1
|
Konietzke P, Brunner C, Konietzke M, Wagner WL, Weinheimer O, Heußel CP, Herth FJF, Trudzinski F, Kauczor HU, Wielpütz MO. GOLD stage-specific phenotyping of emphysema and airway disease using quantitative computed tomography. Front Med (Lausanne) 2023; 10:1184784. [PMID: 37534319 PMCID: PMC10393128 DOI: 10.3389/fmed.2023.1184784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD) abnormal lung function is related to emphysema and airway obstruction, but their relative contribution in each GOLD-stage is not fully understood. In this study, we used quantitative computed tomography (QCT) parameters for phenotyping of emphysema and airway abnormalities, and to investigate the relative contribution of QCT emphysema and airway parameters to airflow limitation specifically in each GOLD stage. Methods Non-contrast computed tomography (CT) of 492 patients with COPD former GOLD 0 COPD and COPD stages GOLD 1-4 were evaluated using fully automated software for quantitative CT. Total lung volume (TLV), emphysema index (EI), mean lung density (MLD), and airway wall thickness (WT), total diameter (TD), lumen area (LA), and wall percentage (WP) were calculated for the entire lung, as well as for all lung lobes separately. Results from the 3rd-8th airway generation were aggregated (WT3-8, TD3-8, LA3-8, WP3-8). All subjects underwent whole-body plethysmography (FEV1%pred, VC, RV, TLC). Results EI was higher with increasing GOLD stages with 1.0 ± 1.8% in GOLD 0, 4.5 ± 9.9% in GOLD 1, 19.4 ± 15.8% in GOLD 2, 32.7 ± 13.4% in GOLD 3 and 41.4 ± 10.0% in GOLD 4 subjects (p < 0.001). WP3-8 showed no essential differences between GOLD 0 and GOLD 1, tended to be higher in GOLD 2 with 52.4 ± 7.2%, and was lower in GOLD 4 with 50.6 ± 5.9% (p = 0.010 - p = 0.960). In the upper lobes WP3-8 showed no significant differences between the GOLD stages (p = 0.824), while in the lower lobes the lowest WP3-8 was found in GOLD 0/1 with 49.9 ± 6.5%, while higher values were detected in GOLD 2 with 51.9 ± 6.4% and in GOLD 3/4 with 51.0 ± 6.0% (p < 0.05). In a multilinear regression analysis, the dependent variable FEV1%pred can be predicted by a combination of both the independent variables EI (p < 0.001) and WP3-8 (p < 0.001). Conclusion QCT parameters showed a significant increase of emphysema from GOLD 0-4 COPD. Airway changes showed a different spatial pattern with higher values of relative wall thickness in the lower lobes until GOLD 2 and subsequent lower values in GOLD3/4, whereas there were no significant differences in the upper lobes. Both, EI and WP5-8 are independently correlated with lung function decline.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Christian Brunner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Willi Linus Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Claus Peter Heußel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Felix J. F. Herth
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pulmonology, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Franziska Trudzinski
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pulmonology, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark Oliver Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Byon JH, Jin GY, Han YM, Choi EJ, Chae KJ, Park EH. Quantitative CT Analysis Based on Smoking Habits and Chronic Obstructive Pulmonary Disease in Patients with Normal Chest CT. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:900-910. [PMID: 37559818 PMCID: PMC10407071 DOI: 10.3348/jksr.2022.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 08/11/2023]
Abstract
PURPOSE To assess normal CT scans with quantitative CT (QCT) analysis based on smoking habits and chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS From January 2013 to December 2014, 90 male patients with normal chest CT and quantification analysis results were enrolled in our study [non-COPD never-smokers (n = 38) and smokers (n = 45), COPD smokers (n = 7)]. In addition, an age-matched cohort study was performed for seven smokers with COPD. The square root of the wall area of a hypothetical bronchus of internal perimeter 10 mm (Pi10), skewness, kurtosis, mean lung attenuation (MLA), and percentage of low attenuation area (%LAA) were evaluated. RESULTS Among patients without COPD, the Pi10 of smokers (4.176 ± 0.282) was about 0.1 mm thicker than that of never-smokers (4.070 ± 0.191, p = 0.047), and skewness and kurtosis of smokers (2.628 ± 0.484 and 6.448 ± 3.427) were lower than never-smokers (2.884 ± 0.624, p = 0.038 and 8.594 ± 4.944, p = 0.02). The Pi10 of COPD smokers (4.429 ± 0.435, n = 7) was about 0.4 mm thicker than never-smokers without COPD (3.996 ± 0.115, n = 14, p = 0.005). There were no significant differences in MLA and %LAA between groups (p > 0.05). CONCLUSION Even on normal CT scans, QCT showed that the airway walls of smokers are thicker than never-smokers regardless of COPD and it preceded lung parenchymal changes.
Collapse
|
3
|
Baraghoshi D, Strand M, Humphries SM, San José Estépar R, Vegas Sanchez-Ferrero G, Charbonnier JP, Latisenko R, Silverman EK, Crapo JD, Lynch DA. Quantitative CT Evaluation of Emphysema Progression over 10 Years in the COPDGene Study. Radiology 2023; 307:e222786. [PMID: 37039685 PMCID: PMC10286952 DOI: 10.1148/radiol.222786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 04/12/2023]
Abstract
Background Long-term studies of chronic obstructive pulmonary disease (COPD) can evaluate emphysema progression. Adjustment for differences in equipment and scanning protocols of individual CT examinations have not been studied extensively. Purpose To evaluate emphysema progression in current and former smokers in the COPDGene cohort over three imaging points obtained at 5-year intervals accounting for individual CT parameters. Materials and Methods Current and former cigarette smokers enrolled between 2008 and 2011 from the COPDGene study were prospectively followed for 10 years between 2008 and 2020. Extent of emphysema as adjusted lung density (ALD) from quantitative CT was measured at baseline and at 5- and 10-year follow-up. Linear mixed models adjusted for CT technical characteristics were constructed to evaluate emphysema progression. Mean annual changes in ALD over consecutive 5-year study periods were estimated by smoking status and baseline emphysema. Results Of 8431 participants at baseline (mean age, 60 years ± 9 [SD]; 3905 female participants), 4913 were at 5-year follow-up and 1544 participants were at 10-year follow-up. There were 4134 (49%) participants who were current smokers, and 4449 (53%) participants had more than trace emphysema at baseline. Current smokers with more than trace emphysema showed the largest decline in ALD, with mean annual decreases of 1.4 g/L (95% CI: 1.2, 1.5) in the first 5 years and 0.9 g/L (95% CI: 0.7, 1.2) in the second 5 years. Accounting for CT noise, field of view, and scanner model improved model fit for estimation of emphysema progression (P < .001 by likelihood ratio test). Conclusion Evaluation at CT of emphysema progression in the COPDGene study showed that, during the span of 10 years, participants with pre-existing emphysema who continued smoking had the largest decline in ALD. Adjusting for CT equipment and protocol factors improved these longitudinal estimates. Clinical trial registration no. NCT00608764 © RSNA, 2023 Supplemental material is available for this article. See the editorial by Parraga and Kirby in this issue.
Collapse
Affiliation(s)
- David Baraghoshi
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| | - Matthew Strand
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| | - Stephen M. Humphries
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| | - Raúl San José Estépar
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| | - Gonzalo Vegas Sanchez-Ferrero
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| | - Jean-Paul Charbonnier
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| | - Rudolfs Latisenko
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| | - Edwin K. Silverman
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| | - James D. Crapo
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| | - David A. Lynch
- From the Division of Biostatistics, Environment and Health (D.B.,
M.S.), Department of Radiology (S.M.H., D.A.L.), and Division of Pulmonary and
Critical Care Medicine, Department of Medicine (J.D.C.), National Jewish Health,
1400 Jackson St, Denver, CO 80206; Applied Chest Imaging Laboratory (R.S.J.E.,
G.V.S.F.), Department of Radiology (R.S.J.E., G.V.S.F.), Channing Division of
Network Medicine (E.K.S.), and Division of Pulmonary and Critical Care Medicine,
Department of Medicine (E.K.S.), Brigham and Women’s Hospital, Boston,
Mass; and Thirona, Nijmegen, the Netherlands (J.P.C., R.L.)
| |
Collapse
|
4
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
5
|
Choe J, Lee SM, Hwang HJ, Lee SM, Yun J, Kim N, Seo JB. Artificial Intelligence in Lung Imaging. Semin Respir Crit Care Med 2022; 43:946-960. [PMID: 36174647 DOI: 10.1055/s-0042-1755571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently, interest and advances in artificial intelligence (AI) including deep learning for medical images have surged. As imaging plays a major role in the assessment of pulmonary diseases, various AI algorithms have been developed for chest imaging. Some of these have been approved by governments and are now commercially available in the marketplace. In the field of chest radiology, there are various tasks and purposes that are suitable for AI: initial evaluation/triage of certain diseases, detection and diagnosis, quantitative assessment of disease severity and monitoring, and prediction for decision support. While AI is a powerful technology that can be applied to medical imaging and is expected to improve our current clinical practice, some obstacles must be addressed for the successful implementation of AI in workflows. Understanding and becoming familiar with the current status and potential clinical applications of AI in chest imaging, as well as remaining challenges, would be essential for radiologists and clinicians in the era of AI. This review introduces the potential clinical applications of AI in chest imaging and also discusses the challenges for the implementation of AI in daily clinical practice and future directions in chest imaging.
Collapse
Affiliation(s)
- Jooae Choe
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye Jeon Hwang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jihye Yun
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.,Department of Convergence Medicine, Biomedical Engineering Research Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
6
|
Ringheim H, Thudium RF, Jensen JUS, Rezahosseini O, Nielsen SD. Prevalence of emphysema in people living with human immunodeficiency virus in the current combined antiretroviral therapy era: A systematic review. Front Med (Lausanne) 2022; 9:897773. [PMID: 36213645 PMCID: PMC9532512 DOI: 10.3389/fmed.2022.897773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Before introducing combination antiretroviral therapy (cART), a higher prevalence of emphysema in people living with HIV (PLWH) than in the background population was reported. This systematic literature review aimed to investigate the prevalence of emphysema in PLWH and to compare the prevalence between PLWH and controls in the current cART era. A systematic literature search was conducted in PubMed, EMBASE, Scopus, and Web of Science (WOS), searching for “human immunodeficiency virus (HIV)” and “emphysema” from January 1, 2000 to March 10, 2021. Eligible studies were published after the introduction of cART, included PLWH, and reported the prevalence of emphysema. A total of 17 studies were included, and nine studies also included controls. The weighted average prevalence of emphysema in PLWH was 23% (95% CI: 16–30). In studies including both PLWH and controls the weighted average prevalence were 22% (95% CI: 10–33) and 9.7% (95% CI: 2.3–17), respectively (p = 0.052). The prevalence of emphysema in never-smoking PLWH and controls was just reported in one study and was 18 and 4%, respectively (p < 0.01). Thirteen of the studies had a moderate risk of bias, mainly due to selection of patients. A tendency to higher prevalence of emphysema was found in PLWH in comparison to controls in the current cART era. However, in the included studies, the definition of emphysema varied largely. Thus, to have a clear overview of the prevalence, further studies with well-designed cohorts of PLWH and controls are warranted.
Collapse
Affiliation(s)
- Hedda Ringheim
- Viro-Immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rebekka F. Thudium
- Viro-Immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens-Ulrik S. Jensen
- Section of Respiratory Medicine, Department of Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Omid Rezahosseini
- Viro-Immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne D. Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Susanne D. Nielsen,
| |
Collapse
|
7
|
Silva M, Picozzi G, Sverzellati N, Anglesio S, Bartolucci M, Cavigli E, Deliperi A, Falchini M, Falaschi F, Ghio D, Gollini P, Larici AR, Marchianò AV, Palmucci S, Preda L, Romei C, Tessa C, Rampinelli C, Mascalchi M. Low-dose CT for lung cancer screening: position paper from the Italian college of thoracic radiology. LA RADIOLOGIA MEDICA 2022; 127:543-559. [PMID: 35306638 PMCID: PMC8934407 DOI: 10.1007/s11547-022-01471-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Smoking is the main risk factor for lung cancer (LC), which is the leading cause of cancer-related death worldwide. Independent randomized controlled trials, governmental and inter-governmental task forces, and meta-analyses established that LC screening (LCS) with chest low dose computed tomography (LDCT) decreases the mortality of LC in smokers and former smokers, compared to no-screening, especially in women. Accordingly, several Italian initiatives are offering LCS by LDCT and smoking cessation to about 10,000 high-risk subjects, supported by Private or Public Health Institutions, envisaging a possible population-based screening program. Because LDCT is the backbone of LCS, Italian radiologists with LCS expertise are presenting this position paper that encompasses recommendations for LDCT scan protocol and its reading. Moreover, fundamentals for classification of lung nodules and other findings at LDCT test are detailed along with international guidelines, from the European Society of Thoracic Imaging, the British Thoracic Society, and the American College of Radiology, for their reporting and management in LCS. The Italian College of Thoracic Radiologists produced this document to provide the basics for radiologists who plan to set up or to be involved in LCS, thus fostering homogenous evidence-based approach to the LDCT test over the Italian territory and warrant comparison and analyses throughout National and International practices.
