1
|
Eickel I, Zygmunt AC, Streit F, Tampe B, Kunze-Szikszay N, Perl T. Phenol as a breath marker for hemodialysis of chronic kidney disease patients. J Breath Res 2025; 19:036009. [PMID: 40373775 DOI: 10.1088/1752-7163/add958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/15/2025] [Indexed: 05/17/2025]
Abstract
We aimed to identify biomarkers in breath analysis with multicapillary column-ion mobility spectrometry (MCC-IMS) to monitor the haemodialysis for chronic kidney disease (CKD) patients fast and non-invasive. Six patients' breath was analyzed via MCC-IMS before and after dialysis and compared to blood plasma samples analyzed via ultra performance liquid chromatography-fluorescence detector for potential renal failure biomarkers. Additionally, breath from six healthy control persons was analyzed. Phenol was found as a breath marker for CKD. For three patients the phenol concentration in breath and plasma was elevated before and decreased during dialysis and reached values in the range of healthy control persons. The peak-intensity of phenol-monomer peaks ofP01-P04 was reduced from an average of 16.58 (5.42-27.28) a.U. to 7.03 (0.00-13.65) a.U., which is a reduction by 42.51 (-10.55-100.00) %. The control group has an average peak-intensity of 8.50 (5.00-12.00) a.U. This study shows that the measurement of phenol via breath analysis could be used to monitor the haemodialysis for CKD-patients and might also be usable for the calculation of haemodialysis dose in the future.The study is registered in the German Clinical Trials Register under number DRKS00029679.
Collapse
Affiliation(s)
- Isabell Eickel
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anne-Christine Zygmunt
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Streit
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Nils Kunze-Szikszay
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Thorsten Perl
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Fernandez L, Oller-Moreno S, Fonollosa J, Garrido-Delgado R, Arce L, Martín-Gómez A, Marco S, Pardo A. Signal Preprocessing in Instrument-Based Electronic Noses Leads to Parsimonious Predictive Models: Application to Olive Oil Quality Control. SENSORS (BASEL, SWITZERLAND) 2025; 25:737. [PMID: 39943376 PMCID: PMC11820981 DOI: 10.3390/s25030737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
Gas sensor-based electronic noses (e-noses) have gained considerable attention over the past thirty years, leading to the publication of numerous research studies focused on both the development of these instruments and their various applications. Nonetheless, the limited specificity of gas sensors, along with the common requirement for chemical identification, has led to the adaptation and incorporation of analytical chemistry instruments into the e-nose framework. Although instrument-based e-noses exhibit greater specificity to gasses than traditional ones, they still produce data that require correction in order to build reliable predictive models. In this work, we introduce the use of a multivariate signal processing workflow for datasets from a multi-capillary column ion mobility spectrometer-based e-nose. Adhering to the electronic nose philosophy, these workflows prioritized untargeted approaches, avoiding dependence on traditional peak integration techniques. A comprehensive validation process demonstrates that the application of this preprocessing strategy not only mitigates overfitting but also produces parsimonious models, where classification accuracy is maintained with simpler, more interpretable structures. This reduction in model complexity offers significant advantages, providing more efficient and robust models without compromising predictive performance. This strategy was successfully tested on an olive oil dataset, showcasing its capability to improve model parsimony and generalization performance.
Collapse
Affiliation(s)
- Luis Fernandez
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; (L.F.); (S.M.)
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Sergio Oller-Moreno
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jordi Fonollosa
- B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain;
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Esplugues de Llobregat, Spain
- Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Garrido-Delgado
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain; (R.G.-D.); (L.A.); (A.M.-G.)
| | - Lourdes Arce
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain; (R.G.-D.); (L.A.); (A.M.-G.)
| | - Andrés Martín-Gómez
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain; (R.G.-D.); (L.A.); (A.M.-G.)
| | - Santiago Marco
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; (L.F.); (S.M.)
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Antonio Pardo
- Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; (L.F.); (S.M.)
| |
Collapse
|
3
|
Wolańska I, Piwowarski K, Puton J. Conservation of the Charge in Signal from Drift Tube Ion Mobility Spectrometers. Anal Chem 2024; 96:17337-17344. [PMID: 39413290 PMCID: PMC11525926 DOI: 10.1021/acs.analchem.4c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Quantitative information obtained from drift tube detectors used in ion mobility spectrometry is contained in the area of peaks forming the drift time spectrum. The area of all peaks corresponds to the total charge of ions entering the drift section of the spectrometer. It was found that this charge is not conserved when the ion composition changes. This work is devoted to studying the causes of this phenomenon. Experimental research consisted of recording drift time spectra for 2-pentanone and n-heptanone, at various analyte concentrations and different opening times of the shutter grid. Measurements of the total ion current were also performed in static mode with an open grid. The research results indicated that the reasons for the lack of ion charge conservation in the drift time spectrum are ion recombination, mutual repulsion, and mobility-dependent transmission of ions through the shutter grid. The explanation of the relationships obtained experimentally was based on a simple theoretical model, which considered the phenomenon of ion transport along the reaction section and the penetration of ions through the shutter. The developed model provides a good description of the measurement results and allows the estimation of ion currents and ion concentrations in the reaction section upstream of the grid. This information is important for proper quantitative analysis as well as when the ion mobility spectrometer is used in quantitative studies of chemical ionization processes.
Collapse
Affiliation(s)
- Izabela Wolańska
- Faculty of Advanced Technologies and
Chemistry, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, Warsaw 00-908, Poland
| | - Krzysztof Piwowarski
- Faculty of Advanced Technologies and
Chemistry, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, Warsaw 00-908, Poland
| | - Jarosław Puton
- Faculty of Advanced Technologies and
Chemistry, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, Warsaw 00-908, Poland
| |
Collapse
|
4
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
5
|
Stewart TK, Brodrick E, Reed MJ, Collins AM, Daulton E, Adams E, Feasey N, Ratcliffe L, Exley D, Todd S, van Ginneken N, Sahota A, Devereux G, Williams E, Covington JA. Utility, feasibility, and socio-demographic considerations in the diagnosis of bacterial RTI's by GC-IMS breath analysis. iScience 2024; 27:110610. [PMID: 39262786 PMCID: PMC11388771 DOI: 10.1016/j.isci.2024.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/02/2024] [Accepted: 07/26/2024] [Indexed: 09/13/2024] Open
Abstract
Diagnosis of respiratory tract infections (RTIs), especially in primary care, is typically made on clinical features and in the absence of quick and reliable diagnostic tests. Even in secondary care, where diagnostic microbiology facilities are available, these tests take 24-48 h to provide an indication of the etiology. This multicentre study used a portable gas chromatography-ion mobility spectrometer (GC-IMS) for the diagnosis of bacterial RTIs. Breath samples taken from 570 participants with 149 clinically validated bacterial and 421 non-bacterial RTIs were analyzed to distinguish bacterial from non-bacterial RTIs. Through the integration of a sparse logistic regression model, we identified a moderate diagnostic accuracy of 0.73 (95% CI 0 · 69, 0 · 77) alongside a sensitivity of 0 · 85 (95% CI 0 · 79, 0 · 91) and a specificity of 0 · 55 (95% CI 0 · 50, 0 · 60). The GC-IMS diagnostic device provides a promising outlook in distinguishing bacterial from non-bacterial RTIs and was also favorably viewed by participants.
Collapse
Affiliation(s)
- Trenton K. Stewart
- Warwick Medical School, University of Warwick, Coventry, UK
- School of Engineering, University of Warwick, Coventry, UK
| | | | - Matthew J. Reed
- Emergency Medicine Research Group Edinburgh (EMERGE), Royal Infirmary of Edinburgh, Edinburgh, UK
- Acute Care Edinburgh, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Andrea M. Collins
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Trust, Liverpool, UK
- NIHR CRN Northwest Coast, Liverpool, UK
| | - Emma Daulton
- School of Engineering, University of Warwick, Coventry, UK
| | - Emily Adams
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nicholas Feasey
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Stacy Todd
- Liverpool University Hospitals NHS Trust, Liverpool, UK
| | - Nadja van Ginneken
- Brownlow Health, Liverpool, UK
- Department of Primary Care and Mental Health, University of Liverpool, Liverpool, UK
| | - Amandip Sahota
- Department of Infectious Diseases and HIV Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Graham Devereux
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Trust, Liverpool, UK
| | | | | |
Collapse
|
6
|
Gao M, Yang Z, Choi J, Wang C, Dai G, Yang J. Triboelectric Nanogenerators for Preventive Health Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:336. [PMID: 38392709 PMCID: PMC10892167 DOI: 10.3390/nano14040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
With the improvement in life quality, the increased focus on health has expedited the rapid development of portable preventative-health-monitoring devices. As one of the most attractive sensing technologies, triboelectric nanogenerators (TENGs) are playing a more and more important role in wearable electronics, machinery condition monitoring, and Internet of Things (IoT) sensors. TENGs possess many advantages, such as ease of fabrication, cost-effectiveness, flexibility, material-selection variety, and the ability to collect low-frequency motion, offering a novel way to achieve health monitoring for human beings in various aspects. In this short review, we initially present the working modes of TENGs based on their applications in health monitoring. Subsequently, the applications of TENG-based preventive health monitoring are demonstrated for different abnormal conditions of human beings, including fall-down detection, respiration monitoring, fatigue monitoring, and arterial pulse monitoring for cardiovascular disease. Finally, the discussion summarizes the current limitations and future perspectives. This short review encapsulates the latest and most influential works on preventive health monitoring utilizing the triboelectric effect for human beings and provides hints and evidence for future research trends.
