1
|
Al-Mubarak AIA, Al-Kubati AAG, Sheikh A, Abdelaziz AM, Hussen J, Kandeel M, Falemban B, Hemida MG. Detection of Avian Orthoavulavirus-1 genotypes VI.2.1 and VII.1.1 with neuro-viscerotropic tropism in some backyard pigeons (Columbidae) in Eastern Saudi Arabia. Front Vet Sci 2024; 11:1352636. [PMID: 38500603 PMCID: PMC10947193 DOI: 10.3389/fvets.2024.1352636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Avian orthoavulavirus-1 (AOAV1) has a wide host range, including domestic and wild birds. The present study aimed to identify the currently circulating AOAV1 strains from some outbreaks in some backyard pigeons in the eastern region of Saudi Arabia (ERSA). Methods Tracheal/cloacal swabs and tissue specimens were collected from eight backyards in Al-Ahsa, ERSA, between January 2021 and March 2023. Samples were tested for the presence of AOAV1 using commercial real-time RT-PCR. Part of the fusion gene was also amplified by gel-based RT-PCR, and the obtained amplicons were sequenced. Results and discussion AOAV1 was detected in samples from the eight flocks. The retrieved sequences from samples of 6/8 pigeon backyards are reported. Phylogenetic analysis based on the obtained sequences from these backyard pigeons showed the segregation of the obtained sequences in AOAV1 genotypes VI.2.1 and VII.1.1. Clinically, nervous manifestations were dominant in pigeons infected with both genotypes. Respiratory manifestations and significantly higher overall mortality rate were induced by genotype VI.2.1. The deduced amino acid sequences of the fusion protein cleavage site (FPCS) showed that all the detected isolates belong to velogenic strains. Differences in clinical profiles induced by the natural infection of pigeons with AOAV1 genotypes VI.2.1 and VII.1.1 were reported. The present findings highlight the potential roles of some backyard pigeons in the long-distance spread and cross-species transmission of the reported AOAVI genotypes. Further research is required to perform biotyping and pathotyping of the reported strains.
Collapse
Affiliation(s)
- Abdullah I. A. Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Anwar A. G. Al-Kubati
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, Al Hofuf, Saudi Arabia
| | - Adel M. Abdelaziz
- Faculty of Veterinary Medicine, Veterinary Educational Hospital, Zagazig University, Zagazig, Egypt
- Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa, Saudi Arabia.
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Baraa Falemban
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| |
Collapse
|
2
|
Wang HY, Wu MC, Chen HW, Lai YC, Huang WH, Chang HW, Jeng CR, Cheng CH, Wang PJ, Lai YH, Chang YC. Isolation, full sequence analysis, and in situ hybridization of pigeon paramyxovirus-1 genotype VI.2.1.1.2.2 from oriental turtle doves (Streptopelia orientalis). Poult Sci 2023; 102:102974. [PMID: 37573845 PMCID: PMC10448340 DOI: 10.1016/j.psj.2023.102974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Pigeon paramyxovirus-1 (PPMV-1), a genetic variant of avian paramyxovirus-1 (APMV-1), has been identified in Columbiformes and is the primary cause of diseases in captive and free-ranging pigeons. However, it has also been reported that PPMV-1 can infect chickens naturally and experimentally, thus posing a potential threat to the poultry industry. This study investigated a lethal outbreak of paramyxovirus infection that occurred among 16 oriental turtle doves (Streptopelia orientalis) in a walk-in aviary at a zoo from March to April 2021. Necropsies were performed, and histopathological findings revealed mild to moderate lymphoplasmacytic infiltration in several organs, such as the pancreas, liver, kidneys, and lungs. Reverse transcription polymerase chain reaction (RT-PCR) using formalin-fixed paraffin-embedded tissue blocks, virus isolation from fresh tissue, and in situ hybridization against the fusion (F) protein confirmed the diagnosis for PPMV-1 infection. The isolated strain NTU/C239/21 was fully sequenced by next-generation sequencing, and the results of phylogenetic analyses revealed that the F protein of NTU/C239/21 shared 98.8% nucleotide sequence identity with Pigeon/Taiwan/AHRI121/2017, which was isolated from a feral pigeon in Taiwan. The present study is the first to identify PPMV-1 infection in Streptopelia orientalis and suggests that Streptopelia orientalis may also play an important role in spreading the infection, similar to pigeons in APMV-1 spreading.