Collapse
Affiliation(s)
- Mario Silva
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy.
- Unit of "Scienze Radiologiche", University Hospital of Parma, Pad. Barbieri, Via Gramsci 14, 43126, Parma, Italy.
| | - Giulia Picozzi
- Istituto Di Studio Prevenzione E Rete Oncologica, Firenze, Italy
| | - Nicola Sverzellati
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy
- Unit of "Scienze Radiologiche", University Hospital of Parma, Pad. Barbieri, Via Gramsci 14, 43126, Parma, Italy
| | | | | | | | | | | | | | - Domenico Ghio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Anna Rita Larici
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore Di Roma, Roma, Italy
| | - Alfonso V Marchianò
- Department of Radiology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, MI, Italy
| | - Stefano Palmucci
- UOC Radiologia 1, Dipartimento Scienze Mediche Chirurgiche E Tecnologie Avanzate "GF Ingrassia", Università Di Catania, AOU Policlinico "G. Rodolico-San Marco", Catania, Italy
| | - Lorenzo Preda
- IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
- Dipartimento Di Scienze Clinico-Chirurgiche, Diagnostiche E Pediatriche, Università Degli Studi Di Pavia, Pavia, Italy
| | | | - Carlo Tessa
- Radiologia Apuane E Lunigiana, Azienda USL Toscana Nord Ovest, Pisa, Italy
| | | | - Mario Mascalchi
- Istituto Di Studio Prevenzione E Rete Oncologica, Firenze, Italy
- Università Di Firenze, Firenze, Italy
| |
Collapse
|
8
|
Polverino F, Wu TD, Rojas-Quintero J, Wang X, Mayo J, Tomchaney M, Tram J, Packard S, Zhang D, Cleveland KH, Cordoba-Lanus E, Owen CA, Fawzy A, Kinney GL, Hersh CP, Hansel NN, Doubleday K, Sauler M, Tesfaigzi Y, Ledford JG, Casanova C, Zmijewski J, Konhilas J, Langlais PR, Schnellmann R, Rahman I, McCormack M, Celli B. Metformin: Experimental and Clinical Evidence for a Potential Role in Emphysema Treatment. Am J Respir Crit Care Med 2021; 204:651-666. [PMID: 34033525 PMCID: PMC8521702 DOI: 10.1164/rccm.202012-4510oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Cigarette smoke (CS) inhalation triggers oxidative stress and inflammation, leading to accelerated lung aging, apoptosis, and emphysema, as well as systemic pathologies. Metformin is beneficial for protecting against aging-related diseases. Objectives: We sought to investigate whether metformin may ameliorate CS-induced pathologies of emphysematous chronic obstructive pulmonary disease (COPD). Methods: Mice were exposed chronically to CS and fed metformin-enriched chow for the second half of exposure. Lung, kidney, and muscle pathologies, lung proteostasis, endoplasmic reticulum (ER) stress, mitochondrial function, and mediators of metformin effects in vivo and/or in vitro were studied. We evaluated the association of metformin use with indices of emphysema progression over 5 years of follow-up among the COPDGene (Genetic Epidemiology of COPD) study participants. The association of metformin use with the percentage of emphysema and adjusted lung density was estimated by using a linear mixed model. Measurements and Main Results: Metformin protected against CS-induced pulmonary inflammation and airspace enlargement; small airway remodeling, glomerular shrinkage, oxidative stress, apoptosis, telomere damage, aging, dysmetabolism in vivo and in vitro; and ER stress. The AMPK (AMP-activated protein kinase) pathway was central to metformin's protective action. Within COPDGene, participants receiving metformin compared with those not receiving it had a slower progression of emphysema (-0.92%; 95% confidence interval [CI], -1.7% to -0.14%; P = 0.02) and a slower adjusted lung density decrease (2.2 g/L; 95% CI, 0.43 to 4.0 g/L; P = 0.01). Conclusions: Metformin protected against CS-induced lung, renal, and muscle injury; mitochondrial dysfunction; and unfolded protein responses and ER stress in mice. In humans, metformin use was associated with lesser emphysema progression over time. Our results provide a rationale for clinical trials testing the efficacy of metformin in limiting emphysema progression and its systemic consequences.
Collapse
Affiliation(s)
| | - Tianshi David Wu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, Texas;,Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, Texas
| | | | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia
| | | | | | - Judy Tram
- Asthma and Airway Disease Research Center and
| | | | | | | | - Elizabeth Cordoba-Lanus
- Servicio de Neumología, Unidad de Investigación, Hospital Universitario La Candelaria, Santa Cruz de Tenerife, Tenerife, Spain
| | | | - Ashraf Fawzy
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Greg L. Kinney
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Maor Sauler
- Pulmonary Division, School of Medicine, Yale University, New Haven, Connecticut
| | | | | | - Ciro Casanova
- Servicio de Neumología, Unidad de Investigación, Hospital Universitario La Candelaria, Santa Cruz de Tenerife, Tenerife, Spain
| | - Jaroslaw Zmijewski
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama, Birmingham, Alabama; and
| | - John Konhilas
- Department of Physiology, University of Arizona, Tucson, Arizona
| | | | | | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Meredith McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
9
|
Tejwani V, Fawzy A, Putcha N, Castaldi P, Cho MH, Pratte KA, Bhatt SP, Lynch DA, Humphries SM, Kinney GL, D'Alessio FR, Hansel NN. Emphysema Progression and Lung Function Decline Among Angiotensin Converting Enzyme Inhibitors and Angiotensin-Receptor Blockade Users in the COPDGene Cohort. Chest 2021; 160:1245-1254. [PMID: 34029566 DOI: 10.1016/j.chest.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Attenuation of transforming growth factor β by blocking angiotensin II has been shown to reduce emphysema in a murine model. General population studies have demonstrated that the use of angiotensin converting enzyme inhibitors (ACEis) and angiotensin-receptor blockers (ARBs) is associated with reduction of emphysema progression in former smokers and that the use of ACEis is associated with reduction of FEV1 progression in current smokers. RESEARCH QUESTION Is use of ACEi and ARB associated with less progression of emphysema and FEV1 decline among individuals with COPD or baseline emphysema? METHODS Former and current smokers from the Genetic Epidemiology of COPD Study who attended baseline and 5-year follow-up visits, did not change smoking status, and underwent chest CT imaging were included. Adjusted linear mixed models were used to evaluate progression of adjusted lung density (ALD), percent emphysema (%total lung volume <-950 Hounsfield units [HU]), 15th percentile of the attenuation histogram (attenuation [in HU] below which 15% of voxels are situated plus 1,000 HU), and lung function decline over 5 years between ACEi and ARB users and nonusers in those with spirometry-confirmed COPD, as well as all participants and those with baseline emphysema. Effect modification by smoking status also was investigated. RESULTS Over 5 years of follow-up, compared with nonusers, ACEi and ARB users with COPD showed slower ALD progression (adjusted mean difference [aMD], 1.6; 95% CI, 0.34-2.9). Slowed lung function decline was not observed based on phase 1 medication (aMD of FEV1 % predicted, 0.83; 95% CI, -0.62 to 2.3), but was when analysis was limited to consistent ACEi and ARB users (aMD of FEV1 % predicted, 1.9; 95% CI, 0.14-3.6). No effect modification by smoking status was found for radiographic outcomes, and the lung function effect was more pronounced in former smokers. Results were similar among participants with baseline emphysema. INTERPRETATION Among participants with spirometry-confirmed COPD or baseline emphysema, ACEi and ARB use was associated with slower progression of emphysema and lung function decline. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Vickram Tejwani
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD.
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| | | | - Michael H Cho
- Division of Pulmonary and Critical Care Medicine, Boston, MA; Harvard Medical School, Boston, MA
| | | | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | | | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
10
|
Crapo J, Gupta A, Lynch DA, Vogel-Claussen J, Watz H, Turner AM, Mroz RM, Janssens W, Ludwig-Sengpiel A, Beck M, Langellier B, Ittrich C, Risse F, Diefenbach C. FOOTPRINTS study protocol: rationale and methodology of a 3-year longitudinal observational study to phenotype patients with COPD. BMJ Open 2021; 11:e042526. [PMID: 33753437 PMCID: PMC7986686 DOI: 10.1136/bmjopen-2020-042526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/01/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION A better understanding is needed of the different phenotypes that exist for patients with chronic obstructive pulmonary disease (COPD), their relationship with the pathogenesis of COPD and how they may affect disease progression. Biomarkers, including those associated with emphysema, may assist in characterising patients and in predicting and monitoring the course of disease. The FOOTPRINTS study (study 352.2069) aims to identify biomarkers associated with emphysema, over a 3-year period. METHODS AND ANALYSIS The FOOTPRINTS study is a prospective, longitudinal, multinational (12 countries), multicentre (51 sites) biomarker study, which has enrolled a total of 463 ex-smokers, including subjects without airflow limitation (as defined by the 2015 Global Initiative for Chronic Obstructive Lung Disease (GOLD) strategy report), patients with COPD across the GOLD stages 1-3 and patients with COPD and alpha1-antitrypsin deficiency. The study has an observational period lasting 156 weeks that includes seven site visits and additional phone interviews. Biomarkers in blood and sputum, imaging data (CT and magnetic resonance), clinical parameters, medical events of special interest and safety are being assessed at regular visits. Disease progression based on biomarker values and COPD phenotypes are being assessed using multivariate statistical prediction models. ETHICS AND DISSEMINATION The study protocol was approved by the authorities and ethics committees/institutional review boards of the respective institutions where applicable, which included study sites in Belgium, Canada, Denmark, Finland, Germany, Japan, Korea, Poland, Spain, Sweden, UK and USA; written informed consent has been obtained from all study participants. Ethics committee approval was obtained for all participating sites prior to enrolment of the study participants. The study results will be reported in peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT02719184.
Collapse
Affiliation(s)
- James Crapo
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Abhya Gupta
- TA Inflammation Med, Boehringer Ingelheim International GmbH, Biberach an der Riss, Germany
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado, USA
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical research in endstage and obstructive lung disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Henrik Watz
- Pulmonary Research Institute, LungenClinic Grosshansdorf, Grosshansdorf, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Robert M Mroz
- 2nd Department of Lung Diseases and Tuberculosis, Bialystok Medical University, Bialystok, Poland
| | - Wim Janssens
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Laboratory of Respiratory Diseases and Thoracic surgery (BREATH), University Hospital Leuven, KU Leuven, Belgium
| | | | - Markus Beck
- Department of Clinical Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Carina Ittrich
- Global Department of Biostatistics and Data Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Frank Risse
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Claudia Diefenbach
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
11
|
Ash SY, San José Estépar R, Fain SB, Tal-Singer R, Stockley RA, Nordenmark LH, Rennard S, Han MK, Merrill D, Humphries SM, Diaz AA, Mason SE, Rahaghi FN, Pistenmaa CL, Sciurba FC, Vegas-Sánchez-Ferrero G, Lynch DA, Washko GR. Relationship between Emphysema Progression at CT and Mortality in Ever-Smokers: Results from the COPDGene and ECLIPSE Cohorts. Radiology 2021; 299:222-231. [PMID: 33591891 PMCID: PMC7997617 DOI: 10.1148/radiol.2021203531] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background The relationship between emphysema progression and long-term outcomes is unclear. Purpose To determine the relationship between emphysema progression at CT and mortality among participants with emphysema. Materials and Methods In a secondary analysis of two prospective observational studies, COPDGene (clinicaltrials.gov, NCT00608764) and Evaluation of Chronic Obstructive Pulmonary Disease Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE; clinicaltrials.gov, NCT00292552), emphysema was measured at CT at two points by using the volume-adjusted lung density at the 15th percentile of the lung density histogram (hereafter, lung density perc15) method. The association between emphysema progression rate and all-cause mortality was analyzed by using Cox regression adjusted for ethnicity, sex, baseline age, pack-years, and lung density, baseline and change in smoking status, forced expiratory volume in 1 second, and 6-minute walk distance. In COPDGene, respiratory mortality was analyzed by using the Fine and Gray method. Results A total of 5143 participants (2613 men [51%]; mean age, 60 years ± 9 [standard deviation]) in COPDGene and 1549 participants (973 men [63%]; mean age, 62 years ± 8) in ECLIPSE were evaluated, of which 2097 (40.8%) and 1179 (76.1%) had emphysema, respectively. Baseline imaging was performed between January 2008 and December 2010 for COPDGene and January 2006 and August 2007 for ECLIPSE. Follow-up imaging was performed after 5.5 years ± 0.6 in COPDGene and 3.0 years ± 0.2 in ECLIPSE, and mortality was assessed over the ensuing 5 years in both. For every 1 g/L per year faster rate of decline in lung density perc15, all-cause mortality increased by 8% in COPDGene (hazard ratio [HR], 1.08; 95% CI: 1.01, 1.16; P = .03) and 6% in ECLIPSE (HR, 1.06; 95% CI: 1.00, 1.13; P = .045). In COPDGene, respiratory mortality increased by 22% (HR, 1.22; 95% CI: 1.13, 1.31; P < .001) for the same increase in the rate of change in lung density perc15. Conclusion In ever-smokers with emphysema, emphysema progression at CT was associated with increased all-cause and respiratory mortality. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Lee and Park in this issue.
