1
|
Liao SX, Wang YW, Sun PP, Xu Y, Wang TH. Prospects of neutrophilic implications against pathobiology of chronic obstructive pulmonary disease: Pharmacological insights and technological advances. Int Immunopharmacol 2025; 144:113634. [PMID: 39577220 DOI: 10.1016/j.intimp.2024.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory condition that affects the lungs globally. A key feature of this inflammatory response is the migration and aggregation of polymorphonuclear neutrophils (PMNs). The presence of neutrophilic inflammation within the airways is as distinguishing characteristic of COPD. As research advances, PMNs and their products emerge as central players in the airway inflammatory cascade of COPD patients. Their involvement in phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs) significantly contributes to the pathogenesis of COPD. Moreover, studies have shown that excessive biological activities of neutrophils in the lungs can result in airway epithelial injury, emphysema, and mucus hypersecretion. Currently, there is growing empirical support for the moderate targeting neutrophils in the clinical management of COPD. This article delves into the pivotal role of neutrophils in COPD, emphasizing the urgency for novel therapeutic approaches that specifically target neutrophils. Additionally, it explores the potential of utilizing single-cell RNA sequencing to further investigate neutrophils and relevant risk genes as potential biomarkers for COPD treatment. By elucidating these mechanisms, this review aims to pave the way for future strategies to modulate neutrophil function, thereby addressing the pressing need for more effective COPD therapies.
Collapse
Affiliation(s)
- Shi-Xia Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yan-Wen Wang
- West China Clinical Medical College, Sichuan University, Chengdu 610041, China
| | - Peng-Peng Sun
- Department of Osteopathy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yang Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Vitucci ECM, Carberry CK, Payton A, Herring LE, Mordant AL, Kim YH, Gilmour MI, McCullough SD, Rager JE. Wildfire-relevant woodsmoke and extracellular vesicles (EVs): Alterations in EV proteomic signatures involved in extracellular matrix degradation and tissue injury in airway organotypic models. ENVIRONMENTAL RESEARCH 2025; 264:120395. [PMID: 39571711 DOI: 10.1016/j.envres.2024.120395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/16/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Wildfires adversely impact air quality and public health worldwide. Exposures to wildfire smoke are linked to adverse health outcomes, including cardiopulmonary diseases. Critical research gaps remain surrounding the underlying biological pathways leading to wildfire-induced health effects. The regulation of intercellular communication and downstream toxicity driven by extracellular vesicles (EVs) is an important, understudied biological mechanism. This study investigated EVs following a wildfire smoke-relevant in vitro exposure. We hypothesized that woodsmoke (WS) would alter the proteomic content of EVs secreted in organotypic in vitro airway models. Exposures were carried out using a tri-culture model of alveolar epithelial cells, fibroblasts, and endothelial cells and a simplified co-culture model of alveolar epithelial cells and fibroblasts to inform responses across different cell populations. Epithelial cells were exposed to WS condensate and EVs were isolated from basolateral conditioned medium following 24 h exposure. WS exposure did not influence EV particle characteristics, and it moderately increased EV count. Exposure caused the differential loading of 25 and 35 proteins within EVs collected from the tri- and co-culture model, respectively. EV proteins involved in extracellular matrix degradation and wound healing were consistently modulated across both models. However, distinct proteins involved in the wound healing pathway were altered between models, suggesting unique but concerted efforts across cell types to communicate in response to injury. These findings demonstrate that a wildfire-relevant exposure alters the EV proteome and suggest an impact on EV-mediated intercellular communication. Overall, results demonstrate the viability of organotypic approaches in evaluating EVs to investigate exposure-induced biomarkers and underlying mechanisms. Findings also highlight the impact of differences in the biological complexity of in vitro models used to evaluate the effects of inhaled toxicants.
Collapse
Affiliation(s)
- Eva C M Vitucci
- Interdisciplinary Faculty of Toxicology, School of Public Health, Texas A&M University, College Station, TX, USA; Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie L Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shaun D McCullough
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Exposure and Protection Group, Technology Advancement and Commercialization Unit, Research Triangle Institute International, Durham, NC 27709, USA; Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Yang Y, Lv M, Xu Q, Wang X, Fang Z. Extracellular Vesicles in Idiopathic Pulmonary Fibrosis: Pathogenesis, Biomarkers and Innovative Therapeutic Strategies. Int J Nanomedicine 2024; 19:12593-12614. [PMID: 39619058 PMCID: PMC11606342 DOI: 10.2147/ijn.s491335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease caused by aberrant deposition of extracellular matrix in the lungs with significant morbidity and mortality. The therapeutic choices for IPF remain limited. Extracellular vesicles (EVs), as messengers for intercellular communication, are cell-secreted lipid bilayer nanoscale particles found in body fluids, and regulate the epithelial phenotype and profibrotic signaling pathways by transporting bioactive cargo to recipients in the pathogenesis of IPF. Furthermore, an increasing number of studies suggests that EVs derived from stem cells can be employed as a cell-free therapeutic approach for IPF, given their intrinsic tissue-homing capabilities and regeneration characteristics. This review highlights new sights of EVs in the pathogenesis of IPF, their potential as diagnostic and prognostic biomarkers, and prospects as novel drug delivery systems and next-generation therapeutics against IPF. Notably, bringing engineering strategies to EVs holds great promise for enhancing the therapeutic effect of anti-pulmonary fibrosis and promoting clinical transformation.
Collapse
Affiliation(s)
- Yibao Yang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Mengen Lv
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Qing Xu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhujun Fang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
4
|
Mohamed BME, Abdelrahim MEA. Timing impact on the initiation of pirfenidone therapy on idiopathic pulmonary fibrosis disease progression. World J Clin Cases 2024; 12:6538-6542. [PMID: 39554893 PMCID: PMC11438636 DOI: 10.12998/wjcc.v12.i32.6538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/24/2024] Open
Abstract
In this editorial, we comment on the article by Lei et al, with a specific focus on the timing of the initiation of the antifibrotic agent pirfenidone (PFD) in the management of idiopathic pulmonary fibrosis (IPF) and its impact on lung function of IPF patients. PFD is an antifibrotic agent that is widely used in the management of IPF in both early and advanced stages. It inhibits various pathways and has antifibrotic, anti-inflammatory, and antioxidant properties. Despite dosage lowering, PFD slowed IPF progression and maintained functional capacity. The 6-min walk distance test indicated that patients tolerated adverse events well, and PFD significantly reduced the incidence of progression episodes and death. Even when a single disease-progression event occurred, continuing PFD treatment had benefits.
