1
|
To H, Tsutsumi N, Kon M, Kawashima N, Koike F, Lacouture S, Gottschalk M, Frey J, Nagai S. A new subtype of serovar 6, K6b:O3, of Actinobacillus pleuropneumoniae based on genotypic analysis. Vet Microbiol 2024; 298:110291. [PMID: 39488134 DOI: 10.1016/j.vetmic.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
We have analyzed the capsule (CPS) and the lipopolysaccharide O-Antigen (O-Ag) biosynthesis loci of fifteen field isolates of Actinobacillus pleuropneumoniae, including eleven North American and four Japanese ones, reactive to antisera against serovars 3, 6, 8 and/or 15. Ten North American isolates amplified a serovar 6-indicative fragment derived from the capsular loci, whereas one North American isolate and all four Japanese isolates amplified the serovar 6-indicative fragment as well as the serovar 3-indicative fragment. The five isolates producing a 3/6 banding pattern contain a type I CPS locus, named K6b, similar to serovar 6, but with differences in the cpxABCD and cpsABC gene sequences and the length of intergenic regions (modF-cpxA, and cpsC-cpsD). The main difference found between the K6 and K6b cps genes is a loss of function of a 113 AA UDP-glycosyltransferase found in type 6b due to the amino acid substitutions in the C-terminal domain of Cps6bA. Additionally, the isolates harbor a LPS O-Ag locus highly identical to those of field and reference strains of serovars 3, 8, 15, 17 and 19 but different from that of serovar 6. Taken together, our results indicate the existence of a subtype of A. pleuropneumoniae, serovar 6, that we called "K6b:O3'', and we propose isolate EH1248 as the reference strain.
Collapse
Affiliation(s)
- Ho To
- Nisseiken Co., Ltd., Tokyo, Japan; Faculty of Agriculture and Aquaculture, University of Cuu Long, Vinh Long, Viet Nam.
| | | | - Michiha Kon
- Nippon Institute for Biological Science, Tokyo, Japan
| | | | | | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Joachim Frey
- Vetsuisse Faculty, University of Bern, Bern 3012, Switzerland
| | - Shinya Nagai
- Nisseiken Co., Ltd., Tokyo, Japan; Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
2
|
Bossé JT, Li Y, Cohen LM, Stegger M, Angen Ø, Lacouture S, Gottschalk M, Lei L, Koene M, Kuhnert P, Bandara AB, Inzana TJ, Holden MTG, Harris D, Oshota O, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR, On Behalf Of The BRaDP T Consortium. Complete genome for Actinobacillus pleuropneumoniae serovar 8 reference strain 405: comparative analysis with draft genomes for different laboratory stock cultures indicates little genetic variation. Microb Genom 2021; 7. [PMID: 34818145 PMCID: PMC8743550 DOI: 10.1099/mgen.0.000687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the complete genome sequence of the widely studied Actinobacillus pleuropneumoniae serovar 8 reference strain 405, generated using the Pacific Biosciences (PacBio) RS II platform. Furthermore, we compared draft sequences generated by Illumina sequencing of six stocks of this strain, including the same original stock used to generate the PacBio sequence, held in different countries and found little genetic variation, with only three SNPs identified, all within the degS gene. However, sequences of two small plasmids, pARD3079 and p405tetH, detected by Illumina sequencing of the draft genomes were not identified in the PacBio sequence of the reference strain.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Liza Miriam Cohen
- Department of Production Animal Clinical Sciences Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, P.R China
| | - Miriam Koene
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, Universität Bern, Bern, Switzerland
| | - Aloka B Bandara
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Thomas J Inzana
- Present address: College of Veterinary Medicine, Long Island University, Brookville, USA.,Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Matthew T G Holden
- Present address: School of Medicine, University of St Andrews, St Andrews, UK.,The Wellcome Trust Sanger Institute, Cambridge, UK
| | - David Harris
- The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Olusegun Oshota
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | | |
Collapse
|
3
|
Gale C, Velazquez E. Actinobacillus pleuropneumoniae: a review of an economically important pathogen. ACTA ACUST UNITED AC 2020. [DOI: 10.12968/live.2020.25.6.308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Actinobacillus pleuropneumoniae is one of the causative agents of porcine pleuropneumonia, which is an economically important respiratory disease of pig production. Clinical signs vary based on the severity of disease and lung lesions present, but include fever and severe respiratory signs including coughing and laboured breathing. Numerous serotypes exist which vary in their virulence, and virulence of serotypes has also been shown to be vary between countries. It is important to establish which serotypes are present and active on a farm as well as carrying out seroprofiling to determine the correct time for implementation of control measures such as vaccination. Understanding of transmission routes is vital, including the role of carrier animals on the farm which are persistently infected and can shed the bacteria, therefore infecting other animals. Therefore, as with all infectious diseases, good standards of internal and external biosecurity are important in controlling the disease on farm. Vaccination has been shown to be effective on affected farms in preventing outbreaks, reducing clinical signs if they occur, and most important to the farmer, preventing losses in mortality, feed conversion ratio and growth. Therefore, vaccines are often a good choice for controlling pleuropneumonia on farm and reducing the need for treatment using antimicrobials.