Collapse
Affiliation(s)
- Samuel Y Ash
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Raúl San José Estépar
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Sean B Fain
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Ruth Tal-Singer
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Robert A Stockley
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Lars H Nordenmark
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Stephen Rennard
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - MeiLan K Han
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Debora Merrill
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Stephen M Humphries
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Alejandro A Diaz
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Stefanie E Mason
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Farbod N Rahaghi
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Carrie L Pistenmaa
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Frank C Sciurba
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - Gonzalo Vegas-Sánchez-Ferrero
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - David A Lynch
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | - George R Washko
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| | -
- From the Division of Pulmonary and Critical Care Medicine, Department of Medicine (S.Y.A., A.A.D., S.E.M., F.N.R., C.L.P., G.R.W.), Applied Chest Imaging Laboratory (S.Y.A., R.S.J.E., A.A.D., S.E.M., F.N.R., C.L.P., G.V.S.F., G.R.W.), and Department of Radiology (R.S.J.E., G.V.S.F.), Brigham and Women's Hospital, 75 Francis St, PBB, CA-3, Boston, MA 02130; Departments of Biomedical Engineering and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (S.B.F.); COPD Foundation, Washington, DC (R.T.S., D.M.); Lung Investigation Unit, Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, England (R.A.S.); Respiratory and Inflammation Therapy Area, Clinical Development, AstraZeneca, Mölndal, Sweden (L.H.N.); Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, Neb (S.R.); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich (M.K.H.); Department of Radiology, National Jewish Health, Denver, Colo (S.M.H., D.A.L.); and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Department of Medicine, University of Pittsburgh, Pittsburgh, Pa (F.C.S.)
| |
Collapse
|
12
|
Kim J, Kim B, Bak SH, Oh YM, Kim WJ. A comparative study of chest CT findings regarding the effects of regional dust exposure on patients with COPD living in urban areas and rural areas near cement plants. Respir Res 2021; 22:43. [PMID: 33549113 PMCID: PMC7866433 DOI: 10.1186/s12931-021-01649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Background The clinical and radiological presentation of chronic obstructive pulmonary disease (COPD) is heterogenous depending on the characterized sources of inflammation. This study aimed to evaluate COPD phenotypes associated with specific dust exposure. Methods This study was designed to compare the characteristics, clinical outcomes and radiological findings between two prospective COPD cohorts representing two distinguishing regions in the Republic of Korea; COPD in Dusty Area (CODA) and the Korean Obstructive Lung Disease (KOLD) cohort. A total of 733 participants (n = 186 for CODA, and n = 547 for KOLD) were included finally. A multivariate analysis to compare lung function and computed tomography (CT) measurements of both cohort studies after adjusting for age, sex, education, body mass index, smoking status, and pack-year, Charlson comorbidity index, and frequency of exacerbation were performed by entering the level of FEV1(%), biomass exposure and COPD medication into the model in stepwise. Results The mean wall area (MWA, %) became significantly lower in COPD patients in KOLD from urban and metropolitan area than those in CODA cohort from cement dust area (mean ± standard deviation [SD]; 70.2 ± 1.21% in CODA vs. 66.8 ± 0.88% in KOLD, p = 0.028) after including FEV1 in the model. COPD subjects in KOLD cohort had higher CT-emphysema index (EI, 6.07 ± 3.06 in CODA vs. 20.0 ± 2.21 in KOLD, p < 0.001, respectively). The difference in the EI (%) was consistently significant even after further adjustment of FEV1 (6.12 ± 2.88% in CODA vs. 17.3 ± 2.10% in KOLD, p = 0.002, respectively). However, there was no difference in the ratio of mean lung density (MLD) between the two cohorts (p = 0.077). Additional adjustment for biomass parameters and medication for COPD did not alter the statistical significance after entering into the analysis with COPD medication. Conclusions Higher MWA and lower EI were observed in COPD patients from the region with dust exposure. These results suggest that the imaging phenotype of COPD is influenced by specific environmental exposure.
Collapse
Affiliation(s)
- Junghyun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Bom Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, Republic of Korea
| | - So Hyeon Bak
- Deparment of Radiology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
13
|
Song L, Leppig JA, Hubner RH, Lassen-Schmidt BC, Neumann K, Theilig DC, Feldhaus FW, Fahlenkamp UL, Hamm B, Song W, Jin Z, Doellinger F. Quantitative CT Analysis in Patients with Pulmonary Emphysema: Do Calculated Differences Between Full Inspiration and Expiration Correlate with Lung Function? Int J Chron Obstruct Pulmon Dis 2020; 15:1877-1886. [PMID: 32801683 PMCID: PMC7413697 DOI: 10.2147/copd.s253602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this retrospective study was to evaluate correlations between parameters of quantitative computed tomography (QCT) analysis, especially the 15th percentile of lung attenuation (P15), and parameters of clinical tests in a large group of patients with pulmonary emphysema. Patients and Methods One hundred and seventy-two patients with pulmonary emphysema and chronic obstructive pulmonary disease (COPD) global initiative for chronic obstructive lung disease (GOLD) stage 3 or 4 were assessed by nonenhanced thin-section CT scans in full inspiratory and expiratory breath-hold, pulmonary function test (PFT), a 6-minute walk test (6MWT), and quality of life questionnaires (SGRQ and CAT). QCT parameters included total lung volume (TLV), total emphysema score (TES), and P15, all measured at inspiration (IN) and expiration (EX). Differences between inspiration and expiration were calculated for TLV (TLVDiff), TES (TESDiff), and P15 (P15Diff). Spearman correlation analysis was performed. Results CT-measured lung volume in inspiration (TLVIN) correlated strongly with spirometry-measured total lung capacity (TLC) (r=0.81, p<0.001) and moderately to strongly with residual volume (RV), forced vital capacity (FVC), and forced expiratory volume in 1 second (FEV1)/FVC (r=0.60, 0.56, and −0.49, each p<0.001). Lung volume in expiration (TLVEX) correlated moderately to strongly with TLC, RV and FEV1/FVC ratio (r=0.75, 0.66, and −0.43, each p<0.001). TES and P15 showed stronger correlations with the carbon monoxide transfer coefficient (KCO%) (r= −0.42, 0.44, both p<0.001), when measured during expiration. P15Diff correlated moderately with KCO% and carbon monoxide diffusing capacity (DLCO%) (r= 0.41, 0.40, both p<0.001). The 6MWT and most QCT parameters showed significant differences between COPD GOLD 3 and 4 groups. Conclusion Our results suggest that QCT can help predict the severity of lung function decrease in patients with pulmonary emphysema and COPD GOLD 3 or 4. Some QCT parameters, including P15EX and P15Diff, correlated moderately to strongly with parameters of pulmonary function tests.
Collapse
Affiliation(s)
- Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jonas A Leppig
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf H Hubner
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Konrad Neumann
- Institute of Biometrics and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothea C Theilig
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Felix W Feldhaus
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ute L Fahlenkamp
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Felix Doellinger
- Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Emphysema quantification using low-dose computed tomography with deep learning-based kernel conversion comparison. Eur Radiol 2020; 30:6779-6787. [PMID: 32601950 DOI: 10.1007/s00330-020-07020-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study determined the effect of dose reduction and kernel selection on quantifying emphysema using low-dose computed tomography (LDCT) and evaluated the efficiency of a deep learning-based kernel conversion technique in normalizing kernels for emphysema quantification. METHODS A sample of 131 participants underwent LDCT and standard-dose computed tomography (SDCT) at 1- to 2-year intervals. LDCT images were reconstructed with B31f and B50f kernels, and SDCT images were reconstructed with B30f kernels. A deep learning model was used to convert the LDCT image from a B50f kernel to a B31f kernel. Emphysema indices (EIs), lung attenuation at 15th percentile (perc15), and mean lung density (MLD) were calculated. Comparisons among the different kernel types for both LDCT and SDCT were performed using Friedman's test and Bland-Altman plots. RESULTS All values of LDCT B50f were significantly different compared with the values of LDCT B31f and SDCT B30f (p < 0.05). Although there was a statistical difference, the variation of the values of LDCT B50f significantly decreased after kernel normalization. The 95% limits of agreement between the SDCT and LDCT kernels (B31f and converted B50f) ranged from - 2.9 to 4.3% and from - 3.2 to 4.4%, respectively. However, there were no significant differences in EIs and perc15 between SDCT and LDCT converted B50f in the non-chronic obstructive pulmonary disease (COPD) participants (p > 0.05). CONCLUSION The deep learning-based CT kernel conversion of sharp kernel in LDCT significantly reduced variation in emphysema quantification, and could be used for emphysema quantification. KEY POINTS • Low-dose computed tomography with smooth kernel showed adequate performance in quantifying emphysema compared with standard-dose CT. • Emphysema quantification is affected by kernel selection and the application of a sharp kernel resulted in a significant overestimation of emphysema. • Deep learning-based kernel normalization of sharp kernel significantly reduced variation in emphysema quantification.
Collapse
|
15
|
Chronic Obstructive Pulmonary Disease Quantification Using CT Texture Analysis and Densitometry: Results From the Danish Lung Cancer Screening Trial. AJR Am J Roentgenol 2020; 214:1269-1279. [DOI: 10.2214/ajr.19.22300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Kim T, Cho HB, Kim WJ, Lee CH, Chae KJ, Choi SH, Lee KE, Bak SH, Kwon SO, Jin GY, Choi J, Park EK, Lin CL, Hoffman EA, Choi S. Quantitative CT-based structural alterations of segmental airways in cement dust-exposed subjects. Respir Res 2020; 21:133. [PMID: 32471435 PMCID: PMC7260806 DOI: 10.1186/s12931-020-01399-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
Background Dust exposure has been reported as a risk factor of pulmonary disease, leading to alterations of segmental airways and parenchymal lungs. This study aims to investigate alterations of quantitative computed tomography (QCT)-based airway structural and functional metrics due to cement-dust exposure. Methods To reduce confounding factors, subjects with normal spirometry without fibrosis, asthma and pneumonia histories were only selected, and a propensity score matching was applied to match age, sex, height, smoking status, and pack-years. Thus, from a larger data set (N = 609), only 41 cement dust-exposed subjects were compared with 164 non-cement dust-exposed subjects. QCT imaging metrics of airway hydraulic diameter (Dh), wall thickness (WT), and bifurcation angle (θ) were extracted at total lung capacity (TLC) and functional residual capacity (FRC), along with their deformation ratios between TLC and FRC. Results In TLC scan, dust-exposed subjects showed a decrease of Dh (airway narrowing) especially at lower-lobes (p < 0.05), an increase of WT (wall thickening) at all segmental airways (p < 0.05), and an alteration of θ at most of the central airways (p < 0.001) compared with non-dust-exposed subjects. Furthermore, dust-exposed subjects had smaller deformation ratios of WT at the segmental airways (p < 0.05) and θ at the right main bronchi and left main bronchi (p < 0.01), indicating airway stiffness. Conclusions Dust-exposed subjects with normal spirometry demonstrated airway narrowing at lower-lobes, wall thickening at all segmental airways, a different bifurcation angle at central airways, and a loss of airway wall elasticity at lower-lobes. The airway structural alterations may indicate different airway pathophysiology due to cement dusts.
