1
|
Mai Y, Cheung V, Louie PKK, Leung K, Fung JCH, Lau AKH, Blake DR, Gu D. Characterization and source apportionment of volatile organic compounds in Hong Kong: A 5-year study for three different archetypical sites. J Environ Sci (China) 2025; 151:424-440. [PMID: 39481950 DOI: 10.1016/j.jes.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024]
Abstract
Initial success has been achieved in Hong Kong in controlling primary air pollutants, but ambient ozone levels kept increasing during the past three decades. Volatile organic compounds (VOCs) are important for mitigating ozone pollution as its major precursors. This study analyzed VOC characteristics of roadside, suburban, and rural sites in Hong Kong to investigate their compositions, concentrations, and source contributions. Here we show that the TVOC concentrations were 23.05 ± 13.24, 12.68 ± 15.36, and 5.16 ± 5.48 ppbv for roadside, suburban, and rural sites between May 2015 to June 2019, respectively. By using Positive Matrix Factorization (PMF) model, six sources were identified at the roadside site over five years: Liquefied petroleum gas (LPG) usage (33%-46%), gasoline evaporation (8%-31%), aged air mass (11%-28%), gasoline exhaust (5%-16%), diesel exhaust (2%-16%) and fuel filling (75-9%). Similarly, six sources were distinguished at the suburban site, including LPG usage (30%-33%), solvent usage (20%-26%), diesel exhaust (14%-26%), gasoline evaporation (8%-16%), aged air mass (4%-11%), and biogenic emissions (2%-5%). At the rural site, four sources were identified, including aged air mass (33%-51%), solvent usage (25%-30%), vehicular emissions (11%-28%), and biogenic emissions (6%-12%). The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site, while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites, respectively. These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.
Collapse
Affiliation(s)
- Yuchen Mai
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Vincent Cheung
- Environmental Protection Department, Hong Kong 999077, China
| | - Peter K K Louie
- Environmental Protection Department, Hong Kong 999077, China
| | - Kenneth Leung
- Environment and Ecology Bureau, Hong Kong 999077, China
| | - Jimmy C H Fung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine 92617, USA
| | - Dasa Gu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong 999077, China.
| |
Collapse
|
2
|
Wolkoff P. Formaldehyde and asthma: a plausibility? Arch Toxicol 2025; 99:865-885. [PMID: 39828805 DOI: 10.1007/s00204-024-03946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Formaldehyde (FA) is a ubiquitous indoor air pollutant emitted from construction, consumer, and combustion-related products, and ozone-initiated reactions with reactive organic volatiles. The derivation of an indoor air quality guideline for FA by World Health Organization in 2010 did not find convincing evidence for bronchoconstriction-related reactions as detrimental lung function. Causal relationship between FA and asthma has since been advocated in meta-analyses of selected observational studies. In this review, findings from controlled human and animal exposure studies of the airways, data of FA retention in the respiratory tract, and observational studies of reported asthma applied in meta-analyses are analyzed together for coherence of direct association between FA and asthma. New information from both human and animal exposure studies are evaluated together with existing literature and assessed across findings from observational studies and associated meta-analyses thereof. Retention of FA in the upper airways is > 90% in agreement with mice exposure studies that only extreme FA concentrations can surpass trachea, travel to the lower airways, and cause mild bronchoconstriction. However, taken together, detrimental lung function effects in controlled human exposure studies have not been observed, even at FA concentrations up 4 ppm (5 mg/m3), and in agreement with controlled mice exposure studies. Typical indoor FA concentrations in public buildings and homes are far below a threshold for sensory irritation in the upper airways, based on controlled human exposure studies, to induce sensory-irritative sensitization nor inflammatory epithelial damage in the airways. Analysis of the observational heterogeneous studies applied in the meta-analyses suffers from several concomitant multifactorial co-exposures, which invalidates a direct association with asthma, thus the outcome of meta-analyses. The evidence of a direct causal relationship between FA and asthma is insufficient from an experimental viewpoint that includes retention data in the upper airways and controlled animal and human exposure studies. Taken together, a coherence of controlled experimental findings with individual observational studies and associated meta-analyses, which suffer from caveats, is absent. Further, lack of identified evidence of FA-IgE sensitization in both experimental studies and observational studies agrees with indoor FA concentrations far below threshold for sensory irritation. The assessment of experimental data with uncontrolled observational studies in meta-analyses is incompatible with a direct causal relationship between FA and asthma or exacerbation thereof due to lack of coherence and plausibility.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark.
| |
Collapse
|
3
|
Arif MI, Wang ZY, Ru L. Household cleaning agents impact on pediatric asthma: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-13. [PMID: 39970329 DOI: 10.1080/09603123.2025.2467820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Household cleaning agents promote hygiene along with causing respiratory effects, especially pediatric asthma. This systematic review quantified the association between exposure to household cleaning agents and pediatric asthma. METHOD Five databases were searched. Data were analyzed qualitatively and quantitatively. RevMan 5.4 calculated odds ratios (OR) with 95% confidence intervals (CI), and a funnel plot assessed publication bias. The Mixed Methods Appraisal Tool (MMAT) and GRADE framework assessed methodological quality and certainty respectively. RESULTS Sixteen studies met the eligibility criteria. Meta-analysis showed a significant association between the use of household cleaning agents and pediatric asthma (OR 2.90 (95% CI: 2.13-3.95; p < 0.01, I2 = 98%). Exposure stages also showed significant (p < 0.01) association with household cleaning agents (OR 2.92 (95% CI: 2.12-4.03, I2 = 98%). No publication bias or high risk of bias was found. CONCLUSION A strong association between exposure to household cleaning agents and an increased risk of pediatric asthma was found. .
Collapse
Affiliation(s)
- Muhammad Imran Arif
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Liang Ru
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Dedecker K, Drobek M, Julbe A. Harnessing Halogenated Zeolitic Imidazolate Frameworks for Alcohol Vapor Adsorption. Molecules 2024; 29:5825. [PMID: 39769914 PMCID: PMC11678290 DOI: 10.3390/molecules29245825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
This study explores Zeolitic Imidazolate Frameworks (ZIFs) as promising materials for adsorbing alcohol vapors, one of the main contributors to air quality deterioration and adverse health effects. Indeed, this sub-class of Metal-Organic Frameworks (MOFs) offers a promising alternative to conventional adsorbents like zeolites and activated carbons for air purification. Specifically, this investigation focuses on ZIF-8_Br, a brominated version of ZIF-8_CH3, to evaluate its ability to capture aliphatic alcohols at lower partial pressures. The adsorption properties have been investigated using both experimental and computational methods combining Density Functional Theory and Grand Canonical Monte Carlo simulations. The Ideal Adsorbed Solution Theory (IAST) has been used to assess the material selectivity in the presence of binary equimolar alcohol mixtures. Compared to ZIF-8_CH3, the brominated analog has been shown to feature a higher affinity for alcohols, a property that could be advantageously exploited in environmental remediation or in the development of membranes for alcohol vapor sensors.
Collapse
Affiliation(s)
- Kevin Dedecker
- Institut Européen des Membranes (IEM), CNRS, ENSCM, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Martin Drobek
- Institut Européen des Membranes (IEM), CNRS, ENSCM, Univ Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | | |
Collapse
|
5
|
Suzukawa M, Ohta K, Sugimoto M, Ohshima N, Kobayashi N, Tashimo H, Tanimoto Y, Itano J, Kimura G, Takata S, Nakano T, Yamashita T, Ikegame S, Hyodo K, Abe M, Chibana K, Kamide Y, Sasaki K, Hashimoto H. Identification of exhaled volatile organic compounds that characterize asthma phenotypes: A J-VOCSA study. Allergol Int 2024; 73:524-531. [PMID: 38658257 DOI: 10.1016/j.alit.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Asthma is characterized by phenotypes of different clinical, demographic, and pathological characteristics. Identifying the profile of exhaled volatile organic compounds (VOCs) in asthma phenotypes may facilitate establishing biomarkers and understanding asthma background pathogenesis. This study aimed to identify exhaled VOCs that characterize severe asthma phenotypes among patients with asthma. METHODS This was a multicenter cross-sectional study of patients with severe asthma in Japan. Clinical data were obtained from medical records, and questionnaires were collected. Exhaled breath was sampled and subjected to thermal desorption gas chromatography-mass spectrometry (GC/MS). RESULTS Using the decision tree established in the previous nationwide asthma cohort study, 245 patients with asthma were divided into five phenotypes and subjected to exhaled VOC analysis with 50 healthy controls (HCs). GC/MS detected 243 VOCs in exhaled breath samples, and 142 frequently detected VOCs (50% of all samples) were used for statistical analyses. Cluster analysis assigning the groups with similar VOC profile patterns showed the highest similarities between phenotypes 3 and 4 (early-onset asthma phenotypes), followed by the similarities between phenotypes 1 and 2 (late-onset asthma phenotypes). Comparisons between phenotypes 1-5 and HC revealed 19 VOCs, in which only methanesulfonic anhydride showed p < 0.05 adjusted by false discovery rate (FDR). Comparison of these phenotypes yielded several VOCs showing different trends (p < 0.05); however, no VOCs showed p < 0.05 adjusted by FDR. CONCLUSIONS Exhaled VOC profiles may be useful for distinguishing asthma and asthma phenotypes; however, these findings need to be validated, and their pathological roles should be clarified.
Collapse
Affiliation(s)
- Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, Tokyo, Japan.
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan; Human Metabolome Technologies, Inc., Yamagata, Japan
| | - Nobuharu Ohshima
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Nobuyuki Kobayashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hiroyuki Tashimo
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Yasushi Tanimoto
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Junko Itano
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Goro Kimura
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Shohei Takata
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Takako Nakano
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Takafumi Yamashita
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Satoshi Ikegame
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Kentaro Hyodo
- National Hospital Organization Ibarakihigashi National Hospital, Ibaraki, Japan
| | - Masahiro Abe
- National Hospital Organization Ehime Medical Center, Ehime, Japan
| | - Kenji Chibana
- National Hospital Organization Okinawa National Hospital, Okinawa, Japan
| | - Yosuke Kamide
- National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Kazunori Sasaki
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan; Human Metabolome Technologies, Inc., Yamagata, Japan
| | - Hiroya Hashimoto
- National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
6
|
Wang Y, Yu Y, Zhang X, Zhang H, Zhang Y, Wang S, Yin L. Combined association of urinary volatile organic compounds with chronic bronchitis and emphysema among adults in NHANES 2011-2014: The mediating role of inflammation. CHEMOSPHERE 2024; 361:141485. [PMID: 38438022 DOI: 10.1016/j.chemosphere.2024.141485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Evidence on the association of volatile organic compounds (VOCs) with chronic bronchitis (CB) and emphysema is spare and defective. To evaluate the relationship between urinary metabolites of VOCs (mVOCs) with CB and emphysema, and to identify the potential mVOC of paramount importance, data from NHANES 2011-2014 waves were utilized. Logistic regression was conducted to estimate the independent association of mVOCs with respiratory outcomes. Least absolute shrinkage and selection operator (LASSO) regression was performed to screen a parsimonious set of CB- and emphysema-relevant mVOCs that were used for further co-exposure analyses of weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR). Mediation analysis was employed to detect the mediating role of inflammatory makers in such associations. In single exposure analytic model, nine mVOCs were individually and positively associated with CB, while four mVOCs were with emphysema. In WQS regression, positive association between LASSO selected mVOCs and CB was identified (OR = 1.82, 95% CI: 1.25 to 2.69), and N-acetyl-S-(4-hydroxy-2-butenyl)-l-cysteine (MHBMA3) weighted the highest. Results from BKMR further validated such combined association and the significance of MHBMA3. As for emphysema, significantly positive overall trend of mVOCs was only observed in BKMR model and N-acetyl-S-(N-methylcarbamoyl)-l-cysteine (AMCC) contributed most to the mixed effect. White blood cell count (WBC) and lymphocyte number (LYM) were mediators in the positive pattern of mVOCs mixture with CB, while association between mVOCs mixture and emphysema was significantly mediated by LYM and segmented neutrophils num (NEO). This study demonstrated that exposure to VOCs was associated with CB and emphysema independently and combinedly, which might be partly speculated that VOCs were linked to activated inflammations. Our findings shed novel light on VOCs related respiratory illness, and provide a new basis for the contribution of certain VOCs to the risk of CB and emphysema, which has potential public health implications.