Collapse
Affiliation(s)
- Basma M E Mohamed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 343433, Egypt
| | - Mohamed E A Abdelrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 343433, Egypt
| |
Collapse
|
5
|
Ben-Meir E, Antounians L, Eisha S, Ratjen F, Zani A, Grasemann H. Extracellular vesicles in sputum of children with cystic fibrosis pulmonary exacerbations. ERJ Open Res 2024; 10:00547-2024. [PMID: 39655173 PMCID: PMC11626615 DOI: 10.1183/23120541.00547-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 12/12/2024] Open
Abstract
Background The aim of this study was to quantify mediators of neutrophilic inflammation within airway extracellular vesicles (EVs) of children treated for a cystic fibrosis (CF) pulmonary exacerbation (PEx). Methods EVs were isolated from stored sputum samples collected before and after antibiotic therapy for PEx between 2011 and 2013, and characterised by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Western blot analysis of EV protein extracts was used for EV canonical protein markers CD63, CD9 and flotillin-1 (FLOT1), as well as neutrophil elastase (NE), myeloperoxidase (MPO) and interleukin-8. The EV content of NE and MPO were expressed as ratios of NE/FLOT1 and MPO/FLOT1 protein band densities. Results Sputum samples from 21 children aged 13.3 (range 8.0-17.0) years were analysed. NTA showed high concentrations of particles at the size of small EVs (50-200 nm), and typical EV morphology was confirmed by TEM. CD63, CD9 and FLOT1 were detectable in all samples. Median (interquartile range (IQR)) NE/FLOT1 increased from 2.46 (1.68-5.25) before to 6.83 (3.89-8.89, p<0.001) after PEx therapy, and median (IQR) MPO/FLOT1 increased from 2.30 (1.38-4.44) before to 5.76 (3.45-6.94, p<0.01) after, while EV size remained unchanged. Improvement in lung function (percent predicted forced expiratory volume in 1 s (ppFEV1)) with PEx therapy correlated with NE EV content (r=0.657, p=0.001). Conclusions Airways of children with CF contain EVs that carry NE and MPO as cargo. The lower NE and MPO content at the time of PEx, compared with after therapy, and the correlation with pulmonary function suggest both a functional role of EVs in CF airway inflammation and the potential of EVs as a biomarker to monitor CF lung disease.
Collapse
Affiliation(s)
- Elad Ben-Meir
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Programs in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shafinaz Eisha
- Programs in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Programs in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Programs in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
6
|
Bhat AA, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Sekar M, Meenakshi DU, Singh SK, MacLoughlin R, Dua K. Unwinding circular RNA's role in inflammatory pulmonary diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2567-2588. [PMID: 37917370 DOI: 10.1007/s00210-023-02809-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression and cellular processes in various physiological and pathological conditions. In recent years, there has been a growing interest in investigating the role of circRNAs in inflammatory lung diseases, owing to their potential to modulate inflammation-associated pathways and contribute to disease pathogenesis. Inflammatory lung diseases, like asthma, chronic obstructive pulmonary disease (COPD), and COVID-19, pose significant global health challenges. The dysregulation of inflammatory responses demonstrates a pivotal function in advancing these diseases. CircRNAs have been identified as important players in regulating inflammation by functioning as miRNA sponges, engaging with RNA-binding proteins, and participating in intricate ceRNA networks. These interactions enable circRNAs to regulate the manifestation of key inflammatory genes and signaling pathways. Furthermore, emerging evidence suggests that specific circRNAs are differentially expressed in response to inflammatory stimuli and exhibit distinct patterns in various lung diseases. Their involvement in immune cell activation, cytokine production, and tissue remodeling processes underscores their possible capabilities as therapeutic targets and diagnostic biomarkers. Harnessing the knowledge of circRNA-mediated regulation in inflammatory lung diseases could lead to the development of innovative strategies for disease management and intervention. This review summarizes the current understanding of the role of circRNAs in inflammatory lung diseases, focusing on their regulatory mechanisms and functional implications.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
7
|
Hejenkowska ED, Yavuz H, Swiatecka-Urban A. Beyond Borders of the Cell: How Extracellular Vesicles Shape COVID-19 for People with Cystic Fibrosis. Int J Mol Sci 2024; 25:3713. [PMID: 38612524 PMCID: PMC11012075 DOI: 10.3390/ijms25073713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The interaction between extracellular vesicles (EVs) and SARS-CoV-2, the virus causing COVID-19, especially in people with cystic fibrosis (PwCF) is insufficiently studied. EVs are small membrane-bound particles involved in cell-cell communications in different physiological and pathological conditions, including inflammation and infection. The CF airway cells release EVs that differ from those released by healthy cells and may play an intriguing role in regulating the inflammatory response to SARS-CoV-2. On the one hand, EVs may activate neutrophils and exacerbate inflammation. On the other hand, EVs may block IL-6, a pro-inflammatory cytokine associated with severe COVID-19, and protect PwCF from adverse outcomes. EVs are regulated by TGF-β signaling, essential in different disease states, including COVID-19. Here, we review the knowledge, identify the gaps in understanding, and suggest future research directions to elucidate the role of EVs in PwCF during COVID-19.
Collapse
|
8
|
Bacalhau M, Camargo M, Lopes-Pacheco M. Laboratory Tools to Predict CFTR Modulator Therapy Effectiveness and to Monitor Disease Severity in Cystic Fibrosis. J Pers Med 2024; 14:93. [PMID: 38248793 PMCID: PMC10820563 DOI: 10.3390/jpm14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.
Collapse
Affiliation(s)
- Mafalda Bacalhau
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Mariana Camargo
- Department of Surgery, Division of Urology, Sao Paulo Federal University, Sao Paulo 04039-060, SP, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
9
|
Fang H, Dong T, Li S, Zhang Y, Han Z, Liu M, Dong W, Hong Z, Fu M, Zhang H. A Bibliometric Analysis of Comorbidity of COPD and Lung Cancer: Research Status and Future Directions. Int J Chron Obstruct Pulmon Dis 2023; 18:3049-3065. [PMID: 38149238 PMCID: PMC10750778 DOI: 10.2147/copd.s425735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
Objective Although studies on the association between COPD and lung cancer are of great significance, no bibliometric analysis has been conducted in the field of their comorbidity. This bibliometric analysis explores the current situation and frontier trends in the field of COPD and lung cancer comorbidity, and to lay a new direction for subsequent research. Methods Articles in the field of COPD and cancer comorbidity were retrieved from Web of Science Core Collections (WoSCC) from 2004 to 2023, and analyzed by VOSviewer, CiteSpace, Biblimatrix and WPS Office. Results In total, 3330 publications were included. The USA was the leading country with the most publications and great influence. The University of Groningen was the most productive institution. Edwin Kepner Silverman was the most influential scholar in this field. PLOS One was found to be the most prolific journal. Mechanisms and risk factors were of vital importance in this research field. Environmental pollution and pulmonary fibrosis may be future research prospects. Conclusion This bibliometric analysis provided new guidance for the development of the field of COPD and lung cancer comorbidity by visualizing current research hotspots, and predicting possible hot research directions in the future.