Collapse
Affiliation(s)
- Mang Gao
- School of Physics, Central South University, Changsha 410083, China; (M.G.); (G.D.)
| | - Zhiyuan Yang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan;
| | - Junho Choi
- Department of Mechanical Engineering, Tokyo City University, Tokyo 158-8557, Japan;
| | - Chan Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Guozhang Dai
- School of Physics, Central South University, Changsha 410083, China; (M.G.); (G.D.)
| | - Junliang Yang
- School of Physics, Central South University, Changsha 410083, China; (M.G.); (G.D.)
| |
Collapse
|
7
|
Bhalla S, Yi S, Gerber DE. Emerging Strategies in Lung Cancer Screening: Blood and Beyond. Clin Chem 2024; 70:60-67. [PMID: 38175587 PMCID: PMC11161198 DOI: 10.1093/clinchem/hvad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Although low dose computed tomography (LDCT)-based lung cancer screening (LCS) can decrease lung cancer-related mortality among high-risk individuals, it remains an imperfect and substantially underutilized process. LDCT-based LCS may result in false-positive findings, which can lead to invasive procedures and potential morbidity. Conversely, current guidelines may fail to capture at-risk individuals, particularly those from under-represented minority populations. To address these limitations, numerous biomarkers have emerged to complement LDCT and improve early lung cancer detection. CONTENT This review focuses primarily on blood-based biomarkers, including protein, microRNAs, circulating DNA, and methylated DNA panels, in current clinical development for LCS. We also examine other emerging biomarkers-utilizing airway epithelia, exhaled breath, sputum, and urine-under investigation. We highlight challenges and limitations of biomarker testing, as well as recent strategies to integrate molecular strategies with imaging technologies. SUMMARY Multiple biomarkers are under active investigation for LCS, either to improve risk-stratification after nodule detection or to optimize risk-based patient selection for LDCT-based screening. Results from ongoing and future clinical trials will elucidate the clinical utility of biomarkers in the LCS paradigm.
Collapse
Affiliation(s)
- Sheena Bhalla
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
| | - Sofia Yi
- School of Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - David E Gerber
- Department of Internal Medicine (Division of Hematology-Oncology), UT Southwestern Medical Center, Dallas, TX, United States
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Schanzmann H, Ruzsanyi V, Ahmad-Nejad P, Telgheder U, Sielemann S. A novel coupling technique based on thermal desorption gas chromatography with mass spectrometry and ion mobility spectrometry for breath analysis. J Breath Res 2023; 18:016009. [PMID: 38100823 DOI: 10.1088/1752-7163/ad1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Exhaled breath analysis is evolving into an increasingly important non-invasive diagnostic tool. Volatile organic compounds (VOCs) in breath contain information about health status and are promising biomarkers for several diseases, including respiratory infections caused by bacteria. To monitor the composition of VOCs in breath or the emission of VOCs from bacteria, sensitive analytical techniques are required. Next to mass spectrometry, ion mobility spectrometry (IMS) is considered a promising analytical tool for detecting gaseous analytes in the parts per billion by volume to parts per trillion by volume range. This work presents a new, dual coupling of thermal desorption gas chromatography to a quadrupole mass spectrometer (MS) and an IMS by operating a simple splitter. Nearly identical retention times can be reached in the range of up to 30 min with slight deviations of 0.06 min-0.24 min. This enables the identification of unknown compounds in the IMS chromatogram using unambiguous mass spectral identification, as there are still no commercially available databases for IMS. It is also possible to discriminate one of the detectors using the splitter to improve detection limits. Using a test liquid mixture of seven ketones, namely 2-butanone, 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, and 2-decanone with a concentration of 0.01 g l-1reproducibilities ranging from 3.0% to 7.6% for MS and 2.2%-5.3%, for IMS were obtained, respectively. In order to test the system optimized here for the field of breath analysis, characteristic VOCs such as ethanol, isoprene, acetone, 2-propanol, and 1-propanol were successfully identified in exhaled air using the dual detector system due to the match of the corresponding IMS, and MS spectra. The presented results may be considered to be a starting point for the greater use of IMS in combination with MS within the medical field.
Collapse
Affiliation(s)
- Hannah Schanzmann
- Laboratory of Applied Instrumental Analytical Chemistry, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Veronika Ruzsanyi
- Institute for Breath Research, Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria
| | - Parviz Ahmad-Nejad
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| | - Ursula Telgheder
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stefanie Sielemann
- Laboratory of Applied Instrumental Analytical Chemistry, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| |
Collapse
|
9
|
Sharma A, Kumar R, Varadwaj P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol Diagn Ther 2023; 27:321-347. [PMID: 36729362 PMCID: PMC9893210 DOI: 10.1007/s40291-023-00640-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.
Collapse
Affiliation(s)
- Anju Sharma
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pritish Varadwaj
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
10
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
11
|
Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review. Molecules 2023; 28:molecules28031150. [PMID: 36770820 PMCID: PMC9920687 DOI: 10.3390/molecules28031150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Metal oxide (MOx) gas sensors have attracted considerable attention from both scientific and practical standpoints. Due to their promising characteristics for detecting toxic gases and volatile organic compounds (VOCs) compared with conventional techniques, these devices are expected to play a key role in home and public security, environmental monitoring, chemical quality control, and medicine in the near future. VOCs (e.g., acetone) are blood-borne and found in exhaled human breath as a result of certain diseases or metabolic disorders. Their measurement is considered a promising tool for noninvasive medical diagnosis, for example in diabetic patients. The conventional method for the detection of acetone vapors as a potential biomarker is based on spectrometry. However, the development of MOx-type sensors has made them increasingly attractive from a medical point of view. The objectives of this review are to assess the state of the art of the main MOx-type sensors in the detection of acetone vapors to propose future perspectives and directions that should be carried out to implement this type of sensor in the field of medicine.
Collapse
|
12
|
Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS). Metabolites 2022; 12:metabo12111072. [DOI: 10.3390/metabo12111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Volatile organic compounds (VOCs) are a differentiated class of molecules, continuously generated in the human body and released as products of metabolic pathways. Their concentrations vary depending on pathophysiological conditions. They are detectable in a wide variety of biological samples, such as exhaled breath, faeces, and urine. In particular, urine represents an easily accessible specimen widely used in clinics. The most used techniques for VOCs detections are expensive and time-consuming, thus not allowing for rapid clinical analysis. In this perspective, the aim of this study is a comprehensive characterisation of the urine volatilome by the development of an alternative rapid analytical method. Briefly, 115 urine samples are collected; sample treatment is not needed. VOCs are detected in the urine headspace using gas chromatography coupled to ion mobility spectrometry (GC–IMS) by an extremely fast analysis (10 min). The method is analytically validated; the analysis is sensitive and robust with results comparable to those reported with other techniques. Twenty-three molecules are identified, including ketones, aldehydes, alcohols, and sulphur compounds, whose concentration is altered in several pathological states such as cancer and metabolic disorders. Therefore, it opens new perspectives for fast diagnosis and screening, showing great potential for clinical applications.
Collapse
|
13
|
Haug H, Klein L, Sauerwald T, Poelke B, Beauchamp J, Roloff A. Sampling Volatile Organic Compound Emissions from Consumer Products: A Review. Crit Rev Anal Chem 2022; 54:1895-1916. [PMID: 36306209 DOI: 10.1080/10408347.2022.2136484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Volatile organic compounds (VOCs) are common constituents of many consumer products. Although many VOCs are generally considered harmless at low concentrations, some compound classes represent substances of concern in relation to human (inhalation) exposure and can elicit adverse health effects, especially when concentrations build up, such as in indoor settings. Determining VOC emissions from consumer products, such as toys, utensils or decorative articles, is of utmost importance to enable the assessment of inhalation exposure under real-world scenarios with respect to consumer safety. Due to the diverse sizes and shapes of such products, as well as their differing uses, a one-size-fits-all approach for measuring VOC emissions is not possible, thus, sampling procedures must be chosen carefully to best suit the sample under investigation. This review outlines the different sampling approaches for characterizing VOC emissions from consumer products, including headspace and emission test chamber methods. The advantages and disadvantages of each sampling technique are discussed in relation to their time and cost efficiency, as well as their suitability to realistically assess VOC inhalation exposures.
Collapse
Affiliation(s)
- Helen Haug
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chair of Aroma and Smell Research, Erlangen, Germany
| | - Luise Klein
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tilman Sauerwald
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Birte Poelke
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jonathan Beauchamp
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Alexander Roloff
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
14
|
Keogh RJ, Riches JC. The Use of Breath Analysis in the Management of Lung Cancer: Is It Ready for Primetime? Curr Oncol 2022; 29:7355-7378. [PMID: 36290855 PMCID: PMC9600994 DOI: 10.3390/curroncol29100578] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Breath analysis is a promising non-invasive method for the detection and management of lung cancer. Exhaled breath contains a complex mixture of volatile and non-volatile organic compounds that are produced as end-products of metabolism. Several studies have explored the patterns of these compounds and have postulated that a unique breath signature is emitted in the setting of lung cancer. Most studies have evaluated the use of gas chromatography and mass spectrometry to identify these unique breath signatures. With recent advances in the field of analytical chemistry and machine learning gaseous chemical sensing and identification devices have also been created to detect patterns of odorant molecules such as volatile organic compounds. These devices offer hope for a point-of-care test in the future. Several prospective studies have also explored the presence of specific genomic aberrations in the exhaled breath of patients with lung cancer as an alternative method for molecular analysis. Despite its potential, the use of breath analysis has largely been limited to translational research due to methodological issues, the lack of standardization or validation and the paucity of large multi-center studies. It is clear however that it offers a potentially non-invasive alternative to investigations such as tumor biopsy and blood sampling.