Collapse
Affiliation(s)
- Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yongquan Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoxuan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Rebryk A, Kozyatnyk I, Njenga M. Emission of volatile organic compounds during open fire cooking with wood biomass: Traditional three-stone open fire vs. gasifier cooking stove in rural Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173183. [PMID: 38777046 DOI: 10.1016/j.scitotenv.2024.173183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Cooking with wood biomass fuels releases hazardous air pollutants, including volatile organic compounds (VOCs), that often disproportionally affect women and children. This study, conducted in Kwale and Siaya counties in Kenya, employed thermal desorption gas chromatography - mass spectrometry to analyse VOC emissions from cooking with a wood biomass three-stone open fire vs. top-lit updraft gasifier stove. In kitchens with adequate ventilation, total VOC levels increased from 35-252 μg∙m-3 before cooking to 2235-5371 μg∙m-3 during open fire cooking, whereas use of a gasifier stove resulted in reduced emissions from cooking by 48-77 % (506-2778 μg∙m-3). However, in kitchens with poor ventilation, there was only a moderate difference in total VOC levels between the two methods of cooking (9034-9378 μg∙m-3 vs. 6727-8201 μg∙m-3 for the three-stone open fire vs. gasifier stove, respectively). Using a non-target screening approach revealed significantly increased levels of VOCs, particularly benzenoids, oxygenated and heterocyclic compounds, when cooking with the traditional open fire, especially in closed kitchens, highlighting the effects of poor ventilation. Key hazardous VOCs included benzene, naphthalene, phenols and furans, suggesting potential health risks from cooking. In kitchens with good ventilation, use of the gasifier stove markedly reduced emissions of these priority toxic VOCs compared to cooking with an open fire. Thus, substituting open fires with gasifier stoves could help to improve household air quality and alleviate health risks. The study revealed that VOCs were present prior to cooking, possibly originating from previously cooked food (buildup) or the outside environment. VOC emissions were also exacerbated by reduced air flow in high humidity during rainfall, suggesting an area for further research. The findings underscore the importance of adopting cleaner cooking technologies and enhancing kitchen ventilation to mitigate the impacts of VOCs in developing countries.
Collapse
Affiliation(s)
- Andriy Rebryk
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Ivan Kozyatnyk
- Department of Health, Medicine and Caring Sciences, Unit of Clinical Medicine, Occupational and Environmental Medicine, Linköping University, 581 83 Linköping, Sweden.
| | - Mary Njenga
- Centre for International Forestry Research-World Agroforestry (CIFOR-ICRAF), 30677-00100 Nairobi, Kenya; Wangari Maathai Institute for Peace and Environmental Studies, University of Nairobi, P.O. Box 2905-0065, Nairobi, Kenya
| |
Collapse
|
8
|
Sun BZ, Gaffin JM. Recent Insights into the Environmental Determinants of Childhood Asthma. Curr Allergy Asthma Rep 2024; 24:253-260. [PMID: 38498229 PMCID: PMC11921288 DOI: 10.1007/s11882-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW Ubiquitous environmental exposures, including ambient air pollutants, are linked to the development and severity of childhood asthma. Advances in our understanding of these links have increasingly led to clinical interventions to reduce asthma morbidity. RECENT FINDINGS We review recent work untangling the complex relationship between air pollutants, including particulate matter, nitrogen dioxide, and ozone and asthma, such as vulnerable windows of pediatric exposure and their interaction with other factors influencing asthma development and severity. These have led to interventions to reduce air pollutant levels in children's homes and schools. We also highlight emerging environmental exposures increasingly associated with childhood asthma. Growing evidence supports the present threat of climate change to children with asthma. Environmental factors play a large role in the pathogenesis and persistence of pediatric asthma; in turn, this poses an opportunity to intervene to change the course of disease early in life.
Collapse
Affiliation(s)
- Bob Z Sun
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3121, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan M Gaffin
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3121, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Mondal S, Sabbir MHR, Islam MR, Ferdous MF, Hassan Mondol MM, Hossain MJ. Qualitative assessment of regular and premium gasoline available in Bangladesh markets. Heliyon 2024; 10:e29089. [PMID: 38601578 PMCID: PMC11004202 DOI: 10.1016/j.heliyon.2024.e29089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
Assessing the quality of fuel is essential to comprehend its impact on the environment and human health. In this study, the evaluation of fuel quality standards at the consumer level was conducted by analyzing the motor fuels in Khulna, Bangladesh. A total of 32 samples of petrol (regular gasoline), and octane (premium gasoline) were collected from the fuel stations in the Khulna City Corporation area and analyzed with an FTIR-Fuel Analyzer. Fuel properties, such as research octane number (RON), motor octane number (MON), ethanol content, olefins content, and oxygen content were analyzed. For petrol, the average RON, MON, olefins, and oxygen content were 95.34, 85.70, 8.23 %v/v, and 0.78 %m/m, respectively, and for octane, they were 96.96, 85.39, 1.25 %v/v, and 0.09 %m/m, respectively. Almost all of these parameters complied with both Bangladesh standard and Euro 5 fuel specifications, and those that did not comply were very close to their standard values. However, benzene concentration, which was not specified in Bangladesh Standard, was the most alarming metric for octane since none of the samples matched the Euro 5 fuel specifications of the maximum concentration of 1 %v/v benzene; on average it was 3.70 %v/v. Although petrol benzene content (average 1.50 %v/v) was not as bad as it was for octane, it was still nowhere near good enough, with only 25% of the samples within the recommended level among the studied sample. This information holds significance in establishing the fuel profile and facilitating the identification of distinct samples linked to adulteration. Therefore, the analysis of motor fuel qualities is essential for maintaining the environment, human health, and the economy of a country.
Collapse
Affiliation(s)
- Shuvashish Mondal
- Department of Chemical Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Md Hafijur Rahman Sabbir
- Department of Chemical Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Md Rashedul Islam
- Department of Chemical Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Md Faisal Ferdous
- Department of Chemical Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Md Mahmudul Hassan Mondol
- Department of Chemical Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| | - Md Jahangir Hossain
- Department of Energy Science and Engineering, Khulna University of Engineering and Technology (KUET), Khulna, 9203, Bangladesh
| |
Collapse
|
10
|
Amiri S, Li YC, Buchwald D, Pandey G. Machine learning-driven identification of air toxic combinations associated with asthma symptoms among elementary school children in Spokane, Washington, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171102. [PMID: 38387571 PMCID: PMC10939716 DOI: 10.1016/j.scitotenv.2024.171102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Air toxics are atmospheric pollutants with hazardous effects on health and the environment. Although methodological constraints have limited the number of air toxics assessed for associations with health and disease, advances in machine learning (ML) enable the assessment of a much larger set of environmental exposures. We used ML methods to conduct a retrospective study to identify combinations of 109 air toxics associated with asthma symptoms among 269 elementary school students in Spokane, Washington. Data on the frequency of asthma symptoms for these children were obtained from Spokane Public Schools. Their exposure to air toxics was estimated by using the Environmental Protection Agency's Air Toxics Screening Assessment and National Air Toxics Assessment. We defined three exposure periods: the most recent year (2019), the last three years (2017-2019), and the last five years (2014-2019). We analyzed the data using the ML-based Data-driven ExposurE Profile (DEEP) extraction method. DEEP identified 25 air toxic combinations associated with asthma symptoms in at least one exposure period. Three combinations (1,1,1-trichloroethane, 2-nitropropane, and 2,4,6-trichlorophenol) were significantly associated with asthma symptoms in all three exposure periods. Four air toxics (1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, BIS (2-ethylhexyl) phthalate (DEHP), and 2,4-dinitrophenol) were associated only in combination with other toxics, and would not have been identified by traditional statistical methods. The application of DEEP also identified a vulnerable subpopulation of children who were exposed to 13 of the 25 significant combinations in at least one exposure period. On average, these children experienced the largest number of asthma symptoms in our sample. By providing evidence on air toxic combinations associated with childhood asthma, our findings may contribute to the regulation of these toxics to improve children's respiratory health.
Collapse
Affiliation(s)
- Solmaz Amiri
- Institute for Research and Education to Advance Community Health (IREACH), Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA.
| | - Yan-Chak Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dedra Buchwald
- Institute for Research and Education to Advance Community Health (IREACH), Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Sun Y, Prabhu P, Li D, McIntosh S, Rahman I. Vaping: Public Health, Social Media, and Toxicity. Online J Public Health Inform 2024; 16:e53245. [PMID: 38602734 PMCID: PMC11046396 DOI: 10.2196/53245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/26/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
This viewpoint aims to provide a comprehensive understanding of vaping from various perspectives that contribute to the invention, development, spread, and consequences of e-cigarette products and vaping. Our analysis showed that the specific characteristics of e-cigarette products as well as marketing strategies, especially social media marketing, fostered the spread of vaping and the subsequent effects on human health and toxicity. We analyzed the components of e-cigarette devices and e-liquids, including the latest variants whose impacts were often overlooked. The different forms of nicotine, including salts and freebase nicotine, tobacco-derived nicotine, tobacco-free nicotine, and cooling agents (WS3 and WS23), have brought more choices for vapers along with more ways for e-cigarette manufacturers to advertise false understandings and present a greater threat to vapers' health. Our work emphasized the products of brands that have gained significant influence recently, which are contributing to severe public health issues. On the other hand, we also discussed in detail the toxicity of e-liquid components and proposed a toxicity mechanism. We also noticed that nicotine and other chemicals in e-liquids promote each other's negative effects through the oxidative stress and inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, a mechanism leading to pulmonary symptoms and addiction. The impact of government regulations on the products themselves, including flavor bans or regulations, has been limited. Therefore, we proposed further interventions or harm reduction strategies from a public health perspective.