Collapse
|
4
|
Zhu R, Bao C, Liu B, Xiao J, Sun C, Feng X, Langford PR, Li Y, Lei L. iTRAQ-based quantitative proteomic analysis of peripheral blood serum in piglets infected with Actinobacillus pleuropneumoniae. AMB Express 2020; 10:121. [PMID: 32632500 PMCID: PMC7338327 DOI: 10.1186/s13568-020-01057-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae (APP) is a swine respiratory disease with an important impact around the world either as a single infection or part of the porcine respiratory disease complex. The data of interaction between hosts and pathogens has becoming more crucial for exploration of the mechanism. However, up to now, comparatively little information is available on the systemic and dynamic changes that occur in pig serum in response to APP infection. This study used iTRAQ to identify differentially expressed proteins (DEPs) in pig serum in response to APP infection. Compared with the APP un-infected group (S0),there were 137 up-regulated and 68 down-regulated proteins at 24 h (S24), and 81 up-regulated and 107 down-regulated proteins at 120 h (S120). At 24 h, the immune response was not significantly enriched, but cell adhesion, cytosol, Golgi apparatus, GTP and ATP binding and regulation of cell cycle were extremely active, implying host preparation of immune response starting. Subsequently, innate immune response, negative regulation of apoptotic process, immunological synapse, adaptive immune response, the regulation of inflammatory response, positive regulation of T cell proliferation were more enhanced at 120 h then that of 24 h, representing innate immunity transferring to the adaptive, while endocytosis, cell adhesion and platelet aggregation showed obvious decline. The pathways of T cell receptor signaling pathway, cytokine–cytokine receptor interaction, complement and coagulation cascades, leukocyte transendothelial migration were active remarkably during all infection period, and more pathways could connect to form innate immune defense networks. Surprisingly, the pathways like amoebiasis, rheumatoid arthritis and malaria had been found up-regulated. As a conclusion, APP could delay host inflammatory response to the infection at early stage, and induced innate immunity to convert from adhesion, interaction into complement activation, proteasome digestion, bacterial invasion at later stage. This would increase our understanding of the porcine distinct response to APP infection.
Collapse
|
5
|
Comparative Genomics of Actinobacillus pleuropneumoniae Serotype 8 Reveals the Importance of Prophages in the Genetic Variability of the Species. Int J Genomics 2020; 2020:9354204. [PMID: 32149072 PMCID: PMC7049842 DOI: 10.1155/2020/9354204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/03/2020] [Indexed: 12/30/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiologic agent of porcine pleuropneumonia. Currently, there are 18 different serotypes; the serotype 8 is the most widely distributed in the United States, Canada, United Kingdom, and southeastern Brazil. In this study, genomes of seven A. pleuropneumoniae serotype 8 clinical isolates were compared to the other genomes of twelve serotypes. The analyses of serotype 8 genomes resulted in a set of 2352 protein-coding sequences. Of these sequences, 76.6% are present in all serotypes, 18.5% are shared with some serotypes, and 4.9% were differential. This differential portion was characterized as a series of hypothetical and regulatory protein sequences: mobile element sequence. Synteny analysis demonstrated possible events of gene recombination and acquisition by horizontal gene transfer (HGT) in this species. A total of 30 sequences related to prophages were identified in the genomes. These sequences represented 0.3 to 3.5% of the genome of the strains analyzed, and 16 of them contained complete prophages. Similarity analysis between complete prophage sequences evidenced a possible HGT with species belonging to the family Pasteurellaceae. Thus, mobile genetic elements, such as prophages, are important components of the differential portion of the A. pleuropneumoniae genome and demonstrate a central role in the evolution of the species. This study represents the first study done to understand the genome of A. pleuropneumoniae serotype 8.