Collapse
Affiliation(s)
- Hanyu Fang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Tairan Dong
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
| | - Shanlin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
| | - Yihan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
| | - Zhuojun Han
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
| | - Mingfei Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Wenjun Dong
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Zheng Hong
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Min Fu
- Department of Infectious Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100029, People’s Republic of China
| | - Hongchun Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People’s Republic of China, 100029
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
10
|
González-Ruíz J, A Baccarelli A, Cantu-de-Leon D, Prada D. Air Pollution and Lung Cancer: Contributions of Extracellular Vesicles as Pathogenic Mechanisms and Clinical Utility. Curr Environ Health Rep 2023; 10:478-489. [PMID: 38052753 PMCID: PMC10822800 DOI: 10.1007/s40572-023-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE OF REVIEW This review addresses the pressing issue of air pollution's threat to human health, focusing on its connection to non-small cell lung cancer (NSCLC) development. The aim is to explore the role of extracellular vesicles (EVs) as potential pathogenic mechanisms in lung cancer, including NSCLC, induced by air pollutants. RECENT FINDINGS Recent research highlights EVs as vital mediators of intercellular communication and key contributors to cancer progression. Notably, this review emphasizes the cargo of EVs released by both cancerous and non-cancerous lung cells, shedding light on their potential role in promoting various aspects of tumor development. The review underscores the importance of comprehending the intricate interplay between air pollution, biological damage mechanisms, and EV-mediated communication during NSCLC development. Major takeaways emphasize the significance of this understanding in addressing air pollution-related lung cancer. Future research avenues are also highlighted, aiming to enhance the applicability of EVs for diagnosis and targeted therapies, ultimately mitigating the inevitable impact of air pollution on NSCLC development and treatment.
Collapse
Affiliation(s)
| | - Andrea A Baccarelli
- Mailman School of Public Health, Department of Environmental Health Sciences, Columbia University, New York City, NY, 10032, USA
| | | | - Diddier Prada
- Department of Population Health Science and Policy and the Department of Environmental Medicine and Public Health, Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl · (212) 241-6500, Room L2-38, New York City, NY, 10029, USA.
| |
Collapse
|
11
|
Fang H, Dong T, Han Z, Li S, Liu M, Liu Y, Yang Q, Fu M, Zhang H. Comorbidity of Pulmonary Fibrosis and COPD/Emphysema: Research Status, Trends, and Future Directions --------- A Bibliometric Analysis from 2004 to 2023. Int J Chron Obstruct Pulmon Dis 2023; 18:2009-2026. [PMID: 37720874 PMCID: PMC10505036 DOI: 10.2147/copd.s426763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023] Open
Abstract
Objective The comorbidity of pulmonary fibrosis and COPD/emphysema has garnered increasing attention. However, no bibliometric analysis of this comorbidity has been conducted thus far. This study aims to perform a bibliometric analysis to explore the current status and cutting-edge trends in the field, and to establish new directions for future research. Methods Statistical computing, graphics, and data visualization tools such as VOSviewer, CiteSpace, Biblimatrix, and WPS Office were employed. Results We identified a total of 1827 original articles and reviews on the comorbidity of pulmonary fibrosis and COPD/emphysema published between 2004 and 2023. There was an observed increasing trend in publications related to this comorbidity. The United States, Japan, and the United Kingdom were the countries with the highest contributions. Professor Athol Wells and the University of Groningen had the highest h-index and the most articles, respectively. Through cluster analysis of co-cited documents, we identified the top 17 major clusters. Keyword analysis predicted that NF-κB, oxidative stress, physical activity, and air pollution might be hot spots in this field in the future. Conclusion This bibliometric analysis demonstrates a continuous increasing trend in literature related to the comorbidity of pulmonary fibrosis and COPD/emphysema. The research hotspots and trends identified in this study provide a reference for in-depth research in this field, aiming to promote the development of the comorbidity of pulmonary fibrosis and COPD/emphysema.
Collapse
Affiliation(s)
- Hanyu Fang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Tairan Dong
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Zhuojun Han
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Shanlin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Mingfei Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ying Liu
- The Second Health and Medical Department, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Qiwen Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Min Fu
- Department of Infectious Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100029, People's Republic of China
| | - Hongchun Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
- Department of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
12
|
De Lorenzis E, Rindone A, Di Donato S, Del Galdo F. Circulating extracellular vesicles in the context of interstitial lung disease related to systemic sclerosis: A scoping literature review. Autoimmun Rev 2023; 22:103401. [PMID: 37482367 DOI: 10.1016/j.autrev.2023.103401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Interstitial lung disease (ILD) is a significant cause of disability and mortality in systemic sclerosis (SSc), where lung fibrosis stems from the interaction of cells within the epithelial, endothelial, interstitial, and immune cell compartments. Extracellular vesicles (EVs) are particles released by cells capable of transferring functionally active molecules, playing a crucial role in intercellular communication. This scoping review aims to identify and map existing evidence about the role of EVs as biomarkers or pathophysiological actors in SSc-ILD. It also retrospectively assesses the compliance of published articles with the current reporting guidelines established by the International Society of Extracellular Vesicles (ISEV). METHODS This scoping review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist. The searches were conducted up until 31 May 2023, with no restrictions on the starting year. RESULTS Out of 778 publications identified and screened, 9 references were selected. The eligible studies collectively involved a total of 539 SSc patients, with 220 patients presenting with ILD, as demonstrated by high-resolution computed tomography. The studies largely focused on the quantitative assessment of EVs through flow cytometry, primarily concerning larger EVs. The studies primarily focused on the association of EV features with vascular complications, with fibrotic pulmonary involvement typically explored as a secondary finding. The evaluated patients' clinical characteristics were significantly heterogeneous across the studies as well as the association of EV features with the evidence of ILD but none of them longitudinally investigated the relationships with SSc-ILD prognosis. Adherence of these exploratory studies to ISEV reporting guidelines in terms of EV nomenclature, reporting of pre-analytic variables, and qualitative verification of EV separation products was incomplete. CONCLUSIONS The evidence concerning the clinical association of EV features is limited and conflicting. The interpretation of available data is substantially biased due to patient selection tailored for vascular complications, heterogeneity of separation methodology, and a lack of validation procedures.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom; Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Andrea Rindone
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom; Department of Rheumatology and Medical Science, University of Milan, ASST Gaetano Pini-CTO Institute, Milan, Italy.