Collapse
Affiliation(s)
- Han-Yang Wang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Chi Wu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yun-Chiang Lai
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Hsiang Huang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chain-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Reid SM, Skinner P, Sutton D, Ross CS, Drewek K, Weremczuk N, Banyard AC, Mahmood S, Mansfield KL, Mayers J, Thomas SS, Brookes SM, Brown IH. Understanding the disease and economic impact of avirulent avian paramyxovirus type 1 (APMV-1) infection in Great Britain. Epidemiol Infect 2023; 151:e163. [PMID: 37622315 PMCID: PMC10600730 DOI: 10.1017/s0950268823001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 05/30/2023] [Indexed: 08/26/2023] Open
Abstract
Newcastle disease (ND) is a notifiable disease affecting chickens and other avian species caused by virulent strains of Avian paramyxovirus type 1 (APMV-1). While outbreaks of ND can have devastating consequences, avirulent strains of APMV-1 generally cause subclinical infections or mild disease. However, viruses can cause different levels of disease in different species and virulence can evolve following cross-species transmission events. This report describes the detection of three cases of avirulent APMV-1 infection in Great Britain (GB). Case 1 emerged from the 'testing to exclude' scheme in chickens in Shropshire while cases 2 and 3 were made directly from notifiable avian disease investigations in chicken broilers in Herefordshire and on premises in Wiltshire containing ducks and mixed species, respectively). Class II/genotype I.1.1 APMV-1 from case 1 shared 99.94% identity to the Queensland V4 strain of APMV-1. Class II/genotype II APMV-1 was detected from case 2 while the class II/genotype I.2 virus from case 3 aligned closely with strains isolated from Anseriformes. Exclusion of ND through rapid detection of avirulent APMV-1 is important where clinical signs caused by avirulent or virulent APMV-1s could be ambiguous. Understanding the diversity of APMV-1s circulating in GB is critical to understanding disease threat from these adaptable viruses.
Collapse
Affiliation(s)
- Scott M. Reid
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
| | - Paul Skinner
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
| | - David Sutton
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
- Qiagen, Manchester, UK
| | - Craig S. Ross
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
| | - Karolina Drewek
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
| | | | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency, New Haw, UK
| | - Sahar Mahmood
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
| | | | - Jo Mayers
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
- APHA Veterinary Investigation Centre Starcross, Exeter, UK
| | - Saumya S. Thomas
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
| | | | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency, New Haw, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency, New Haw, UK
| |
Collapse
|
4
|
Ross CS, Sutton D, Skinner P, Mahmood S, Wynne F, Londt B, Fuller CM, Mayers J, Nunez A, Hicks DJ, Brookes SM, Banyard AC, Brown IH. Comparative pathogenesis of two genotype VI.2 avian paramyxovirus type-1 viruses (APMV-1) in pheasants, partridges and chickens. Avian Pathol 2023; 52:36-50. [PMID: 36205531 DOI: 10.1080/03079457.2022.2133680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Newcastle disease (ND) is caused by virulent forms of avian paramyxovirus-1 (APMV-1) and is an economically important disease of poultry world-wide. Pigeon paramyxovirus 1 (PPMV-1), a sub-group of APMV-1 is endemic in Columbiformes and can cause infections of poultry. An outbreak of ND in partridges in Scotland, UK, in 2006 (APMV-1/partridge/UK(Scotland)/7575/06) was identified as