Collapse
Affiliation(s)
- Taewoo Kim
- School of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Hyun Bin Cho
- School of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Chang Hyun Lee
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea.,Department of Radiology, College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Kum Ju Chae
- Department of Radiology, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - So-Hyun Choi
- Department of Statistics, Kyungpook National University, Daegu, South Korea
| | - Kyeong Eun Lee
- Department of Statistics, Kyungpook National University, Daegu, South Korea
| | - So Hyeon Bak
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Sung Ok Kwon
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Gong Yong Jin
- Department of Radiology, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| | - Jiwoong Choi
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, South Korea
| | - Ching-Long Lin
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Eric A Hoffman
- Department of Radiology, College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea.
| |
Collapse
|
17
|
Pompe E, Strand M, van Rikxoort EM, Hoffman EA, Barr RG, Charbonnier JP, Humphries S, Han MK, Hokanson JE, Make BJ, Regan EA, Silverman EK, Crapo JD, Lynch DA. Five-year Progression of Emphysema and Air Trapping at CT in Smokers with and Those without Chronic Obstructive Pulmonary Disease: Results from the COPDGene Study. Radiology 2020; 295:218-226. [PMID: 32013794 DOI: 10.1148/radiol.2020191429] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background CT is used to quantify abnormal changes in the lung parenchyma of smokers that might overlap chronic obstructive pulmonary disease (COPD), but studies on the progression of expiratory air trapping in smokers are scarce. Purpose To evaluate the relationship between longitudinal changes in forced expiratory volume in 1 second (FEV1) and CT-quantified emphysema and air trapping in smokers. Materials and Methods Cigarette smokers with and those without COPD participating in the multicenter observational COPDGene study were evaluated. Subjects underwent inspiratory and expiratory chest CT and spirometry at baseline and 5-year follow-up. Emphysema was quantified by using adjusted lung density (ALD). Air trapping was quantified by using mean lung density at expiratory CT and CT-measured functional residual capacity-to-total lung volume ratio. Linear models were used to regress quantitative CT measurements taken 5 years apart, and models were fit with and without adding FEV1 as a predictor. Analyses were stratified by Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage (GOLD 0, no COPD; GOLD 1, mild COPD; GOLD 2, moderate COPD; GOLD 3, severe COPD; GOLD 4, very severe COPD). Subjects with preserved FEV1-to-forced vital capacity ratio and reduced FEV1 percentage predicted were categorized as having preserved ratio impaired spirometry (PRISm). Results A total of 4211 subjects (503 with PRISm; 2034 with GOLD 0, 388 with GOLD 1, 816 with GOLD 2, 381 with GOLD 3, 89 with GOLD 4) were evaluated. ALD decreased by 1.7 g/L (95% confidence interval [CI]: -2.5, -0.9) in subjects with GOLD 0 at baseline and by 5.3 g/L (95% CI: -6.2, -4.4) in those with GOLD 1-4 (P < .001 for both). When adjusted for changes in FEV1, corresponding numbers were -2.2 (95% CI: -3.0, -1.3) and -4.6 g/L (95% CI: -5.6, -3.4) (P < .001 for both). Progression in air trapping was identified only in GOLD stage 2-4. Approximately 33%-50% of changes in air trapping in GOLD stages 2-4 were accounted for by changes in FEV1. Conclusion CT measures of emphysema and air trapping increased over 5 years in smokers. Forced expiratory volume in one second accounted for less than 10% of emphysema progression and less than 50% of air trapping progression detected at CT. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Esther Pompe
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - Matthew Strand
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - Eva M van Rikxoort
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - Eric A Hoffman
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - R Graham Barr
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - Jean Paul Charbonnier
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - Stephen Humphries
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - MeiLan K Han
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - John E Hokanson
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - Barry J Make
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - Elizabeth A Regan
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - Edwin K Silverman
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - James D Crapo
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | - David A Lynch
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| | -
- From the Department of Radiology, University Medical Center Utrecht, Heidelberglaan 100, PO 85500, Postbox E.03.511, Utrecht, Utrecht 3508 GA, the Netherlands (E.P.); Division of Biostatistics and Bioinformatics (M.S., B.J.M.), Department of Radiology (S.H., D.A.L.), Division of Rheumatology, Department of Medicine (E.A.R.), and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine (J.D.C.), National Jewish Health, Denver, Colo; Thirona, Nijmegen, the Netherlands (E.M.v.R.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (E.M.v.R., J.P.C.); Departments of Biomedical Engineering, Radiology, and Internal Medicine, University of Iowa, Iowa City, Iowa (E.A.H.); Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY (R.G.B.); Division of Pulmonary and Critical Care, University of Michigan Health System, Ann Arbor, Mich (M.K.H.); Department of Epidemiology, University of Colorado Denver, Denver, Colo (J.E.H.); and Channing Division of Network Medicine (E.K.S.) and Division of Pulmonary and Critical Care Medicine, Department of Medicine (E.K.S.), Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|
18
|
Quantitative CT detects progression in COPD patients with severe emphysema in a 3-month interval. Eur Radiol 2020; 30:2502-2512. [PMID: 31965260 DOI: 10.1007/s00330-019-06577-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is characterized by variable contributions of emphysema and airway disease on computed tomography (CT), and still little is known on their temporal evolution. We hypothesized that quantitative CT (QCT) is able to detect short-time changes in a cohort of patients with very severe COPD. METHODS Two paired in- and expiratory CT each from 70 patients with avg. GOLD stage of 3.6 (mean age = 66 ± 7.5, mean FEV1/FVC = 35.28 ± 7.75) were taken 3 months apart and analyzed by fully automatic software computing emphysema (emphysema index (EI), mean lung density (MLD)), air-trapping (ratio expiration to inspiration of mean lung attenuation (E/I MLA), relative volume change between - 856 HU and - 950 HU (RVC856-950)), and parametric response mapping (PRM) parameters for each lobe separately and the whole lung. Airway metrics measured were wall thickness (WT) and lumen area (LA) for each airway generation and the whole lung. RESULTS The average of the emphysema parameters (EI, MLD) increased significantly by 1.5% (p < 0.001) for the whole lung, whereas air-trapping parameters (E/I MLA, RVC856-950) were stable. PRMEmph increased from 34.3 to 35.7% (p < 0.001), whereas PRMNormal decrased from 23.6% to 22.8% (p = 0.012). WT decreased significantly from 1.17 ± 0.18 to 1.14 ± 0.19 mm (p = 0.036) and LA increased significantly from 25.08 ± 4.49 to 25.84 ± 4.87 mm2 (p = 0.041) for the whole lung. The generation-based analysis showed heterogeneous results. CONCLUSION QCT detects short-time progression of emphysema in severe COPD. The changes were partly different among lung lobes and airway generations, indicating that QCT is useful to address the heterogeneity of COPD progression. KEY POINTS • QCT detects short-time progression of emphysema in severe COPD in a 3-month period. • QCT is able to quantify even slight parenchymal changes, which were not detected by spirometry. • QCT is able to address the heterogeneity of COPD, revealing inconsistent changes individual lung lobes and airway generations.
Collapse
|
19
|
Park J, Hobbs BD, Crapo JD, Make BJ, Regan EA, Humphries S, Carey VJ, Lynch DA, Silverman EK. Subtyping COPD by Using Visual and Quantitative CT Imaging Features. Chest 2020; 157:47-60. [PMID: 31283919 PMCID: PMC6965698 DOI: 10.1016/j.chest.2019.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Multiple studies have identified COPD subtypes by using visual or quantitative evaluation of CT images. However, there has been no systematic assessment of a combined visual and quantitative CT imaging classification. We integrated visually defined patterns of emphysema with quantitative imaging features and spirometry data to produce a set of 10 nonoverlapping CT imaging subtypes, and we assessed differences between subtypes in demographic features, physiological characteristics, longitudinal disease progression, and mortality. METHODS We evaluated 9,080 current and former smokers in the COPDGene study who had available volumetric inspiratory and expiratory CT images obtained using a standardized imaging protocol. We defined 10 discrete, nonoverlapping CT imaging subtypes: no CT imaging abnormality, paraseptal emphysema (PSE), bronchial disease, small airway disease, mild emphysema, upper lobe predominant centrilobular emphysema (CLE), lower lobe predominant CLE, diffuse CLE, visual without quantitative emphysema, and quantitative without visual emphysema. Baseline and 5-year longitudinal characteristics and mortality were compared across these CT imaging subtypes. RESULTS The overall mortality differed significantly between groups (P < .01) and was highest in the 3 moderate to severe CLE groups. Subjects having quantitative but not visual emphysema and subjects with visual but not quantitative emphysema were unique groups with mild COPD, at risk for progression, and with likely different underlying mechanisms. Subjects with PSE and/or moderate to severe CLE had substantial progression of emphysema over 5 years compared with findings in subjects with no CT imaging abnormality (P < .01). CONCLUSIONS The combination of visual and quantitative CT imaging features reflects different underlying pathological processes in the heterogeneous COPD syndrome and provides a useful approach to reclassify types of COPD. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Jinkyeong Park
- Channing Division of Network Medicine, Boston, MA; Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang-Si, Gyeonggi-do, South Korea
| | - Brian D Hobbs
- Channing Division of Network Medicine, Boston, MA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - James D Crapo
- Department of Medicine, National Jewish Health, Denver, CO
| | - Barry J Make
- Department of Medicine, National Jewish Health, Denver, CO
| | | | | | | | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO
| | - Edwin K Silverman
- Channing Division of Network Medicine, Boston, MA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
20
|
Schreuder A, Jacobs C, Gallardo-Estrella L, Prokop M, Schaefer-Prokop CM, van Ginneken B. Predicting all-cause and lung cancer mortality using emphysema score progression rate between baseline and follow-up chest CT images: A comparison of risk model performances. PLoS One 2019; 14:e0212756. [PMID: 30789954 PMCID: PMC6383935 DOI: 10.1371/journal.pone.0212756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/10/2019] [Indexed: 02/05/2023] Open
Abstract
Purpose Normalized emphysema score is a protocol-robust CT biomarker of mortality. We aimed to improve mortality prediction by including the emphysema score progression rate–its change over time–into the models. Method and materials CT scans from 6000 National Lung Screening Trial CT arm participants were included. Of these, 1810 died (445 lung cancer-specific). The remaining 4190 survivors were sampled with replacement up to 24432 to approximate the full cohort. Three overlapping subcohorts were formed which required participants to have images from specific screening rounds. Emphysema scores were obtained after resampling, normalization, and bullae cluster analysis of the original images. Base models contained solely the latest emphysema score. Progression models included emphysema score progression rate. Models were adjusted by including baseline age, sex, BMI, smoking status, smoking intensity, smoking duration, and previous COPD diagnosis. Cox proportional hazard models predicting all-cause and lung cancer mortality were compared by calculating the area under the curve per year follow-up. Results In the subcohort of participants with baseline and first annual follow-up scans, the analysis was performed on 4940 participants (23227 after resampling). Area under the curve for all-cause mortality predictions of the base and progression models 6 years after baseline were 0.564 (0.564 to 0.565) and 0.569 (0.568 to 0.569) when unadjusted, and 0.704 (0.703 to 0.704) to 0.705 (0.704 to 0.705) when adjusted. The respective performances predicting lung cancer mortality were 0.638 (0.637 to 0.639) and 0.643 (0.642 to 0.644) when unadjusted, and 0.724 (0.723 to 0.725) and 0.725 (0.725 to 0.726) when adjusted. Conclusion Including emphysema score progression rate into risk models shows no clinically relevant improvement in mortality risk prediction. This is because scan normalization does not adjust for an overall change in lung density. Adjusting for changes in smoking behavior is likely required to make this a clinically useful measure of emphysema progression.
Collapse
Affiliation(s)
- Anton Schreuder
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
- * E-mail:
| | - Colin Jacobs
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Leticia Gallardo-Estrella
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
- Thirona, Nijmegen, the Netherlands
| | - Mathias Prokop
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Cornelia M. Schaefer-Prokop
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
- Department of Radiology, Meander Medisch Centrum, Amersfoort, the Netherlands
| | - Bram van Ginneken
- Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, the Netherlands
- Fraunhofer MEVIS, Bremen, Germany
| |
Collapse
|
21
|
Yu N, Yuan H, Duan HF, Ma JC, Ma GM, Guo YM, Wu F. Determination of vascular alteration in smokers by quantitative computed tomography measurements. Medicine (Baltimore) 2019; 98:e14438. [PMID: 30762753 PMCID: PMC6408080 DOI: 10.1097/md.0000000000014438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A new method of quantitative computed tomography (CT) measurements of pulmonary vessels are applicable to morphological studies and may be helpful in defining the progression of emphysema in smokers. However, limited data are available on the relationship between the smoking status and pulmonary vessels alteration established in longitudinal observations. Therefore, we investigated the change of pulmonary vessels on CTs in a longitudinal cohort of smokers.Chest CTs were available for 287 current smokers, 439 non-smokers, and 80 former smokers who quit smoking at least 2 years after the baseline CT. CT images obtained at the baseline and 1 year later were assessed by a new quantitative CT measurement method, computing the total number of pulmonary vessels (TNV), mean lung density (MLD), and the percentage of low-attenuation areas at a threshold of -950 (density attenuation area [LAA]%950). Analysis of variance (ANOVA) and the independent sample t test were used to estimate the influence of the baseline parameters. The t paired test was employed to evaluate the change between the baseline and follow-up results.The current smokers related to have higher whole-lung MLD, as well as less and lower TNV values than the non-smokers (P <.05). But no significant differences in LAA%950 were found between smokers and non-smokers. After one year, the increase in LAA%950 was more rapid in the current (additional 0.3% per year, P <. 05-.01) than in the former smokers (additional 0.2% per year, P = .3). Additionally, the decline in TNV was faster in the current (additional -1.3 per year, P <.05-.01) than that in the former smokers (additional -0.2 per year, P = .6). Current smoke, pack-years, weight, and lung volume independently predicted TNV at baseline (P <.001) in multivariate analysis.The findings of this study reveal that the decline in the pulmonary vessels in smokers can be measured and related to their smoking status.