| | - Stefano Di Donato
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.
| |
Collapse
|
13
|
Shin B, Lee JY, Im Y, Yoo H, Park J, Lee JS, Lee KY, Jeon K. Prognostic implication of downregulated exosomal miRNAs in patients with sepsis: a cross-sectional study with bioinformatics analysis. J Intensive Care 2023; 11:35. [PMID: 37537685 PMCID: PMC10399058 DOI: 10.1186/s40560-023-00683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Despite the understanding of sepsis-induced extracellular vesicles (EVs), such as exosomes, and their role in intercellular communication during sepsis, little is known about EV contents such as microRNA (miRNA), which modulate important cellular processes contributing to sepsis in body fluids. This study aimed to analyze the differential expression of exosomal miRNAs in plasma samples collected from sepsis patients and healthy controls, and to identify potential miRNA regulatory pathways contributing to sepsis pathogenesis. METHODS Quantitative real-time PCR-based microarrays were used to profile plasma exosomal miRNA expression levels in 135 patients with sepsis and 11 healthy controls from an ongoing prospective registry of critically ill adult patients admitted to the intensive care unit. The identified exosomal miRNAs were tested in an external validation cohort (35 sepsis patients and 10 healthy controls). And then, functional enrichment analyses of gene ontology, KEGG pathway analysis, and protein-protein interaction network and cluster analyses were performed based on the potential target genes of the grouped miRNAs. Finally, to evaluate the performance of the identified exosomal miRNAs in predicting in-hospital and 90-day mortalities of sepsis patients, receiver operating characteristic curve (ROC) and Kaplan-Meier analyses were performed. RESULTS Compared with healthy controls, plasma exosomes from sepsis patients showed significant changes in 25 miRNAs; eight miRNAs were upregulated and 17 downregulated. Additionally, the levels of hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p were significantly lower in sepsis patients than in healthy controls (p < 0.0001). These four miRNAs were confirmed in an external validation cohort. In addition, the most common pathway for these four miRNAs were PI3K-Akt and mitogen-activated protein kinase (MAPK) signaling pathways based on the KEGG analysis. The area under the ROC of hsa-let-7f-5p, miR-331-3p, miR-301a-3p, and miR-335-5p level for in-hospital mortality was 0.913, 0.931, 0.929, and 0.957, respectively (p < 0.001), as confirmed in an external validation cohort. Also, the Kaplan-Meier analysis showed a significant difference in 90-day mortality between sepsis patients with high and low miR-335-5p, miR-301a-3p, hsa-let-7f-5p, and miR-331-3p levels (p < 0.001, log-rank test). CONCLUSION Among the differentially-expressed miRNAs detected in microarrays, the top four downregulated exosomal miRNAs (hsa-let-7f-5p, miR-331-3p miR-301a-3p, and miR-335-5p) were identified as independent prognostic factors for in-hospital and 90-day mortalities among sepsis patients. Bioinformatics analysis demonstrated that these four microRNAs might provide a significant contribution to sepsis pathogenesis through PI3K-Akt and MAPK signaling pathway.
Collapse
Affiliation(s)
- Beomsu Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Jin Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Yunjoo Im
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Hongseok Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Junseon Park
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joo Sang Lee
- Department of Artificial Intelligence and Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ki-Young Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkawan University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
15
|
Trappe A, Lakkappa N, Carter S, Dillon E, Wynne K, McKone E, McNally P, Coppinger JA. Investigating serum extracellular vesicles in Cystic Fibrosis. J Cyst Fibros 2023; 22:674-679. [PMID: 36858853 DOI: 10.1016/j.jcf.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are emerging as biomarkers of disease with diagnostic potential in CF. With the advent of highly effective modulator therapy, sputum production is less common and there is a need to identify novel markers of CF disease progression, exacerbation and response to therapies in accessible fluids such as serum. METHODS We used size exclusion chromatography (SEC) to isolate and characterise EVs from the blood of PWCF of different ages and compared to ultracentrifugation (UC). We used nanoparticle tracking analysis to measure the number of EVs present in serum obtained from children and adults with CF. Mass spectrometry based proteomics was used to characterise protein expression changes between the groups. RESULTS EVs were successfully isolated in SEC fractions from 250 µl serum from PWCF in greater numbers (p <0.01) than density ultracentrifugation. There was not a significant difference in EV numbers between young children with CF and controls. However, there was significantly more EVs in adults compared to children (<6yrs) (p < 0.05). EVs from PWCF before and after Kaftrio treatment were also analysed. Significant protein expression changes were observed within all 3 group. The largest changes detected were between children and adults with CF (57 proteins had a 1.5 fold change in expression with 19 significant changes p < 0.05) and PWCF taking Kaftrio (24 significant changes in EV protein expression was observed 12 months post treatment). CONCLUSION In this pilot study, we performed an initial characterisation of EVs in serum from PWCF demonstrating the potential of serum EVs for further diagnostic investigation.