Collapse
Affiliation(s)
- Yehao Sun
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Prital Prabhu
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Scott McIntosh
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
12
|
Zheng H, Csemezová J, Loomans M, Walker S, Gauvin F, Zeiler W. Species profile of volatile organic compounds emission and health risk assessment from typical indoor events in daycare centers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170734. [PMID: 38325455 DOI: 10.1016/j.scitotenv.2024.170734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Daycare centers (DCCs) play an instrumental role in early childhood development, making them a significant indoor environment for a large number of children globally. Amidst routine DCC activities, young children are exposed to a myriad of volatile organic compounds (VOCs), potentially impacting their health. Therefore, this study aims to investigate the VOC emissions during typical DCCs activities and evaluate respective health risk assessments. Employing a full-scale experimental setup within a well-controlled climate chamber, research was conducted into VOC emissions during three typical DCC events: arts-and-crafts (painting, gluing, modeling), cleaning, and sleeping activities tied to mattresses. The research identified 96 distinct VOCs, grouped into twelve categories, from 20 different events examined. Each event exhibited a unique VOC fingerprint, pinpointing potential source tracers. Also, significant variations in VOC emissions from different events were demonstrated. For instance, under cool & dry conditions, acrylic painting recorded high total VOC concentrations of 808 μg/m3, whereas poster painting showed only 58 μg/m3. Given these disparities, the study emphasizes the critical need for carefully selecting arts-and-crafts materials and cleaning agents in DCCs to effectively reduce VOC exposure. It suggests ventilating new mattresses before use and regular mattress check-ups to mitigate VOCs exposure during naps. Importantly, it revealed that certain events resulted in VOC levels exceeding the 10-5 cancer risk thresholds for younger children. Specifically, tetrachloroethylene and styrene from used mattresses in cool & dry conditions, ethylene oxide from new mattresses in warm & humid conditions, and styrene, during sand modeling in both conditions, were the key compounds contributing to this risk. These findings highlight the critical need for age-specific health risk assessments in DCCs. This study highlights the significance of understanding the profiles of VOC emissions from indoor events in DCCs, emphasizing potential health implications and laying a solid foundation for future investigations in this field.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Júlia Csemezová
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Marcel Loomans
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Shalika Walker
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Florent Gauvin
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Wim Zeiler
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
13
|
Xiong Y, Liu X, Li T. The urinary metabolites of volatile organic compounds and asthma in young children: NHANES 2011-2018. Heliyon 2024; 10:e24199. [PMID: 38317969 PMCID: PMC10838696 DOI: 10.1016/j.heliyon.2024.e24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
The vast majority of volatile organic compounds (VOCs) are of biological origin and do not affect human health, while some VOCs or their oxidation products can damage the respiratory system, nervous system, digestive system and blood system after long-term inhalation by humans. There is limited evidence regarding the association of VOCs exposure with childhood asthma. In this study, we examined the associations between metabolites of VOCs (mVOCs) in urine and childhood asthma. We included a total of 1542 children aged 3-12 years who had information on urinary mVOCs, asthma and essential covariates in the current analyses. After controlling for covariates, we used logistic regression to assess the association between urinary mVOCs and childhood asthma. Then, we examined effect measure modification by child age, gender, race/ethnicity and serum cotinine. 2-Methylhippuric acid (xylene metabolites) (OR: 1.14; 95 % CI: 0.87, 1.59), N-acetyl-S-(benzyl)-l-cysteine (toluene metabolites) (OR: 1.15 95 % CI: 0.76, 1.71), N-acetyl-S-(2-carboxyethyl)-l-cysteine (acrolein metabolites) (OR: 1.09; 95 % CI: 0.61, 1.75), N-acetyl-S-(3-hydroxypropyl)-l-cysteine (acrolein metabolites) (OR: 1.10; 95 % CI: 0.66, 1.80), and N-acetyl-S-(3-hydroxypropyl-1-methyl)-l-cysteine (crotonaldehyde metabolites) (OR: 1.18; 95 % CI: 0.68, 2.01) were weakly associated with the prevalence of asthma in children. Among female children, 2MHA (2-methylhippuric acid) in urine was significantly associated with the prevalence of asthma (OR: 1.81 95 % CI: 1.07, 3.05). At the same time, BMA (N-acetyl-S-(benzyl)-l-cysteine) was significantly associated with the prevalence of asthma in non-Hispanic White (OR:2.09 95 % CI: 0.91, 4.66) and Black (OR:1.90 95 % CI: 0.96, 3.71) children. We found that gender modified the associations between urinary 2MHA and the odds of asthma (interaction term p value = 0.03). Therefore, exposure to VOCs and the development of childhood asthma remains controversial, and the interpretation of these results needs to be treated with caution and should be confirmed in future studies.Therefore, exposure to VOCs and the development of childhood asthma remains controversial, and the interpretation of these results needs to be treated with caution and should be confirmed in future studies.
Collapse
Affiliation(s)
- Yixiao Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Xin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
| | - Tao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Sichuan, 610041, China
| |
Collapse
|
14
|
Tang L, Liu M, Tian J. Volatile organic compounds exposure associated with depression among U.S. adults: Results from NHANES 2011-2020. CHEMOSPHERE 2024; 349:140690. [PMID: 37995973 DOI: 10.1016/j.chemosphere.2023.140690] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Volatile organic compounds (VOCs) are important contributors to air pollution. VOCs exposure was associated with various human diseases. Depression is one of the most prevalent mental disorders and poses a serious mental health burden. Although VOCs are neurotoxic and can damage the central nervous system, the association between VOCs exposure and depression remains obscure. Based on data from the National Health and Nutrition Examination Survey, we included 5676 adult individuals and 15 major components of urinary volatile organic compound metabolites (mVOCs). We comprehensively evaluated the potential association between each single urinary mVOC exposure and depressive symptoms using binary logistic and restricted cubic spline regression, whereas the weighted quantile sum regression and least absolute shrinkage and selection operator regression model were used to explore the mixture co-exposure association. The results indicated significantly higher mean concentrations of the 11 urinary mVOC components in the depression group than that in the non-depression group. And 12 mVOC components had a significantly positive association with depression. The overall effect of all 15 mVOCs components was also significantly positive. The corresponding odds ratio was 1.56 (95%CI: 1.2-2.03) in the categorical variable model and the regression coefficient was 0.36 (95%CI: 0.12-0.6) in the numerical variable model. Five urinary mVOCs (URXCYM, URXPHG, URX34 M, URXMB3, and URXAMC) were identified as the most relevant components associated with depression, with 89.06% total weights in the categorical variable model and 89.39% in the numerical variable model. The mVOCs were the biomarkers of VOCs, their concentrations in urine could specifically represent the contents of their metabolic parents in the human body. Considering that the metabolic parents of the above five mVOCs were predominantly acrylonitrile, toluene, styrene, acrylamide, 1,3-Butadiene, and xylenes, our results further indicated that exposure to these VOCs was closely related to depression, and more attention should be paid to the mental health risks of VOCs exposure.
Collapse
Affiliation(s)
- Liwei Tang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Min Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
15
|
Murphy J, Tharumakunarajah R, Holden KA, King C, Lee AR, Rose K, Hawcutt DB, Sinha IP. Impact of indoor environment on children's pulmonary health. Expert Rev Respir Med 2023; 17:1249-1259. [PMID: 38240133 DOI: 10.1080/17476348.2024.2307561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION A child's living environment has a significant impact on their respiratory health, with exposure to poor indoor air quality (IAQ) contributing to potentially lifelong respiratory morbidity. These effects occur throughout childhood, from the antenatal period through to adolescence. Children are particularly susceptible to the effects of environmental insults, and children living in socioeconomic deprivation globally are more likely to breathe air both indoors and outdoors, which poses an acute and long-term risk to their health. Adult respiratory health is, at least in part, determined by exposures and respiratory system development in childhood, starting in utero. AREAS COVERED This narrative review will discuss, from a global perspective, what contributes to poor IAQ in the child's home and school environment and the impact that indoor air pollution exposure has on respiratory health throughout the different stages of childhood. EXPERT OPINION All children have the right to a living and educational environment without the threat of pollution affecting their health. Action is needed at multiple levels to address this pressing issue to improve lifelong respiratory health. Such action should incorporate a child's rights-based approach, empowering children, and their families, to have access to clean air to breathe in their living environment.
Collapse
Affiliation(s)
- Jared Murphy
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | | | - Karl A Holden
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Lab to Life Child Health Data Centre, Alder Hey Children's Hospital, Liverpool, UK
| | - Charlotte King
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Alice R Lee
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Lab to Life Child Health Data Centre, Alder Hey Children's Hospital, Liverpool, UK
| | - Katie Rose
- Department of Respiratory Medicine, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Ian P Sinha
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Department of Respiratory Medicine, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
16
|
Chaya S, Vanker A, Brittain K, MacGinty R, Jacobs C, Hantos Z, Zar HJ, Gray DM. The impact of antenatal and postnatal indoor air pollution or tobacco smoke exposure on lung function at 3 years in an African birth cohort. Respirology 2023; 28:1154-1165. [PMID: 37587874 PMCID: PMC10947154 DOI: 10.1111/resp.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Indoor air pollution (IAP) and tobacco smoke exposure (ETS) are global health concerns contributing to the burden of childhood respiratory disease. Studies assessing the effects of IAP and ETS in preschool children are limited. We assessed the impact of antenatal and postnatal IAP and ETS exposure on lung function in a South African birth cohort, the Drakenstein Child Health Study. METHODS Antenatally enrolled mother-child pairs were followed from birth. Lung function measurements (oscillometry, multiple breath washout and tidal breathing) were performed at 6 weeks and 3 years. Quantitative antenatal and postnatal IAP (particulate matter [PM10 ], volatile organic compounds [VOC]) and ETS exposures were measured. Linear regression models explored the effects of antenatal and postnatal exposures on lung function at 3 years. RESULTS Five hundred eighty-four children had successful lung function testing, mean (SD) age of 37.3 (0.7) months. Exposure to antenatal PM10 was associated with a decreased lung clearance index (p < 0.01) and postnatally an increase in the difference between resistance at end expiration (ReE) and inspiration (p = 0.05) and decrease in tidal volume (p = 0.06). Exposure to antenatal VOC was associated with an increase in functional residual capacity (p = 0.04) and a decrease in time of expiration over total breath time (tE /tTOT ) (p = 0.03) and postnatally an increase in respiratory rate (p = 0.05). High ETS exposure postnatally was associated with an increase in ReE (p = 0.03). CONCLUSION Antenatal and postnatal IAP and ETS exposures were associated with impairment in lung function at 3 years. Strengthened efforts to reduce IAP and ETS exposure are needed.
Collapse
Affiliation(s)
- S. Chaya
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA‐MRC Unit on Child and Adolescent HealthUniversity of Cape TownCape TownSouth Africa
| | - A. Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA‐MRC Unit on Child and Adolescent HealthUniversity of Cape TownCape TownSouth Africa
| | - K. Brittain
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA‐MRC Unit on Child and Adolescent HealthUniversity of Cape TownCape TownSouth Africa
| | - R. MacGinty
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA‐MRC Unit on Child and Adolescent HealthUniversity of Cape TownCape TownSouth Africa
| | - C. Jacobs
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA‐MRC Unit on Child and Adolescent HealthUniversity of Cape TownCape TownSouth Africa
| | - Z. Hantos
- Department of Anaesthesiology and Intensive TherapySemmelweis UniversityBudapestHungary
| | - H. J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA‐MRC Unit on Child and Adolescent HealthUniversity of Cape TownCape TownSouth Africa
| | - D. M. Gray
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA‐MRC Unit on Child and Adolescent HealthUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
17
|
Huang Q, Pan L, Luo G, Jiang R, Ouyang G, Ye Y, Cai J, Guo P. Exploring the release of hazardous volatile organic compounds from face masks and their potential health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122042. [PMID: 37328128 DOI: 10.1016/j.envpol.2023.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Hazardous chemicals released from the petroleum-derived face mask can be inhaled by wearers and cause adverse health effects. Here, we first used headspace solid-phase microextraction coupled with GC-MS to comprehensively analyze the volatile organic compounds (VOCs) released from 26 types of face masks. The results showed that total concentrations and peak numbers ranged from 3.28 to 197 μg/mask and 81 to 162, respectively, for different types of mask. Also, light exposure could affect the chemical composition of VOCs, particularly increasing the concentrations of aldehydes, ketones, organic acids and esters. Of these detected VOCs, 142 substances were matched to a reported database of chemicals associated with plastic packaging; 30 substances were identified by the International Agency for Research on Cancer (IARC) as potential carcinogenic to humans; 6 substances were classified in the European Union as persistent, bioaccumulative, and toxic, or very persistent, very bioaccumulative substance. Reactive carbonyls were ubiquitous in masks, especially after exposure to light. The potential risk of VOCs released from the face masks were then accessed by assuming the extreme scenario that all the VOC residues were released into the breathing air within 3 h. The result showed that the average total concentration of VOCs (17 μg/m3) was below the criterion for hygienic air, but seven substances, 2-ethylhexan-1-ol, benzene, isophorone, heptanal, naphthalene, benzyl chloride, and 1,2-dichloropropane exceeded the non-cancer health guidelines for lifetime exposure. This finding suggested that specific regulations should be adopted to improve the chemical safety of face masks.
Collapse
Affiliation(s)
- Qi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Li Pan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Gan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China.
| | - Gangfeng Ouyang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanjian Ye
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 511400, China
| | - Jin'an Cai
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, 511400, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| |
Collapse
|
18
|
Savito L, Scarlata S, Bikov A, Carratù P, Carpagnano GE, Dragonieri S. Exhaled volatile organic compounds for diagnosis and monitoring of asthma. World J Clin Cases 2023; 11:4996-5013. [PMID: 37583852 PMCID: PMC10424019 DOI: 10.12998/wjcc.v11.i21.4996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
The asthmatic inflammatory process results in the generation of volatile organic compounds (VOCs), which are subsequently secreted by the airways. The study of these elements through gas chromatography-mass spectrometry (GC-MS), which can identify individual molecules with a discriminatory capacity of over 85%, and electronic-Nose (e-NOSE), which is able to perform a quick onboard pattern-recognition analysis of VOCs, has allowed new prospects for non-invasive analysis of the disease in an "omics" approach. In this review, we aim to collect and compare the progress made in VOCs analysis using the two methods and their instrumental characteristics. Studies have described the potential of GC-MS and e-NOSE in a multitude of relevant aspects of the disease in both children and adults, as well as differential diagnosis between asthma and other conditions such as wheezing, cystic fibrosis, COPD, allergic rhinitis and last but not least, the accuracy of these methods compared to other diagnostic tools such as lung function, FeNO and eosinophil count. Due to significant limitations of both methods, it is still necessary to improve and standardize techniques. Currently, e-NOSE appears to be the most promising aid in clinical practice, whereas GC-MS, as the gold standard for the structural analysis of molecules, remains an essential tool in terms of research for further studies on the pathophysiologic pathways of the asthmatic inflammatory process. In conclusion, the study of VOCs through GC-MS and e-NOSE appears to hold promise for the non-invasive diagnosis, assessment, and monitoring of asthma, as well as for further research studies on the disease.