a class II, genotype VI.2.1.1.2.1, more commonly associated with PPMV-1. It has been hypothesized that game birds may be a route of transmission into commercial poultry settings due to the semi-feral rearing system, which potentially brings them into contact with both wild-birds and poultry species. Therefore, the pathogenesis and transmission of APMV-1/partridge/UK(Scotland)/7575/06 in game birds and chickens was investigated, and compared to a contemporary PPMV-1 isolate, PPMV-1/pigeon/UK/015874/15. Viral shedding and seroconversion profiles demonstrated that pheasants were susceptible to infection with APMV-1/partridge/UK(Scotland)/7575/06 with limited clinical signs observed although they were able to excrete and transmit virus. In contrast, partridges and pheasants showed limited infection with PPMV-1/pigeon/UK/015874/15, causing mild clinical disease. Chickens, however, were productively infected and were able to transmit virus in the absence of clinical signs. From the data, it can be deduced that whilst game birds may play a role in the transmission and epidemiology of genotype VI.2 APMV-1 viruses, the asymptomatic nature of circulation within these species precludes evaluation of natural infection by clinical surveillance. It therefore remains a possibility that genotype VI.2 APMV-1 infection in game birds has the potential for asymptomatic circulation and remains a potential threat to avian production systems.RESEARCH HIGHLIGHTS Demonstration of infection of game birds with Pigeon paramyxovirus-1 (PPMV-1).There are differing dynamics of infection between different game bird species.Differing dynamics of infection between different PPMV-1 isolates and genotypes in game birds and chickens.
Collapse
Affiliation(s)
- Craig S Ross
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - David Sutton
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Paul Skinner
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Sahar Mahmood
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | | | - Brandon Londt
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK
| | - Chad M Fuller
- School of Biological Sciences, University of West Sussex, Falmer, UK
| | - Jo Mayers
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | | | | | | | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Addlestone, UK.,Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, UK.,School of Biological Sciences, University of West Sussex, Falmer, UK
| | - Ian H Brown
- Animal and Plant Health Agency (APHA), Addlestone, UK
| |
Collapse
|
5
|
Abstract
The 2016–17 European outbreak of H5N8 HPAIV (Clade 2.3.4.4b) affected a wider range of avian species than the previous H5N8 outbreak (2014–15), including an incursion of H5N8 HPAIV into gamebirds in England. Natural infection of captive-reared pheasants (Phasianus colchicus) led to variable disease presentation; clinical signs included ruffled feathers, reluctance to move, bright green faeces, and/or sudden mortality. Several birds exhibited neurological signs (nystagmus, torticollis, ataxia). Birds exhibiting even mild clinical signs maintained substantial levels of virus replication and shedding, with preferential shedding via the oropharyngeal route. Gross pathology was consistent with HPAIV, in gallinaceous species but diphtheroid plaques in oropharyngeal mucosa associated with necrotising stomatitis were novel but consistent findings. However, minimal or modest microscopic pathological lesions were detected despite the systemic dissemination of the virus. Serology results indicated differences in the timeframe of exposure for each case (n = 3). This supported epidemiological conclusions confirming that the movement of birds between sites and other standard husbandry practices with limited hygiene involved in pheasant rearing (including several fomite pathways) contributed to virus spread between premises.