Collapse
|
6
|
Jung M, Won H, Shin MK, Oh MW, Shim S, Yoon I, Yoo HS. Development of Actinobacillus pleuropneumoniae ApxI, ApxII, and ApxIII-specific ELISA methods for evaluation of vaccine efficiency. J Vet Sci 2019; 20:e2. [PMID: 30944525 PMCID: PMC6441810 DOI: 10.4142/jvs.2019.20.e2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/03/2018] [Accepted: 12/16/2018] [Indexed: 11/20/2022] Open
Abstract
Among various vaccines against Actinobacillus pleuropneumoniae, subunit vaccines using recombinant proteins of ApxI, ApxII, and ApxIII as vaccine antigens have shown good efficacy in terms of safety and protection. Therefore, subunit vaccines are being applied worldwide and the development of new subunit vaccines is actively being conducted. To evaluate the efficacy of the subunit vaccines, it is important to measure immune responses to each Apx toxin separately. However, the cross-reactivity of antibodies makes it difficult to measure specific immune reactivity to each toxin. In the present study, specific antigen regions among the toxins were identified and cloned to solve this problem. The antigenicity of each recombinant protein was demonstrated by Western blot. Using the recombinant proteins, we developed enzyme-linked immunosorbent assay (ELISA) methods that can detect specific immune responses to each Apx toxin in laboratory guinea pigs. We suggest that the ELISA method developed in this study can be an important tool in the evaluation of vaccine efficiency and vaccine development.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Research Institute of Life Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Hokeun Won
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Choong Ang Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Research Institute of Life Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea
| | - Myung Whan Oh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Injoong Yoon
- Choong Ang Vaccine Laboratories Co., Ltd., Daejeon 34055, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transbound Emerg Dis 2017; 65 Suppl 1:72-90. [PMID: 29083117 DOI: 10.1111/tbed.12739] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/15/2022]
Abstract
Porcine pleuropneumonia, caused by the bacterial porcine respiratory tract pathogen Actinobacillus pleuropneumoniae, leads to high economic losses in affected swine herds in most countries of the world. Pigs affected by peracute and acute disease suffer from severe respiratory distress with high lethality. The agent was first described in 1957 and, since then, knowledge about the pathogen itself, and its interactions with the host, has increased continuously. This is, in part, due to the fact that experimental infections can be studied in the natural host. However, the fact that most commercial pigs are colonized by this pathogen has hampered the applicability of knowledge gained under experimental conditions. In addition, several factors are involved in development of disease, and these have often been studied individually. In a DISCONTOOLS initiative, members from science, industry and clinics exchanged their expertise and empirical observations and identified the major gaps in knowledge. This review sums up published results and expert opinions, within the fields of pathogenesis, epidemiology, transmission, immune response to infection, as well as the main means of prevention, detection and control. The gaps that still remain to be filled are highlighted, and present as well as future challenges in the control of this disease are addressed.
Collapse
Affiliation(s)
- E L Sassu
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - J T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, London, UK
| | - T J Tobias
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M Gottschalk
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - P R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, UK
| | - I Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Foundation, Bakum, Germany
| |
Collapse
|
8
|
Teshima K, Lee J, To H, Kamada T, Tazumi A, Hirano H, Maruyama M, Ogawa T, Nagai S, Turni C, Tsutsumi N. Application of an enzyme-linked immunosorbent assay for detection of antibodies to Actinobacillus pleuropneumoniae serovar 15 in pig sera. J Vet Med Sci 2017; 79:1968-1972. [PMID: 29070770 PMCID: PMC5745173 DOI: 10.1292/jvms.17-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
An indirect enzyme-linked immunosorbent assay (ELISA) using lipopolysaccharide extract as
antigen was evaluated for detection of antibodies to Actinobacillus
pleuropneumoniae serovar 15. The serovar 15 ELISA had a higher sensitivity and
specificity than latex agglutination test for 63 and 80 sera from pigs experimentally
infected and not infected with A. pleuropneumoniae, respectively. When
the serovar 15 ELISA was applied to 454 field sera, high rates of seropositivity were
found in pigs from farms infected with A. pleuropneumoniae serovar 15,
but not in those from farms free of A. pleuropneumoniae serovar 15. The
results suggest that the serovar 15 ELISA may be useful for the serological surveillance
of infection with A. pleuropneumoniae serovar 15.