Collapse
Affiliation(s)
- Luisa Savito
- Department of Internal Medicine, Unit of Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Universitario Campus Bio Medico, Rome 00128, Italy
| | - Simone Scarlata
- Department of Internal Medicine, Unit of Respiratory Pathophysiology and Thoracic Endoscopy, Fondazione Policlinico Universitario Campus Bio Medico, Rome 00128, Italy
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Pierluigi Carratù
- Department of Internal Medicine "A.Murri", University of Bari "Aldo Moro", Bari 70124, Italy
| | | | - Silvano Dragonieri
- Department of Respiratory Diseases, University of Bari, Bari 70124, Italy
| |
Collapse
|
19
|
Holden KA, Lee AR, Hawcutt DB, Sinha IP. The impact of poor housing and indoor air quality on respiratory health in children. Breathe (Sheff) 2023; 19:230058. [PMID: 37645022 PMCID: PMC10461733 DOI: 10.1183/20734735.0058-2023] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/23/2023] [Indexed: 08/31/2023] Open
Abstract
It is becoming increasingly apparent that poor housing quality affects indoor air quality, significantly impacting on respiratory health in children and young people. Exposure to damp and/or mould in the home, cold homes and the presence of pests and pollutants all have a significant detrimental impact on child respiratory health. There is a complex relationship between features of poor-quality housing, such as being in a state of disrepair, poor ventilation, overcrowding and being cold, that favour an environment resulting in poor indoor air quality. Children living in rented (private or public) housing are more likely to come from lower-income backgrounds and are most at risk of living in substandard housing posing a serious threat to respiratory health. Children have the right to safe and adequate housing, and research has shown that either rehousing or making modifications to poor-quality housing to improve indoor air quality results in improved respiratory health. Urgent action is needed to address this threat to health. All stakeholders should understand the relationship between poor-quality housing and respiratory health in children and act, working with families, to redress this modifiable risk factor. Educational aims The reader should understand how housing quality and indoor air quality affect respiratory health in children.The reader should understand which children are at most risk of living in poor-quality housing.The reader should understand what policy recommendations have been made and what actions need to be undertaken to improve housing quality and respiratory health in children and young people.
Collapse
Affiliation(s)
- Karl A. Holden
- Lab to Life Child Health Data Centre, Alder Hey Children's Hospital, Liverpool, UK
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Contributed equally to the preparation of this manuscript and share first authorship
| | - Alice R. Lee
- Lab to Life Child Health Data Centre, Alder Hey Children's Hospital, Liverpool, UK
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Contributed equally to the preparation of this manuscript and share first authorship
| | - Daniel B. Hawcutt
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children's Hospital, Liverpool, UK
| | - Ian P. Sinha
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
20
|
Wang Y, Han X, Li J, Zhang L, Liu Y, Jin R, Chen L, Chu X. Associations between the compositional patterns of blood volatile organic compounds and chronic respiratory diseases and ages at onset in NHANES 2003-2012. CHEMOSPHERE 2023; 327:138425. [PMID: 36931402 DOI: 10.1016/j.chemosphere.2023.138425] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND and Purpose Volatile organic compounds (VOCs) pose a serious respiratory hazard. This study evaluated the relationship between the compositional patterns of blood VOCs and the risk and age at onset of chronic respiratory diseases (CRDs), including asthma, emphysema and chronic bronchitis, with the objective of preventing or delaying CRDs. METHODS Participants from five cycles of the NHANES survey were included. Blood VOCs were clustered using k-means clustering. Differences in VOCs and age at onset between multiple groups were compared with the Kruskal‒Wallis test. Logistic regression and a generalized linear model were applied to examine the associations between different compositional patterns of blood VOCs and risk and age at onset of CRDs. RESULTS 12,386 participants were enrolled in this study. Three VOC compositional patterns were identified after clustering nine species of blood VOCs. The concentration of VOCs in pattern 2 was relatively low and stable. The concentrations of benzene, ethylbenzene, o-xylene, styrene, toluene and m-p-xylene in pattern 3 and the concentrations of 1,4-dichlorobenzene and MTBE in pattern 1 were significantly higher than those in pattern 2. After adjustment for covariates, the participants with VOC pattern 3 had an increased risk of asthma (OR = 1.23, 95% CI: 1.02, 1.49), emphysema (OR = 3.37, 95% CI: 2.24, 5.06) and chronic bronchitis (OR = 1.79, 95% CI: 1.30, 2.45). Meanwhile, VOC pattern 3 was negatively correlated with the age at onset of asthma (β = -5.61, 95% CI: 9.69, -1.52) and chronic bronchitis (β = -9.17, 95% CI: 13.96, -4.39). VOC pattern 1 was not associated with either risk or age at onset of the three CRDs after adjustment. CONCLUSIONS Changing the compositional pattern of blood VOCs by reducing certain species of VOCs may be a new strategy to lengthen the ages at onset of CRDs and effectively prevent them.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xinhao Han
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Jingkun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Liuchao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Yu Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Ruifang Jin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Liang Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, China; Heilongjiang Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
21
|
Yeoman AM, Shaw M, Ward M, Ives L, Andrews SJ, Lewis AC. Gas Phase Emissions of Volatile Organic Compounds Arising from the Application of Sunscreens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5944. [PMID: 37297548 PMCID: PMC10252547 DOI: 10.3390/ijerph20115944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The speciation of volatile organic compounds (VOCs) emitted from personal care products (PCPs) is complex and contributes to poor air quality and health risks to users via the inhalation exposure pathway. Detailed VOC emission profiles were generated for 26 sunscreen products; consequently, variability was observed between products, even though they were all designed for the same purpose. Some were found to contain fragrance compounds not labelled on their ingredients list. Five contaminant VOCs were identified (benzene, toluene, ethylbenzene, o-xylene, and p-xylene); headspace sampling of an additional 18 randomly selected products indicated that ethanol originating from fossil petroleum was a potential source. The gas phase emission rates of the VOCs were quantified for 15 of the most commonly emitted species using SIFT-MS. A wide range of emission rates were observed between the products. Usage estimates were made based on the recommended dose per body surface area, for which the total mass of VOCs emitted from one full-body application dose was in the range of 1.49 × 103-4.52 × 103 mg and 1.35 × 102-4.11 × 102 mg for facial application (men aged 16+; children aged 2-4). Depending on age and sex, an estimated 9.8-30 mg of ethanol is inhaled from one facial application of sunscreen.
Collapse
Affiliation(s)
- Amber M. Yeoman
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, UK;
| | - Marvin Shaw
- National Centre for Atmospheric Science, University of York, York YO10 5DD, UK; (M.S.); (M.W.); (S.J.A.); (A.C.L.)
| | - Martyn Ward
- National Centre for Atmospheric Science, University of York, York YO10 5DD, UK; (M.S.); (M.W.); (S.J.A.); (A.C.L.)
| | - Lyndsay Ives
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, UK;
| | - Stephen J. Andrews
- National Centre for Atmospheric Science, University of York, York YO10 5DD, UK; (M.S.); (M.W.); (S.J.A.); (A.C.L.)
| | - Alastair C. Lewis
- National Centre for Atmospheric Science, University of York, York YO10 5DD, UK; (M.S.); (M.W.); (S.J.A.); (A.C.L.)
| |
Collapse
|
22
|
Le Moual N, Dumas O, Bonnet P, Eworo Nchama A, Le Bot B, Sévin E, Pin I, Siroux V, Mandin C. Exposure to Disinfectants and Cleaning Products and Respiratory Health of Workers and Children in Daycares: The CRESPI Cohort Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105903. [PMID: 37239629 DOI: 10.3390/ijerph20105903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Although cleaning tasks are frequently performed in daycare, no study has focused on exposures in daycares in relation to respiratory health. The CRESPI cohort is an epidemiological study among workers (n~320) and children (n~540) attending daycares. The purpose is to examine the impact of daycare exposures to disinfectants and cleaning products (DCP) on the respiratory health of workers and children. A sample of 108 randomly selected daycares in the region of Paris has been visited to collect settled dust to analyze semi-volatile organic compounds and microbiota, as well as sample indoor air to analyze aldehydes and volatile organic compounds. Innovative tools (smartphone applications) are used to scan DCP barcodes in daycare and inform their use; a database then matches the barcodes with the products' compositions. At baseline, workers/parents completed a standardized questionnaire, collecting information on DCP used at home, respiratory health, and potential confounders. Follow-up regarding children's respiratory health (monthly report through a smartphone application and biannual questionnaires) is ongoing until the end of 2023. Associations between DCP exposures and the respiratory health of workers/children will be evaluated. By identifying specific environments or DCP substances associated with the adverse respiratory health of workers and children, this longitudinal study will contribute to the improvement of preventive measures.
Collapse
Affiliation(s)
- Nicole Le Moual
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France
| | - Orianne Dumas
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France
| | - Pierre Bonnet
- Scientific and Technical Center for Building (CSTB), Indoor Environment Quality Unit, 77420 Champs-sur-Marne, France
| | - Anastasie Eworo Nchama
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, 94807 Villejuif, France
| | - Barbara Le Bot
- Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Inserm, École des Hautes Etudes en Santé Publique (EHESP), University of Rennes, 35000 Rennes, France
| | | | - Isabelle Pin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Valérie Siroux
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Corinne Mandin
- Scientific and Technical Center for Building (CSTB), Indoor Environment Quality Unit, 77420 Champs-sur-Marne, France
| |
Collapse
|
23
|
Jodeh S, Chakir A, Hanbali G, Roth E, Eid A. Method Development for Detecting Low Level Volatile Organic Compounds (VOCs) among Workers and Residents from a Carpentry Work Shop in a Palestinian Village. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095613. [PMID: 37174133 PMCID: PMC10178486 DOI: 10.3390/ijerph20095613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Volatile organic compounds (VOCs) are considered a major public health concern in industrial location areas. The presence of exposure to (VOCs) has raised concern regarding the health effects caused by chronic human exposure as this will increase cancer diseases in the village. An analytical method has been developed and modified to help us detect 38 VOCs in the blood of 38 volunteers who are related to a carpentry shop at the parts-per-trillion level. To measure and evaluate the potential risk, several devices, such as portable passive monitors and air-collected samples, in addition to blood concentration, were used to study three different occupational groups. Ten of the volunteers are employees at the shop, 10 volunteers live very close to the shop, and 10 of them are students in an elementary school very close to the shop. In this study, we developed an automated analytical method using headspace (HS) together with solid-phase microextraction (SPME) connected to capillary gas chromatography (GC) equipped with quadrupole mass spectrometry (MS). The detection limits for the method used were measured in the range from 0.001 to 0.15 ng/L, using linear calibration curves that have three orders of magnitude. The detected concentrations ranged from 3 ng L-1 for trichloroethene to 91 ng L-1 for toluene and 270 ng L-1 for 2,4-diisocyanate, which was derived from the paint solvents used for the wood in the carpentry shop and the paints on the walls. More than half of all assessed species (80%) had mean concentration values less than 50 ng L-1, which is the maximum allowed for most VOCs. The major chemical types among the compounds quantified will be those we found in our previous study in the surrounding air of a carpentry workshop in Deir Ballout in Palestine, which were toluene diisocyanate and butyl cyanate. Some were found to be highly present air. Most of the measurements were below the guidelines of the World Health Organization (WHO). Despite the fact that this study only involved a small number of smokers, smoking was found to be connected with several blood and breath components. This group includes unsaturated hydrocarbons (1,3-butadiene, 1,3-pentadiene, 2-butene), furans (2,5-dimethylfuran), and acetonitrile. The proposed classification of measured species into systemic (blood-borne) and exogenous volatiles is strictly hypothetical, as some species may have several origins.