Collapse
|
6
|
Mansour SMG, ElBakrey RM, Mohamed FF, Hamouda EE, Abdallah MS, Elbestawy AR, Ismail MM, Abdien HMF, Eid AAM. Avian Paramyxovirus Type 1 in Egypt: Epidemiology, Evolutionary Perspective, and Vaccine Approach. Front Vet Sci 2021; 8:647462. [PMID: 34336965 PMCID: PMC8320000 DOI: 10.3389/fvets.2021.647462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Avian orthoavulavirus 1, formerly known as avian paramyxovirus type-1 (APMV-1), infects more than 250 different species of birds. It causes a broad range of clinical diseases and results in devastating economic impact due to high morbidity and mortality in addition to trade restrictions. The ease of spread has allowed the virus to disseminate worldwide with subjective virulence, which depends on the virus strain and host species. The emergence of new virulent genotypes among global epizootics, including those from Egypt, illustrates the time-to-time genomic alterations that lead to simultaneous evolution of distinct APMV-1 genotypes at different geographic locations across the world. In Egypt, the Newcastle disease was firstly reported in 1947 and continued to occur, despite rigorous prophylactic vaccination, and remained a potential threat to commercial and backyard poultry production. Since 2005, many researchers have investigated the nature of APMV-1 in different outbreaks, as they found several APMV-1 genotypes circulating among various species. The unique intermingling of migratory, free-living, and domesticated birds besides the availability of frequently mobile wild birds in Egypt may facilitate the evolution power of APMV-1 in Egypt. Pigeons and waterfowls are of interest due to their inclusion in Egyptian poultry industry and their ability to spread the infection to other birds either by presence of different genotypes (as in pigeons) or by harboring a clinically silent disease (as in waterfowl). This review details (i) the genetic and pathobiologic features of APMV-1 infections in Egypt, (ii) the epidemiologic and evolutionary events in different avian species, and (iii) the vaccine applications and challenges in Egypt.
Collapse
Affiliation(s)
- Shimaa M G Mansour
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham M ElBakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Fakry F Mohamed
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Esraa E Hamouda
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona S Abdallah
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Mahmoud M Ismail
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hanan M F Abdien
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Amal A M Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Chang H, Feng S, Wang Y, Li F, Su Q, Wang B, Du J, He H. Isolation and Pathogenic Characterization of Pigeon Paramyxovirus Type 1 via Different Inoculation Routes in Pigeons. Front Vet Sci 2021; 7:569901. [PMID: 33681314 PMCID: PMC7925627 DOI: 10.3389/fvets.2020.569901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/28/2020] [Indexed: 11/19/2022] Open
Abstract
Pigeon paramyxovirus type I (PPMV-1) causes regular outbreaks in pigeons and even poses a pandemic threat among chickens and other birds. The birds infected with PPMV-1 mainly show a pathological damage in the respiratory system, digestive system, and nervous system. However, there were few reports on the efficiency of the virus entering the host via routes of different systems. In the present study, a PPMV-1 strain was obtained from a dead wild pigeon in 2016 in Beijing, China. The mean death time (MDT) and the intracerebral pathogenicity (ICPI) of our isolate showed medium virulence. Phylogenetic analysis based on F gene sequence showed that the isolate belonged to subgenotype VIb, class II, which dominated in China in recent years. Then, we evaluated the infection efficiency of different routes. Pigeons were randomly divided into five groups of six as follows: intracephalic (IC), intranasal (IN), and intraoral (IO) infection routes, cohabitation infection (CO), and negative control (N negative). All pigeons were inoculated with 100 μl·106 EID50 PPMV-1 virus. After infection, pathological lesions, virus shedding, body weight change, survival rate, and tissue tropism were tested to compare the efficiency of the different infected routes. The mortality of groups IC, IN, IO, and CO were 100, 66.7, 50, and 33.3%, respectively. Weight loss in group IC was higher than the other groups, followed by groups IN and IO. The lesions observed in PPMV-1-infected pigeons were severe, especially in the lung and intestine in group IC. Viral shedding was observed from 2 dpi in groups IC and IN, but the shedding rate was higher in group IN than group IC. The longest period was in group CO. Tissue tropism experiment showed that our isolate has a wide range of tissue distribution, and the virus titer in the heart and intestine of group IC and in the brain of group IN was higher. Our data may help us to evaluate the risk of transmission of PPMV-1.