Collapse
Affiliation(s)
- Nan Yu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Da Lian
- Department of Radiology, The Shaanxi university of Chinese medicine
| | - Hui Yuan
- Department of Radiology, The Shaanxi university of Chinese medicine
| | - Hai-feng Duan
- Department of Radiology, The Shaanxi university of Chinese medicine
| | - Jun-chao Ma
- Department of Radiology, The Shaanxi university of Chinese medicine
| | - Guang-ming Ma
- Department of Radiology, The Shaanxi university of Chinese medicine
| | - You-min Guo
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fei Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Da Lian
| |
Collapse
|
22
|
Jou SS, Yagihashi K, Zach JA, Lynch D, Suh YJ. Relationship between current smoking, visual CT findings and emphysema index in cigarette smokers. Clin Imaging 2019; 53:195-199. [PMID: 30419414 PMCID: PMC6633913 DOI: 10.1016/j.clinimag.2018.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate whether visual CT findings could account for the effect of current smoking. METHODS 500 CT scans were visually evaluated within each lobe. A multivariate model for emphysema index was constructed containing previously described confounders in addition to the visual components associated with smoking status. RESULTS Current smokers displayed 23% less visual emphysema, 19% more airway wall thickening, and 188% more centrilogular nodule than former smokers (all p < 0.001). The effect of current smoking on the emphysema index decreased after adjustment with confounders and visual parameters. CONCLUSIONS Visual CT findings could partially account for the effect of current smoking.
Collapse
Affiliation(s)
- Sung Shick Jou
- Department of Radiology, Soonchunhyang University Cheonan Hospital, 31 Soonchunhyang 6-gil, Dongnamgu, Cheonan-si, Chungchengnam-do 311511, Republic of Korea.
| | - Kunihiro Yagihashi
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | | | - David Lynch
- Division of Radiology, National Jewish Health, Denver, CO, United States of America
| | - Young Ju Suh
- Department of Biomedical Sciences College of Medicine, Inha University Incheon, Republic of Korea
| |
Collapse
|
23
|
Longitudinal airway remodeling in active and past smokers in a lung cancer screening population. Eur Radiol 2018; 29:2968-2980. [PMID: 30552475 DOI: 10.1007/s00330-018-5890-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/07/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To longitudinally investigate smoking cessation-related changes of quantitative computed tomography (QCT)-based airway metrics in a group of heavy smokers. METHODS CT scans were acquired in a lung cancer screening population over 4 years at 12-month intervals in 284 long-term ex-smokers (ES), 405 continuously active smokers (CS), and 31 subjects who quitted smoking within 2 years after baseline CT (recent quitters, RQ). Total diameter (TD), lumen area (LA), and wall percentage (WP) of 1st-8th generation airways were computed using airway analysis software. Inter-group comparison was performed using Mann-Whitney U test or Student's t test (two groups), and ANOVA or ANOVA on ranks with Dunn's multiple comparison test (more than two groups), while Fisher's exact test or chi-squared test was used for categorical data. Multiple linear regression was used for multivariable analysis. RESULTS At any time, TD and LA were significantly higher in ES than CS, for example, in 5th-8th generation airways at baseline with 6.24 mm vs. 5.93 mm (p < 0.001) and 15.23 mm2 vs. 13.51 mm2 (p < 0.001), respectively. RQ showed higher TD (6.15 mm vs. 5.93 mm, n.s.) and significantly higher LA (14.77 mm2 vs. 13.51 mm2, p < 0.001) than CS after 3 years, and after 4 years. In multivariate analyses, smoking status independently predicted TD, LA, and WP at baseline, at 3 years and 4 years (p < 0.01-0.001), with stronger impact than pack years. CONCLUSIONS Bronchial dimensions depend on the smoking status. Smoking-induced airway remodeling can be partially reversible after smoking cessation even in long-term heavy smokers. Therefore, QCT-based airway metrics in clinical trials should consider the current smoking status besides pack years. KEY POINTS • Airway lumen and diameter are decreased in active smokers compared to ex-smokers, and there is a trend towards increased airway wall thickness in active smokers. • Smoking-related airway changes improve within 2 years after smoking cessation. • Smoking status is an independent predictor of airway dimensions.
Collapse
|
24
|
Tanabe N, Muro S, Sato S, Oguma T, Sato A, Hirai T. Fractal analysis of low attenuation clusters on computed tomography in chronic obstructive pulmonary disease. BMC Pulm Med 2018; 18:144. [PMID: 30157833 PMCID: PMC6116481 DOI: 10.1186/s12890-018-0714-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/24/2018] [Indexed: 01/20/2023] Open
Abstract
Background The fractal dimension characterizing the cumulative size distribution of low attenuation area (LAA) clusters, identified with a fixed threshold such as − 950 Hounsfield Units (HU), on computed tomography (CT) sensitively detects parenchymal destruction in chronic obstructive pulmonary disease (COPD) even when the percent LAA (LAA%), a standard emphysema index, is unchanged. This study examines whether the cumulative size distribution of LAA clusters, defined with thresholds of the 15th, 25th, and 35th percentiles of a CT density histogram instead of the fixed-threshold of − 950 HU, exhibits a fractal property and whether its fractal dimension (D’15, D’25, and D’35, respectively) provides additional structural information in emphysematous lungs that is difficult to detect with the conventional − 950-HU-based fractal dimension (D950). Methods Chest inspiratory CT scans and pulmonary functions were cross-sectionally examined in 170 COPD subjects. A proxy for the inspiration level at CT scan was obtained by dividing CT-measured total lung volume (CT-TLV) by physiologically measured total lung capacity. Moreover, long-term (> 5 years) changes in D950 and the new fractal dimensions were longitudinally evaluated in 17 current and 42 former smokers with COPD. Results D950, but not D’15, D’25, or D’35 was weakly correlated with the proxy for the inspiration. D950, D’25, and D’35 but not D’15 correlated with LAA% and diffusion capacity. In the long-term longitudinal study, LAA% was increased and D950 and D’35 were decreased in both current and former smokers, while D’25 was decreased only in current smokers and D’15 was not changed in either group. The longitudinal changes in D’25 but not those in LAA%, D950, D’15, and D’35 were greater in current smokers than in former smokers. This greater change in D’25 in current smokers was confirmed after adjusting the change in CT-TLV and the baseline D’25. Conclusions D’25 reflects diffusion capacity in emphysematous lungs and is robust against inspiration levels during CT scans. This new fractal dimension might provide additional structural information that is difficult to detect with the conventional D950 and LAA% and allow for more sensitive evaluation of emphysema progression over time. Electronic supplementary material The online version of this article (10.1186/s12890-018-0714-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shigeo Muro
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
25
|
Ronit A, Kristensen T, Hoseth VS, Abou-Kassem D, Kühl JT, Benfield T, Gerstoft J, Afzal S, Nordestgaard B, Lundgren JD, Vestbo J, Kofoed K, Nielsen SD. Computed tomography quantification of emphysema in people living with HIV and uninfected controls. Eur Respir J 2018; 52:13993003.00296-2018. [DOI: 10.1183/13993003.00296-2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022]
Abstract
People living with HIV (PLWH) may be more susceptible to the development of emphysema than uninfected individuals. We assessed prevalence and risk factors for emphysema in PLWH and uninfected controls. Spirometry and chest computed tomography scans were obtained in PLWH from the Copenhagen Comorbidity in HIV Infection (COCOMO) study and in uninfected controls from the Copenhagen General Population Study (CGPS) who were >40 years. Emphysema was quantified using a low attenuation area < −950 Hounsfield units (%LAA-950) and the 15th percentile density index (PD15) and assessed by semi-quantitative visual scales. Of 742 PLWH, 21.2% and 4.7% had emphysema according to the %LAA-950 threshold with cut-offs at 5% and 10%, respectively. Of 470 uninfected controls, these numbers were 24.3% (p=0.23) and 4.0% (p=0.68). HIV was not associated with emphysema (adjusted OR 1.25, 95% CI 0.68–2.36 for %LAA-950 >10%) by PD15 or by visually assessed emphysema. We found no interaction between HIV and cumulative smoking. Breathlessness and sputum production were more common in PLWH with emphysema, and emphysema seemed to be more prevalent in PLWH with airflow limitation. HIV was therefore not independently associated with emphysema, but the clinical impact of emphysema was greater in PLWH than in uninfected controls.
Collapse
|
26
|
Alpha-1 Antitrypsin PiMZ Genotype Is Associated with Chronic Obstructive Pulmonary Disease in Two Racial Groups. Ann Am Thorac Soc 2018; 14:1280-1287. [PMID: 28380308 DOI: 10.1513/annalsats.201611-838oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Alpha-1 antitrypsin deficiency, caused primarily by homozygosity for the Z allele of the SERPINA1 gene, is a well-established genetic cause of chronic obstructive pulmonary disease (COPD). Whether the heterozygous PiMZ genotype for alpha-1 antitrypsin confers increased risk for COPD has been debated. OBJECTIVES We analyzed 8,271 subjects in the Genetic Epidemiology of COPD (COPDGene) Study, hypothesizing that PiMZ would independently associate with COPD and COPD-related phenotypes. METHODS The COPDGene Study comprises a multiethnic, cross-sectional, observational cohort of non-Hispanic white and African American current and former smokers with at least 10 pack-years of smoking who were enrolled for detailed clinical and genetic studies of COPD and COPD-related traits. We performed multivariate logistic regression analysis for moderate to severe COPD and assessed Pi genotype with other relevant covariates in models stratified by race. We analyzed quantitative characteristics on the basis of volumetric computed tomography with generalized linear models controlling for genotype, scanner type, and similar covariates. RESULTS White PiMZ COPDGene subjects had significantly lower lung function, FEV1 percent predicted (68 ± 28 vs. 75 ± 27; P = 0.0005), and FEV1/FVC ratio (0.59 ± 0.18 vs. 0.63 ± 0.17; P = 0.0008), as well as more radiographic emphysema (P = 0.001), than subjects without alpha-1 antitrypsin Z risk alleles. Similarly, African American PiMZ subjects had lower lung function, FEV1 percent predicted (65 ± 33 vs. 84 ± 25; P = 0.009) and FEV1/FVC (0.61 ± 0.21 vs. 0.71 ± 0.15; P = 0.03). CONCLUSIONS In the COPDGene Study, we demonstrate that PiMZ heterozygous individuals who smoke are at increased risk for COPD and obstructive lung function impairment compared with Z-allele noncarriers, regardless of race. Although severe alpha-1 antitrypsin deficiency is uncommon in African Americans, our study adds further support for initial targeted detection of all subjects with COPD for alpha-1 antitrypsin deficiency, including African Americans. Clinical trial registered with www.clinicaltrials.gov (NCT00608784).
Collapse
|
27
|
Nambu A, Zach J, Kim SS, Jin G, Schroeder J, Kim YI, Bowler R, Lynch DA. Significance of Low-Attenuation Cluster Analysis on Quantitative CT in the Evaluation of Chronic Obstructive Pulmonary Disease. Korean J Radiol 2018; 19:139-146. [PMID: 29354010 PMCID: PMC5768494 DOI: 10.3348/kjr.2018.19.1.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/02/2017] [Indexed: 11/15/2022] Open
Abstract
Objective To assess clinical feasibility of low-attenuation cluster analysis in evaluation of chronic obstructive pulmonary disease (COPD). Materials and Methods Subjects were 199 current and former cigarette smokers that underwent CT for quantification of COPD and had physiological measurements. Quantitative CT (QCT) measurements included low-attenuation area percent (LAA%) (voxels ≤ -950 Hounsfield unit [HU]), and two-dimensional (2D) and three-dimensional D values of cluster analysis at three different thresholds of CT value (-856, -910, and -950 HU). Correlation coefficients between QCT measurements and physiological indices were calculated. Multivariable analyses for percentage of predicted forced expiratory volume at one second (%FEV1) was performed including sex, age, body mass index, LAA%, and D value had the highest correlation coefficient with %FEV1 as independent variables. These analyses were conducted in subjects including those with mild COPD (global initiative of chronic obstructive lung disease stage = 0-II). Results LAA% had a higher correlation coefficient (-0.549, p < 0.001) with %FEV1 than D values in subjects while 2D D-910HU (-0.350, p < 0.001) revealed slightly higher correlation coefficient than LAA% (-0.343, p < 0.001) in subjects with mild COPD. Multivariable analyses revealed that LAA% and 2D D value-910HU were significant independent predictors of %FEV1 in subjects and that only 2D D value-910HU revealed a marginal p value (0.05) among independent variables in subjects with mild COPD. Conclusion Low-attenuation cluster analysis provides incremental information regarding physiologic severity of COPD, independent of LAA%, especially with mild COPD.