Collapse
Affiliation(s)
- Anne Trappe
- National Children's Research Centre, Children's Health Ireland, Dublin 12, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Navya Lakkappa
- National Children's Research Centre, Children's Health Ireland, Dublin 12, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | | | - Eugene Dillon
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Edward McKone
- St. Vincent's University Hospital, Dublin 4, Ireland
| | - Paul McNally
- National Children's Research Centre, Children's Health Ireland, Dublin 12, Ireland; Department of Paediatrics, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Judith A Coppinger
- National Children's Research Centre, Children's Health Ireland, Dublin 12, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| |
Collapse
|
16
|
Wu J, Ma Y, Chen Y. Extracellular vesicles and COPD: foe or friend? J Nanobiotechnology 2023; 21:147. [PMID: 37147634 PMCID: PMC10161449 DOI: 10.1186/s12951-023-01911-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease characterized by progressive airflow limitation. The complex biological processes of COPD include protein hydrolysis tissue remodeling, innate immune inflammation, disturbed host-pathogen response, abnormal cellular phenotype conversion, and cellular senescence. Extracellular vesicles (EVs) (including apoptotic vesicles, microvesicles and exosomes), are released by almost all cell types and can be found in a variety of body fluids including blood, sputum and urine. EVs are key mediators in cell-cell communication and can be used by using their bioactive substances (DNA, RNA, miRNA, proteins and other metabolites) to enable cells in adjacent and distant tissues to perform a wide variety of functions, which in turn affect the physiological and pathological functions of the body. Thus, EVs is expected to play an important role in the pathogenesis of COPD, which in turn affects its acute exacerbations and may serve as a diagnostic marker for it. Furthermore, recent therapeutic approaches and advances have introduced EVs into the treatment of COPD, such as the modification of EVs into novel drug delivery vehicles. Here, we discuss the role of EVs from cells of different origins in the pathogenesis of COPD and explore their possible use as biomarkers in diagnosis, and finally describe their role in therapy and future prospects for their application. Graphical Abstract.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yiming Ma
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
17
|
Shchepikhin EI, Shmelev EI, Ergeshov AE, Zaytseva AS, Shergina EA, Adamovskaya E. Possibilities of non-invasive diagnosis of fibrotic phenotype of interstitial lung diseases. TERAPEVT ARKH 2023; 95:230-235. [PMID: 37167144 DOI: 10.26442/00403660.2023.03.202073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
Progressive pulmonary fibrosis is a major problem in respiratory medicine. Currently, there are no reliable biomarkers for early diagnosis of progressive pulmonary fibrosis, which leads to delayed diagnosis. AIM To determine the role of serum biomarkers CA-19-9 and CA-125 and the possibilities of capillaroscopy of the nail fold in the diagnosis of progressive pulmonary fibrosis. MATERIALS AND METHODS The study included 43 patients with interstitial changes in the lungs. Based on the presence/absence of signs of progression over the previous 12 months, patients were divided into 2 groups. All patients underwent forced spirometry, body plethysmography, diffusion test, CT, lung ultrasound, capillaroscopy of the nail fold, study of serum concentrations of CA-19-9 and CA-125. RESULTS In the group of patients with a progressive fibrotic phenotype of Interstitial lung diseases, a greater severity of capillaroscopic changes and a higher level of CA-19-9 were revealed. Correlation of these parameters with changes according to CT scan data (Warrick test) and lung ultrasound was shown. CONCLUSION The data obtained demonstrate the possibilities of non-invasive diagnosis of progressive fibrosing interstitial lung diseases and require further research and prospective follow-up to assess the diagnostic and prognostic role of the studied biomarkers, as well as to determine their place in clinical practice.
Collapse
|
18
|
Kim JW, Jeong MH, Yu HT, Park YJ, Kim HS, Chung KH. Fibrinogen on extracellular vesicles derived from polyhexamethylene guanidine phosphate-exposed mice induces inflammatory effects via integrin β. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114600. [PMID: 36736230 DOI: 10.1016/j.ecoenv.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p), used as a humidifier disinfectant, causes interstitial lung disease, obliterative bronchiolitis, and lung fibrosis; however, little is known about its effect on intercellular interactions. Extracellular vesicles (EVs), which carry diverse compounds including proteins, RNA, and DNA to mediate cell-to-cell communication through their paracrine effects, have been highlighted as novel factors in lung fibrogenesis. This study aimed to identify the effect of proteins on small EVs (sEVs) from bronchoalveolar lavage fluid (BALF) of the recipient cells after PHMG-p exposure. A week after intratracheal administration of PHMG-p, sEVs were isolated from BALF of tissue showing overexpressed inflammatory and fibrosis markers. To investigate the role of sEVs in inflammation, naïve macrophages were cultured with sEVs, which induced their activation. To identify sEV proteins that are associated with these responses, proteomics analysis was performed. In the gene ontology analysis, coagulation, fibrinolysis, and hemostasis were associated with the upregulated proteins in sEVs. The highest increase was observed in fibrinogen levels, which was also related to those gene ontologies. We validated role of exosomal fibrinogen in inflammation using recombinant fibrinogen and an inhibitor of the integrin, which is the binding receptor for fibrinogen. Overall, we elucidated that increased fibrinogen levels in the early sEVs-PHMG activated inflammatory response during early fibrosis. These results suggest that sEVs from the BALF of PHMG-p-exposed mice could aggravate fibrogenesis by activating naïve macrophages via various proteins in the sEVs, Furthermore, this finding will be broadening the spectrum of communicating mediators.
Collapse
Affiliation(s)
- Jun Woo Kim
- Sungkyunkwan University, School of Pharmacy, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Mi Ho Jeong
- Massachusetts General Hospital, Center for Systems Biology, Boston, MA 02114, USA
| | - Hyeong Tae Yu
- Sungkyunkwan University, School of Pharmacy, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yong Joo Park
- Kyungsung University, College of Pharmacy, Busan 48434, Republic of Korea
| | - Hyung Sik Kim
- Sungkyunkwan University, School of Pharmacy, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Kyu Hyuck Chung
- Sungkyunkwan University, School of Pharmacy, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
19
|
Uddin MN, Emran TB. Prevention of Progression and Remission in Public Health Sectors: Bangladesh Perspectives. ATLANTIS HIGHLIGHTS IN CHEMISTRY AND PHARMACEUTICAL SCIENCES 2023:131-150. [DOI: 10.2991/978-94-6463-130-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Extracellular Vesicles' Role in the Pathophysiology and as Biomarkers in Cystic Fibrosis and COPD. Int J Mol Sci 2022; 24:ijms24010228. [PMID: 36613669 PMCID: PMC9820204 DOI: 10.3390/ijms24010228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
In keeping with the extraordinary interest and advancement of extracellular vesicles (EVs) in pathogenesis and diagnosis fields, we herein present an update to the knowledge about their role in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Although CF and COPD stem from a different origin, one genetic and the other acquired, they share a similar pathophysiology, being the CF transmembrane conductance regulator (CFTR) protein implied in both disorders. Various subsets of EVs, comprised mainly of microvesicles (MVs) and exosomes (EXOs), are secreted by various cell types that are either resident or attracted in the airways during the onset and progression of CF and COPD lung disease, representing a vehicle for metabolites, proteins and RNAs (especially microRNAs), that in turn lead to events as such neutrophil influx, the overwhelming of proteases (elastase, metalloproteases), oxidative stress, myofibroblast activation and collagen deposition. Eventually, all of these pathomechanisms lead to chronic inflammation, mucus overproduction, remodeling of the airways, and fibrosis, thus operating a complex interplay among cells and tissues. The detection of MVs and EXOs in blood and biological fluids coming from the airways (bronchoalveolar lavage fluid and sputum) allows the consideration of EVs and their cargoes as promising biomarkers for CF and COPD, although clinical expectations have yet to be fulfilled.