Collapse
Affiliation(s)
- Han Chang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shengyong Feng
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yutian Wang
- Department of Microbiology, Beijing General Station of Animal Husbandry, Beijing, China
| | - Fuhuang Li
- Department of Microbiology, Beijing General Station of Animal Husbandry, Beijing, China
| | - Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Du
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Molecular and biological characterization of the immunological potency of Newcastle disease virus oil emulsion-inactivated vaccines prepared from field isolate obtained from vaccinated chickens outbreak. Braz J Microbiol 2019; 51:815-826. [PMID: 31840214 DOI: 10.1007/s42770-019-00203-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to characterize the immunological parameters of chickens vaccinated with two formulated inactivated vaccines, water in oil (WO) and water in oil in water (WOW), prepared from velogenic Newcastle disease virus (vNDV) genotype VIIj isolated from outbreak among vaccinated chickens. Six groups (G1-G6) of commercial broiler chickens were established (n = 20). The G1-G3 were received homologous (WO and WOW) and heterologous (LaSota) inactivated vaccines, respectively. The G4 was vaccinated with live heterologous (LaSota) vaccine, while G5 and G6 were kept as control positive and control negative non-vaccinated groups. The antibody titers were measured against vNDV and LaSota antigens using hemagglutination inhibition (HI) test, the cytokine gene expressions of IFNγ, IL1β, IL4, IL6, IL8, and IL18 were quantified using real-time RT-PCR, and the virus shedding was titrated on chicken embryo fibroblast cells after challenging by vNDV. The classical clinical signs and 100% mortality were observed only in G5 after vNDV challenging. The highest HI titers were detected in G1, G2, and G3 using NDV/168 antigen with no significant differences among them. These groups showed higher HI titer than G4 (2-4log2). Cytokine gene expression of IFNγ, IL1, IL6, IL8, and IL18 were significantly downregulated in vaccinated chickens with upregulation of IL4 than non-vaccinated challenge group. Viral shedding titers were significantly (0.0001, p ≤ 0.001) reduced in all samples form vaccinated chickens. In conclusion, the prepared vaccines produced highly efficient immunological responses and could be used for controlling the NDV infection.
Collapse
|
9
|
Sutton DA, Allen DP, Fuller CM, Mayers J, Mollett BC, Londt BZ, Reid SM, Mansfield KL, Brown IH. Development of an avian avulavirus 1 (AAvV-1) L-gene real-time RT-PCR assay using minor groove binding probes for application as a routine diagnostic tool. J Virol Methods 2018; 265:9-14. [PMID: 30579921 DOI: 10.1016/j.jviromet.2018.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/12/2018] [Accepted: 12/01/2018] [Indexed: 01/23/2023]
Abstract
Newcastle disease is a devastating disease of poultry caused by Newcastle disease virus (NDV), a virulent form of avian avulavirus 1 (AAvV-1). A rapid, sensitive and specific means for the detection of NDV is fundamental for the control of this notifiable transboundary virus. Although several real-time RT-PCR assays exist for the detection of AAvV-1, diagnostic sensitivity and specificities can be sub-optimal. In this study, we describe a modification to an existing AAvV-1 l-gene RT-PCR screening assay, where the original probe set was replaced with minor groove binding (MGB) probes, to create the MGB l-gene assay. The diagnostic sensitivity and specificity of this assay was evaluated against a broad panel of both Class I and Class II AAvV-1 viruses of diverse and representative lineages/genotypes in both clinical samples and amplified viruses, and compared with a number of previously published real-time RT-PCR screening assays for AAvV-1. The MGB l-gene assay outperformed all other assays in this assessment, with enhanced sensitivity and specificity, detecting isolates from a broad range of virus lineages/genotypes (including contemporaneously-circulating strains). The assay has also proved its value for screening original clinical samples for the presence of AAvV-1, thus providing an improved screening assay for routine detection of this notifiable disease agent.
Collapse
Affiliation(s)
- David A Sutton
- Qiagen, Skelton House, Lloyd St N, Manchester M15 6SH, United Kingdom
| | - David P Allen
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Chad M Fuller
- Okanagan National Alliance, 3535 Old Okanagan Highway, Westbank, BC, V4T 3L7, Canada
| | - Jo Mayers
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom.