Collapse
Affiliation(s)
- Atsushi Nambu
- Department of Radiology, National Jewish Health, Denver, CO 80206, USA.,Department of Radiology, Teikyo University Mizonokuchi Hospital, Kanagawa 213-8507, Japan
| | - Jordan Zach
- Department of Radiology, National Jewish Health, Denver, CO 80206, USA
| | - Song Soo Kim
- Department of Radiology, National Jewish Health, Denver, CO 80206, USA.,Department of Radiology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Gongyoung Jin
- Department of Radiology, National Jewish Health, Denver, CO 80206, USA.,Department of Radiology, Chonbuk National University Hospital, Jeonju 54907, Korea
| | - Joyce Schroeder
- Department of Radiology, National Jewish Health, Denver, CO 80206, USA.,Department of Radiology and Imaging Sciences, University of Utah Health Sciences, Salt Lake City, UT 84132, USA
| | - Yu-Il Kim
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.,Department of Internal Medicine, Chonnam National University Hospital, Gwangju 61469, Korea
| | - Russell Bowler
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
28
|
Jobst BJ, Weinheimer O, Trauth M, Becker N, Motsch E, Groß ML, Tremper J, Delorme S, Eigentopf A, Eichinger M, Kauczor HU, Wielpütz MO. Effect of smoking cessation on quantitative computed tomography in smokers at risk in a lung cancer screening population. Eur Radiol 2017; 28:807-815. [DOI: 10.1007/s00330-017-5030-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/10/2017] [Accepted: 08/10/2017] [Indexed: 01/17/2023]
|
29
|
Abstract
Lung densitometry assesses with computed tomography (CT) the X-ray attenuation of the pulmonary tissue which reflects both the degree of inflation and the structural lung abnormalities implying decreased attenuation, as in emphysema and cystic diseases, or increased attenuation, as in fibrosis. Five reasons justify replacement with lung densitometry of semi-quantitative visual scales used to measure extent and severity of diffuse lung diseases: (I) improved reproducibility; (II) complete vs. discrete assessment of the lung tissue; (III) shorter computation times; (IV) better correlation with pathology quantification of pulmonary emphysema; (V) better or equal correlation with pulmonary function tests (PFT). Commercially and open platform software are available for lung densitometry. It requires attention to technical and methodological issues including CT scanner calibration, radiation dose, and selection of thickness and filter to be applied to sections reconstructed from whole-lung CT acquisition. Critical is also the lung volume reached by the subject at scanning that can be measured in post-processing and represent valuable information per se. The measurements of lung density include mean and standard deviation, relative area (RA) at -970, -960 or -950 Hounsfield units (HU) and 1st and 15th percentile for emphysema in inspiratory scans, and RA at -856 HU for air trapping in expiratory scans. Kurtosis and skewness are used for evaluating pulmonary fibrosis in inspiratory scans. The main indication for lung densitometry is assessment of emphysema component in the single patient with chronic obstructive pulmonary diseases (COPD). Additional emerging applications include the evaluation of air trapping in COPD patients and in subjects at risk of emphysema and the staging in patients with lymphangioleiomyomatosis (LAM) and with pulmonary fibrosis. It has also been applied to assess prevalence of smoking-related emphysema and to monitor progression of smoking-related emphysema, alpha1 antitrypsin deficiency emphysema, and pulmonary fibrosis. Finally, it is recommended as end-point in pharmacological trials of emphysema and lung fibrosis.
Collapse
Affiliation(s)
- Mario Mascalchi
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences
| | - Gianna Camiciottoli
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences.,Section of Respiratory Medicine, Careggi University Hospital, Florence, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| |
Collapse
|
30
|
Ginsburg SB, Zhao J, Humphries S, Jou S, Yagihashi K, Lynch DA, Schroeder JD. Texture-based Quantification of Centrilobular Emphysema and Centrilobular Nodularity in Longitudinal CT Scans of Current and Former Smokers. Acad Radiol 2016; 23:1349-1358. [PMID: 27575837 DOI: 10.1016/j.acra.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES The effect of smoking cessation on centrilobular emphysema (CLE) and centrilobular nodularity (CN), two manifestations of smoking-related lung injury on computed tomography (CT) images, has not been clarified. The objective of this study is to leverage texture analysis to investigate differences in extent of CLE and CN between current and former smokers. MATERIALS AND METHODS Chest CT scans from 350 current smokers, 401 former smokers, and 25 control subjects were obtained from the multicenter COPDGene Study, a Health Insurance Portability and Accountability Act-compliant study approved by the institutional review board of each participating clinical study center. Additionally, for 215 of these subjects, a follow-up CT scan was obtained approximately 5 years later. For each CT scan, 5000 circular regions of interest (ROIs) of 35-pixel diameter were randomly selected throughout the lungs. The patterns present in each ROI were summarized by 50 computer-extracted texture features. A logistic regression classifier was leveraged to classify each ROI as normal lung, CLE, or CN, and differences in the percentages of normal lung, CLE, and CN by study group were assessed. RESULTS Former smokers had significantly more CLE (P <0.01) but less CN (P <0.001) than did current smokers, even after adjustment for important covariates such as patient age, GOLD stage, smoking history, forced expiratory volume in 1 second, gas trapping, and scanner model. Among patients with longitudinal CT scans, continued smoking led to a slight increase in CLE (P = 0.13), whereas sustained abstinence from smoking led to further reduction in CN (P <0.05). CONCLUSIONS The proposed texture-based approach quantifies the extent of CN and CLE with high precision. Differences in smoking-related lung disease between longitudinal scans of current smokers and longitudinal scans of former smokers suggest that CN may be reversible on smoking cessation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | -
- Quantitative Imaging Lab, National Jewish Health, 1400 Jackson Street, Denver, CO 80206
| |
Collapse
|
31
|
Current Smoking Status Is Associated With Lower Quantitative CT Measures of Emphysema and Gas Trapping. J Thorac Imaging 2016; 31:29-36. [PMID: 26429588 PMCID: PMC4677600 DOI: 10.1097/rti.0000000000000181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The purposes of this study were to evaluate the effect of smoking status on quantitative computed tomography CT measures of low-attenuation areas (LAAs) on inspiratory and expiratory CT and to provide a method of adjusting for this effect. MATERIALS AND METHODS A total of 6762 current and former smokers underwent spirometry and volumetric inspiratory and expiratory CT. Quantitative CT analysis was completed using open-source 3D Slicer software. LAAs were defined as lung voxels with attenuation values ≤-950 Hounsfield units (HU) on inspiratory CT and ≤-856 HU on expiratory CT and were expressed as percentage of CT lung volume (%LAAI-950 and %LAAE-856). Multiple linear regression was used to determine the effect of smoking status on %LAAI-950 and %LAAE-856 while controlling for demographic variables, spirometric lung function, and smoking history, as well as total lung capacity (%LAAI-950) or functional residual capacity (%LAAE-856). Quantile normalization was used to align the %LAAI-950 distributions for current and former smokers. RESULTS Mean %LAAI-950 was 4.2±7.1 in current smokers and 7.7±9.7 in former smokers (P<0.001). After adjusting for confounders, %LAAI-950 was 3.5 percentage points lower and %LAAE-856 was 6.0 percentage points lower in current smokers than in former smokers (P<0.001). After quantile normalization, smoking status was an insignificant variable in the inspiratory regression model, with %LAAI-950 being 0.27 percentage points higher in current smokers (P=0.13). CONCLUSIONS After adjusting for patient demographics and lung function, current smokers display significantly lower %LAAI-950 and %LAAE-856 than do former smokers. Potential methods for adjusting for this effect would include adding a fixed value (eg, 3.5%) to the calculated percentage of emphysema in current smokers, or quantile normalization.
Collapse
|
32
|
Ostridge K, Wilkinson TMA. Present and future utility of computed tomography scanning in the assessment and management of COPD. Eur Respir J 2016; 48:216-28. [PMID: 27230448 DOI: 10.1183/13993003.00041-2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
Computed tomography (CT) is the modality of choice for imaging the thorax and lung structure. In chronic obstructive pulmonary disease (COPD), it used to recognise the key morphological features of emphysema, bronchial wall thickening and gas trapping. Despite this, its place in the investigation and management of COPD is yet to be determined, and it is not routinely recommended. However, lung CT already has important clinical applications where it can be used to diagnose concomitant pathology and determine which patients with severe emphysema are appropriate for lung volume reduction procedures. Furthermore, novel quantitative analysis techniques permit objective measurements of pulmonary and extrapulmonary manifestations of the disease. These techniques can give important insights into COPD, and help explore the heterogeneity and underlying mechanisms of the condition. In time, it is hoped that these techniques can be used in clinical trials to help develop disease-specific therapy and, ultimately, as a clinical tool in identifying patients who would benefit most from new and existing treatments. This review discusses the current clinical applications for CT imaging in COPD and quantification techniques, and its potential future role in stratifying disease for optimal outcome.
Collapse
Affiliation(s)
- Kristoffer Ostridge
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| | - Tom M A Wilkinson
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, UK Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
33
|
Computed tomography of smoking-related lung disease: review and update. CURRENT PULMONOLOGY REPORTS 2015. [DOI: 10.1007/s13665-015-0128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Feragen A, Petersen J, Owen M, Hohwu Thomsen L, Wille MMW, Dirksen A, de Bruijne M. Geodesic Atlas-Based Labeling of Anatomical Trees: Application and Evaluation on Airways Extracted From CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1212-1226. [PMID: 25532169 DOI: 10.1109/tmi.2014.2380991] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a fast and robust atlas-based algorithm for labeling airway trees, using geodesic distances in a geometric tree-space. Possible branch label configurations for an unlabeled airway tree are evaluated using distances to a training set of labeled airway trees. In tree-space, airway tree topology and geometry change continuously, giving a natural automatic handling of anatomical differences and noise. A hierarchical approach makes the algorithm efficient, assigning labels from the trachea and downwards. Only the airway centerline tree is used, which is relatively unaffected by pathology. The algorithm is evaluated on 80 segmented airway trees from 40 subjects at two time points, labeled by three medical experts each, testing accuracy, reproducibility and robustness in patients with chronic obstructive pulmonary disease (COPD). The accuracy of the algorithm is statistically similar to that of the experts and not significantly correlated with COPD severity. The reproducibility of the algorithm is significantly better than that of the experts, and negatively correlated with COPD severity. Evaluation of the algorithm on a longitudinal set of 8724 trees from a lung cancer screening trial shows that the algorithm can be used in large scale studies with high reproducibility, and that the negative correlation of reproducibility with COPD severity can be explained by missing branches, for instance due to segmentation problems in COPD patients. We conclude that the algorithm is robust to COPD severity given equally complete airway trees, and comparable in performance to that of experts in pulmonary medicine, emphasizing the suitability of the labeling algorithm for clinical use.
Collapse
|
35
|
Thomsen LH, Shaker SB, Dirksen A, Pedersen JH, Tal-Singer R, Bakke P, Vestbo J. Correlation Between Emphysema and Lung Function in Healthy Smokers and Smokers With COPD. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2015; 2:204-213. [PMID: 28848844 DOI: 10.15326/jcopdf.2.3.2014.0154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Emphysema is an important component of COPD; however, in previous studies of the correlation between airflow limitation (AFL) and computed tomography (CT) lung density as a surrogate for emphysema has varied. We hypothesised a good correlation between lung function (forced expiratory volume in first second [FEV1]) and emphysema (15th percentile density [PD15]) and that this correlation also exists between loss of lung tissue and decline in lung function even within the time frame of longitudinal studies of relatively short duration. Methods: We combined 2 large longitudinal studies (the Danish Lung Cancer Screening Trial [DLCST] and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints [ECLIPSE]) of smokers or former smokers, with a wide range of AFL and CT lung density, and analysed data from 2148 participants who did not change smoking habits and who had at least 2 CT scans and 2 FEV1 measurements at least 3 years apart. Results: Baseline correlation between FEV1 and PD15 was high (r=0.716, 95% confidence interval [CI]: 0.694-0.736, p<0.001) indicating that at least half of the variation in FEV1 can be explained by variation in CT lung density. Correlation between the decline in FEV1 and progression of PD15 was considerably weaker (r= 0.081, 95% CI: 0.038-0.122, p<0.001). Conclusions: Correlation is very high between lung density and lung function in a broad spectrum of smokers and ex-smokers. In contrast, the temporal associations (slopes) are weakly correlated, probably due to uncertainty in the estimation of slopes within a time frame of 3-4 years.