Collapse
|
21
|
Savic I, Farver C, Milovanovic P. Pathogenesis of Pulmonary Calcification and Homologies with Biomineralization in Other Tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1496-1505. [PMID: 36030837 DOI: 10.1016/j.ajpath.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Lungs often present tissue calcifications and even ossifications, both in the context of high or normal serum calcium levels. Precise mechanisms governing lung calcifications have not been explored. Herein, we emphasize recent advances about calcification processes in other tissues (especially vascular and bone calcifications) and discuss potential sources of calcium precipitates in the lungs, involvement of mineralization promoters and crystallization inhibitors, as well as specific cytokine milieu and cellular phenotypes characteristic for lung diseases, which may be involved in pulmonary calcifications. Further studies are necessary to demonstrate the exact mechanisms underlying calcifications in the lungs, document homologies in biomineralization processes between various tissues in physiological and pathologic conditions, and unravel any locally specific characteristics of mineralization processes that may be targeted to reduce or prevent functionally relevant lung calcifications without negatively affecting the skeleton.
Collapse
Affiliation(s)
- Ivana Savic
- Institute of Pathology, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Carol Farver
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Petar Milovanovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, University of Belgrade Faculty of Medicine, Belgrade, Serbia; Center of Bone Biology, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
22
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
23
|
Yang Y, Huang H, Li Y. Roles of exosomes and exosome-derived miRNAs in pulmonary fibrosis. Front Pharmacol 2022; 13:928933. [PMID: 36034858 PMCID: PMC9403513 DOI: 10.3389/fphar.2022.928933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive fibrosing interstitial lung disease of unknown etiology that leads rapidly to death. It is characterized by the replacement of healthy tissue through an altered extracellular matrix and damage to the alveolar structure. New pharmacological treatments and biomarkers are needed for pulmonary fibrosis to ensure better outcomes and earlier diagnosis of patients. Exosomes are nanoscale vesicles released by nearly all cell types that play a central role as mediators of cell-to-cell communication. Moreover, exosomes are emerging as a crucial factor in antigen presentation, immune response, immunomodulation, inflammation, and cellular phenotypic transformation and have also shown promising therapeutic potential in pulmonary fibrosis. This review summarizes current knowledge of exosomes that may promote pulmonary fibrosis and be utilized for diagnostics and prognostics. In addition, the utilization of exosomes and their cargo miRNAs as novel therapeutics and their potential mechanisms are also discussed. This review aims to elucidate the role of exosomes in the pathogenesis of pulmonary fibrosis and paves the way for developing novel therapeutics for pulmonary fibrosis. Further in-depth research and clinical trials on this topic are encouraged in the future.
Collapse
Affiliation(s)
- Yongfeng Yang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Huang
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Transplantation Engineering and Immunology, Institute of Clinical Pathology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Precision Medicine Key Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yi Li,
| |
Collapse
|
24
|
Abstract
ABSTRACT Extracellular vesicles (EVs) are anuclear particles composed of lipid bilayers that contain nucleic acids, proteins, lipids, and organelles. EVs act as an important mediator of cell-to-cell communication by transmitting biological signals or components, including lipids, proteins, messenger RNAs, DNA, microRNAs, organelles, etc, to nearby or distant target cells to activate and regulate the function and phenotype of target cells. Under physiological conditions, EVs play an essential role in maintaining the homeostasis of the pulmonary milieu but they can also be involved in promoting the pathogenesis and progression of various respiratory diseases including chronic obstructive pulmonary disease, asthma, acute lung injury/acute respiratory distress syndrome, idiopathic pulmonary fibrosis (IPF), and pulmonary artery hypertension. In addition, in multiple preclinical studies, EVs derived from mesenchymal stem cells (EVs) have shown promising therapeutic effects on reducing and repairing lung injuries. Furthermore, in recent years, researchers have explored different methods for modifying EVs or enhancing EVs-mediated drug delivery to produce more targeted and beneficial effects. This article will review the characteristics and biogenesis of EVs and their role in lung homeostasis and various acute and chronic lung diseases and the potential therapeutic application of EVs in the field of clinical medicine.
Collapse
|
25
|
D’Amato M, Iadarola P, Viglio S. Proteomic Analysis of Human Sputum for the Diagnosis of Lung Disorders: Where Are We Today? Int J Mol Sci 2022; 23:ijms23105692. [PMID: 35628501 PMCID: PMC9144372 DOI: 10.3390/ijms23105692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
The identification of markers of inflammatory activity at the early stages of pulmonary diseases which share common characteristics that prevent their clear differentiation is of great significance to avoid misdiagnosis, and to understand the intrinsic molecular mechanism of the disorder. The combination of electrophoretic/chromatographic methods with mass spectrometry is currently a promising approach for the identification of candidate biomarkers of a disease. Since the fluid phase of sputum is a rich source of proteins which could provide an early diagnosis of specific lung disorders, it is frequently used in these studies. This report focuses on the state-of-the-art of the application, over the last ten years (2011-2021), of sputum proteomics in the investigation of severe lung disorders such as COPD; asthma; cystic fibrosis; lung cancer and those caused by COVID-19 infection. Analysis of the complete set of proteins found in sputum of patients affected by these disorders has allowed the identification of proteins whose levels change in response to the organism's condition. Understanding proteome dynamism may help in associating these proteins with alterations in the physiology or progression of diseases investigated.
Collapse
Affiliation(s)
- Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.D.); (S.V.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence:
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.D.); (S.V.)
| |
Collapse
|
26
|
Aimo A, Spitaleri G, Nieri D, Tavanti LM, Meschi C, Panichella G, Lupón J, Pistelli F, Carrozzi L, Bayes-Genis A, Emdin M. Pirfenidone for Idiopathic Pulmonary Fibrosis and Beyond. Card Fail Rev 2022; 8:e12. [PMID: 35516794 PMCID: PMC9062707 DOI: 10.15420/cfr.2021.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Pirfenidone (PFD) slows the progression of idiopathic pulmonary fibrosis (IPF) by inhibiting the exaggerated fibrotic response and possibly through additional mechanisms, such as anti-inflammatory effects. PFD has also been evaluated in other fibrosing lung diseases. Myocardial fibrosis is a common feature of several heart diseases and the progressive deposition of extracellular matrix due to a persistent injury to cardiomyocytes may trigger a vicious cycle that leads to persistent structural and functional alterations of the myocardium. No primarily antifibrotic medications are used to treat patients with heart failure. There is some evidence that PFD has antifibrotic actions in various animal models of cardiac disease and a phase II trial on patients with heart failure and preserved ejection fraction has yielded positive results. This review summarises the evidence about the possible mechanisms of IPF and modulation by PFD, the main results about IPF or non-IPF interstitial pneumonias and also data about PFD as a potential protective cardiac drug.
