan Sandel
- Department of Pediatrics, Boston Medical Center, Boston, Mass
| | - Robert C Strunk
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine and St Louis Children's Hospital, St Louis, Mo
| | - Leonard B Bacharier
- Division of Pediatric Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine and St Louis Children's Hospital, St Louis, Mo
| | - Robert S Zeiger
- Department of Allergy and Research evaluation, Kaiser Permanente Southern California, San Diego and Pasadena, Calif
| | - Michael Schatz
- Department of Allergy and Research evaluation, Kaiser Permanente Southern California, San Diego and Pasadena, Calif
| | - Bruce W Hollis
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| |
Collapse
|
16
|
Elkady MA, Abd-Allah GM, Doghish AS, Yousef AA, Mohammad OI. Matrix metalloproteinase (MMP)-2 -1306 C > T gene polymorphism affects circulating levels of MMP-2 in Egyptian asthmatic patients. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Affiliation(s)
- Surinder K Jindal
- Jindal Clinics, SCO 21, Dakshin Marg, Sector 20D, Near Guru Ravi Das Bhawan, Chandigarh 160 020, India
| |
Collapse
|
18
|
Chen J, Zhang J, Hu H, Jin Y, Xue M. Polymorphisms of RAD50, IL33 and IL1RL1 are associated with atopic asthma in Chinese population. TISSUE ANTIGENS 2015; 86:443-7. [PMID: 26493291 DOI: 10.1111/tan.12688] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/28/2015] [Accepted: 09/30/2015] [Indexed: 12/23/2022]
Abstract
Genetic architecture of asthma remains obscure. This study aimed to investigate whether the genetic polymorphisms of CDHR3 (rs6967330), GSDMB (rs2305480), IL33 rs928413, RAD50 (rs6871536) and IL1RL1 (rs1558641) are associated with the development of atopic asthma in Chinese population. Genotype and allele frequencies were compared between 516 patients and 552 controls by Chi-square test. Patients were found to have significantly higher allele G of rs928413 and allele C of rs6871536 (9.5% vs 6.2%, P = 0.004 for rs928413; 26.1% vs 19.9%, P < 0.001 for rs6871536). Besides, patients were found to have significantly lower frequency of allele A of rs1558641 (17.2% vs 21.7%, P = 0.007). This is the first study validating that IL33, IL1R1, and RAD50 genes are associated with the risk of asthma in Chinese population.
Collapse
Affiliation(s)
- J Chen
- Department of Paediatrics, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - J Zhang
- Department of Gastroenterology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - H Hu
- Department of Paediatrics, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Y Jin
- Department of Paediatrics, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - M Xue
- Department of Paediatrics, Jiangsu Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
19
|
Abstract
Asthma is the most common chronic disease among children. It cannot be prevented but can be controlled. Industrialized countries experience high lifetime asthma prevalence that has increased over recent decades. Asthma has a complex interplay of genetic and environmental triggers. Studies have revealed complex interactions of lung structure and function genes with environmental exposures such as environmental tobacco smoke and vitamin D. Home environmental strategies can reduce asthma morbidity in children but should be tailored to specific allergens. Coupled with education and severity-specific asthma therapy, tailored interventions may be the most effective strategy to manage childhood asthma.
Collapse
Affiliation(s)
- Jessica P Hollenbach
- Department of Pediatrics, Asthma Center, The Children's Center for Community Research, CT Children's Medical Center, University of Connecticut School of Medicine, 282 Washington Street, Hartford, CT 06106, USA
| | - Michelle M Cloutier
- Department of Pediatrics, Asthma Center, The Children's Center for Community Research, Connecticut Children's Medical Center, University of Connecticut Health Center, 282 Washington Street, Hartford, CT 06106, USA.