Collapse
Affiliation(s)
- Shehdeh Jodeh
- Department of Chemistry, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Abdelkhaleq Chakir
- Groupe de Spectrométrie Moléculaire et Atmosphérique GSMA, UMR CNRS 7331, Université de Reims, Moulin de la Housse B.P. 1039, CEDEX 02, 51687 Reims, France
| | - Ghadir Hanbali
- Department of Chemistry, An-Najah National University, Nablus P.O. Box 7, Palestine
| | - Estelle Roth
- Groupe de Spectrométrie Moléculaire et Atmosphérique GSMA, UMR CNRS 7331, Université de Reims, Moulin de la Housse B.P. 1039, CEDEX 02, 51687 Reims, France
| | - Abdelrahman Eid
- Department of Mathematics, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
24
|
Pan Q, Liu QY, Zheng J, Li YH, Xiang S, Sun XJ, He XS. Volatile and semi-volatile organic compounds in landfill gas: Composition characteristics and health risks. ENVIRONMENT INTERNATIONAL 2023; 174:107886. [PMID: 36989764 DOI: 10.1016/j.envint.2023.107886] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Gas emitted from landfills contains a large quantity of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), some of which are carcinogenic, teratogenic, and mutagenic, thereby posing a serious threat to the health of landfill workers and nearby residents. However, the global hazards of VOCs and SVOCs in landfill gas to human health remain unclear. To quantify the global risk distributions of these pollutants, we collected the composition and concentration data of VOCs and SVOCs from 72 landfills in 20 countries from the core database of Web of Science and assessed their human health risks as well as analyzed their influencing factors. Organic compounds in landfill gas were found to primarily result from the biodegradation of natural organic waste or the emissions and volatilization of chemical products, with the concentration range of 1 × 10-1-1 × 106 μg/m3. The respiratory system, in particular, lung was the major target organ of VOCs and SVOCs, with additional adverse health impacts ranging from headache and allergies to lung cancer. Aromatic and halogenated compounds were the primary sources of health risk, while ethyl acetate and acetone from the biodegradation of natural organic waste also exceeded the acceptable levels for human health. Overall, VOCs and SVOCs affected residents within 1,000 m of landfills. Air temperature, relative humidity, air pressure, wind direction, and wind speed were the major factors that influenced the health risks of VOCs and SVOCs. Currently, landfill risk assessments of VOCs and SVOCs are primarily based on respiratory inhalation, with health risks due to other exposure routes remaining poorly elucidated. In addition, potential health risks due to the transport and transformation of landfill gas emitted into the atmosphere should be further studied.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Qing-Yu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Yan-Hong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Song Xiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Jie Sun
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
25
|
Xu C, Frigo-Vaz B, Goering J, Wang P. Gas-phase degradation of VOCs using supported bacteria biofilms. Biotechnol Bioeng 2023; 120:1323-1333. [PMID: 36775904 DOI: 10.1002/bit.28348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Herein we report the use of Pseudomonas putida F1 biofilms grown on carbonized cellulosic fibers to achieve biodegradation of airborne volatile organic compounds (VOCs) in the absence of any bulk aqueous-phase media. It is believed that direct exposure of gaseous VOC substrates to biomass may eliminate aqueous-phase mass transfer resistance and facilitate VOC capture and degradation. When tested with toluene vapor as a model VOC, the supported biofilm could grow optimally at 300 p.p.m. toluene and 80% relative humidity, with a specific growth rate of 0.425 day-1 . During long-term VOC biodegradation tests in a tubular packed bed reactor, biofilms achieved a toluene degradation rate of 2.5 mg gDCW -1 h-1 during the initial growth phase. Interestingly, the P. putida F1 film kept biodegrading activity even at the stationary nongrowth phase. The supported biofilms with a biomass loading of 20% (wt) could degrade toluene at a rate of 1.9 mg gDCW -1 h-1 during the stationary phase, releasing CO2 at a rate of 6.4 mg gDCW -1 h-1 at the same time (indicating 100% conversion of substrate carbon to CO2 ). All of these observations promised a new type of "dry" biofilm reactors for efficient degradation of toxic VOCs without involving a large amount of water.
Collapse
Affiliation(s)
- Chao Xu
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA.,Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Benjamin Frigo-Vaz
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA.,Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Joshua Goering
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA.,Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
26
|
Hwang SH, Lee S, Won JU, Park WM. Indoor exposure assessment for levels of dust mite and total volatile organic compounds (TVOCs) in living houses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023:1-9. [PMID: 36689666 DOI: 10.1080/09603123.2023.2167951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The purpose of this study is to measure the levels of dust mites (Dermatophagoides farina group 1 [Der f1] and Dermatophagoides pteronyssinus group 1 [Der p1]) and total volatile organic compounds (TVOCs) in the resident environments with living conditions such as the number of ventilation; the number of window, floor, and temperature; and relative humidity (RH) from vulnerable class in South Korea. Information on residents is designed to be prepared by residents on their general characteristics (daily residence time, heating and cooking type, and cleaning on the day of sampling). Dust mites levels ranged from 24.0 to 1087.5 ng/g with a mean of 215.4 ng/g for Der f1 and from 0.6 to 489.9 ng/g with a mean of 489.9 ng/g for Der p1. Total TVOC levels ranged from 15.3 to 1642.1 μg/m3 with a mean of 219.7 μg/m3. The correlation analysis showed a positive association between Der f1 levels and xylene levels in fall (r = 0.49, r < 0.05) of this study.
Collapse
Affiliation(s)
- Sung Ho Hwang
- Department of Environmental Health, D&C Inc, Incheon, South Korea
| | - Sangwon Lee
- National Cancer Center, National Cancer Control Institute, Goyang-si, Gyeonggi-do, South Korea
| | - Jong-Uk Won
- Graduate School of Public Health, Yonsei University, Seoul, South Korea
- The Institute for Occupational Health, College of Medicine, Yonsei University, Seoul, South Korea
- Department of Occupational and Environmental Medicine, Severance Hospital, Yonsei University Health System, Seoul, South Korea
| | - Wha Me Park
- Graduate School of Public Health, Yonsei University, Seoul, South Korea
- The Institute for Occupational Health, College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
27
|
López LR, Dessì P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO 2 in indoor environments: From environmental and health risk to potential renewable carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159088. [PMID: 36181799 DOI: 10.1016/j.scitotenv.2022.159088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.
Collapse
Affiliation(s)
- L R López
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain.
| | - P Dessì
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - A Cabrera-Codony
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - L Rocha-Melogno
- ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - B Kraakman
- Jacobs Engineering, Templey Quay 1, Bristol BAS1 6DG, UK; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., 47011 Valladolid, Spain
| | - V Naddeo
- Sanitary Environmental Engineering Division, Department of Civil Engineering, University of Salerno, 84084 Fisciano, SA, Italy
| | - M D Balaguer
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| | - S Puig
- LEQUiA, Institute of Environment, University of Girona, Campus Montilivi, carrer Maria Aurelia Capmany 69, Girona, Spain
| |
Collapse
|
28
|
Lu C, Liu Z, Yang W, Liao H, Liu Q, Li Q, Deng Q. Early life exposure to outdoor air pollution and indoor environmental factors on the development of childhood allergy from early symptoms to diseases. ENVIRONMENTAL RESEARCH 2023; 216:114538. [PMID: 36252839 DOI: 10.1016/j.envres.2022.114538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The prevalence of childhood allergies has increased during past decades leading to serious hospitalization and heavy burden worldwide, yet the key factors responsible for the onset of early symptoms and development of diagnosed diseases are unclear. OBJECTIVE To explore the role of early life exposure to ambient air pollution and indoor environmental factors on early allergic symptoms and doctor diagnosed allergic diseases. METHODS A retrospective cohort study of 2598 preschool children was conducted at 36 kindergartens in Changsha, China from September of 2011 to February of 2012. A questionnaire was developed to survey each child's early onset of allergic symptoms (wheeze and rhinitis-like symptoms) and doctor diagnosis of allergic diseases (asthma and rhinitis) as well as home environments. Each mother's and child's exposures to ambient air pollutants (PM10, SO2, and NO2) and temperature were estimated for in utero and postnatal periods. The associations of early symptoms and diagnosed diseases with outdoor air pollution and indoor environmental variables were examined by logistic regression models. RESULTS Childhood early allergic symptoms (33.9%) including wheeze (14.7%) and rhinitis-like symptoms (25.4%) before 2 years old were not associated with outdoor air pollution exposure but was significantly associated with maternal exposure of window condensation at home in pregnancy with ORs (95% CI) of 1.33 (1.11-1.59), 1.30 (1.01-1.67) and 1.27 (1.04-1.55) respectively, and was associated with new furniture during first year after birth with OR (95% CI) of 1.43 (1.02-2.02) for early wheeze. Childhood diagnosed allergic diseases (28.4%) containing asthma (6.7%) and allergic rhinitis (AR) (7.2%) were significantly associated with both outdoor air pollutants (mainly for SO2 and NO2) during first 3 years and indoor new furniture, redecoration, and window condensation. We found that sex, age, parental atopy, maternal productive age, environmental tobacco smoke (ETS), antibiotics use, economic stress, early and late introduction of complementary foods, and outdoor air pollution modified the effects of home environmental exposure in early life on early allergic symptoms and diagnosed allergic diseases. CONCLUSION Our study indicates that early life exposure to indoor environmental factors plays a key role in early onset of allergic symptoms in children, and further exposure to ambient air pollution and indoor environmental factors contribute to the later development of asthma and allergic rhinitis.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Zijing Liu
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Wenhui Yang
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Qin Li
- XiangYa School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
29
|
Haug H, Klein L, Sauerwald T, Poelke B, Beauchamp J, Roloff A. Sampling Volatile Organic Compound Emissions from Consumer Products: A Review. Crit Rev Anal Chem 2022; 54:1895-1916. [PMID: 36306209 DOI: 10.1080/10408347.2022.2136484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Volatile organic compounds (VOCs) are common constituents of many consumer products. Although many VOCs are generally considered harmless at low concentrations, some compound classes represent substances of concern in relation to human (inhalation) exposure and can elicit adverse health effects, especially when concentrations build up, such as in indoor settings. Determining VOC emissions from consumer products, such as toys, utensils or decorative articles, is of utmost importance to enable the assessment of inhalation exposure under real-world scenarios with respect to consumer safety. Due to the diverse sizes and shapes of such products, as well as their differing uses, a one-size-fits-all approach for measuring VOC emissions is not possible, thus, sampling procedures must be chosen carefully to best suit the sample under investigation. This review outlines the different sampling approaches for characterizing VOC emissions from consumer products, including headspace and emission test chamber methods. The advantages and disadvantages of each sampling technique are discussed in relation to their time and cost efficiency, as well as their suitability to realistically assess VOC inhalation exposures.
Collapse
Affiliation(s)
- Helen Haug
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Aroma and Smell Research, Erlangen, Germany
| | - Luise Klein
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tilman Sauerwald
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Birte Poelke
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jonathan Beauchamp
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Alexander Roloff
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
30
|
Liu N, Bu Z, Liu W, Kan H, Zhao Z, Deng F, Huang C, Zhao B, Zeng X, Sun Y, Qian H, Mo J, Sun C, Guo J, Zheng X, Weschler LB, Zhang Y. Indoor exposure levels and risk assessment of volatile organic compounds in residences, schools, and offices in China from 2000 to 2021: A systematic review. INDOOR AIR 2022; 32:e13091. [PMID: 36168233 DOI: 10.1111/ina.13091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 06/16/2023]
Abstract
The last two decades have witnessed rapid urbanization and economic growth accompanied by severe indoor air pollution of volatile organic compounds (VOCs) in China. However, indoor VOC pollution across China has not been well characterized and documented. This study is a systematic review of field measurements of eight target VOCs (benzene, toluene, xylenes, acetaldehyde, p-dichlorobenzene, butadiene, trichloroethylene, and tetrachloroethylene) in residences, offices, and schools in China from 2000 to 2021. The results show that indoor pollution of benzene, toluene, and xylenes has been more serious in China than in other countries. Spatiotemporal distribution shows lower indoor VOC levels in east and south-east regions and a declining trend from 2000 to 2021. Moving into a dwelling more than 1 year after decoration and improving ventilation could significantly reduce exposure to indoor VOCs. Reducing benzene exposure is urgently needed because it is associated with greater health risks (4.5 × 10-4 for lifetime cancer risk and 8.3 for hazard quotient) than any other VOCs. The present study enriches the database of indoor VOC levels and provides scientific evidence for improving national indoor air quality standards as well as estimating the attributable disease burden caused by VOCs in China.