Collapse
|
15
|
Gasparri R, Capuano R, Guaglio A, Caminiti V, Canini F, Catini A, Sedda G, Paolesse R, Di Natale C, Spaggiari L. Volatolomic urinary profile analysis for diagnosis of the early stage of lung cancer. J Breath Res 2022; 16. [PMID: 35952625 DOI: 10.1088/1752-7163/ac88ec] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
Nowadays in clinical practice there is a pressing need for potential biomarkers that can identify lung cancer at early stage before becoming symptomatic or detectable by conventional means. Several researchers have independently pointed out that the volatile organic compounds (VOCs) profile can be considered as a lung cancer fingerprint useful for diagnosis. In particular, 16% of volatiles contributing to the human volatilome are found in urine, which is therefore an ideal sample medium. Its analysis through non-invasive, relatively low-cost and straightforward techniques could offer great potential for the early diagnosis of lung cancer. In this study, urinary VOCs were analysed with a gas chromatography-ion mobility spectrometer (GC-IMS) and an electronic nose (e-nose) made by a matrix of twelve quartz microbalances (QMBs) complemented by a photoionization detector (PID). This clinical prospective study involved 127 individuals, divided into two groups: 46 with lung cancer stage I-II-III confirmed by computerized tomography (CT) or positron emission tomography-(PET) imaging techniques and histology (biopsy), and 81 healthy controls. Both instruments provided a multivariate signal which, after being analysed by a machine learning algorithm, identified eight VOCs that could distinguish lung cancer patients from healthy ones. The eight VOCs are 2-pentanone, 2-hexenal, 2-hexen-1-ol, hept-4-en-2-ol, 2-heptanone, 3-octen-2-one, 4-methylpentanol, 4-methyl-octane. Results show that GC-IMS identifies lung cancer with respect to the control group with a diagnostic accuracy of 88%. Sensitivity resulted as being 85%, and specificity was 90% - Area Under the Receiver Operating Characteristics (AUROC): 0.91. The contribution made by the e-nose was also important, even though the results were slightly less sensitive with an accuracy of 71.6%. Moreover, of the eight VOCs identified as potential biomarkers, five VOCs had a high sensitivity (p≤ 0.06) for early stage (stage I) lung cancer.
Collapse
Affiliation(s)
- Roberto Gasparri
- Department of Thoracic Surgery, Istituto Europeo di Oncologia, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Rosamaria Capuano
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Alessandra Guaglio
- General toracic surgery, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Milano, Lombardia, 20141, ITALY
| | - Valentina Caminiti
- Department of Thoracic Surgery, European Institute of Oncology, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Federico Canini
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Alexandro Catini
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Giulia Sedda
- Department of Thoracic Surgery, European Institute of Oncology, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Roberto Paolesse
- Department of Chemical Science and Technology, Via della Ricerca Scientifica, University of Rome 'Tor Vergata', Rome, Rome, 00133, ITALY
| | - Corrado Di Natale
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Lorenzo Spaggiari
- Division of Thoracic Surgery, European Institute of Oncology, Via Ripamonti 435, Milano, Lombardia, 20141, ITALY
| |
Collapse
|
16
|
Gashimova EM, Temerdashev AZ, Porkhanov VA, Polyakov IS, Perunov DV. Volatile Organic Compounds in Exhaled Breath as Biomarkers of Lung Cancer: Advances and Potential Problems. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s106193482207005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Janssens E, Schillebeeckx E, Zwijsen K, Raskin J, Van Cleemput J, Surmont VF, Nackaerts K, Marcq E, van Meerbeeck JP, Lamote K. External Validation of a Breath-Based Prediction Model for Malignant Pleural Mesothelioma. Cancers (Basel) 2022; 14:cancers14133182. [PMID: 35804954 PMCID: PMC9264774 DOI: 10.3390/cancers14133182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Malignant pleural mesothelioma (MPM) is an incurable asbestos-related thoracic cancer for which early-stage diagnosis remains a major challenge. Volatile organic compounds (VOCs), which are metabolites present in exhaled breath, have proven to be promising non-invasive biomarkers for MPM. However, without the necessary validation in an independent group of individuals, clinical implementation is hampered. Therefore, we performed external validation of a VOC-based prediction model for MPM, which initially revealed a poor performance and thus poor generalisability of the model. However, subsequent updating of the model improved its performance in the validation cohort, resulting in a more generalisable model with a screening potential, which could significantly impact MPM management. Abstract During the past decade, volatile organic compounds (VOCs) in exhaled breath have emerged as promising biomarkers for malignant pleural mesothelioma (MPM). However, as these biomarkers lack external validation, no breath test for MPM has been implemented in clinical practice. To address this issue, we performed the first external validation of a VOC-based prediction model for MPM. The external validation cohort was prospectively recruited, consisting of 47 MPM patients and 76 asbestos-exposed (AEx) controls. The predictive performance of the previously developed model was assessed by determining the degree of agreement between the predicted and actual outcome of the participants (patient/control). Additionally, to optimise the performance, the model was updated by refitting it to the validation cohort. External validation revealed a poor performance of the original model as the accuracy was estimated at only 41%, indicating poor generalisability. However, subsequent updating of the model improved the differentiation between MPM patients and AEx controls significantly (73% accuracy, 92% sensitivity, and 92% negative predictive value), substantiating the validity of the original predictors. This updated model will be more generalisable to the target population and exhibits key characteristics of a potential screening test for MPM, which could significantly impact MPM management.
Collapse
Affiliation(s)
- Eline Janssens
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
| | - Eline Schillebeeckx
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Kathleen Zwijsen
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
| | - Jo Raskin
- Department of Pulmonology & Thoracic Oncology, Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Joris Van Cleemput
- Occupational Health Service, Eternit N.V., 1880 Kapelle-op-den-Bos, Belgium;
| | - Veerle F. Surmont
- Department of Respiratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Kristiaan Nackaerts
- Department of Respiratory Medicine, University Hospital Gasthuisberg, 3000 Leuven, Belgium;
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium;
| | - Jan P. van Meerbeeck
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
- Department of Pulmonology & Thoracic Oncology, Antwerp University Hospital, 2650 Edegem, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, Infla-Med Center of Excellence, University of Antwerp, 2610 Antwerp, Belgium; (E.J.); (E.S.); (K.Z.); (J.P.v.M.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-3-265-25-81
| |
Collapse
|
18
|
Exhaled Breath Volatile Organic Compound Analysis for the Detection of Lung Cancer- A Systematic Review. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-dab04j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid and effective diagnostic method is essential for lung cancer since it shows symptoms only at its advanced stage. Research is being carried out in the area of exhaled breath analysis for the diagnosis of various pulmonary diseases including lung cancer. In this method exhaled breath volatile organic compounds (VOC) are analyzed with various techniques such as gas chromatography-mass spectrometry, ion mobility spectrometry, and electronic noses. The VOC analysis is suitable for lung cancer detection since it is non-invasive, fast, and also a low-cost method. In addition, this technique can detect primary stage nodules. This paper presents a systematic review of the various method employed by researchers in the breath analysis field. The articles were selected through various search engines like EMBASE, Google Scholar, Pubmed, and Google. In the initial screening process, 214 research papers were selected using various inclusion and exclusion criteria and finally, 55 articles were selected for the review. The results of the reviewed studies show that detection of lung cancer can be effectively done using the VOC analysis of exhaled breath. The results also show that this method can be used for detecting the different stages and histology of lung cancer. The exhaled breath VOC analysis technique will be popular in the future, bypassing the existing imaging techniques. This systematic review conveys the recent research opportunities, obstacles, difficulties, motivations, and suggestions associated with the breath analysis method for lung cancer detection.
Collapse
|
19
|
Kabir KM, Baker MJ, Donald WA. Micro- and nanoscale sensing of volatile organic compounds for early-stage cancer diagnosis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Budzyńska E, Wolańska I, Puton J. Negative-mode ion mobility spectrometry-comparison of ion-molecule reactions and electron capture processes. Anal Bioanal Chem 2022; 414:3719-3728. [PMID: 35305117 DOI: 10.1007/s00216-022-04019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022]
Abstract
The presented work concerns the impact of ionization mechanisms of analytes on detection sensitivity in negative-mode ion mobility spectrometry. The main part of the work is research conducted for selected organic analytes using DT IMS in the negative mode of operation. In the negative mode of detection, two ionization mechanisms can be used: electron capture and ion-molecule reactions. The type of ionization mechanism depends on the carrier gas. The tests were carried out using two carrier gases: air and nitrogen. This allowed for a comparison of the ionization of analytes in the ion-molecule reaction mode with ionization in electron capture mode. Experiments were carried out for tetrachloromethane, trichloromethane, benzyl chloride, 1-chlorobutane, 1-chlorohexane, 1-chloropentane, tetrachlorethylene, 1-bromobutane, 1-bromopentane, 1-bromohexane, hexafluorobenzene, 2-chloroethyl ethyl sulfide (CEES), and methyl salicylate. Most of the tested substances were ionized with the formation of ionized halogen atoms (Br- or Cl-). It was found that among the tested substances, there are those whose effective ionization is possible with the use of both nitrogen and air as carrier gases, those ionized only in electron capture mode or in ion-molecule reaction mode. The important part of the work was an investigation on the effect of oxygen and water admixtures in carrier gases on the detection efficiency of selected organic compounds.