| |
Collapse
|
20
|
Vitamin D Supplementation for Childhood Asthma: A Systematic Review and Meta-Analysis. PLoS One 2015; 10:e0136841. [PMID: 26322509 PMCID: PMC4556456 DOI: 10.1371/journal.pone.0136841] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
Importance There is growing evidence that vitamin D plays a role in the pathogenesis of asthma but it is unclear whether supplementation during childhood may improve asthma outcomes. Objectives The objective of this systematic review and meta-analysis was to evaluate the efficacy and safety of vitamin D supplementation as a treatment or adjunct treatment for asthma. Data Sources We searched MEDLINE, Embase, CENTRAL, and CINAHL through July 2014. Study Selection We included RCTs that evaluated vitamin D supplementation in children versus active control or placebo for asthma. Data Extraction and Synthesis One reviewer extracted data and one reviewer verified data accuracy. We qualitatively summarized the main results of efficacy and safety and meta-analyzed data on comparable outcomes across studies. We used GRADE for strength of evidence. Main Outcome Measures Main planned outcomes measures were ED visits and hospitalizations. As secondary outcomes, we examined measures of asthma control, including frequency of asthma exacerbations, asthma symptom scores, measures of lung function, β2-agonist use and daily steroid use, adverse events and 25-hydroxyvitamin D levels. Results Eight RCTs (one parallel, one crossover design) comprising 573 children aged 3 to 18 years were included. One study (moderate-quality, n = 100) reported significantly less ED visits for children treated with vitamin D. No other studies examined the primary outcome (ED visits and hospitalizations). There was a reduced risk of asthma exacerbations in children receiving vitamin D (low-quality; RR 0.41, 95% CI 0.27 to 0.63, 3 studies, n = 378). There was no significant effect for asthma symptom scores and lung function. The serum 25(OH)D level was higher in the vitamin D group at the end of the intervention (low-quality; MD 19.66 nmol/L, 95% CI 5.96 nmol/L to 33.37 nmol/L, 5 studies, n = 167). Limitations We identified a high degree of clinical diversity (interventions and outcomes) and methodological heterogeneity (sample size and risk of bias) in included trials. Conclusions and Relevance Randomized controlled trials provide some low-quality evidence to support vitamin D supplementation for the reduction of asthma exacerbations. Evidence on the benefits of vitamin D supplementation for other asthma-related outcomes in children is either limited or inconclusive. We recommend that future trials focus on patient-relevant outcomes that are comparable across studies, including standardized definitions of asthma exacerbations.
Collapse
|
21
|
Fainardi V, Saglani S. The need to differentiate between adults and children when treating severe asthma. Expert Rev Respir Med 2015; 9:419-28. [PMID: 26175269 DOI: 10.1586/17476348.2015.1068693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe asthma at all ages is heterogeneous incorporating several phenotypes that are distinct in children and adults, however, there are also numerous similar features including the limitation that they may not remain stable longitudinally. Severe asthma in both children and adults is characterized by eosinophilic airway inflammation and evidence of airway remodeling. In adults, targeting eosinophilia with anti-IL-5 antibody therapy is very successful, resulting in the recommendation that sputum eosinophils should be used to guide treatment. In contrast, data for the efficacy of blocking IL-5 remain unavailable in children. However, its effectiveness is uncertain since many children with severe asthma have normal blood eosinophils and the dominance of Th2-mediated inflammation is controversial. Approaches that have revealed gene signatures and biomarkers such as periostin that are specific to adult disease now need to be adopted in children to identify effective pediatric specific therapeutics and minimize the extrapolation of adult therapeutics to children.
Collapse
Affiliation(s)
- Valentina Fainardi
- Leukocyte Biology and Respiratory Paediatrics, National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
22
|
Bush A, Pavord I. Year in review 2014. Paediatric and adult clinical studies. Thorax 2015; 70:368-72. [DOI: 10.1136/thoraxjnl-2015-206880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
23
|
The microbiome in asthma. J Allergy Clin Immunol 2015; 135:25-30. [PMID: 25567040 DOI: 10.1016/j.jaci.2014.11.011] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/27/2022]
Abstract
The application of recently developed sensitive, specific, culture-independent tools for identification of microbes is transforming concepts of microbial ecology, including concepts of the relationships between the vast complex populations of microbes associated with ourselves and with states of health and disease. Although most work initially focused on the community of microbes (microbiome) in the gastrointestinal tract and its relationship to gastrointestinal disease, interest has expanded to include study of the relationships of the airway microbiome to asthma and its phenotypes and to the relationships between the gastrointestinal microbiome, development of immune function, and predisposition to allergic sensitization and asthma. Here we provide our perspective on the findings of studies of differences in the airway microbiome between asthmatic patients and healthy subjects and of studies of relationships between environmental microbiota, gut microbiota, immune function, and asthma development. In addition, we provide our perspective on how these findings suggest the broad outline of a rationale for approaches involving directed manipulation of the gut and airway microbiome for the treatment and prevention of allergic asthma.