Collapse
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giosafat Spitaleri
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Dari Nieri
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Laura Maria Tavanti
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Claudia Meschi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Josep Lupón
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesco Pistelli
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy
| | - Laura Carrozzi
- Pulmonary Unit, Cardiothoracic and Vascular Department, Pisa University Hospital, Pisa, Italy; Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Antoni Bayes-Genis
- Heart Failure Clinic and Cardiology Service, University Hospital Germans Trias i Pujol, Badalona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy; Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
27
|
Extracellular Lipids in the Lung and Their Role in Pulmonary Fibrosis. Cells 2022; 11:cells11071209. [PMID: 35406772 PMCID: PMC8997955 DOI: 10.3390/cells11071209] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lipids are major actors and regulators of physiological processes within the lung. Initial research has described their critical role in tissue homeostasis and in orchestrating cellular communication to allow respiration. Over the past decades, a growing body of research has also emphasized how lipids and their metabolism may be altered, contributing to the development and progression of chronic lung diseases such as pulmonary fibrosis. In this review, we first describe the current working model of the mechanisms of lung fibrogenesis before introducing lipids and their cellular metabolism. We then summarize the evidence of altered lipid homeostasis during pulmonary fibrosis, focusing on their extracellular forms. Finally, we highlight how lipid targeting may open avenues to develop therapeutic options for patients with lung fibrosis.
Collapse
|
28
|
Yang T, Wang J, Zhao J, Liu Y. Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 2022; 49:37. [PMID: 35088880 PMCID: PMC8815412 DOI: 10.3892/ijmm.2022.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, irreversible and life‑threatening lung disease. However, the pathogenesis and molecular mechanisms of this condition remain unclear. Extracellular vesicles (EVs) are structures derived from the plasma membrane, with a diameter ranging from 30 nm to 5 µm, that play an important role in cell‑to‑cell communications in lung disease, particularly between epithelial cells and the pulmonary microenvironment. In particular, exosomes are a type of EV that can deliver cargo molecules, including endogenous proteins, lipids and nucleic acids, such as microRNAs (miRNAs/miRs). These cargo molecules are encapsulated in lipid bilayers through target cell internalization, receptor‑ligand interactions or lipid membrane fusion. miRNAs are single‑stranded RNA molecules that regulate cell differentiation, proliferation and apoptosis by degrading target mRNAs or inhibiting translation to modulate gene expression. The aim of the present review was to discuss the current knowledge available on exosome biogenesis, composition and isolation methods. The role of miRNAs in the pathogenesis of PF was also reviewed. In addition, emerging diagnostic and therapeutic properties of exosomes and exosomal miRNAs in PF were described, in order to highlight the potential applications of exosomal miRNAs in PF.
Collapse
Affiliation(s)
- Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- The First Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiaying Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
29
|
Finicelli M, Digilio FA, Galderisi U, Peluso G. The Emerging Role of Macrophages in Chronic Obstructive Pulmonary Disease: The Potential Impact of Oxidative Stress and Extracellular Vesicle on Macrophage Polarization and Function. Antioxidants (Basel) 2022; 11:antiox11030464. [PMID: 35326114 PMCID: PMC8944669 DOI: 10.3390/antiox11030464] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common airway diseases, and it is considered a major global health problem. Macrophages are the most representative immune cells in the respiratory tract, given their role in surveying airways, removing cellular debris, immune surveillance, and resolving inflammation. Macrophages exert their functions by adopting phenotypical changes based on the stimuli they receive from the surrounding tissue. This plasticity is described as M1/M2 macrophage polarization, which consists of a strictly coordinated process leading to a difference in the expression of surface markers, the production of specific factors, and the execution of biological activities. This review focuses on the role played by macrophages in COPD and their implication in inflammatory and oxidative stress processes. Particular attention is on macrophage polarization, given macrophage plasticity is a key feature in COPD. We also discuss the regulatory influence of extracellular vesicles (EVs) in cell-to-cell communications. EV composition and cargo may influence many COPD-related aspects, including inflammation, tissue remodeling, and macrophage dysfunctions. These findings could be useful for better addressing the role of macrophages in the complex pathogenesis and outcomes of COPD.
Collapse
Affiliation(s)
- Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
- Correspondence: (M.F.); (G.P.); Tel.: +39-0816132553 (M.F.); +39-0816132280 (G.P.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy;
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Correspondence: (M.F.); (G.P.); Tel.: +39-0816132553 (M.F.); +39-0816132280 (G.P.)
| |
Collapse
|
30
|
Ma Y, He X, Liu X, Long Y, Chen Y. Endothelial Microparticles Derived from Primary Pulmonary Microvascular Endothelial Cells Mediate Lung Inflammation in Chronic Obstructive Pulmonary Disease by Transferring microRNA-126. J Inflamm Res 2022; 15:1399-1411. [PMID: 35250291 PMCID: PMC8896043 DOI: 10.2147/jir.s349818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/12/2022] [Indexed: 12/14/2022] Open
Abstract
Background Extracellular vesicles (EVs) are considered to new types of intercellular communication media, and microRNA is one of the most common transferring components of EVs. This study aimed to explore the potential role of endothelial microparticles (EMPs) derived from primary pulmonary microvascular endothelial cells in regulating lung inflammation of chronic obstructive pulmonary disease (COPD) through transferring microRNA-126 (miR-126). Methods EMPs generated from primary pulmonary microvascular endothelial cells were isolated by gradient centrifugation and characterized by transmission electron microscopy, flow cytometry and Western blotting. EMPs were treated to in vitro and in vivo COPD models induced by cigarette smoke extract (CSE). miR-126 mimics or inhibitors were transfected into EMPs by calcium chloride. Pathological changes of lung tissue, mRNA and protein levels of inflammation-related factors were measured to explore the effect of EMPs transferring miR-126 on CSE-induced inflammation. Results Both in vitro and in vivo studies demonstrated that mRNA and protein levels of inflammation-related factors were significantly increased in COPD group, while EMPs could dramatically reverse these increases. In vitro, overexpression of miR-126 in EMPs decreased HMGB1 expression and magnified the decreasing effect of EMPs on inflammation-related factors. Conclusion The present study reveals that EMPs are capable of alleviating lung inflammation and transferring miR-126 can magnify the anti-inflammatory effect of EMPs, which may provide a novel therapeutic alternative for COPD.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xue He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Yingjiao Long