Collapse
Affiliation(s)
- Edyta Budzyńska
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Poland.
| | - Izabela Wolańska
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Poland
| | - Jarosław Puton
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Poland
| |
Collapse
|
21
|
Larracy R, Phinyomark A, Scheme E. Infrared cavity ring-down spectroscopy for detecting non-small cell lung cancer in exhaled breath. J Breath Res 2022; 16. [PMID: 35294929 DOI: 10.1088/1752-7163/ac5e4f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Early diagnosis of lung cancer greatly improves the likelihood of survival and remission, but limitations in existing technologies like low-dose computed tomography have prevented the implementation of widespread screening programs. Breath-based solutions that seek disease biomarkers in exhaled volatile organic compound (VOC) profiles show promise as affordable, accessible and non-invasive alternatives to traditional imaging. In this pilot work, we present a lung cancer detection framework using cavity ring-down spectroscopy (CRDS), an effective and practical laser absorption spectroscopy technique that has the ability to advance breath screening into clinical reality. The main aims of this work were to 1) test the utility of infrared CRDS breath profiles for discriminating non-small cell lung cancer (NSCLC) patients from controls, 2) compare models with VOCs as predictors to those with patterns from the CRDS spectra (breathprints) as predictors, and 3) present a robust approach for identifying relevant disease biomarkers. First, based on a proposed learning curve technique that estimated the limits of a model's performance at multiple sample sizes (10-158), the CRDS-based models developed in this work were found to achieve classification performance comparable or superior to like mass spectroscopy and sensor-based systems. Second, using 158 collected samples (62 NSCLC subjects and 96 controls), the accuracy range for the VOC-based model was 65.19%-85.44% (51.61%-66.13% sensitivity and 73.96%-97.92% specificity), depending on the employed cross-validation technique. The model based on breathprint predictors generally performed better, with accuracy ranging from 71.52%-86.08% (58.06%-82.26% sensitivity and 80.21%-88.54% specificity). Lastly, using a protocol based on consensus feature selection, three VOCs (isopropanol, dimethyl sulfide, and butyric acid) and two breathprint features (from a local binary pattern transformation of the spectra) were identified as possible NSCLC biomarkers. This research demonstrates the potential of infrared CRDS breath profiles and the developed early-stage classification techniques for NSCLC biomarker detection and screening.
Collapse
Affiliation(s)
- Robyn Larracy
- University of New Brunswick Institute of Biomedical Engineering, 25 Dineen Drive, Fredericton, New Brunswick, E3B 5A3, CANADA
| | - Angkoon Phinyomark
- University of New Brunswick Institute of Biomedical Engineering, 25 Dineen Drive, Fredericton, New Brunswick, E3B 5A3, CANADA
| | - Erik Scheme
- University of New Brunswick Institute of Biomedical Engineering, 25 Dineen Drive, Fredericton, New Brunswick, E3B 5A3, CANADA
| |
Collapse
|
22
|
Castell A, Arroyo-Manzanares N, Hernández JDD, Guillén I, Vizcaíno P, López-García I, Hernández-Córdoba M, Viñas P. Ion mobility spectrometry as an emerging tool for characterization of the volatile profile and identification of microbial growth in pomegranate juice. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Bi J, Li Y, Lin Z, Yang Z, Chen F, Liu S, Li C. Effect of different cooking methods on flavor compounds of Chinese traditional condiment Wuxiang powder. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jicai Bi
- Food Science and Engineering Post‐doctoral Research Station Henan University of Technology Zhengzhou China
- School of Food Science and Engineering Hainan University Haikou China
- School of Food Science and Technology Henan Institute of Science and Technology Xinxiang China
- Post‐doctoral Research Base & School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Yang Li
- School of Food Science and Technology Henan Institute of Science and Technology Xinxiang China
| | - Zeyuan Lin
- School of Food Science and Technology Henan Institute of Science and Technology Xinxiang China
| | - Zhen Yang
- School of Food Science and Technology Henan Institute of Science and Technology Xinxiang China
| | - Fusheng Chen
- Food Science and Engineering Post‐doctoral Research Station Henan University of Technology Zhengzhou China
| | - Sixin Liu
- School of Food Science and Engineering Hainan University Haikou China
| | - Congfa Li
- School of Food Science and Engineering Hainan University Haikou China
| |
Collapse
|
24
|
Biagini D, Fusi J, Vezzosi A, Oliveri P, Ghimenti S, Lenzi A, Salvo P, Daniele S, Scarfò G, Vivaldi FM, Bonini A, Martini C, Franzoni F, Di Francesco F, Lomonaco T. Effects of long-term vegan diet on breath composition. J Breath Res 2022; 16. [PMID: 35051905 DOI: 10.1088/1752-7163/ac4d41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Abstract
The composition of exhaled breath derives from an intricate combination of normal and abnormal physiological processes that are modified by the consumption of food and beverages, circadian rhythms, bacterial infections, and genetics as well as exposure to xenobiotics. This complexity, which results wide intra- and inter-individual variability and is further influenced by sampling conditions, hinders the identification of specific biomarkers and makes it difficult to differentiate between pathological and nominally healthy subjects. The identification of a "normal" breath composition and the relative influence of the aforementioned parameters would make breath analyses much faster for diagnostic applications. We thus compared, for the first time, the breath composition of age-matched volunteers following a vegan and a Mediterranean omnivorous diet in order to evaluate the impact of diet on breath composition. Mixed breath was collected from 38 nominally healthy volunteers who were asked to breathe into a two-liter handmade Nalophan bag. Exhalation flow rate and carbon dioxide values were monitored during breath sampling. An aliquot (100 mL) of breath was loaded into a sorbent tube (250 mg of Tenax GR, 60/80 mesh) before being analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Breath profiling using TD-GC-MS analysis identified five compounds (methanol, 1-propanol, pentane, hexane, and hexanal), thus enabling differentiation between samples collected from the different group members . Principal component analysis showed a clear separation between groups, suggesting that breath analysis could be used to study the influence of dietary habits in the fields of nutrition and metabolism. Surprisingly, one Italian woman and her brother showed extremely low breath isoprene levels (about 5 ppbv), despite their normal lipidic profile and respiratory data, such as flow rate and pCO2. Further investigations to reveal the reasons behind low isoprene levels in breath would help reveal the origin of isoprene in breath.
Collapse
Affiliation(s)
- Denise Biagini
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Jonathan Fusi
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Annasilvia Vezzosi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Paolo Oliveri
- Department of Drug and Food Chemistry and Technology, University of Genoa, Via Brigata Salerno, 13, Genoa, 16100, ITALY
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via Moruzzi 13, Pisa, Tuscany, 56124, ITALY
| | - Pietro Salvo
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Via Moruzzi 1, Pisa, 56124, ITALY
| | - Simona Daniele
- University of Pisa Department of Pharmacy, Via Bonanno Pisano, 12, Pisa, Toscana, 56126, ITALY
| | - Giorgia Scarfò
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Federico Maria Vivaldi
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Claudia Martini
- University of Pisa Department of Pharmacy, Via Bonanno Pisano, 12, Pisa, Toscana, 56126, ITALY
| | - Ferdinando Franzoni
- University of Pisa Department of Clinical and Experimental Medicine, Via Roma, 67, Pisa, Toscana, 56126, ITALY
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi, 13, Pisa, Tuscany, 56124, ITALY
| |
Collapse
|
25
|
Koomen DC, May JC, McLean JA. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry. Expert Rev Proteomics 2022; 19:17-31. [PMID: 34986717 PMCID: PMC8881341 DOI: 10.1080/14789450.2022.2026218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/23/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Ion mobility-mass spectrometry is an emerging technology in the clinical setting for high throughput and high confidence molecular characterization from complex biological samples. Ion mobility spectrometry can provide isomer separations on the basis of molecular structure, the ability of which is increasing through technological developments that afford enhanced resolving power. Integrating multiple separation dimensions, such as liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) provide dramatic enhancements in the mitigation of molecular interferences for high accuracy clinical measurements. AREAS COVERED Multidimensional separations with LC-IM-MS provide better selectivity and sensitivity in molecular analysis. Mass spectrometry imaging of tissues to inform spatial molecular distribution is improved by complementary ion mobility analyses. Biomarker identification in surgical environments is enhanced by intraoperative biochemical analysis with mass spectrometry and holds promise for integration with ion mobility spectrometry. New prospects in high resolving power ion mobility are enhancing analysis capabilities, such as distinguishing isomeric compounds. EXPERT OPINION Ion mobility-mass spectrometry holds many prospects for the field of isomer identification, molecular imaging, and intraoperative tumor margin delineation in clinical settings. These advantages are afforded while maintaining fast analysis times and subsequently high throughput. High resolving power ion mobility will enhance these advantages further, in particular for analyses requiring high confidence isobaric selectivity and detection.