Collapse
Affiliation(s)
- Kaho Teshima
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Jina Lee
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Ho To
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Takashi Kamada
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Akihiro Tazumi
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Haruna Hirano
- Yamanashi Prefecture Eastern Livestock Hygiene Service Center, 1001-1 Karakashiwa, Ishiwa, Fuefuki, Yamanashi 406-0034, Japan
| | - Minoru Maruyama
- Yamanashi Prefecture Livestock Dairy Technology Center, 963-1, Otokuro, Chuou, Yamanashi 409-3812, Japan
| | - Torata Ogawa
- Fukuoka Prefecture Central Livestock Hygiene Service Center, 4-14-5, Hakozakihutou, Higashi, Fukuoka, Fukuoka 812-0051, Japan
| | - Shinya Nagai
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD, Australia
| | - Nobuyuki Tsutsumi
- Nippon Institute for Biological Science, 9-2221-1, Shinmachi, Ome, Tokyo 198-0024, Japan
| |
Collapse
|
9
|
Czyżewska-Dors E, Dors A, Kwit K, Stasiak E, Pomorska-Mól M. Pig Lung Immune Cytokine Response to the Swine Influenza Virus and the Actinobacillus Pleuropneumoniae Infection. J Vet Res 2017; 61:259-265. [PMID: 29978082 PMCID: PMC5894434 DOI: 10.1515/jvetres-2017-0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction The aim of this study was to evaluate and compare the local innate immune response to the swine influenza virus (SIV) and Actinobacillus pleuropneumoniae (App) infection in pigs. Material and Methods The study was performed on 37 seven-week-old pigs, divided into four groups: App-infected (n=11), App+SIV-infected (n=11), SIV-infected (n=11), and control (n=4). Lung samples were collected, following euthanasia, on the 2nd and 4th dpi (three piglets per inoculated group) and on the 10th dpi (remaining inoculated and control pigs). Lung concentrations of IL-1β, IL-6, IL-8, TNF-α, IL-10, IFN-α, and IFN-γ were analysed with the use of commercial porcine cytokine ELISA kits. Results Lung concentrations of IL-1β, IL-6, IL-8, TNF-α, IFN-α, and IFN-γ were induced in SIV-infected and App+SIV-infected pigs. In the lung tissue of App-infected pigs, only concentrations of IL-1β, IL-6, IL-8, and IFN-γ were elevated. Additionally, in App+SIV-infected pigs, significantly greater concentrations of IL-1β, IL-8, and IFN-α were found when compared with pigs infected with either SIV or App alone. In each tested group, the lung concentration of IL-10 remained unchanged during the entire study. Conclusion The results of the study indicate that the experimental infection of pigs with SIV or App alone and co-infection with both pathogens induced a local lung inflammatory response. However, the local cytokine response was considerably higher in co-infected pigs compared to single-infected pigs.
Collapse
Affiliation(s)
- Ewelina Czyżewska-Dors
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Arkadiusz Dors
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Krzysztof Kwit
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Ewelina Stasiak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | | |
Collapse
|
10
|
To H, Teshima K, Nagai S, Zielinski GC, Koyama T, Lee J, Bessone FA, Nagano T, Oshima A, Tsutsumi N. Characterization of Actinobacillus pleuropneumoniae field strains antigenically related to the 3-6-8-15 group from diseased pigs in Japan and Argentina. Rev Argent Microbiol 2017; 50:12-22. [PMID: 28886933 DOI: 10.1016/j.ram.2017.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/08/2017] [Accepted: 04/20/2017] [Indexed: 11/30/2022] Open
Abstract
The objectives of this study were to determine the serovar of a collection of Actinobacillus pleuropneumoniae strains within the 3-6-8-15 cross-reacting group and to analyze their phenotypic and genetic properties. Based on the serological tests, forty-seven field strains of Actinobacillus pleuropneumoniae isolated from lungs with pleuropneumonia lesions in Japan and Argentina were found to be serovars belonging to the 3-6-8-15 cross-reacting group. By using a capsule loci-based PCR, twenty-nine (96.7%) and one (3.3%) from Japan were identified as serovars 15 and 8, respectively, whereas seventeen (100%) from Argentina were identified as serovar 8. The findings suggested that serovars 8 and 15 were prevalent within the 3-6-8-15 cross-reacting group, in Argentina and Japan, respectively. Phenotypic analyses revealed that the protein patterns observed on SDS-PAGE and the lipopolysaccharide antigen detected by immunoblotting of the reference and field strains of serovars 8 and 15 were similar to each other. Genetic (16S rDNA, apxIIA, apxIIIA, cps, cpx genes, apx and omlA patterns) analyses revealed that the apxIIA and apxIIIA genes of the field strains of serovars 8 and 15 were similar to those of the reference strains of serovars 3, 4, 6, 8 and 15. The results obtained in the present study may be useful for the development of more effective vaccines against disease caused by A. pleuropneumoniae by including the homologous antigens to the most prevalent serovars in specific geographical areas.