Collapse
Affiliation(s)
- Laura H Thomsen
- Department of Respiratory Medicine, Gentofte Hospital, University of Copenhagen, Denmark
| | - Saher B Shaker
- Department of Respiratory Medicine, Gentofte Hospital, University of Copenhagen, Denmark
| | - Asger Dirksen
- Department of Respiratory Medicine, Gentofte Hospital, University of Copenhagen, Denmark
| | - Jesper H Pedersen
- Department of Cardiothoracic Surgery, University of Copenhagen, Denmark
| | | | - Per Bakke
- Department of Clinical Science, University of Bergen, and Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jørgen Vestbo
- Department of Respiratory Medicine, Gentofte Hospital, University of Copenhagen, Denmark.,Respiratory and Allergy Research Group, Manchester Academic Health Science Centre, University Hospital South Manchester; NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
36
|
Wille MMW, Thomsen LH, Petersen J, de Bruijne M, Dirksen A, Pedersen JH, Shaker SB. Visual assessment of early emphysema and interstitial abnormalities on CT is useful in lung cancer risk analysis. Eur Radiol 2015; 26:487-94. [DOI: 10.1007/s00330-015-3826-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 11/29/2022]
|
37
|
Nambu A, Zach J, Schroeder J, Jin GY, Kim SS, Kim YIL, Schnell C, Bowler R, Lynch DA. Relationships between diffusing capacity for carbon monoxide (DLCO), and quantitative computed tomography measurements and visual assessment for chronic obstructive pulmonary disease. Eur J Radiol 2015; 84:980-5. [DOI: 10.1016/j.ejrad.2015.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 11/30/2022]
|
38
|
Variation in the percent of emphysema-like lung in a healthy, nonsmoking multiethnic sample. The MESA lung study. Ann Am Thorac Soc 2015; 11:898-907. [PMID: 24983825 DOI: 10.1513/annalsats.201310-364oc] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Computed tomography (CT)-based lung density is used to quantitate the percentage of emphysema-like lung (hereafter referred to as percent emphysema), but information on its distribution among healthy nonsmokers is limited. OBJECTIVES We evaluated percent emphysema and total lung volume on CT scans of healthy never-smokers in a multiethnic, population-based study. METHODS The Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study investigators acquired full-lung CT scans of 3,137 participants (ages 54-93 yr) between 2010-12. The CT scans were taken at full inspiration following the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) protocol. "Healthy never-smokers" were defined as participants without a history of tobacco smoking or respiratory symptoms and disease. "Percent emphysema" was defined as the percentage of lung voxels below -950 Hounsfield units. "Total lung volume" was defined by the volume of lung voxels. MEASUREMENTS AND MAIN RESULTS Among 854 healthy never-smokers, the median percent emphysema visualized on full-lung scans was 1.1% (interquartile range, 0.5-2.5%). The percent emphysema values were 1.2 percentage points higher among men compared with women and 0.7, 1.2, and 1.2 percentage points lower among African Americans, Hispanics, and Asians compared with whites, respectively (P < 0.001). Percent emphysema was positively related to age and height and inversely related to body mass index. The findings were similar for total lung volume on CT scans and for percent emphysema defined at -910 Hounsfield units and measured on cardiac scans. Reference equations to account for these differences are presented for never, former and current smokers. CONCLUSIONS Similar to lung function, percent emphysema varies substantially by demographic factors and body size among healthy never-smokers. The presented reference equations will assist in defining abnormal values for percent emphysema and total lung volume on CT scans, although validation is pending.
Collapse
|
39
|
Oelsner EC, Hoffman EA, Folsom AR, Carr JJ, Enright PL, Kawut SM, Kronmal R, Lederer D, Lima JAC, Lovasi GS, Shea S, Barr RG. Association between emphysema-like lung on cardiac computed tomography and mortality in persons without airflow obstruction: a cohort study. Ann Intern Med 2014; 161:863-73. [PMID: 25506855 PMCID: PMC4347817 DOI: 10.7326/m13-2570] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Low lung function is known to predict mortality in the general population, but the prognostic significance of emphysema on computed tomography (CT) in persons without chronic obstructive pulmonary disease (COPD) is uncertain. OBJECTIVE To determine whether greater emphysema-like lung on CT is associated with all-cause mortality among persons in the general population without airflow obstruction or COPD. DESIGN Prospective cohort study. SETTING Population-based, multiethnic sample from 6 U.S. communities. PARTICIPANTS 2965 participants aged 45 to 84 years without airflow obstruction on spirometry. MEASUREMENTS Emphysema-like lung was defined as the number of lung voxels with attenuation less than -950 Hounsfield units on cardiac CT and was adjusted for the number of total imaged lung voxels. RESULTS Among 2965 participants, 50.9% of whom had never smoked, there were 186 deaths over a median of 6.2 years. Greater emphysema-like lung was independently associated with increased mortality (adjusted hazard ratio per one-half interquartile range, 1.14 [95% CI, 1.04 to 1.24]; P=0.004) after adjustment for potential confounders, including cardiovascular risk factors and FEV1. Generalized additive models supported a linear association between emphysema-like lung and mortality without evidence for a threshold. The association was of greatest magnitude among smokers, although multiplicative interaction terms did not support effect modification by smoking status. LIMITATIONS Cardiac CT scans did not include lung apices. The number of deaths was limited among subgroup analyses. CONCLUSION Emphysema-like lung on CT was associated with all-cause mortality among persons without airflow obstruction or COPD in a general population sample, particularly among smokers. Recognition of the independent prognostic significance of emphysema on CT among patients without COPD on spirometry is warranted. PRIMARY FUNDING SOURCE National Heart, Lung, and Blood Institute.
Collapse
|
40
|
Smith BM, Hoffman EA, Basner RC, Kawut SM, Kalhan R, Barr RG. Not all measures of hyperinflation are created equal: lung structure and clinical correlates of gas trapping and hyperexpansion in COPD: the Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study. Chest 2014; 145:1305-1315. [PMID: 24481056 DOI: 10.1378/chest.13-1884] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Hyperinflation refers to a nonspecific increase in absolute lung volumes and has a poor prognosis in COPD. The relative contribution of increased airways resistance and increased parenchymal compliance to hyperinflation of each absolute lung volume is poorly understood. We hypothesized that increased residual volume (RV) and RV/total lung capacity (TLC) would be associated with reduced airway lumen dimensions, whereas increased functional residual capacity (FRC), TLC, and reduced inspiratory capacity (IC)/TLC would be associated with emphysema on CT scan. We examined whether clinical characteristics differed accordingly. METHODS The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited smokers aged 50 to 79 years who were free of clinical cardiovascular disease. Gas trapping was defined as RV or RV/TLC greater than the upper limit of normal and hyperexpansion as FRC or TLC greater than the upper limit of normal or IC/TLC less than the lower limit of normal. Airway lumen diameters and percent emphysema < -950 Hounsfield units were quantified on CT images. Analyses were adjusted for age, sex, body size, race/ethnicity, education, and smoking. RESULTS Among 116 participants completing plethysmography, 15% had gas trapping, 18% has hyperexpansion, and 22% had both. Gas trapping was associated with smaller airway lumen diameters (P = .001), greater dyspnea (P = .01), and chronic bronchitis (P = .03). Hyperexpansion was associated with percent emphysema (P < .001), lower BMI (P = .04), and higher hemoglobin concentration (P = .001). CONCLUSIONS Gas trapping and hyperexpansion on plethysmography were associated with distinct differences in lung structure and clinical characteristics. Absolute lung volumes should not be considered equivalent in their estimation of hyperinflation and provide insight into the extent of airway and parenchymal abnormalities in COPD.
Collapse
Affiliation(s)
- Benjamin M Smith
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY; Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Eric A Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Robert C Basner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ravi Kalhan
- Asthma and COPD Program, Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY.
| |
Collapse
|
41
|
Mohamed Hoesein FA, de Jong PA, Lammers JWJ, Mali WPTM, Mets OM, Schmidt M, de Koning HJ, Aalst CVD, Oudkerk M, Vliegenthart R, Ginneken BV, van Rikxoort EM, Zanen P. Contribution of CT Quantified Emphysema, Air Trapping and Airway Wall Thickness on Pulmonary Function in Male Smokers With and Without COPD. COPD 2014; 11:503-9. [DOI: 10.3109/15412555.2014.933952] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Bhatt SP, Sieren JC, Newell JD, Comellas AP, Hoffman EA. Disproportionate contribution of right middle lobe to emphysema and gas trapping on computed tomography. PLoS One 2014; 9:e102807. [PMID: 25054539 PMCID: PMC4108372 DOI: 10.1371/journal.pone.0102807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022] Open
Abstract
RATIONALE Given that the diagnosis of chronic obstructive pulmonary disease (COPD) relies on demonstrating airflow limitation by spirometry, which is known to be poorly sensitive to early disease, and to regional differences in emphysema, we sought to evaluate individual lobar contributions to global spirometric measures. METHODS Subjects with COPD were compared with smokers without airflow obstruction, and non-smokers. Emphysema (% low attenuation area, LAAinsp<-950 HU, at end-inspiration) and gas trapping (%LAAexp<-856 HU at end-expiration) on CT were quantified using density mask analyses for the whole lung and for individual lobes, and distribution across lobes and strength of correlation with spirometry were compared. RESULTS The right middle lobe had the highest %LAAinsp<-950 HU in smokers and controls, and the highest %LAAexp<-856 HU in all three groups. While RML contributed to emphysema and gas trapping disproportionately to its relatively small size, it also showed the least correlation with spirometry. There was no change in correlation of whole lung CT metrics with spirometry when the middle lobe was excluded from analyses. Similarly, RML had the highest %LAAexp<-856 HU while having the least correlation with spirometry. CONCLUSIONS Because of the right middle lobe's disproportionate contribution to CT-based emphysema measurements, and low contribution to spirometry, longitudinal studies of emphysema progression may benefit from independent analysis of the middle lobe in whole lung quantitative CT assessments. Our findings may also have implications for heterogeneity assessments and target lobe selection for lung volume reduction. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT00608764.
Collapse
Affiliation(s)
- Surya P. Bhatt
- Division of Pulmonary and Critical Care Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jessica C. Sieren
- Departments of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - John D. Newell
- Departments of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Alejandro P. Comellas
- Division of Pulmonary and Critical Care Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric A. Hoffman
- Departments of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
43
|
Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation. Eur Radiol 2014; 24:2319-25. [PMID: 24903230 DOI: 10.1007/s00330-014-3261-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/14/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To study the effect of inspiration on airway dimensions measured in voluntary inspiration breath-hold examinations. METHODS 961 subjects with normal spirometry were selected from the Danish Lung Cancer Screening Trial. Subjects were examined annually for five years with low-dose CT. Automated software was utilized to segment lungs and airways, identify segmental bronchi, and match airway branches in all images of the same subject. Inspiration level was defined as segmented total lung volume (TLV) divided by predicted total lung capacity (pTLC). Mixed-effects models were used to predict relative change in lumen diameter (ALD) and wall thickness (AWT) in airways of generation 0 (trachea) to 7 and segmental bronchi (R1-R10 and L1-L10) from relative changes in inspiration level. RESULTS Relative changes in ALD were related to relative changes in TLV/pTLC, and this distensibility increased with generation (p < 0.001). Relative changes in AWT were inversely related to relative changes in TLV/pTLC in generation 3--7 (p < 0.001). Segmental bronchi were widely dispersed in terms of ALD (5.7 ± 0.7 mm), AWT (0.86 ± 0.07 mm), and distensibility (23.5 ± 7.7%). CONCLUSIONS Subjects who inspire more deeply prior to imaging have larger ALD and smaller AWT. This effect is more pronounced in higher-generation airways. Therefore, adjustment of inspiration level is necessary to accurately assess airway dimensions. KEY POINTS Airway lumen diameter increases and wall thickness decreases with inspiration. The effect of inspiration is greater in higher-generation (more peripheral) airways. Airways of generation 5 and beyond are as distensible as lung parenchyma. Airway dimensions measured from CT should be adjusted for inspiration level.
Collapse
|
44
|
Lynch DA. Progress in Imaging COPD, 2004 - 2014. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2014; 1:73-82. [PMID: 28848813 PMCID: PMC5559143 DOI: 10.15326/jcopdf.1.1.2014.0125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 01/02/2023]
Abstract
Computed tomography (CT) has contributed substantially to our understanding of COPD over the past decade. Visual and quantitative assessments of CT in COPD are complementary. Visual assessment should provide assessment of centrilobular, panlobular and paraseptal emphysema, airway wall thickening, bronchiectasis, findings of respiratory bronchiolitis, and enlargement of the pulmonary artery. Quantitative CT permits evaluation of severity of emphysema, airway wall thickening, and expiratory air trapping, and is now being used for longitudinal evaluation of the progression of COPD. Innovative techniques are being developed to use CT to characterize the pattern of emphysema and smoking- related respiratory bronchiolitis. Magnetic resonance imaging (MRI) and positron emission tomography PET-CT are useful research tools in the evaluation of COPD.