Collapse
Affiliation(s)
- David C Koomen
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Department of Chemistry, Center for Innovative Technology, Institute of Chemical Biology, Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
26
|
Westhoff M, Friedrich M, Baumbach JI. Simultaneous measurement of inhaled air and exhaled breath by double multicapillary column ion-mobility spectrometry, a new method for breath analysis: results of a feasibility study. ERJ Open Res 2021; 8:00493-2021. [PMID: 35174246 PMCID: PMC8841987 DOI: 10.1183/23120541.00493-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The high sensitivity of the methods applied in breath analysis entails a high risk of detecting analytes that do not derive from endogenous production. Consequentially, it appears useful to have knowledge about the composition of inhaled air and to include alveolar gradients into interpretation. The current study aimed to standardise sampling procedures in breath analysis, especially with multicapillary column ion-mobility spectrometry (MCC-IMS), by applying a simultaneous registration of inhaled air and exhaled breath. A “double MCC-IMS” device, which for the first time allows simultaneous analysis of inhaled air and exhaled breath, was developed and tested in 18 healthy individuals. For this, two BreathDiscovery instruments were coupled with each other. Measurements of inhaled air and exhaled breath in 18 healthy individuals (mean age 46±10.9 years; nine men, nine women) identified 35 different volatile organic compounds (VOCs) for further analysis. Not all of these had positive alveolar gradients and could be regarded as endogenous VOCs: 16 VOCs had a positive alveolar gradient in mean; 19 VOCs a negative one. 12 VOCs were positive in >12 of the healthy subjects. For the first time in our understanding, a method is described that enables simultaneous measurement of inhaled air and exhaled breath. This facilitates the calculation of alveolar gradients and selection of endogenous VOCs for exhaled breath analysis. Only a part of VOCs in exhaled breath are truly endogenous VOCs. The observation of different and varying polarities of the alveolar gradients needs further analysis. Simultaneous analysis of inhaled air and exhaled breath by a newly invented double MCC-IMS device shows that exhaled breath contains confounding exogeneous analytes and only a smaller number of truly endogenous VOCs, which can be used for further analysishttps://bit.ly/3HGVzV5
Collapse
|
27
|
Komaru S, Matsuo S, Iwamatsu T, Taneda A, Negishi H. Monitoring the Yogurt Fermentation Process and Analysis of Flavor Compounds using a Novel Ion Mobility Spectrometer. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Gouzerh F, Bessière JM, Ujvari B, Thomas F, Dujon AM, Dormont L. Odors and cancer: Current status and future directions. Biochim Biophys Acta Rev Cancer 2021; 1877:188644. [PMID: 34737023 DOI: 10.1016/j.bbcan.2021.188644] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death in the world. Because tumors detected at early stages are easier to treat, the search for biomarkers-especially non-invasive ones-that allow early detection of malignancies remains a central goal to reduce cancer mortality. Cancer, like other pathologies, often alters body odors, and much has been done by scientists over the last few decades to assess the value of volatile organic compounds (VOCs) as signatures of cancers. We present here a quantitative review of 208 studies carried out between 1984 and 2020 that explore VOCs as potential biomarkers of cancers. We analyzed the main findings of these studies, listing and classifying VOCs related to different cancer types while considering both sampling methods and analysis techniques. Considering this synthesis, we discuss several of the challenges and the most promising prospects of this research direction in the war against cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Jean-Marie Bessière
- Ecole Nationale de Chimie de Montpellier, Laboratoire de Chimie Appliquée, Montpellier, France
| | - Beata Ujvari
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Laurent Dormont
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
29
|
Feuerherd M, Sippel AK, Erber J, Baumbach JI, Schmid RM, Protzer U, Voit F, Spinner CD. A proof of concept study for the differentiation of SARS-CoV-2, hCoV-NL63, and IAV-H1N1 in vitro cultures using ion mobility spectrometry. Sci Rep 2021; 11:20143. [PMID: 34635788 PMCID: PMC8505652 DOI: 10.1038/s41598-021-99742-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Rapid, high-throughput diagnostic tests are essential to decelerate the spread of the novel coronavirus disease 2019 (COVID-19) pandemic. While RT-PCR tests performed in centralized laboratories remain the gold standard, rapid point-of-care antigen tests might provide faster results. However, they are associated with markedly reduced sensitivity. Bedside breath gas analysis of volatile organic compounds detected by ion mobility spectrometry (IMS) may enable a quick and sensitive point-of-care testing alternative. In this proof-of-concept study, we investigated whether gas analysis by IMS can discriminate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from other respiratory viruses in an experimental set-up. Repeated gas analyses of air samples collected from the headspace of virus-infected in vitro cultures were performed for 5 days. A three-step decision tree using the intensities of four spectrometry peaks correlating to unidentified volatile organic compounds allowed the correct classification of SARS-CoV-2, human coronavirus-NL63, and influenza A virus H1N1 without misassignment when the calculation was performed with data 3 days post infection. The forward selection assignment model allowed the identification of SARS-CoV-2 with high sensitivity and specificity, with only one of 231 measurements (0.43%) being misclassified. Thus, volatile organic compound analysis by IMS allows highly accurate differentiation of SARS-CoV-2 from other respiratory viruses in an experimental set-up, supporting further research and evaluation in clinical studies.
Collapse
Affiliation(s)
- M Feuerherd
- Institute of Virology, School of Medicine, Technical University of Munich, 81675, Munich, Germany.
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.
| | - A-K Sippel
- B. Braun Melsungen AG, Branch Dortmund, Center of Competence Breath Analysis, BioMedicalCenter, Dortmund, Germany
| | - J Erber
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - J I Baumbach
- B. Braun Melsungen AG, Branch Dortmund, Center of Competence Breath Analysis, BioMedicalCenter, Dortmund, Germany
| | - R M Schmid
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - U Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - F Voit
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - C D Spinner
- Department of Internal Medicine II, University Hospital Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
30
|
A prediction model using 2-propanol and 2-butanone in urine distinguishes breast cancer. Sci Rep 2021; 11:19801. [PMID: 34611278 PMCID: PMC8492640 DOI: 10.1038/s41598-021-99396-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Safe and noninvasive methods for breast cancer screening with improved accuracy are urgently needed. Volatile organic compounds (VOCs) in biological samples such as breath and blood have been investigated as noninvasive novel markers of cancer. We investigated volatile organic compounds in urine to assess their potential for the detection of breast cancer. One hundred and ten women with biopsy-proven breast cancer and 177 healthy volunteers were enrolled. The subjects were divided into two groups: a training set and an external validation set. Urine samples were collected and analyzed by gas chromatography and mass spectrometry. A predictive model was constructed by multivariate analysis, and the sensitivity and specificity of the model were confirmed using both a training set and an external set with reproducibility tests. The training set included 60 breast cancer patients (age 34–88 years, mean 60.3) and 60 healthy controls (age 34–81 years, mean 58.7). The external validation set included 50 breast cancer patients (age 35–85 years, mean 58.8) and 117 healthy controls (age 18–84 years, mean 51.2). One hundred and ninety-one compounds detected in at least 80% of the samples from the training set were used for further analysis. The predictive model that best-detected breast cancer at various clinical stages was constructed using a combination of two of the compounds, 2-propanol and 2-butanone. The sensitivity and specificity in the training set were 93.3% and 83.3%, respectively. Triplicated reproducibility tests were performed by randomly choosing ten samples from each group, and the results showed a matching rate of 100% for the breast cancer patient group and 90% for the healthy control group. Our prediction model using two VOCs is a useful complement to the current diagnostic tools. Further studies inclusive of benign tumors and non-breast malignancies are warranted.
Collapse
|
31
|
Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, Tai H, Jiang Y, Chen J. Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101262. [PMID: 34240473 DOI: 10.1002/adma.202101262] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/23/2021] [Indexed: 05/26/2023]
Abstract
In mammals, physiological respiration involves respiratory cycles of inhaled and exhaled breaths, which has traditionally been an underutilized resource potentially encompassing a wealth of physiologically relevant information as well as clues to potential diseases. Recently, triboelectric nanogenerators (TENGs) have been widely adopted for self-powered respiration monitoring owing to their compelling features, such as decent biocompatibility, wearing comfort, low-cost, and high sensitivity to respiration activities in the aspect of low frequency and slight amplitude body motions. Physiological respiration behaviors and exhaled chemical regents can be precisely and continuously monitored by TENG-based respiration sensors for personalized health care. This article presents an overview of TENG enabled self-powered respiration monitoring, with a focus on the working principle, sensing materials, functional structures, and related applications in both physical respiration motion detection and chemical breath analysis. Concepts and approaches for acquisition of physical information associated with respiratory rate and depth are covered in the first part. Then the sensing mechanism, theoretical modeling, and applications related to detection of chemicals released from breathing gases are systemically summarized. Finally, the opportunities and challenges of triboelectric effect enabled self-powered respiration monitoring are comprehensively discussed and criticized.
Collapse
Affiliation(s)
- Yuanjie Su
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Chunxu Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qichen Gong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Guangzhong Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Mingliang Yao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
32
|
Buma AIG, Muller M, de Vries R, Sterk PJ, van der Noort V, Wolf-Lansdorf M, Farzan N, Baas P, van den Heuvel MM. eNose analysis for early immunotherapy response monitoring in non-small cell lung cancer. Lung Cancer 2021; 160:36-43. [PMID: 34399166 DOI: 10.1016/j.lungcan.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Exhaled breath analysis by electronic nose (eNose) has shown to be a potential predictive biomarker before start of anti-PD-1 therapy in patients with non-small cell lung carcinoma (NSCLC). We hypothesized that the eNose could also be used as an early monitoring tool to identify responders more accurately at early stage of treatment when compared to baseline. In this proof-of-concept study we aimed to definitely discriminate responders from non-responders after six weeks of treatment. MATERIALS AND METHODS This was a prospective observational study in patients with advanced NSCLC eligible for anti-PD-1 treatment. The efficacy of treatment was assessed by the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 at 3-month follow-up. We analyzed SpiroNose exhaled breath data of 94 patients (training cohort n = 62, validation cohort n = 32). Data analysis involved signal processing and statistics based on Independent Samples T-tests and Linear Discriminant Analysis (LDA) followed by Receiver Operating Characteristic (ROC) analysis. RESULTS In the training cohort, a specificity of 73% was obtained at a 100% sensitivity level to identify objective responders. The Area Under the Curve (AUC) was 0.95 (CI: 0.89-1.00). In the validation cohort, these results were confirmed with an AUC of 0.97 (CI: 0.91-1.00). CONCLUSION Exhaled breath analysis by eNose early during treatment allows for a highly accurate, non-invasive and low-cost identification of advanced NSCLC patients who benefit from anti-PD-1 therapy.