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
- Correspondence: Yan Chen; Yingjiao Long, Email ;
| |
Collapse
|
31
|
Hsu MT, Wang YK, Tseng YJ. Exosomal Proteins and Lipids as Potential Biomarkers for Lung Cancer Diagnosis, Prognosis, and Treatment. Cancers (Basel) 2022; 14:cancers14030732. [PMID: 35158999 PMCID: PMC8833740 DOI: 10.3390/cancers14030732] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Exosomes (or extracellular vesicles) are known to mediate intercellular communication and to transmit molecular signals between cells. Molecules carried by exosomes have their own molecular roles in affecting surrounding and distant environment, as well as recipient cells. Molecular components of exosomes can be used as cancer biomarkers for diagnosis and prognosis, being promising therapeutic targets for the interruption of cellular signals. Therefore, the understanding of the molecular compositions and their functional indications of exosomes has the potential to help doctors to diagnose and monitor diseases and to allow researchers to design and develop potential targeted therapies. This review aims to provide a comprehensive protein and lipid characterization of lung cancer exosomes and to explore their molecular functions and mechanisms regulating physiological and pathological processes. This organization offers informative insight for lung cancer diagnosis and treatment. Abstract Exosomes participate in cell–cell communication by transferring molecular components between cells. Previous studies have shown that exosomal molecules derived from cancer cells and liquid biopsies can serve as biomarkers for cancer diagnosis and prognosis. The exploration of the molecules transferred by lung cancer-derived exosomes can advance the understanding of exosome-mediated signaling pathways and mechanisms. However, the molecular characterization and functional indications of exosomal proteins and lipids have not been comprehensively organized. This review thoroughly collected data concerning exosomal proteins and lipids from various lung cancer samples, including cancer cell lines and cancer patients. As potential diagnostic and prognostic biomarkers, exosomal proteins and lipids are available for clinical use in lung cancer. Potential therapeutic targets are mentioned for the future development of lung cancer therapy. Molecular functions implying their possible roles in exosome-mediated signaling are also discussed. Finally, we emphasized the importance and value of lung cancer stem cell-derived exosomes in lung cancer therapy. In summary, this review presents a comprehensive description of the protein and lipid composition and function of lung cancer-derived exosomes for lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Ming-Tsung Hsu
- Genome and Systems Biology Degree Program, College of Life Science, Academia Sinica and National Taiwan University, Taipei 106319, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
| | - Yu-Ke Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
| | - Yufeng Jane Tseng
- Genome and Systems Biology Degree Program, College of Life Science, Academia Sinica and National Taiwan University, Taipei 106319, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan;
- Department of Computer Science and Information Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei 106319, Taiwan
- Correspondence:
| |
Collapse
|
32
|
Ruan R, Deng X, Dong X, Wang Q, Lv X, Si C. Microbiota Emergencies in the Diagnosis of Lung Diseases: A Meta-Analysis. Front Cell Infect Microbiol 2021; 11:709634. [PMID: 34621687 PMCID: PMC8490768 DOI: 10.3389/fcimb.2021.709634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Although many studies have reported that microbiota emergencies are deeply involved in the occurrence and subsequent progression of lung diseases, the present diagnosis of lung disease depends on microbiota markers, which is still poorly understood. Therefore, a meta-analysis was performed to confirm lung microbiota markers for the diagnosis of lung diseases. Literature databases were searched following the inclusion and exclusion criteria. There are 6 studies including 1347 patients and 26 comparisons to be enrolled, and then the diagnostic effect was evaluated using Stata 14.0 and Meta-disc 1.4 software. The pooled sensitivity (SEN), specificity (SPE), diagnostic likelihood ratio positive (DLR+), diagnostic likelihood ratio negative (DLR-), and diagnostic OR (DOR), as well as area under the curve (AUC) of microbiota markers in the diagnosis of lung diseases were 0.90 (95% CI: 0.83-0.94), 0.89 (95% CI: 0.76-0.95), 7.86 (95% CI: 3.39-18.21), 0.12 (95% CI: 0.06-0.21), 22.254 (95% CI: 12.83-39.59.14), and 0.95 (95% CI: 0.93-0.97), respectively. Subgroup analysis revealed that research based on Caucasian, adult, BAL fluid, PCR, pneumonia obtained higher AUC values. The microbiota markers have shown potential diagnosis value for lung diseases. But further large-scale clinical studies are still needed to verify and replicate the diagnostic value of lung microbiota markers.
Collapse
Affiliation(s)
- Renyu Ruan
- College of Undergradute, Jiangsu Food & Pharmaceutical Science College, Huaian, China
| | - Xiangmin Deng
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Xiaoyan Dong
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Qi Wang
- College of Pharmacy, Harbin Medical University-Daqing, Da Qing, China
| | - Xiaoling Lv
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
| | - Caijuan Si
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
33
|
Szalontai K, Gémes N, Furák J, Varga T, Neuperger P, Balog JÁ, Puskás LG, Szebeni GJ. Chronic Obstructive Pulmonary Disease: Epidemiology, Biomarkers, and Paving the Way to Lung Cancer. J Clin Med 2021; 10:jcm10132889. [PMID: 34209651 PMCID: PMC8268950 DOI: 10.3390/jcm10132889] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), the frequently fatal pathology of the respiratory tract, accounts for half a billion cases globally. COPD manifests via chronic inflammatory response to irritants, frequently to tobacco smoke. The progression of COPD from early onset to advanced disease leads to the loss of the alveolar wall, pulmonary hypertension, and fibrosis of the respiratory epithelium. Here, we focus on the epidemiology, progression, and biomarkers of COPD with a particular connection to lung cancer. Dissecting the cellular and molecular players in the progression of the disease, we aim to shed light on the role of smoking, which is responsible for the disease, or at least for the more severe symptoms and worse patient outcomes. We summarize the inflammatory conditions, as well as the role of EMT and fibroblasts in establishing a cancer-prone microenvironment, i.e., the soil for ‘COPD-derived’ lung cancer. We highlight that the major health problem of COPD can be alleviated via smoking cessation, early diagnosis, and abandonment of the usage of biomass fuels on a global basis.
Collapse
Affiliation(s)
- Klára Szalontai
- Csongrád County Hospital of Chest Diseases, Alkotmány u. 36., H6772 Deszk, Hungary;
| | - Nikolett Gémes
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - József Furák
- Department of Surgery, University of Szeged, Semmelweis u. 8., H6725 Szeged, Hungary;
| | - Tünde Varga
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- PhD School in Biology, University of Szeged, H6726 Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- Avicor Ltd. Alsó Kikötő sor 11/D, H6726 Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62., H6726 Szeged, Hungary; (N.G.); (T.V.); (P.N.); (J.Á.B.); (L.G.P.)
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
- CS-Smartlab Devices Ltd., Ady E. u. 14., H7761 Kozármisleny, Hungary
- Correspondence:
| |
Collapse
|