Collapse
Affiliation(s)
- Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Zhao
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Guo
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | | | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| |
Collapse
|
31
|
Mobasser S, Wager Y, Dittrich TM. Indoor Air Purification of Volatile Organic Compounds (VOCs) Using Activated Carbon, Zeolite, and Organosilica Sorbents. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shariat Mobasser
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan 48202 United States
| | - Yongli Wager
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan 48202 United States
| | - Timothy M. Dittrich
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan 48202 United States
| |
Collapse
|
32
|
Liu N, Bu Z, Liu W, Kan H, Zhao Z, Deng F, Huang C, Zhao B, Zeng X, Sun Y, Qian H, Mo J, Sun C, Guo J, Zheng X, Weschler LB, Zhang Y. Health effects of exposure to indoor volatile organic compounds from 1980 to 2017: A systematic review and meta-analysis. INDOOR AIR 2022; 32:e13038. [PMID: 35622720 DOI: 10.1111/ina.13038] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Exposure to volatile organic compounds (VOCs) indoors is thought to be associated with several adverse health effects. However, we still lack concentration-response (C-R) relationships between VOC levels in civil buildings and various health outcomes. For this paper, we conducted a systematic review and meta-analysis of observational studies to summarize related associations and C-R relationships. Four databases were searched to collect all relevant studies published between January 1980 and December 2017. A total of 39 studies were identified in the systematic review, and 32 of these were included in the meta-analysis. We found that the pooled relative risk (RR) for leukemia was 1.03 (95% CI: 1.01-1.05) per 1 μg/m3 increase of benzene and 1.25 (95%CI: 1.14-1.37) per 0.1 μg/m3 increase of butadiene. The pooled RRs for asthma were 1.08 (95% CI: 1.02-1.14), 1.02 (95% CI: 1.00-1.04), and 1.04 (95% CI: 1.02-1.06) per 1 μg/m3 increase of benzene, toluene, and p-dichlorobenzene, respectively. The pooled RR for low birth weight was 1.12 (95% CI: 1.05-1.19) per 1 μg/m3 increase of benzene. Our findings provide robust evidence for associations between benzene and leukemia, asthma, and low birth weight, as well as for health effects of some other VOCs.
Collapse
Affiliation(s)
- Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Zhao
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Guo
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | | | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| |
Collapse
|
33
|
Eghomwanre AF, Oguntoke O. Concentrations of indoor gaseous air pollutants and risk factors associated with childhood asthma in Benin City, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:391. [PMID: 35460021 DOI: 10.1007/s10661-022-10026-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Pollutants from various indoor sources account for indoor air pollution mostly in developing countries and pose health risks to children. This study assessed the levels of indoor gaseous pollutants and environmental risk factors associated with asthma in children. A cross-sectional household survey was conducted among 304 children between the ages of 1 and 17 years. Indoor pollution at home was investigated using a modified international survey on asthma and allergies in childhood (ISAAC) questionnaire. Concentrations of indoor gaseous pollutants (CO, SO2 and NO2) were measured in two hundred and twenty-five randomly selected households using a MultiRae lite gas meter. The data obtained were analysed using SPSS for windows version 21.0. The risk factors for childhood asthma were obtained as odds ratios (ORs) using multivariate logistic regression. Mean concentrations of indoor gaseous pollutants ranged between 2.34-3.14 and 2.21-2.61 mg/m3 (CO), 0.02-0.05 and < 0.002-0.03 mg/m3 (NO2) and < 0.002-0.03 and < 0.002-0.02 mg/m3 (SO2) in the wet and dry seasons. The mean values of pollutants were within the WHO permissible limits. The morbidity rates of clinical asthma, physician-diagnosed asthma and recurrent wheeze in the past 12 months among the respondents were 5.6%, 2.6% and 11.8% respectively. There was no association between asthma prevalence and air pollutant exposures except with CO (R = 0.130). However, the number of occupants, family history of asthma, current smoking, use of kerosene and proximity of residence to the highway with significant (p < 0.05) odds ratios (12.4, 3.51, 2.51, 7.20 and 3.46) were independent contributors to current asthma in children. The study showed that exposure to household risk factors contributed to increased asthma among children in the study locations.
Collapse
Affiliation(s)
- A F Eghomwanre
- Faculty of Life Sciences, Department of Environmental Management and Toxicology, University of Benin, Benin City, Nigeria.
| | - O Oguntoke
- College of Environmental Resources Management, Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
34
|
Chen Q, Tian E, Luo Z, Mo J. Adsorption film with sub-milli-interface morphologies via direct ink writing for indoor formaldehyde removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128190. [PMID: 35007806 DOI: 10.1016/j.jhazmat.2021.128190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
In-situ thermally regenerated flexible adsorption films are superior for long-term purification of indoor low-concentration volatile organic compounds (VOCs). To further improve the adsorption kinetics of the films, the surface morphology of adsorption films was suggested in hierarchical channel structure. However, such structure is far from practical applications because of its complicated fabrication method and limited flexibility. In this study, we proposed a convenient and fast method named direct ink writing (DIW) based 3D printing to fabricate flexible adsorption films. Inks were prepared to have appropriate rheological properties and good printability. Three types of adsorption film (flat, straight finned, and trough-like finned) were constructed on flexible polyimide circuit substrates by DIW. We utilized the printed adsorption films for indoor level (1 ppm) formaldehyde removal. The trough-like finned film achieved the best performance among the three printed films, showing a 275% longer penetration time and 252% larger effective adsorption capacity than the flat film. By conducting a 7-cycle adsorption-desorption experiment (more than 12 h), we verified that the films' adsorption performance could effectively recover via in-situ heating. This work could dance around the complicated coating process, increase the structural flexibility and reduce the adsorbent interfacial modification cost.
Collapse
Affiliation(s)
- Qiwei Chen
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ziyi Luo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China; Key Laboratory of Eco Planning & Green Building, Ministry of Education (Tsinghua University), Beijing 100084, China.
| |
Collapse
|
35
|
Scott Downen R, Dong Q, Chorvinsky E, Li B, Tran N, Jackson JH, Pillai DK, Zaghloul M, Li Z. Personal NO 2 sensor demonstrates feasibility of in-home exposure measurements for pediatric asthma research and management. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:312-319. [PMID: 35110684 PMCID: PMC8930644 DOI: 10.1038/s41370-022-00413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND One of the most common pollutants in residences due to gas appliances, NO2 has been shown to increase the risk of asthma attacks after small increases in short term exposure. However, standard environmental sampling methods taken at the regional level overlook chronic intermittent exposure due to lack of temporal and spatial granularity. Further, the EPA and WHO do not currently provide exposure recommendations to at-risk populations. AIMS A pilot study with pediatric asthma patients was conducted to investigate potential deployment challenges as well as benefits of home-based NO2 sensors and, when combined with a subject's hospital records and self-reported symptoms, the richness of data available for larger-scale epidemiological studies. METHODS We developed a compact personal NO2 sensor with one minute temporal resolution and sensitivity down to 15 ppb to monitor exposure levels in the home. Patient hospital records were collected along with self-reported symptom diaries, and two example hypotheses were created to further demonstrate how data of this detail may enable study of the impact of NO2 in this sensitive population. RESULTS 17 patients (55%) had at least 1 h each day with average NO2 exposure >21 ppb. Frequency of acute NO2 exposure >21 ppb was higher in the group with gas stoves (U = 27, p ≤ 0.001), and showed a positive correlation (rs = 0.662, p = 0.037, 95% CI 0.36-0.84) with hospital admissions. SIGNIFICANCE Similar studies are needed to evaluate the true impact of NO2 in the home environment on at-risk populations, and to provide further data to regulatory bodies when developing updated recommendations.
Collapse
Affiliation(s)
- R Scott Downen
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Quan Dong
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Elizabeth Chorvinsky
- Department of Integrative Systems Biology, The George Washington University, Washington, DC, USA
| | - Baichen Li
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Nam Tran
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - James Hunter Jackson
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
| | - Dinesh K Pillai
- Department of Integrative Systems Biology, The George Washington University, Washington, DC, USA
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, Washington, DC, USA
| | - Mona Zaghloul
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, USA
| | - Zhenyu Li
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
| |
Collapse
|
36
|
Zhang J, Sun C, Lu R, Zou Z, Liu W, Huang C. Association of childhood rhinitis with phthalate acid esters in household dust in Shanghai residences. Int Arch Occup Environ Health 2022; 95:629-643. [PMID: 35192054 DOI: 10.1007/s00420-021-01797-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/24/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Phthalate acid esters (PAEs) have been identified to be associated with children's health. Present study was conducted to assess associations between PAEs in household dust and childhood rhinitis. METHODS Based on phase II of CCHH study (China, Children, Home, Health) conducted in Shanghai, China, 266 indoor dust samples were collected from participants' families. Concentrations of PAEs in dust samples were measured by chemical treatment and gas chromatograph-mass spectrometer. Information about individuals and residences was surveyed by questionnaires. Logistic regression models were applied to obtain the associations between PAEs and childhood rhinitis. RESULTS Higher concentrations of benzyl butyl phthalate (BBP) were found in those families with children who had diagnosed rhinitis. Significantly higher concentrations of bis(2-ethylhexyl) phthalate (DEHP) and PAEs with high molecular weight (HMW-PAEs) were found in the positive group of lifetime rhinitis. Using the multiple and ordinal logistic regression models adjusted by covariates, dibutyl phthalate (DBP), DEHP, and HMW-PAEs were found to be significantly associated with diagnosed rhinitis. Boys who exposure to higher concentrations of DBP, DEHP, HMW-PAEs, and total PAEs have significant associations with diagnosed rhinitis compared with girls who exposure to lower concentration of PAEs. CONCLUSIONS Present observational study indicated that exposure to high concentrations of DBP, DEHP, and HMW-PAEs in house settled dust was a risk factor for rhinitis for children, especially for boys.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Rongchun Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
37
|
Poulin P, Marchand A, Lévesque B, Dubé M, Aubin D, Ouazia B, Duchaine C, Brisson M. Impact of improved indoor air quality in Nunavik homes on children's respiratory health. INDOOR AIR 2022; 32:e13009. [PMID: 35225380 DOI: 10.1111/ina.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Between 2007 and 2012, hospitalization rate related to respiratory system diseases in children ≤1-year-old was near 7 times higher in Nunavik compared with the whole province of Quebec. To assess the impact of poor indoor air quality (IAQ) in residential environments on children's respiratory health, the Nunavik's intervention study investigated the impact of the optimization of ventilation systems on the incidence rates of respiratory infections in children in Nunavik. Children under 10 years were recruited and categorized according to the type of ventilation system in their home: energy recovery ventilator (ERV), heat recovery ventilator (HRV), no HRV or ERV, and control groups. Children's' medical records were analyzed over a period of 50 weeks pre- and post-intervention. Clinical diagnoses were classified into 4 categories: upper respiratory infections, lower respiratory infections, otitis media, and asthma. A decrease in respiratory infections episodes was observed in all groups following intervention with the highest impact observed for HRV systems (-53.0%). Decreases in the ERV group were not significant (-21,7%) possibly due to the presence of some volatile organic compound (such as propylene glycol) and inerrant experimental bias. Nevertheless, no significant association was found between health episodes incidence and household's behaviors or IAQ.