Collapse
Affiliation(s)
| | - Mirte Muller
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rianne de Vries
- Amsterdam University Medical Center, Amsterdam, the Netherlands; Breathomix B.V. (www.breathomix.com), Leiden, the Netherlands
| | - Peter J Sterk
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | | | - Niloufar Farzan
- Breathomix B.V. (www.breathomix.com), Leiden, the Netherlands
| | - Paul Baas
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
33
|
Raju CM, Yu KC, Shih CP, Elpa DP, Prabhu GRD, Urban PL. Catalytic Oxygenation-Mediated Extraction as a Facile and Green Way to Analyze Volatile Solutes. Anal Chem 2021; 93:8923-8930. [PMID: 34143609 DOI: 10.1021/acs.analchem.1c01354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sparging-based methods have long been used to liberate volatile organic compounds (VOCs) from liquid sample matrices prior to analysis. In these methods, a carrier gas is delivered from an external source. Here, we demonstrate "catalytic oxygenation-mediated extraction" (COME), which relies on biocatalytic production of oxygen occurring directly in the sample matrix. The newly formed oxygen (micro)bubbles extract the dissolved VOCs. The gaseous extract is immediately transferred to a separation or detection system for analysis. To start COME, dilute hydrogen peroxide is injected into the sample supplemented with catalase enzyme. The entire procedure is performed automatically-after pressing a "start" button, making a clapping sound, or triggering from a smartphone. The pump, valves, and detection system are controlled by a microcontroller board. For quality control and safety purposes, the reaction chamber is monitored by a camera linked to a single-board computer, which follows the enzymatic reaction progress by analyzing images of foam in real time. The data are instantly uploaded to the internet cloud for retrieval. The COME apparatus has been coupled on-line with the gas chromatography electron ionization mass spectrometry (MS) system, atmospheric pressure chemical ionization (APCI) MS system, and APCI ion-mobility spectrometry system. The three hyphenated variants have been tested in analyses of complex matrices (e.g., fruit-based drinks, whiskey, urine, and stored wastewater). In addition to the use of catalase, COME variants using crude potato pulp or manganese(IV) dioxide have been demonstrated. The technique is inexpensive, fast, reliable, and green: it uses low-toxicity chemicals and emits oxygen.
Collapse
Affiliation(s)
- Chamarthi Maheswar Raju
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Kai-Chiang Yu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Chun-Pei Shih
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Decibel P Elpa
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| |
Collapse
|
34
|
Steppert I, Schönfelder J, Schultz C, Kuhlmeier D. Rapid in vitro differentiation of bacteria by ion mobility spectrometry. Appl Microbiol Biotechnol 2021; 105:4297-4307. [PMID: 33974116 PMCID: PMC8140968 DOI: 10.1007/s00253-021-11315-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/03/2022]
Abstract
Rapid screening of infected people plays a crucial role in interrupting infection chains. However, the current methods for identification of bacteria are very tedious and labor intense. Fast on-site screening for pathogens based on volatile organic compounds (VOCs) by ion mobility spectrometry (IMS) could help to differentiate between healthy and potentially infected subjects. As a first step towards this, the feasibility of differentiating between seven different bacteria including resistant strains was assessed using IMS coupled to multicapillary columns (MCC-IMS). The headspace above bacterial cultures was directly drawn and analyzed by MCC-IMS after 90 min of incubation. A cluster analysis software and statistical methods were applied to select discriminative VOC clusters. As a result, 63 VOC clusters were identified, enabling the differentiation between all investigated bacterial strains using canonical discriminant analysis. These 63 clusters were reduced to 7 discriminative VOC clusters by constructing a hierarchical classification tree. Using this tree, all bacteria including resistant strains could be classified with an AUC of 1.0 by receiver-operating characteristic analysis. In conclusion, MCC-IMS is able to differentiate the tested bacterial species, even the non-resistant and their corresponding resistant strains, based on VOC patterns after 90 min of cultivation. Although this result is very promising, in vivo studies need to be performed to investigate if this technology is able to also classify clinical samples. With a short analysis time of 5 min, MCC-IMS is quite attractive for a rapid screening for possible infections in various locations from hospitals to airports. Key Points • Differentiation of bacteria by MCC-IMS is shown after 90-min cultivation. • Non-resistant and resistant strains can be distinguished. • Classification of bacteria is possible based on metabolic features.
Collapse
Affiliation(s)
- Isabel Steppert
- MicroDiagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jessy Schönfelder
- MicroDiagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany. .,Project Hub Microelectronic and Optical Systems for Biomedicine MEOS, Fraunhofer Institute for Cell Therapy and Immunology IZI, Erfurt, Germany.
| | - Carolyn Schultz
- MicroDiagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Dirk Kuhlmeier
- MicroDiagnostics, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.,Project Hub Microelectronic and Optical Systems for Biomedicine MEOS, Fraunhofer Institute for Cell Therapy and Immunology IZI, Erfurt, Germany
| |
Collapse
|
35
|
Recognizing lung cancer and stages using a self-developed electronic nose system. Comput Biol Med 2021; 131:104294. [PMID: 33647830 DOI: 10.1016/j.compbiomed.2021.104294] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that could be used as non-invasive biomarkers of lung cancer. Breath-based lung cancer screening has attracted wide attention on account of its convenience, low cost and easy popularization. In this paper, the research of lung cancer detection and staging is conducted by the self-developed electronic nose (e-nose) system. In order to investigate the performance of the device in distinguishing lung cancer patients from healthy controls, two feature extraction methods and two different classification models were adopted. Among all the models, kernel principal component analysis (KPCA) combined with extreme gradient boosting (XGBoost) achieved the best results among 235 breath samples. The accuracy, sensitivity and specificity of e-nose system were 93.59%, 95.60% and 91.09%, respectively. Meanwhile, the device could innovatively classify stages of 90 lung cancer patients (i.e., 44 stage III and 46 stage IV). Experimental results indicated that the recognition accuracy of lung cancer stages was more than 80%. Further experiments of this research also showed that the combination of sensor array and pattern recognition algorithms could identify and distinguish the expiratory characteristics of lung cancer, smoking and other respiratory diseases.
Collapse
|
36
|
Long Y, Wang C, Wang T, Li W, Dai W, Xie S, Tian Y, Liu M, Liu Y, Peng X, Liu Y, Zhang Y, Wang R, Li Q, Duan Y. High performance exhaled breath biomarkers for diagnosis of lung cancer and potential biomarkers for classification of lung cancer. J Breath Res 2021; 15:016017. [PMID: 33586667 DOI: 10.1088/1752-7163/abaecb] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exhaled breath analysis has emerged as a promising non-invasive method for diagnosing lung cancer (LC), whereas reliable biomarkers are lacking. Herein, a standardized and systematic study was presented for LC diagnosis, classification and metabolism exploration. To improve the reliability of biomarkers, a validation group was included, and quality control for breath sampling and analysis, comprehensive pollutants analysis, and strict biomarker screening were performed. The performance of exhaled breath biomarkers was shown to be excellent in diagnosing LC even in early stages (stage I and II) with surpassing 0.930 area under the receiver operating characteristic (ROC) curve (AUC), 90% of sensitivity and 88% of specificity both in the discovery and validation analyses. Meanwhile, in these two groups, diagnosing subtypes of LC attained AUCs over 0.930 and reached 1.00 in the two subtypes of adenocarcinomas. It is demonstrated that the metabolism changes in LC are possibly related to lipid oxidation, gut microbial, cytochrome P450 and glutathione S-transferase, and glutathione pathways change in LC progression. Overall, the reliable biomarkers contribute to the clinical application of breath analysis in screening LC patients as well as those in early stages.
Collapse
Affiliation(s)
- Yijing Long
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-source and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Detection of illegal treatment of table tennis rackets using gas chromatography coupled to ion mobility spectrometry - A feasibility study. Anal Chim Acta 2021; 1154:338227. [PMID: 33736818 DOI: 10.1016/j.aca.2021.338227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/20/2022]
Abstract
In all professional sports, performance pressure is high at the top level. Therefore, rules are defined and controlled to keep sports fair in accordance e.g. with the Agenda 21 of the International Olympic Committee. However, it's about money and honour and as a consequence it is obvious that the athletes will go to the limits at all levels or even beyond. This is not only true for performance-enhancing substances to improve the physical capacity but - when sports equipment is involved - also for their optimisation. Thus, rules and related controls are necessary with regard to fairness between competitors but also with regard to their health when chemicals are involved. In table tennis, such chemicals (so-called boosters) are used occasionally - but against the rules - to improve the performance of the rackets. In the present study, several boosters were analysed as well as numerous common racket coverings using ion mobility spectrometry coupled to gas-chromatographic pre-separation. After optimisation of sampling with regard to improving reproducibility, characteristic patterns of volatiles for booster compounds and for racket coverings with different characteristics were developed successfully. In particular, signals related to particular softening agents could be identified and detected even in the untreated coverings. The patterns of volatiles were found to be characteristic for the particular boosters investigated as well as for the particular coverings. Furthermore, those patterns enable a differentiation between booster and covering or - in other words - between rule-consistent racket coverings and rule violation by after treatment of the rubber with a booster. After adaptation of the entire procedure to realistic competition situations, the method could be used for proving an infringement against the prohibition of applying such compounds.