Collapse
Affiliation(s)
- David A Lynch
- Department of Radiology. National Jewish Health. Denver, CO
| |
Collapse
|
45
|
Dhariwal J, Tennant RC, Hansell DM, Westwick J, Walker C, Ward SP, Pride N, Barnes PJ, Kon OM, Hansel TT. Smoking cessation in COPD causes a transient improvement in spirometry and decreases micronodules on high-resolution CT imaging. Chest 2014; 145:1006-1015. [PMID: 24522562 PMCID: PMC4011651 DOI: 10.1378/chest.13-2220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/02/2013] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Smoking cessation is of major importance for all smokers; however, in patients with COPD, little information exists on how smoking cessation influences lung function and high-resolution CT (HRCT) scan appearances. METHODS In this single-center study, we performed screening spirometry in a group of heavy smokers aged 40 to 80 years (N = 358). We then studied the effects of smoking cessation in two groups of selected subjects: smokers with COPD (n = 38) and smokers with normal spirometry (n = 55). In parallel to subjects undergoing smoking cessation, we studied a control group of nonsmokers (n = 19). RESULTS Subjects with COPD who quit smoking had a marked, but transient improvement in FEV1 at 6 weeks (184 mL, n = 17, P < .01) that was still present at 12 weeks (81 mL, n = 17, P < .05) and only partially maintained at 1 year. In contrast, we saw improvement in the transfer factor of lung for carbon monoxide at 6 weeks in both subjects with COPD who quit smoking (0.47 mmol/min/kPa, n = 17, P < .01) and subjects who quit smoking with normal spirometry (0.40 mmol/min/kPa, n = 35, P < .01). An upper-zone single HRCT image slice reliably identified emphysema at baseline in 74% of smokers with COPD (28 of 38) and 29% of healthy smokers (16 of 55). Smoking cessation had no significant effect on the appearances of emphysema but decreased the presence of micronodules on HRCT imaging. CONCLUSIONS Cigarette smoking causes extensive lung function and HRCT image abnormalities, even in patients with normal spirometry. Smoking cessation has differential effects on lung function (FEV1 and gas transfer) and features on HRCT images (emphysema and micronodules). Cessation of smoking in patients with COPD causes a transient improvement in FEV1 and decreases the presence of micronodules, offering an opportunity for concomitant therapy during smoking cessation to augment these effects. Smoking cessation at the earliest possible opportunity is vital to minimize permanent damage to the lungs.
Collapse
Affiliation(s)
- Jaideep Dhariwal
- Chest and Allergy Department, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London
| | - Rachel C Tennant
- Departments of Thoracic Medicine, Radiology, and Lung Function and Clinical Studies Unit, National Heart and Lung Institute at the Royal Brompton Hospital, Imperial College, London
| | - David M Hansell
- Departments of Thoracic Medicine, Radiology, and Lung Function and Clinical Studies Unit, National Heart and Lung Institute at the Royal Brompton Hospital, Imperial College, London
| | | | | | - Simon P Ward
- Departments of Thoracic Medicine, Radiology, and Lung Function and Clinical Studies Unit, National Heart and Lung Institute at the Royal Brompton Hospital, Imperial College, London
| | - Neil Pride
- Departments of Thoracic Medicine, Radiology, and Lung Function and Clinical Studies Unit, National Heart and Lung Institute at the Royal Brompton Hospital, Imperial College, London
| | - Peter J Barnes
- Departments of Thoracic Medicine, Radiology, and Lung Function and Clinical Studies Unit, National Heart and Lung Institute at the Royal Brompton Hospital, Imperial College, London
| | - Onn Min Kon
- Chest and Allergy Department, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London
| | - Trevor T Hansel
- Departments of Thoracic Medicine, Radiology, and Lung Function and Clinical Studies Unit, National Heart and Lung Institute at the Royal Brompton Hospital, Imperial College, London.
| |
Collapse
|
46
|
Burkart KM, Manichaikul A, Wilk JB, Ahmed FS, Burke GL, Enright P, Hansel NN, Haynes D, Heckbert SR, Hoffman EA, Kaufman JD, Kurai J, Loehr L, London SJ, Meng Y, O’Connor GT, Oelsner E, Petrini M, Pottinger TD, Powell CA, Redline S, Rotter JI, Smith LJ, Artigas MS, Tobin MD, Tsai MY, Watson K, White W, Young TR, Rich SS, Barr RG. APOM and high-density lipoprotein cholesterol are associated with lung function and per cent emphysema. Eur Respir J 2014; 43:1003-17. [PMID: 23900982 PMCID: PMC4041087 DOI: 10.1183/09031936.00147612] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is linked to cardiovascular disease; however, there are few studies on the associations of cardiovascular genes with COPD. We assessed the association of lung function with 2100 genes selected for cardiovascular diseases among 20 077 European-Americans and 6900 African-Americans. We performed replication of significant loci in the other racial group and an independent consortium of Europeans, tested the associations of significant loci with per cent emphysema and examined gene expression in an independent sample. We then tested the association of a related lipid biomarker with forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio and per cent emphysema. We identified one new polymorphism for FEV1/FVC (rs805301) in European-Americans (p=1.3×10(-6)) and a second (rs707974) in the combined European-American and African-American analysis (p=1.38×10(-7)). Both single-nucleotide polymorphisms (SNPs) flank the gene for apolipoprotein M (APOM), a component of high-density lipoprotein (HDL) cholesterol. Both were replicated in an independent cohort. SNPs in a second gene related to apolipoprotein M and HDL, PCSK9, were associated with FEV1/FVC ratio among African-Americans. rs707974 was associated with per cent emphysema among European-Americans and African-Americans and APOM expression was related to FEV1/FVC ratio and per cent emphysema. Higher HDL levels were associated with lower FEV1/FVC ratio and greater per cent emphysema. These findings suggest a novel role for the apolipoprotein M/HDL pathway in the pathogenesis of COPD and emphysema.
Collapse
Affiliation(s)
- Kristin M Burkart
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA
| | - Jemma B Wilk
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Firas S Ahmed
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Radiology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Gregory L Burke
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Paul Enright
- Department of Medicine, University of Arizona, Tucson, AZ
| | - Nadia N Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Demondes Haynes
- Department of Medicine, University of Mississippi, Jackson, MS
| | - Susan R Heckbert
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington Seattle, WA
| | - Jun Kurai
- Department of Medicine, Mount Sinai Hospital, New York, NY
| | - Laura Loehr
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health and Human Services, Research Triangle Park, NC
| | - Yang Meng
- The Broad Institute of MIT and Harvard, Cambridge MA
| | - George T O’Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA and NHLBI Framingham Heart Study, Framingham, MA
| | - Elizabeth Oelsner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Marcy Petrini
- Department of Medicine, University of Mississippi, Jackson, MS
| | - Tess D Pottinger
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - Susan Redline
- Department of Medicine, Brigham and Women’s Hospital, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Jerome I Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Lewis J Smith
- Department of Medicine, Northwestern University, Chicago, IL
| | - María Soler Artigas
- Department of Health Sciences, Genetic Epidemiology Group, University of Leicester, Leicester, UK
| | - Martin D Tobin
- Department of Health Sciences, Genetic Epidemiology Group, University of Leicester, Leicester, UK
- National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Michael Y Tsai
- Department of Laboratory Medical Pathology, University of Minnesota, Minneapolis, MN
| | - Karol Watson
- Department of Medicine, University of California, Los Angeles, Los Angeles
| | - Wendy White
- Jackson Heart Study, Tougaloo College, Tougaloo, MS
| | - Taylor R Young
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health and Human Services, Research Triangle Park, NC
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
47
|
Abstract
The goal of quantitative analysis of computed tomography (CT) scans is to understand the anatomic structure that is responsible for the physiological function of the lung. The gold standard for structural analysis requires the examination of tissue, which is not practical in most studies. Quantitative CT allows valuable information on lung structure to be obtained without removal of tissue from the body, thereby aiding longitudinal studies on chronic lung diseases. This review briefly discusses CT analysis of the lung and some of the sources of variation that can cause differences in the CT metrics used for analysis of lung disease. Although there are many sources of variation, this review will show that, if the study is properly designed to take into account these variations and if the CT scanner is properly calibrated, valuable information can be obtained from CT scans that should allow us to study the pathogenesis of lung disease and the effect of treatment.
Collapse
|
48
|
Lung density on high resolution computer tomography (HRCT) reflects degree of inflammation in smokers. Respir Res 2014; 15:23. [PMID: 24564813 PMCID: PMC3944780 DOI: 10.1186/1465-9921-15-23] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/16/2014] [Indexed: 01/11/2023] Open
Abstract
Background Smokers have increased cell concentration in the lower respiratory tract indicating a chronic inflammatory state, which in some individuals may lead to development of chronic obstructive pulmonary disease (COPD). Computer tomography (CT) imaging provides means of quantifying pulmonary structure and early signs of disease. We investigated whether lung density on high resolution CT differs between smokers and never-smokers and if this were associated to intensity of inflammation. Methods Forty smoking volunteers with normal pulmonary function, 40 healthy never-smokers and 40 patients with COPD of GOLD stage I-II, were included. Mean lung attenuation and percentage of pixels in the lung with attenuation between −750 and −900 HU (percentage higher density spectrum (%HDS)) were calculated on inspiratory CT-scans. Markers of systemic inflammation in blood and cell counts in bronchoalveolar lavage (BAL) fluid were recorded. Results Lung density expressed as %HDS was increased in smokers (44.0 ± 5.8%) compared to both never-smokers (38.3 ± 5.8%) and patients with COPD (39.1 ± 5.8%), (p < 0.001, for both). Females had denser lungs than males, which was dependent on body height. Cell concentration in BAL were correlated to lung density in smokers (r = 0.50, p < 0.001). Conclusions Lung density on CT is associated with cell concentration in BAL in smokers and may mirror an inflammatory response in the lung. Gender difference in lung density is dependent on height. In COPD with emphysema, loss of lung tissue may counterbalance the expected increase in density due to inflammation. The findings may help to interpret high resolution CT in the context of smoking and gender and highlight the heterogeneity of structural changes in COPD.
Collapse
|
49
|
Iyer KS, Grout RW, Zamba GK, Hoffman EA. Repeatability and Sample Size Assessment Associated with Computed Tomography-Based Lung Density Metrics. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2014; 1:97-104. [PMID: 25553338 PMCID: PMC4278434 DOI: 10.15326/jcopdf.1.1.2014.0111#sthash.nxtderi7.dpuf] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 11/21/2022]
Abstract
RATIONALE AND OBJECTIVES Density-based metrics assess severity of lung disease but vary with lung inflation and method of scanning. The aim of this study was to evaluate the repeatability of single center, CT-based density metrics of the lung in a normal population and assess study sample sizes needed to detect meaningful changes in lung density metrics when scan parameters and volumes are tightly controlled. MATERIALS AND METHODS Thirty-seven subjects (normal smokers and non-smokers) gave consent to have randomly assigned repeated, breath-held scans at either inspiration (90% vital capacity: TLC) or expiration (20% vital capacity: FRC). Repeated scans were analyzed for: mean lung density (MLD), 15th percentile point of the density histogram (P15), low attenuation areas (LAA) and alpha (fractal measure of hole size distribution). Using inter-subject differences and previously reported bias, sample size was estimated from month or yearly change in density metrics obtained from published literature (i.e. meaningful change). RESULTS Inter-scan difference measurements were small for density metrics (ICC > 0.80) and average ICCs for whole lung alpha-910 and alpha-950 were 0.57 and 0.64, respectively. Power analyses demonstrated that, under the control conditions with minimal extrinsic variation, population sizes needed to detect meaningful changes in density measures for TLC or FRC repeated scans ranged from a few (20-40) to a few hundred subjects, respectively. CONCLUSION A meaningful sample size was predicted from this study using volume-controlled normal subjects in a controlled imaging environment. Under proper breath-hold conditions, high repeatability was obtained in cohorts of normal smokers and non-smokers.
Collapse
Affiliation(s)
- Krishna S. Iyer
- Department of Radiology, University of Iowa, College of Medicine, Iowa City
- Department of Biomedical Engineering, University of Iowa, Iowa City
| | - Randall W. Grout
- Department of Radiology, University of Iowa, College of Medicine, Iowa City
| | | | - Eric A. Hoffman
- Department of Radiology, University of Iowa, College of Medicine, Iowa City
- Department of Biomedical Engineering, University of Iowa, Iowa City
| |
Collapse
|
50
|
Abstract
Quantitative computed tomography is being increasingly used to quantify the features of chronic obstructive pulmonary disease, specifically emphysema, air trapping, and airway abnormality. For quantification of emphysema, the density mask technique is most widely used, with threshold on the order of-950 HU, but percentile cutoff may be less sensitive to volume changes. Sources of variation include depth of inspiration, scanner make and model, technical parameters, and cigarette smoking. On expiratory computed tomography (CT), air trapping may be quantified by evaluating the percentage of lung volume less than a given threshold (eg, -856 HU) by comparing lung volumes and attenuation on expiration and inspiration or, as done more recently, by coregistering inspiratory and expiratory CT scans. All of these indices correlate well with the severity of physiological airway obstruction. By constructing a 3-dimensional model of the airway from volumetric CT, it is possible to measure dimensions (external and internal diameters and airway wall thickness) of segmental and subsegmental airways orthogonal to their long axes. Measurement of airway parameters correlates with the severity of airflow obstruction and with the history of chronic obstructive pulmonary disease exacerbation.
Collapse
Affiliation(s)
- David A Lynch
- Division of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, 303 270 2810,
| | - Mustafa L Al-Qaisi
- Division of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, 303 270 2810,
| |
Collapse
|