Collapse
Affiliation(s)
- Patrick Poulin
- Institut National de santé Publique du Québec, Québec, Canada
| | - Axelle Marchand
- Institut National de santé Publique du Québec, Québec, Canada
| | - Benoît Lévesque
- Institut National de santé Publique du Québec, Québec, Canada
| | - Marjolaine Dubé
- Institut National de santé Publique du Québec, Québec, Canada
| | - Daniel Aubin
- National Research Council Canada, Ottawa, Canada
| | | | - Caroline Duchaine
- Chaire de Recherche du Canada sur les Bioaérosols, Université Laval, Québec, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Mario Brisson
- Nunavik Regional Board of Health and Social Services, Québec, Canada
| |
Collapse
|
38
|
Gilbey SE, Reid CM, Huxley RR, Soares MJ, Zhao Y, Rumchev KB. The Association between Exposure to Residential Indoor Volatile Organic Compounds and Measures of Central Arterial Stiffness in Healthy Middle-Aged Men and Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020981. [PMID: 35055806 PMCID: PMC8776238 DOI: 10.3390/ijerph19020981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
It is well reported that individuals spend up to 90% of their daily time indoors, with between 60% to 90% of this time being spent in the home. Using a cross-sectional study design in a population of 111 healthy adults (mean age: 52.3 ± 9.9 years; 65% women), we investigated the association between exposure to total volatile organic compounds (VOCs) in indoor residential environments and measures of central arterial stiffness, known to be related to cardiovascular risk. Indoor VOC concentrations were measured along with ambulatory measures of pulse pressure (cPP), augmentation index (cAIx) and cAIx normalized for heart rate (cAIx75), over a continuous 24-h period. Pulse wave velocity (cfPWV) was determined during clinical assessment. Multiple regression analysis was performed to examine the relationship between measures of arterial stiffness and VOCs after adjusting for covariates. Higher 24-h, daytime and night-time cAIx was associated with an interquartile range increase in VOCs. Similar effects were shown with cAIx75. No significant effects were observed between exposure to VOCs and cPP or cfPWV. After stratifying for sex and age (≤50 years; >50 years), effect estimates were observed to be greater and significant for 24-h and daytime cAIx in men, when compared to women. No significant effect differences were seen between age groups with any measure of arterial stiffness. In this study, we demonstrated that residential indoor VOCs exposure was adversely associated with some measures of central arterial stiffness, and effects were different between men and women. Although mechanistic pathways remain unclear, these findings provide a possible link between domestic VOCs exposure and unfavourable impacts on individual-level cardiovascular disease risk.
Collapse
Affiliation(s)
- Suzanne E. Gilbey
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
- Correspondence:
| | - Christopher M. Reid
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
- School of Public Health and Preventative Medicine, Monash University, Melbourne 3800, Australia
| | - Rachel R. Huxley
- Faculty of Health, Deakin University, 221 Burwood Highway, Burwood 3125, Australia;
| | - Mario J. Soares
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
| | - Yun Zhao
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
| | - Krassi B. Rumchev
- School of Population Health, Curtin University, Perth 6148, Australia; (C.M.R.); (M.J.S.); (Y.Z.); (K.B.R.)
| |
Collapse
|
39
|
Xu Z, Mo S, Li Y, Zhang Y, Wu J, Fu M, Niu X, Hu Y, Ye D. Pt/MnO x for toluene mineralization via ozonation catalysis at low temperature: SMSI optimization of surface oxygen species. CHEMOSPHERE 2022; 286:131754. [PMID: 34399263 DOI: 10.1016/j.chemosphere.2021.131754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The problem of deep oxidation of low concentrations of VOCs in industrial tail gas is exceptionally urgent. The preparation of VOCs ozonation catalyst with a high mineralization rate is still a challenge. In this paper, manganese oxide carriers with different morphologies were synthesized by simple methods and used to catalyze ozone mineralization of toluene after loading Pt nanoparticles efficiently. The conversion of toluene over Pt/MnOx-T catalyst was more than 98 % at ambient temperature, and the mineralization rate of toluene was close to 100 % at 70 °C. Through a variety of characterization methods, the strong metal-support interaction (SMSI) between Pt nanoparticles and carriers was successfully constructed. It was found that SMSI successfully optimized the surface oxygen species and oxygen migration ability of the catalyst, and then realized the high degree of mineralization of toluene at low temperature. This paper guides the subsequent development of Pt-Mn catalysts for catalytic organic pollutants ozonation with high activity.
Collapse
Affiliation(s)
- Ziyang Xu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shengpeng Mo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yanxia Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuchen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Junliang Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China
| |
Collapse
|
40
|
Huang L, Qiao Y, Deng S, Wang X, Zhao W, Yue Y. Phthalates in house dust in Chinese urban residences: Concentrations, partition, origin and determinants. CHEMOSPHERE 2022; 286:131703. [PMID: 34352541 DOI: 10.1016/j.chemosphere.2021.131703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Exposure to phthalates poses adverse health impacts to human beings. In this study, we analyzed 7 phthalates in dust samples, which were collected with vacuum cleaner from 40 to 31 residences in Beijing in summer and winter, respectively. The major phthalates (median concentration in the summer and winter, respectively) were DiBP (55 and 40 ng/mg), DnBP (99 and 30 ng/mg) and DEHP (795 and 335 ng/mg). The concentrations were significantly influenced by season and residence time of house dust. The concentrations of phthalates in dust on plastic surfaces were highest, followed by those on wooden and fabric surfaces. The dust-air partition coefficients (Kd) were calculated: the median values were 0.13, 0.02 and 5.62 m3/mg in the summer and 0.06, 0.018 and 0.76 m3/mg in the winter for DiBP, DnBP and DEHP, respectively. A comparison with Kd* at equilibrium state suggested that partition between air and dust deviated from equilibrium state in both seasons. The results also revealed that dust-phthalates in the summer may completely originate from source materials via direct transfer and external physical process; while dust-phthalates in the winter may come from both air (via partition) and source material (via direct transfer and external physical process). The influence of temperature on dust-phthalate concentrations differed by season, owing to different origin of dust-phthalates in two seasons. Polar organic components in dust, which are products of reactions between O3 and unsaturated hydrocarbons in dust, likely played an important role in fate and transport of phthalates. The presence of them resulted in the significant associations between dust-phthalate concentrations and air humidity in the summer. Moreover, the impacts of indoor PM2.5 concentrations, traffic conditions surrounding residence, household lifestyle and number of occupants were also observed. The mechanisms behind those observations were discussed.
Collapse
Affiliation(s)
- Lihui Huang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China.
| | - Yaqi Qiao
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shunxi Deng
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Xiaoke Wang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Weiping Zhao
- Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China; School of Civil Engineering, Hefei University of Technology, Hefei, Anhui, 230001, China
| | - Yang Yue
- Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
41
|
Shahunja KM, Sly PD, Begum T, Biswas T, Mamun A. Family, neighborhood and psychosocial environmental factors and their associations with asthma in Australia: a systematic review and Meta-analysis. J Asthma 2021; 59:2539-2552. [PMID: 34905415 DOI: 10.1080/02770903.2021.2018707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Various associations between different environmental exposures and asthma have been reported in different countries and populations. We aimed to investigate the associations between family, neighborhood and psychosocial environmental factors and asthma-symptoms in Australia by conducting a systematic review and meta-analysis. DATA SOURCES We analyzed the primary research studies conducted in Australia across multiple databases, including PubMed, EMBASE and Scopus, published between 2000 and 2020. STUDY SELECTIONS The reviews and analyses focused on the overall association of different environmental exposures with the exacerbation of asthma-symptoms or asthma-related hospital visits. Quality-effect meta-analysis was done to estimate the pooled odds ratio for different environmental exposures for asthma-symptoms. RESULTS Among the 4799 unique published articles found, 46 were included here for systematic review and 28 for meta-analysis. Our review found that psychosocial factors, including low socioeconomic condition, maternal depression, mental stress, ethnicity, and discrimination, are associated with asthma-symptoms. Pooled analysis was conducted on family and neighborhood environmental factors and revealed that environmental tobacco smoking (ETS) (OR 1·69, 95% CI 1·19-2·38), synthetic bedding (OR 1·91, 95% CI 1·48-2·47) and gas heaters (OR 1·40, 95% CI 1·12-1·76) had significant overall associations with asthma-symptoms in Australia. CONCLUSION Although the studies were heterogeneous, both systematic review and meta-analysis found several psychosocial and family environmental exposures significantly associated with asthma-symptoms. Further study to identify their causal relationship and modification may reduce asthma-symptoms in the Australian population.
Collapse
Affiliation(s)
- K M Shahunja
- Institute for Social Science Research, The University of Queensland, Brisbane, Australia.,ARC Centre of Excellence for Children and Families over the Life Course, The University of Queensland, Brisbane, Australia.,The Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Peter D Sly
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Tahmina Begum
- Institute for Social Science Research, The University of Queensland, Brisbane, Australia.,ARC Centre of Excellence for Children and Families over the Life Course, The University of Queensland, Brisbane, Australia
| | - Tuhin Biswas
- Institute for Social Science Research, The University of Queensland, Brisbane, Australia.,ARC Centre of Excellence for Children and Families over the Life Course, The University of Queensland, Brisbane, Australia
| | - Abdullah Mamun
- Institute for Social Science Research, The University of Queensland, Brisbane, Australia.,ARC Centre of Excellence for Children and Families over the Life Course, The University of Queensland, Brisbane, Australia.,The Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Brought to Light: How Ultraviolet Disinfection Can Prevent the Nosocomial Transmission of COVID-19 and Other Infectious Diseases. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has brought to light the role of environmental hygiene in controlling disease transmission. Healthcare facilities are hot spots for infectious pathogens where physical distancing and personal protective equipment (PPE) are not always sufficient to prevent disease transmission. Healthcare facilities need to consider adjunct strategies to prevent transmission of infectious pathogens. In combination with current infection control procedures, many healthcare facilities are incorporating ultraviolet (UV) disinfection into their routines. This review considers how pathogens are transmitted in healthcare facilities, the mechanism of UV microbial inactivation and the documented activity of UV against clinical pathogens. Emphasis is placed on the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as well as multidrug resistant organisms (MDROs) that are commonly transmitted in healthcare facilities. The potential benefits and limitations of UV technologies are discussed to help inform healthcare workers, including clinical studies where UV technology is used in healthcare facilities.
Collapse
|
43
|
Li YC, Hsu HHL, Chun Y, Chiu PH, Arditi Z, Claudio L, Pandey G, Bunyavanich S. Machine learning-driven identification of early-life air toxic combinations associated with childhood asthma outcomes. J Clin Invest 2021; 131:152088. [PMID: 34609967 DOI: 10.1172/jci152088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/23/2021] [Indexed: 01/19/2023] Open
Abstract
Air pollution is a well-known contributor to asthma. Air toxics are hazardous air pollutants that cause or may cause serious health effects. Although individual air toxics have been associated with asthma, only a limited number of studies have specifically examined combinations of air toxics associated with the disease. We geocoded air toxic levels from the US National Air Toxics Assessment (NATA) to residential locations for participants of our AiRway in Asthma (ARIA) study. We then applied Data-driven ExposurE Profile extraction (DEEP), a machine learning-based method, to discover combinations of early-life air toxics associated with current use of daily asthma controller medication, lifetime emergency department visit for asthma, and lifetime overnight hospitalization for asthma. We discovered 20 multi-air toxic combinations and 18 single air toxics associated with at least 1 outcome. The multi-air toxic combinations included those containing acrylic acid, ethylidene dichloride, and hydroquinone, and they were significantly associated with asthma outcomes. Several air toxic members of the combinations would not have been identified by single air toxic analyses, supporting the use of machine learning-based methods designed to detect combinatorial effects. Our findings provide knowledge about air toxic combinations associated with childhood asthma.