Collapse
|
38
|
Gashimova E, Temerdashev A, Porkhanov V, Polyakov I, Perunov D, Azaryan A, Dmitrieva E. Investigation of different approaches for exhaled breath and tumor tissue analyses to identify lung cancer biomarkers. Heliyon 2020; 6:e04224. [PMID: 32577579 PMCID: PMC7305397 DOI: 10.1016/j.heliyon.2020.e04224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 12/29/2022] Open
Abstract
Development of early noninvasive methods for lung cancer diagnosis is among the most promising technologies, especially using exhaled breath as an object of analysis. Simple sample collection combined with easy and quick sample preparation, as well as the long-term stability of the samples, make it an ideal choice for routine analysis. The conditions of exhaled breath analysis by preconcentrating volatile organic compounds (VOCs) in sorbent tubes, two-stage thermal desorption and gas-chromatographic determination with flame-ionization detection have been optimized. These conditions were applied to estimate differences in exhaled breath VOC profiles of lung cancer patients and healthy volunteers. The combination of statistical methods was used to evaluate the ability of VOCs and their ratios to classify lung cancer patients and healthy volunteers. The performance of diagnostic models on the test data set was greater than 90 % for both VOC peak areas and their ratios. Some of the exhaled breath samples were analyzed using gas chromatography coupled with mass spectrometry (GC-MS) to identify VOCs present in exhaled breath at lower concentration levels. To confirm the endogenous origin of VOCs found in exhaled breath, GC-MS analysis of tumor tissues was conducted. Some of the VOCs identified in exhaled breath were found in tumor tissues, but their frequency of occurrence was significantly lower than in the case of exhaled breath.
Collapse
Affiliation(s)
- Elina Gashimova
- Department of Analytical Chemistry, Kuban State University, Stavropol'skaya St. 149, Krasnodar, 350040, Russia
| | - Azamat Temerdashev
- Department of Analytical Chemistry, Kuban State University, Stavropol'skaya St. 149, Krasnodar, 350040, Russia
| | - Vladimir Porkhanov
- Research Institute - Regional Clinical Hospital № 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar, 350086, Russia
| | - Igor Polyakov
- Research Institute - Regional Clinical Hospital № 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar, 350086, Russia
| | - Dmitry Perunov
- Research Institute - Regional Clinical Hospital № 1 n.a. Prof. S.V. Ochapovsky, 1 May St. 167, Krasnodar, 350086, Russia
| | - Alice Azaryan
- Department of Analytical Chemistry, Kuban State University, Stavropol'skaya St. 149, Krasnodar, 350040, Russia
| | - Ekaterina Dmitrieva
- Department of Analytical Chemistry, Kuban State University, Stavropol'skaya St. 149, Krasnodar, 350040, Russia
| |
Collapse
|
39
|
Exhaled Volatile Organic Compounds during Inflammation Induced by TNF-α in Ventilated Rats. Metabolites 2020; 10:metabo10060245. [PMID: 32549262 PMCID: PMC7345252 DOI: 10.3390/metabo10060245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/01/2023] Open
Abstract
Systemic inflammation alters the composition of exhaled breath, possibly helping clinicians diagnose conditions such as sepsis. We therefore evaluated changes in exhaled breath of rats given tumor necrosis factor-alpha (TNF-α). Thirty male Sprague-Dawley rats were randomly assigned to three groups (n = 10 each) with intravenous injections of normal saline (control), 200 µg·kg−1 bodyweight TNF-α (TNF-α-200), or 600 µg·kg−1 bodyweight TNF-α (TNF-α-600), and were observed for 24 h or until death. Animals were ventilated with highly-purified synthetic air to analyze exhaled air by multicapillary column–ion mobility spectrometry. Volatile organic compounds (VOCs) were identified from a database. We recorded blood pressure and cardiac output, along with cytokine plasma concentrations. Control rats survived the 24 h observation period, whereas mean survival time decreased to 22 h for TNF-α-200 and 23 h for TNF-α-600 rats. Mean arterial pressure decreased in TNF-α groups, whereas IL-6 increased, consistent with mild to moderate inflammation. Hundreds of VOCs were detected in exhalome. P-cymol increased by a factor-of-two 4 h after injection of TNF-α-600 compared to the control and TNF-α-200. We found that 1-butanol and 1-pentanol increased in both TNF-α groups after 20 h compared to the control. As breath analysis distinguishes between two doses of TNF-α and none, we conclude that it might help clinicians identify systemic inflammation.
Collapse
|
40
|
Song L, Dou K, Wang R, Leng P, Luo L, Xi Y, Kaun CC, Han N, Wang F, Chen Y. Sr-Doped Cubic In 2O 3/Rhombohedral In 2O 3 Homojunction Nanowires for Highly Sensitive and Selective Breath Ethanol Sensing: Experiment and DFT Simulation Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1270-1279. [PMID: 31822058 DOI: 10.1021/acsami.9b15928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, it is urgent and challenging to fabricate highly sensitive and selective gas sensors for breath analyses. In this work, Sr-doped cubic In2O3/rhombohedral In2O3 homojunction nanowires (NWs) are synthesized by one-step electrospun technology. The Sr doping alters the cubic phase of pure In2O3 into the rhombohedral phase, which is verified by the high-resolution transmittance electron microscopy, X-ray diffraction, and Raman spectroscopy, and is attributable to the low cohesive energy as calculated by the density functional theory (DFT). As a proof-of-concept of fatty liver biomarker sensing, ethanol sensors are fabricated using the electrospun In2O3 NWs. The results show that 8 wt % Sr-doped In2O3 shows the highest ethanol sensing performance with a high response of 21-1 ppm, a high selectivity over other interfering gases such as methanol, acetone, formaldehyde, toluene, xylene, and benzene, a high stability measured in 6 weeks, and also a high resistance to high humidity of 80%. The outstanding ethanol sensing performance is attributable to the enhanced ethanol adsorption by Sr doping as calculated by DFT, the stable rhombohedral phase and the preferred (104) facet exposure, and the formed homojunctions favoring the electron transfer. All these results show the effective structural modification of In2O3 by Sr doping, and also the great potency of the homojunction Sr-doped In2O3 NWs for highly sensitive, selective, and stable breath ethanol sensing.
Collapse
Affiliation(s)
- Longfei Song
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Kunpeng Dou
- College of Information Science and Engineering , Ocean University of China , Qingdao 266100 , China
| | - Rongrong Wang
- Department of Pharmacy , The Affiliated Hospital of Qingdao University , Qingdao 266003 , China
| | - Ping Leng
- Department of Pharmacy , The Affiliated Hospital of Qingdao University , Qingdao 266003 , China
| | - Linqu Luo
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
| | - Yan Xi
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
| | - Chao-Cheng Kaun
- Research Center for Applied Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| | - Fengyun Wang
- College of Physics and Cultivation Base for State Key Laboratory , Qingdao University , Qingdao 266071 , China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
41
|
Abstract
Biomarkers that focus on lung cancer risk assessment, detection, prognosis, diagnosis, and personalized treatment are in various stages of development. This article provides an overview of lung cancer biomarker development, focusing on clinical utility and highlighting 2 unmet clinical needs: selection of high-risk patients for lung cancer screening and differentiation of early lung cancer from benign pulmonary nodules. The authors highlight biomarkers under development and those lung cancer screening and nodule management biomarkers post-clinical validation. Finally, trends in lung cancer biomarker development that may improve accuracy and accelerate implementation in practice are discussed.
Collapse
|
42
|
Abstract
Abstract
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. This can be achieved by leveraging omics information for accurate molecular characterization of tumors. Tumor tissue biopsies are currently the main source of information for molecular profiling. However, biopsies are invasive and limited in resolving spatiotemporal heterogeneity in tumor tissues. Alternative non-invasive liquid biopsies can exploit patient’s body fluids to access multiple layers of tumor-specific biological information (genomes, epigenomes, transcriptomes, proteomes, metabolomes, circulating tumor cells, and exosomes). Analysis and integration of these large and diverse datasets using statistical and machine learning approaches can yield important insights into tumor biology and lead to discovery of new diagnostic, predictive, and prognostic biomarkers. Translation of these new diagnostic tools into standard clinical practice could transform oncology, as demonstrated by a number of liquid biopsy assays already entering clinical use. In this review, we highlight successes and challenges facing the rapidly evolving field of cancer biomarker research.
Lay Summary
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. The discovery of biomarkers for precision oncology has been accelerated by high-throughput experimental and computational methods, which can inform fine-grained characterization of tumors for clinical decision-making. Moreover, advances in the liquid biopsy field allow non-invasive sampling of patient’s body fluids with the aim of analyzing circulating biomarkers, obviating the need for invasive tumor tissue biopsies. In this review, we highlight successes and challenges facing the rapidly evolving field of liquid biopsy cancer biomarker research.
Collapse
|
43
|
Bruderer T, Gaisl T, Gaugg MT, Nowak N, Streckenbach B, Müller S, Moeller A, Kohler M, Zenobi R. On-Line Analysis of Exhaled Breath Focus Review. Chem Rev 2019; 119:10803-10828. [PMID: 31594311 DOI: 10.1021/acs.chemrev.9b00005] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
On-line analysis of exhaled breath offers insight into a person's metabolism without the need for sample preparation or sample collection. Due to its noninvasive nature and the possibility to sample continuously, the analysis of breath has great clinical potential. The unique features of this technology make it an attractive candidate for applications in medicine, beyond the task of diagnosis. We review the current methodologies for on-line breath analysis, discuss current and future applications, and critically evaluate challenges and pitfalls such as the need for standardization. Special emphasis is given to the use of the technology in diagnosing respiratory diseases, potential niche applications, and the promise of breath analysis for personalized medicine. The analytical methodologies used range from very small and low-cost chemical sensors, which are ideal for continuous monitoring of disease status, to optical spectroscopy and state-of-the-art, high-resolution mass spectrometry. The latter can be utilized for untargeted analysis of exhaled breath, with the capability to identify hitherto unknown molecules. The interpretation of the resulting big data sets is complex and often constrained due to a limited number of participants. Even larger data sets will be needed for assessing reproducibility and for validation of biomarker candidates. In addition, molecular structures and quantification of compounds are generally not easily available from on-line measurements and require complementary measurements, for example, a separation method coupled to mass spectrometry. Furthermore, a lack of standardization still hampers the application of the technique to screen larger cohorts of patients. This review summarizes the present status and continuous improvements of the principal on-line breath analysis methods and evaluates obstacles for their wider application.