Collapse
|
24
|
Melén E. Bridging genetics, epidemiology, and respiratory medicine. Am J Respir Crit Care Med 2015; 190:716-8. [PMID: 25271741 DOI: 10.1164/rccm.201408-1524ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Erik Melén
- 1 Institute of Environmental Medicine and the Centre for Allergy Research Karolinska Institutet Stockholm, Sweden and
| |
Collapse
|
25
|
Snoeck HW. Modeling human lung development and disease using pluripotent stem cells. Development 2015; 142:13-6. [PMID: 25516965 DOI: 10.1242/dev.115469] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) into mature cells, tissues and organs holds major promise for the development of novel approaches in regenerative medicine, and provides a unique tool for disease modeling and drug discovery. Sometimes underappreciated is the fact that directed differentiation of hPSCs also provides a unique model for human development, with a number of important advantages over model organisms. Here, I discuss the importance of using human stem cell models for understanding human lung development and disease.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA Department of Medicine, Columbia University Medical Center, New York, NY, USA Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
26
|
Urrutia-Pereira M, Solé D. [Vitamin D deficiency in pregnancy and its impact on the fetus, the newborn and in childhood]. REVISTA PAULISTA DE PEDIATRIA 2015; 33:104-13. [PMID: 25662013 PMCID: PMC4436962 DOI: 10.1016/j.rpped.2014.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/09/2014] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Vitamin D deficiency (VDD) in pregnant women and their children is an important health problem with severe consequences for the health of both. Thus, the objectives of this review were to reassess the magnitude and consequences of VDD during pregnancy, lactation and infancy, associated risk factors, prevention methods, and to explore epigenetic mechanisms in early fetal life capable of explaining many of the non-skeletal benefits of vitamin D (ViD). DATA SOURCE Original and review articles, and consensus documents with elevated level of evidence for VDD-related clinical decisions on the health of pregnant women and their children, as well as articles on the influence of ViD on epigenetic mechanisms of fetal programming of chronic diseases in adulthood were selected among articles published on PubMed over the last 20 years, using the search term VitD status, in combination with Pregnancy, Offspring health, Child outcomes, and Programming. DATA SYNTHESIS The following items were analyzed: ViD physiology and metabolism, risk factors for VDD and implications in pregnancy, lactation and infancy, concentration cutoff to define VDD, the variability of methods for VDD detection, recommendations on ViD replacement in pregnant women, the newborn and the child, and the epigenetic influence of ViD. CONCLUSIONS VDD is a common condition among high-risk pregnant women and their children. The routine monitoring of serum 25(OH)D3 levels in antenatal period is mandatory. Early preventive measures should be taken at the slightest suspicion of VDD in pregnant women, to reduce morbidity during pregnancy and lactation, as well as its subsequent impact on the fetus, the newborn and the child.
Collapse
Affiliation(s)
| | - Dirceu Solé
- Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brasil
| |
Collapse
|
27
|
Lykkedegn S, Sorensen GL, Beck-Nielsen SS, Christesen HT. The impact of vitamin D on fetal and neonatal lung maturation. A systematic review. Am J Physiol Lung Cell Mol Physiol 2015; 308:L587-602. [PMID: 25595644 DOI: 10.1152/ajplung.00117.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/12/2015] [Indexed: 01/22/2023] Open
Abstract
Respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) are major complications to preterm birth. Hypovitaminosis D is prevalent in pregnancy. We systematically reviewed the evidence of the impact of vitamin D on lung development, surfactant synthesis, RDS, and BPD searching PubMed, Embase, and Cochrane databases with the terms vitamin D AND (surfactant OR lung maturation OR lung development OR respiratory distress syndrome OR fetal lung OR prematurity OR bronchopulmonary dysplasia). Three human studies, ten animal studies, two laboratory studies, and one combined animal and laboratory study were included. Human evidence was sparse, allowing no conclusions. BPD was not associated with vitamin D receptor polymorphism in a fully adjusted analysis. Animal and laboratory studies showed substantial positive effects of vitamin D on the alveolar type II cell, fibroblast proliferation, surfactant synthesis, and alveolarization. These data support the hypothesis of hypovitaminosis D as a frequent, modifiable risk factor of RDS and BPD, which should be tested in randomized controlled trials on pregnant women, those with threatening preterm delivery, or in the preterm neonates. Future experimental and human studies should aim to identify optimal time windows, vitamin D doses, and cut-off levels for 25-hydroxyvitamin D in interventions against RDS, BPD, and later adverse respiratory outcomes.
Collapse
Affiliation(s)
- Sine Lykkedegn
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Signe Sparre Beck-Nielsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; Clinical Institute, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
28
|
Abstract
Complex multifactorial diseases such as allergic rhinitis and asthma are not only becoming an increasing burden to healthcare systems, but especially affect the life quality of children and families suffering from their allergic symptoms. Also physicians are challenged by the multifaceted diseases as their work involves not only the often difficult decisions on case-adapted diagnostics, treatment, and monitoring, but also possible preventive measures. This review gives an outline of the latest scientific developments related to the etiology, diagnosis, and management of allergic airway diseases in childhood, as well as prenatal and early life risk factors and strategies for prevention.
Collapse
Affiliation(s)
- Stephanie Hofmaier
- Department of Paediatric Pneumology & Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Weiss ST, Litonjua AA. Maternal antibiotic use and childhood asthma: the missing link? THE LANCET RESPIRATORY MEDICINE 2014; 2:597-8. [PMID: 25066333 DOI: 10.1016/s2213-2600(14)70122-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|