Collapse
Affiliation(s)
- Ho To
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan.
| | - Kaho Teshima
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Shinya Nagai
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Gustavo C Zielinski
- Animal Health Group, Estacion Experimental Agropecuaria Marcos Juarez, INTA, CC n°21 (2580), Marcos Juarez, Province of Cordoba, Argentina.
| | - Tomohiro Koyama
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Jina Lee
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Fernando A Bessone
- Animal Health Group, Estacion Experimental Agropecuaria Marcos Juarez, INTA, CC n°21 (2580), Marcos Juarez, Province of Cordoba, Argentina
| | - Tetsuji Nagano
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Atsushi Oshima
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| | - Nobuyuki Tsutsumi
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo 198-0024, Japan
| |
Collapse
|
11
|
Pomorska-Mól M, Dors A, Kwit K, Kowalczyk A, Stasiak E, Pejsak Z. Kinetics of single and dual infection of pigs with swine influenza virus and Actinobacillus pleuropneumoniae. Vet Microbiol 2017; 201:113-120. [PMID: 28284596 DOI: 10.1016/j.vetmic.2017.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Porcine respiratory disease complex (PRDC) is a common problem in modern pork production worldwide. Pathogens that are amongst other pathogens frequently involved in PRDC etiology are swine influenza virus (SIV) and A. pleuropneumoniae. The effect of dual infection with mentioned pathogens has not been investigated to date. The aim of the present study was to evaluate the kinetics of single and dual infection of pigs with SIV and A. pleuropneumoniae with regard to clinical course, pathogens shedding, lung lesions and early immune response. The most severe symptoms were observed in co-inoculated piglets. The AUC value for SIV shedding was lower in pigs single inoculated with SIV as compared to co-inoculated animals. In contrast, no significant differences were found between A. pleuropneumoniae shedding in single or dual inoculated pigs. Three out of 5 co-inoculated piglets euthanized at 10 dpi were positive against serotype 2 A. pleuropneumonie. All piglets inoculated with SIV developed specific HI antibodies at 10 dpi. In pigs dual inoculated the specific humoral response against SIV was observed earlier, at 7 dpi. The SIV-like lung lesions were more severe in co-inoculated pigs. In the groups inoculated with A. pleuropneumoniae (single or dual) the acute phase protein response was generally stronger than in SIV-single infected group. Co-infection with SIV and A. pleuropneumoniae potentiated the severity of lung lesions caused by SIV and enhanced virus replication in the lung and nasal SIV shedding. Enhanced SIV replication contributed to a more severe clinical course of the disease as well as earlier and higher magnitude immune response (acute phase proteins, HI antibodies) compared to single inoculated pigs.