| | - Benjamin C Mollett
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Brandon Z Londt
- hVivo, Queen Mary BioEnterprises Innovation Centre, 42 New Road, London, E1 2AX, United Kingdom
| | - Scott M Reid
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Karen L Mansfield
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Ian H Brown
- Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
10
|
Sabra M, Dimitrov KM, Goraichuk IV, Wajid A, Sharma P, Williams-Coplin D, Basharat A, Rehmani SF, Muzyka DV, Miller PJ, Afonso CL. Phylogenetic assessment reveals continuous evolution and circulation of pigeon-derived virulent avian avulaviruses 1 in Eastern Europe, Asia, and Africa. BMC Vet Res 2017; 13:291. [PMID: 28950869 PMCID: PMC5615457 DOI: 10.1186/s12917-017-1211-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023] Open
Abstract
Background The remarkable diversity and mobility of Newcastle disease viruses (NDV) includes virulent viruses of genotype VI. These viruses are often referred to as pigeon paramyxoviruses 1 because they are normally isolated and cause clinical disease in birds from the Columbidae family. Genotype VI viruses occasionally infect, and may also cause clinical disease in poultry. Thus, the evolution, current spread and detection of these viruses are relevant to avian health. Results Here, we describe the isolation and genomic characterization of six Egyptian (2015), four Pakistani (2015), and two Ukrainian (2007, 2013) recent pigeon-derived NDV isolates of sub-genotype VIg. These viruses are closely related to isolates from Kazakhstan, Nigeria and Russia. In addition, eight genetically related NDV isolates from Pakistan (2014–2016) that define a new sub-genotype (VIm) are described. All of these viruses, and the ancestral Bulgarian (n = 2) and South Korean (n = 2) viruses described here, have predicted virulent cleavage sites of the fusion protein, and those selected for further characterization have intracerebral pathogenicity index assay values characteristic of NDV of genotype VI (1.31 to 1.48). A validated matrix gene real-time RT-PCR (rRT-PCR) NDV test detect all tested isolates. However, the validated rRT-PCR test that is normally used to identify the virulent fusion gene fails to detect the Egyptian and Ukrainian viruses due to mismatches in primers and probe. A new rapid rRT-PCR test to determine the presence of virulent cleavage sites for viruses from sub-genotypes VIg was developed and evaluated on these and other viruses. Conclusions We describe the almost simultaneous circulation and continuous evolution of genotype VI Newcastle disease viruses in distant locations, suggesting epidemiological connections among three continents. As pigeons are not migratory, this study suggests the need to understand the possible role of human activity in the dispersal of these viruses. Complete genomic characterization identified previously unrecognized genetic diversity that contributes to diagnostic failure and will facilitate future evolutionary studies. These results highlight the importance of conducting active surveillance on pigeons worldwide and the need to update existent rapid diagnostic protocols to detect emerging viral variants and help manage the disease in affected regions. Electronic supplementary material The online version of this article (10.1186/s12917-017-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahmoud Sabra
- Department of Poultry Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.,Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Kiril M Dimitrov
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Iryna V Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA.,National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 83 Pushkinskaya Street, Kharkiv, 61023, Ukraine
| | - Abdul Wajid
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan.,Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Poonam Sharma
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Dawn Williams-Coplin
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Asma Basharat
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Shafqat F Rehmani
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Denys V Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 83 Pushkinskaya Street, Kharkiv, 61023, Ukraine
| | - Patti J Miller
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Claudio L Afonso
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
11
|
Ren S, Xie X, Wang Y, Tong L, Gao X, Jia Y, Wang H, Fan M, Zhang S, Xiao S, Wang X, Yang Z. Molecular characterization of a Class I Newcastle disease virus strain isolated from a pigeon in China. Avian Pathol 2017; 45:408-17. [PMID: 26950543 DOI: 10.1080/03079457.2016.1153036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Constant monitoring is performed to elucidate the role of natural hosts in the ecology of Newcastle disease virus (NDV). In this study, an NDV strain isolated from an asymptomatic pigeon was sequenced and analysed. Results showed that the full-length genomes of this isolate were 15,198 nucleotides with the gene order of 3'-NP-P-M-F-HN-L-5'. This NDV isolate was lentogenic, with an intracerebral pathogenicity index of 0.00 and a mean time of death more than 148 h. The isolate possessed a motif of -(112)E-R-Q-E-R-L(117)- at the F protein cleavage site. In addition, 7 and 13 amino acid substitutions were identified in the functional domains of fusion protein (F) and haemagglutinin-neuraminidase protein (HN) proteins, respectively. Analysis of the amino acids of neutralizing epitopes of F and HN proteins showed 3 and 10 amino acid substitutions, respectively, in the isolate. Phylogenetic analysis classified the isolate into genotype Ib in Class I. This isolate shared high homologies with the NDV strains isolated from wild birds and waterfowl in southern and eastern parts of China from 2005 to 2013. To our knowledge, this study is the first to report a NDV strain isolated from pigeon that belongs to genotype Ib in Class I, rather than to the traditional genotype VI or other sub-genotypes in Class II. This study provides information to elucidate the distribution and evolution of Class I viruses for further NDV prevention.