Collapse
Affiliation(s)
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health.,Institute for Exposomic Research, and
| | | | | | - Zoe Arditi
- Department of Genetics and Genomic Sciences.,Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luz Claudio
- Department of Environmental Medicine and Public Health.,Institute for Exposomic Research, and
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences.,Institute for Exposomic Research, and
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences.,Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
44
|
Huang L, Wei Y, Zhang L, Ma Z, Zhao W. Estimates of emission strengths of 43 VOCs in wintertime residential indoor environments, Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148623. [PMID: 34328960 DOI: 10.1016/j.scitotenv.2021.148623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
There are many sources of volatile organic compounds (VOCs) in indoor environments, leading to much higher total indoor VOC concentrations than outdoor counterparts. Given the potential health hazards associated with VOC exposure, it is necessary to estimate the indoor VOC emission strengths. In this study, the indoor and outdoor concentrations of 43 VOCs were concurrently measured in 8 urban residences, Beijing. The indoor/outdoor concentration ratio was used to screen out 36 species having significant indoor sources. A one-compartment steady-state model was developed to estimate the indoor emission strengths of these VOCs, in which ventilation and reaction with ozone were included as sink routes. The order of VOCs in terms of indoor emission strength was d-limonene (a median value of 1.05 g/h), α-pinene (82.50 mg/h), styrene (24.12 mg/h), ß-pinene (9.70 mg/h), formaldehyde (1.97 mg/h), n-dodecane (1.82 mg/h), n-pentadecane (1.66 mg/h), n-hexadecane (1.62 mg/h), n-undecane (1.20 mg/h), acetaldehyde (1.05 mg/h) and 1, 4-dichlorobenzene (0.80 mg/h). The sum of estimates of those VOCs accounted for >95% of total emission strength. Specific indoor sources of those VOCs in the tested homes were identified. Air exchange rate, indoor temperature and air humidity were found to pose significant impacts to the indoor emission strengths of VOCs.
Collapse
Affiliation(s)
- Lihui Huang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China; Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing 100084, China.
| | - Yanru Wei
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Liyuan Zhang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Zhe Ma
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Weiping Zhao
- Institute of Built Environment, Department of Building Science, Tsinghua University, Beijing 100084, China; School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230001, China
| |
Collapse
|
45
|
Di Gilio A, Palmisani J, Petraccone S, de Gennaro G. A sensing network involving citizens for high spatio-temporal resolution monitoring of fugitive emissions from a petroleum pre-treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148135. [PMID: 34118667 DOI: 10.1016/j.scitotenv.2021.148135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
In this study an innovative sensing network consisting of eight photoionization detectors, meteorological sensors, a video camera and a telephonic system able to systematize the population complaints was developed for the monitoring of odor emissions. The development of monitoring approaches with high temporal and spatial resolution and actively involving citizens, is strategic in areas where relevant and also short-term emissive events frequently occur and the conventional approaches fail due to the high variability of fugitive emissions. Moreover, even if unpleasant odors are not necessarily direct triggers of health effects, they could be associated with the release of other harmful compounds. Monitoring approaches also involving citizens are thus strategic tools because odors annoyance perceived by population may be a potential health risk warning. Therefore, the developed sensing network was set up in Val d'Agri (Basilicata, Italy) where a petroleum pre-treatment plant (COVA) rises in a rural and inhabited area. The data collected during the monitoring campaign from the 16th February to the 30th July 2017, showed Total Volatile Organic Compounds (TVOCs) concentrations decreasing moving away from the plant and up to five times higher than levels registered in the closest municipality (Viggiano). Moreover, recurrent short-term critical events characterized by concentration values far above the average of the period and with maximum values ranging from 0.92 to 1.89 ppm, were registered in correspondence with high levels of benzene (up to 23.9 μg/m3) and anemometric conditions able to transport pollutants from COVA to each receptor site. The spatial and temporal distribution of TVOC concentrations proved to be affected by the distance from COVA, wind direction and industrial activities verified using video reportage and citizen claims. Therefore, the developed approach has proven to be a useful tool to credit people's perception of odors and also to quantify citizen exposure to VOCs during short-term events.
Collapse
Affiliation(s)
- Alessia Di Gilio
- Biology Department, University of Bari, via Orabona, 4, 70126 Bari, Italy.
| | - Jolanda Palmisani
- Biology Department, University of Bari, via Orabona, 4, 70126 Bari, Italy.
| | | | | |
Collapse
|
46
|
Lebbie TS, Moyebi OD, Asante KA, Fobil J, Brune-Drisse MN, Suk WA, Sly PD, Gorman J, Carpenter DO. E-Waste in Africa: A Serious Threat to the Health of Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8488. [PMID: 34444234 PMCID: PMC8392572 DOI: 10.3390/ijerph18168488] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022]
Abstract
Waste electronic and electrical equipment (e-waste) consists of used and discarded electrical and electronic items ranging from refrigerators to cell phones and printed circuit boards. It is frequently moved from developed countries to developing countries where it is dismantled for valuable metals in informal settings, resulting in significant human exposure to toxic substances. E-waste is a major concern in Africa, with large sites in Ghana and Nigeria where imported e-waste is dismantled under unsafe conditions. However, as in many developing countries, used electronic and electrical devices are imported in large quantities because they are in great demand and are less expensive than new ones. Many of these used products are irreparable and are discarded with other solid waste to local landfills. These items are then often scavenged for the purpose of extracting valuable metals by heating and burning, incubating in acids and other methods. These activities pose significant health risks to workers and residents in communities near recycling sites. E-waste burning and dismantling activities are frequently undertaken at e-waste sites, often in or near homes. As a result, children and people living in the surrounding areas are exposed, even if they are not directly involved in the recycling. While toxic substances are dangerous to individuals at any age, children are more vulnerable as they are going through important developmental processes, and some adverse health impacts may have long-term impacts. We review the e-waste situation in Africa with a focus on threats to children's health.
Collapse
Affiliation(s)
- Tamba S. Lebbie
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
| | - Omosehin D. Moyebi
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
| | | | - Julius Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Accra, Ghana;
| | - Marie Noel Brune-Drisse
- Department of Environment, Climate Change and Health, World Organization, 1211 Geneva, Switzerland;
| | - William A. Suk
- A World Health Organization Collaborating Center on Children’s Environmental Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Peter D. Sly
- A World Health Organization Collaborating Center for Children’s Health and the Environment, Child Health Research Center, The University of Queensland, South Brisbane 4101, Australia;
| | - Julia Gorman
- Graduate School of Humanities and Social Sciences, University of Melbourne, Melbourne 3010, Australia;
| | - David O. Carpenter
- Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY 12144, USA; (T.S.L.); (O.D.M.)
- A World Health Organization Collaborating Center on Environmental Health, Institute for Health and the Environment, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
47
|
Air pollution and lung function in children. J Allergy Clin Immunol 2021; 148:1-14. [PMID: 34238501 DOI: 10.1016/j.jaci.2021.05.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/30/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
In this narrative review, we summarize the literature and provide updates on recent studies of air pollution exposures and child lung function and lung function growth. We include exposures to outdoor air pollutants that are monitored and regulated through air quality standards, and air pollutants that are not routinely monitored or directly regulated, including wildfires, indoor biomass and coal burning, gas and wood stove use, and volatile organic compounds. Included is a more systematic review of the recent literature on long-term air pollution and child lung function because this is an indicator of future adult respiratory health and exposure assessment tools have improved dramatically in recent years. We present "summary observations" and "knowledge gaps." We end by discussing what is known about what can be done at the individual/household, local/regional, and national levels to overcome structural impediments, reduce air pollution exposures, and improve child lung function. We found a large literature on adverse air pollution effects on children's lung function level and growth; however, many questions remain. Important areas needing further research include whether early-life effects are fixed or reversible; and what are windows of increased susceptibility, long-term effects of repeated wildfire events, and effects of air quality interventions.
Collapse
|
48
|
Norbäck D, Hashim Z, Ali F, Hashim JH. Asthma symptoms and respiratory infections in Malaysian students-associations with ethnicity and chemical exposure at home and school. ENVIRONMENTAL RESEARCH 2021; 197:111061. [PMID: 33785322 DOI: 10.1016/j.envres.2021.111061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Little is known on respiratory effects of indoor chemicals in the tropics. We investigated associations between asthma and respiratory infections in Malaysian students and chemical exposure at home and at school. Moreover, we investigated differences in home environment between the three main ethnic groups in Malaysia (Malay, Chinese, Indian). Totally, 462 students from 8 junior high schools in Johor Bahru participated (96% participation rate). The students answered a questionnaire on health and home environment. Climate, carbon dioxide (CO2), volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) were measured inside and outside the schools. Multilevel logistic regression was applied to study associations between exposure and health. Totally 4.8% were smokers, 10.3% had wheeze, 9.3% current asthma, and had 18.8% any respiratory infection in the past 3 months. Malay students had more dampness or mould (p < 0.001), more environmental tobacco smoke (ETS) (p < 0.001) and more cats (p < 0.001) at home as compared to Chinese or Indian students. Wheeze was associated with ethnicity (p = 0.02; lower in Indian), atopy (p = 0.002), current smoking (p = 0.02) and recent indoor painting at home (p = 0.03). Current asthma was associated with ethnicity (p = 0.001; lower in Chinese) and para-dichlorobenzene in classroom air (p = 0.008). Respiratory infections were related to atopy (p = 0.002), ethylbenzene (p = 0.02) and para-dichlorobenzene (p = 0.01) in classroom air. Para-dichlorobenzene is used in Asia against insects. In conclusion, chemical emissions from recent indoor painting at home can increase the risk of wheeze. In schools, para-dichlorobenzene can increase the risk of current asthma and respiratory infections while ethylbenzene can increase the risk of respiratory infections.
Collapse
Affiliation(s)
- Dan Norbäck
- Uppsala University, Department of Medical Science, Occupational and Environmental Medicine, University Hospital, 75185, Uppsala, Sweden.
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Faridah Ali
- Primary Care Unit, Johor State Health Department, 80100, Johor Bahru, Malaysia
| | - Jamal Hisham Hashim
- Faculty of Health Sciences, Universiti Selangor, 40000, Shah Alam, Malaysia; Department of Community Health, National University of Malaysia, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Prazad P, Donovan R, Won B, Cortes D. Migration of cyclohexanone and 3,3,5-trimethylcyclohexanone from a neonatal enteral feeding system into human milk. J Perinatol 2021; 41:1074-1082. [PMID: 33758393 DOI: 10.1038/s41372-021-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Estimate the migration of volatile organic compounds (VOCs) which have been identified by the EPA as a public health concern, from the enteral feeding system into human milk. STUDY DESIGN Unfortified human milk samples were infused through an enteral feeding system with varying duration of infusion, incubator temperature, and pre-infusion tube priming. Purge & Trap analysis and GC/MS were used to identify the VOC profile of milk pre- and post-infusion. RESULT Cyclohexanone and 3,3,5-trimethylcyclohexanone (3,3,5-TMC) accumulated significantly in milk samples post-infusion. Duration of infusion had a significant effect on VOC accumulation (p = 0.001). Accumulation patterns of cyclohexanone and 3,3,5-TMC differed significantly based on milk type (donor vs. mother's own milk). CONCLUSIONS VOCs, migrate from plastic-based feeding equipment into human milk. Based on these findings, limiting the duration of feeding infusion would reduce VOC exposure derived from enteral feeding in the neonatal intensive care unit.
Collapse
Affiliation(s)
| | | | - Brian Won
- Rosaland Franklin University of Medicine and Science, North Chicago, IL, USA
| | | |
Collapse
|
50
|
Application of Metabolomics in Pediatric Asthma: Prediction, Diagnosis and Personalized Treatment. Metabolites 2021; 11:metabo11040251. [PMID: 33919626 PMCID: PMC8072856 DOI: 10.3390/metabo11040251] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma in children remains a significant public health challenge affecting 5–20% of children in Europe and is associated with increased morbidity and societal healthcare costs. The high variation in asthma incidence among countries may be attributed to differences in genetic susceptibility and environmental factors. This respiratory disorder is described as a heterogeneous syndrome of multiple clinical manifestations (phenotypes) with varying degrees of severity and airway hyper-responsiveness, which is based on patient symptoms, lung function and response to pharmacotherapy. However, an accurate diagnosis is often difficult due to diversities in clinical presentation. Therefore, identifying early diagnostic biomarkers and improving the monitoring of airway dysfunction and inflammatory through non-invasive methods are key goals in successful pediatric asthma management. Given that asthma is caused by the interaction between genes and environmental factors, an emerging approach, metabolomics—the systematic analysis of small molecules—can provide more insight into asthma pathophysiological mechanisms, enable the identification of early biomarkers and targeted personalized therapies, thus reducing disease burden and societal cost. The purpose of this review is to present evidence on the utility of metabolomics in pediatric asthma through the analysis of intermediate metabolites of biochemical pathways that involve carbohydrates, amino acids, lipids, organic acids and nucleotides and discuss their potential application in clinical practice. Also, current challenges on the integration of metabolomics in pediatric asthma management and needed next steps are critically discussed.
Collapse
|