Collapse
Affiliation(s)
| | - Arkadiusz Dors
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| | - Krzysztof Kwit
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| | - Andrzej Kowalczyk
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| | - Ewelina Stasiak
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| | - Zygmunt Pejsak
- National Veterinary Research Institute, Department of Swine Diseases, Puławy, Poland
| |
Collapse
|
12
|
Li Y, Bossé JT, Williamson SM, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Actinobacillus pleuropneumoniae serovar 8 predominates in England and Wales. Vet Rec 2016; 179:276. [PMID: 27531715 PMCID: PMC5036230 DOI: 10.1136/vr.103820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2016] [Indexed: 11/23/2022]
Affiliation(s)
- Y Li
- Section of Paediatrics, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - J T Bossé
- Section of Paediatrics, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - S M Williamson
- APHA-Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk IP33 2RX, UK
| | - D J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - A W Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - B W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - A N Rycroft
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, UK
| | - P R Langford
- Section of Paediatrics, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | | |
Collapse
|
13
|
Ferreira Barbosa JA, Labrie J, Beaudry F, Gagnon CA, Jacques M. Actinobacillus pleuropneumoniae induces SJPL cell cycle arrest in G2/M-phase and inhibits porcine reproductive and respiratory syndrome virus replication. Virol J 2015; 12:188. [PMID: 26577697 PMCID: PMC4650394 DOI: 10.1186/s12985-015-0404-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/14/2015] [Indexed: 01/01/2023] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry and causes important economic losses. No effective antiviral drugs against it are commercially available. We recently reported that the culture supernatant of Actinobacillus pleuropneumoniae, the porcine pleuropneumonia causative agent, has an antiviral activity in vitro against PRRSV in SJPL cells. Objectives of this study were (i) to identify the mechanism behind the antiviral activity displayed by A. pleuropneumoniae and (ii) to characterize the active molecules present in the bacterial culture supernatant. Methods Antibody microarray analysis was used in order to point out cellular pathways modulated by the A. pleuropneumoniae supernatant. Subsequent, flow cytometry analysis and cell cycle inhibitors were used to confirm antibody microarray data and to link them to the antiviral activity of the A. pleuropneumoniae supernatant. Finally, A. pleuropneumoniae supernatant characterization was partially achieved using mass spectrometry. Results Using antibody microarray, we observed modulations in G2/M-phase cell cycle regulation pathway when SJPL cells were treated with A. pleuropneumoniae culture supernatant. These modulations were confirmed by a cell cycle arrest at the G2/M-phase when cells were treated with the A. pleuropneumoniae culture supernatant. Furthermore, two G2/M-phase cell cycle inhibitors demonstrated the ability to inhibit PRRSV infection, indicating a potential key role for PRRSV infection. Finally, mass spectrometry lead to identify two molecules (m/z 515.2 and m/z 663.6) present only in the culture supernatant. Conclusions We demonstrated for the first time that A. pleuropneumoniae is able to disrupt SJPL cell cycle resulting in inhibitory activity against PRRSV. Furthermore, two putative molecules were identified from the culture supernatant. This study highlighted the cell cycle importance for PRRSV and will allow the development of new prophylactic or therapeutic approaches against PRRSV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0404-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérémy A Ferreira Barbosa
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada. .,Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | - Josée Labrie
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada. .,Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | - Francis Beaudry
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | - Carl A Gagnon
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada. .,Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| | - Mario Jacques
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada. .,Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada.
| |
Collapse
|
14
|
Abstract
The introduction into a naïve herd of animals sub-clinically infected with Actinobacillus pleuropneumoniae (App) is frequently the cause of clinical pleuropneumonia and the identification of such infected herds is a priority in the control of disease. Different serological tests for App have been developed and a number of these are routinely used. Some are species-specific whereas others identify more specifically the serotype/serogroup involved which requires updated information about important serotypes recovered from diseased pigs in a given area/country. Serotyping methods based on molecular techniques have been developed lately and are ready to be used by most diagnostic laboratories. When non-conclusive serological results are obtained, direct detection of App from tonsils is sometimes attempted. This review addresses different techniques and approaches used to monitor herds sub-clinically infected by this important pathogen.
Collapse
Affiliation(s)
- Marcelo Gottschalk
- Department of Pathology and Microbiology, Swine and Poultry Infectious Disease Center (CRIPA), Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Québec, Canada J2S 2M2.
| |
Collapse
|
15
|
Ito H, Sueyoshi M. The genetic organization of the capsular polysaccharide biosynthesis region of Actinobacillus pleuropneumoniae serotype 15. J Vet Med Sci 2014; 77:483-6. [PMID: 25502540 PMCID: PMC4427752 DOI: 10.1292/jvms.14-0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nucleotide sequence determination and analysis of the cps gene involved
in the capsular polysaccharide biosynthesis of Actinobacillus
pleuropneumoniae serotype 15 revealed the presence of three open reading
frames, designated as cps15ABC genes. At the protein level, Cps15A and
Cps15B showed considerably high homology to CpsA (67.0 to 68.7%) and CpsB (31.7 to 36.8%),
respectively, of A. pleuropneumoniae serotypes 1, 4 and 12, revealing the
common genetic organization of the cps among serotypes 1, 4, 12 and 15.
However, Cps15C showed no homology to any proteins of A. pleuropneumoniae
serotypes, indicating that cps15C may be specific to serotype 15. This
study will provide the basic molecular knowledge necessary for the development of
diagnostics and a vaccine for A. pleuropneumoniae serotype 15.
Collapse
Affiliation(s)
- Hiroya Ito
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | |
Collapse
|