Collapse
Affiliation(s)
- Tobias Bruderer
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland.,Division of Respiratory Medicine , University Children's Hospital Zurich and Children's Research Center Zurich , CH-8032 Zurich , Switzerland
| | - Thomas Gaisl
- Department of Pulmonology , University Hospital Zurich , CH-8091 Zurich , Switzerland.,Zurich Center for Interdisciplinary Sleep Research , University of Zurich , CH-8091 Zurich , Switzerland
| | - Martin T Gaugg
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Nora Nowak
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Simona Müller
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine , University Children's Hospital Zurich and Children's Research Center Zurich , CH-8032 Zurich , Switzerland
| | - Malcolm Kohler
- Department of Pulmonology , University Hospital Zurich , CH-8091 Zurich , Switzerland.,Center for Integrative Human Physiology , University of Zurich , CH-8091 Zurich , Switzerland.,Zurich Center for Interdisciplinary Sleep Research , University of Zurich , CH-8091 Zurich , Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| |
Collapse
|
44
|
Malásková M, Henderson B, Chellayah PD, Ruzsanyi V, Mochalski P, Cristescu SM, Mayhew CA. Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies. J Breath Res 2019; 13:046009. [PMID: 31163413 DOI: 10.1088/1752-7163/ab26e2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the growing interest in the use of breath volatiles in the health sciences, the lack of standardization for the sampling and analysis of exhaled breath is becoming a major issue leading to an absence of conformity, reproducibility and reliability in spectrometric measurements. Through the creation of a worldwide 'peppermint consortium', the International Association of Breath Research has set up a task force to deal with this problem. Pharmacokinetic studies are proposed, and a real-time analytical technique that is being used is proton transfer reaction-time-of-flight-mass spectrometry (PTR-ToF-MS). This paper presents details on how the volatile compounds contained in a peppermint oil capsule, and hence on breath, appear in a PTR-ToF-MS. To aid that study, the key volatiles in the headspace of peppermint oil were first identified using gas chromatography-mass spectrometry, notably: menthol, menthone, 1,8-cineole, menthofuran, limonene, α-pinene and β-pinene. A PTR-ToF-MS analysis of these compounds has been undertaken, divorced from the complexity of the peppermint oil matrix using 'normal' and 'saturated' humidity drift-tube conditions, with the latter used to mimic breath samples, and over a range of reduced electric fields. There are no characteristic product ions that can distinguish monoterpenes and 1,8-cineole, and hence, without pre-separation, a combined washout for these volatiles can only be provided. By operating the drift tube above about 130 Td, there are characteristic product ions for menthone, menthofuran and menthol, namely m/z 155.14 (protonated menthone), m/z 151.11 (protonated menthofuran), m/z 139.15 (loss of H2O from protonated menthol) and m/z 83.09 (a fragment ion, C6H11 +, from menthol). These have been used to monitor, with a high specificity, the temporal profile of these three compounds in breath following the ingestion of a peppermint oil capsule. To aid in the analyses, the proton affinities and gas-phase basicities for the key volatiles investigated have been determined using density functional theory.
Collapse
Affiliation(s)
- Michaela Malásková
- Institute for Breath Research, Leopold-Franzens-Universität Innsbruck, Rathausplatz 4, A-6850, Dornbirn, Austria
| | | | | | | | | | | | | |
Collapse
|
45
|
Catino A, de Gennaro G, Di Gilio A, Facchini L, Galetta D, Palmisani J, Porcelli F, Varesano N. Breath Analysis: A Systematic Review of Volatile Organic Compounds (VOCs) in Diagnostic and Therapeutic Management of Pleural Mesothelioma. Cancers (Basel) 2019; 11:E831. [PMID: 31207975 PMCID: PMC6627570 DOI: 10.3390/cancers11060831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare neoplasm related to asbestos exposure and with high mortality rate. The management of patients with MPM is complex and controversial, particularly with regard to early diagnosis. In the last few years, breath analysis has been greatly implemented with this aim. In this review the strengths of breath analysis and preliminary results in searching breath biomarkers of MPM are highlighted and discussed, respectively. Through a systematic electronic literature search, collecting papers published from 2000 until December 2018, fifteen relevant scientific papers were selected. All papers considered were prospective, comparative, observational case-control studies although every single one pilot and based on a relatively small number of samples. The identification of diagnostic VOCs pattern, through breath sample characterization and the statistical data treatment, allows to obtain a strategic information for clinical diagnostics. To date the collected data provide just preliminary information and, despite the promising results and diagnostic accuracy, conclusions cannot be generalized due to the limited number of individuals included in each cohort study. Furthermore none of studies was externally validated, although validation process is a necessary step towards clinical implementation. Breathomics-based biomarker approach should be further explored to confirm and validate preliminary findings and to evaluate its potential role in monitoring the therapeutic response.
Collapse
Affiliation(s)
- Annamaria Catino
- Thoracic Oncology Unit, Clinical Cancer Centre "Giovanni Paolo II", 70124 Bari, Italy.
| | | | | | - Laura Facchini
- Department of Biology, University of Bari, 70125 Bari, Italy.
| | - Domenico Galetta
- Thoracic Oncology Unit, Clinical Cancer Centre "Giovanni Paolo II", 70124 Bari, Italy.
| | | | | | - Niccolò Varesano
- Thoracic Oncology Unit, Clinical Cancer Centre "Giovanni Paolo II", 70124 Bari, Italy.
| |
Collapse
|
46
|
Asadi M, Valadbeigi Y, Tabrizchi M. Thermionic sodium ion source versus corona discharge in detection of alkaloids using ion mobility spectrometry. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12127-019-00249-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Exogenous factors of influence on exhaled breath analysis by ion-mobility spectrometry (MCC/IMS). ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12127-019-00247-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Marzorati D, Mainardi L, Sedda G, Gasparri R, Spaggiari L, Cerveri P. A review of exhaled breath: a key role in lung cancer diagnosis. J Breath Res 2019; 13:034001. [DOI: 10.1088/1752-7163/ab0684] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Metternich S, Zörntlein S, Schönberger T, Huhn C. Ion mobility spectrometry as a fast screening tool for synthetic cannabinoids to uncover drug trafficking in jail via herbal mixtures, paper, food, and cosmetics. Drug Test Anal 2019; 11:833-846. [DOI: 10.1002/dta.2565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Sonja Metternich
- State Office of Criminal Investigation Rhineland‐PalatinateDepartment of Forensic Science Mainz Germany
| | - Siegfried Zörntlein
- State Office of Criminal Investigation Rhineland‐PalatinateDepartment of Forensic Science Mainz Germany
| | | | - Carolin Huhn
- Eberhard Karls Universität TübingenInstitute for Physical and Theoretical Chemistry Tübingen Germany
| |
Collapse
|
50
|
Smolinska A, Baranska A, Dallinga JW, Mensink RP, Baumgartner S, van de Heijning BJM, van Schooten FJ. Comparing patterns of volatile organic compounds exhaled in breath after consumption of two infant formulae with a different lipid structure: a randomized trial. Sci Rep 2019; 9:554. [PMID: 30679671 PMCID: PMC6346115 DOI: 10.1038/s41598-018-37210-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/25/2018] [Indexed: 01/29/2023] Open
Abstract
Infant formulae have been used since decades as an alternative to or a complement to human milk. Human milk, the "gold standard" of infant nutrition, has been studied for its properties in order to create infant formulae that bring similar benefits to the infant. One of the characteristics of milk is the size of the lipid droplets which is known to affect the digestion, gastric emptying and triglyceride metabolism. In the current study a concept infant milk formula with large, phospholipid coating of lipid droplets (mode diameter 3-5 μm; NUTURIS, further described as "active"), was compared to a commercially available formula milk characterised by smaller lipid droplets, further described as "control" (both products derived from Nutricia). We investigated whether we could find an effect of lipid droplet size on volatile compounds in exhaled air upon ingestion of either product. For that purpose, exhaled breath was collected from a group of 29 healthy, non-smoking adult males before ingestion of a study product (baseline measurements, T0) and at the following time points after the test meal: 30, 60, 120, 180 and 240 min. Volatile organic compounds (VOCs) in breath were detected by gas chromatography-time-of-flight-mass spectrometry. Any differences in the time course of VOCs patterns upon intake of active and control products were investigated by regularised multivariate analysis of variance (rMANOVA). The rMANOVA analysis revealed statistically significant differences in the exhaled breath composition 240 min after ingestion of the active formula compared to control product (p-value < 0.0001), but did not show significant changes between active and control product at any earlier time points. A set of eight VOCs in exhaled breath had the highest contribution to the difference found at 240 minutes between the two formulas. A set of ten VOCs was different between baseline and the two formulae at T240 with p-value < 0.0001. To our knowledge this is the first study that shows the ability of VOCs in exhaled breath to monitor metabolic effects after ingestion of infant formulae with different lipid structure. The statistically significant differences in compound abundance found between active and control formula milk may be related to: (i) specific differences in the digestion, (ii) absorption of lipids and proteins and (iii) assimilation of the products in the gut.
Collapse
Affiliation(s)
- A Smolinska
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department Pharmacology & Toxicology, Maastricht University, Maastricht, The Netherlands.
| | - A Baranska
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department Pharmacology & Toxicology, Maastricht University, Maastricht, The Netherlands
| | - J W Dallinga
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department Pharmacology & Toxicology, Maastricht University, Maastricht, The Netherlands
| | - R P Mensink
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - S Baumgartner
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | | | - F J van Schooten
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department Pharmacology & Toxicology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|