Collapse
Affiliation(s)
- Shanhui Ren
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Xiumei Xie
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Yanping Wang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Lina Tong
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Xiaolong Gao
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Yanqing Jia
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Haixin Wang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Mengfei Fan
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Shuxia Zhang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Sa Xiao
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Xinglong Wang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| | - Zengqi Yang
- a College of Veterinary Medicine, Northwest A & F University , Yangling , Shaanxi , People's Republic of China
| |
Collapse
|
12
|
Isidoro-Ayza M, Afonso CL, Stanton JB, Knowles S, Ip HS, White CL, Fenton H, Ruder MG, Dolinski AC, Lankton J. Natural Infections With Pigeon Paramyxovirus Serotype 1: Pathologic Changes in Eurasian Collared-Doves ( Streptopelia decaocto) and Rock Pigeons ( Columba livia) in the United States. Vet Pathol 2017; 54:695-703. [PMID: 28382855 DOI: 10.1177/0300985817695782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pigeon paramyxovirus serotype 1 (PPMV-1) is a globally distributed, virulent member of the avian paramyxovirus serotype 1 serogroup that causes mortality in columbiformes and poultry. Following introduction into the United States in the mid-1980s, PPMV-1 rapidly spread causing numerous mortality events in Eurasian collared-doves ( Streptopelia decaocto) (ECDOs) and rock pigeons ( Columba livia) (ROPIs). The investigators reviewed pathological findings of 70 naturally infected, free-ranging columbiforms from 25 different mortality events in the United States. Immunohistochemistry targeting PPMV-1 nucleoprotein was used to determine the tissue distribution of the virus in a subset of 17 birds from 10 of the studied outbreaks. ECDOs (61 birds) and ROPIs (9 birds) were the only species in which PPMV-1-associated disease was confirmed by viral isolation and presence of histologic lesions. Acute to subacute tubulointerstitial nephritis and necrotizing pancreatitis were the most frequent histologic lesions, with immunolabeling of viral antigen in renal tubular epithelial cells and pancreatic acinar epithelium. Lymphoid depletion of bursa of Fabricius and spleen was common, but the presence of viral antigen in these organs was inconsistent among infected birds. Hepatocellular necrosis was occasionally present with immunolabeling of hypertrophic Kupffer cells, and immunopositive eosinophilic intracytoplasmic inclusion bodies were present in hepatocytes of 1 ECDO. Immunopositive lymphocytic choroiditis was present in 1 ECDO, while lymphocytic meningoencephalitis was frequent in ROPIs in absence of immunolabeling. This study demonstrates widespread presence of PPMV-1 antigen in association with histologic lesions, confirming the lethal potential of this virus in these particular bird species.
Collapse
Affiliation(s)
- M Isidoro-Ayza
- 1 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - C L Afonso
- 2 Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
| | - J B Stanton
- 3 Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - S Knowles
- 4 National Wildlife Health Center-US Geological Survey, Madison, WI, USA
| | - H S Ip
- 4 National Wildlife Health Center-US Geological Survey, Madison, WI, USA
| | - C L White
- 4 National Wildlife Health Center-US Geological Survey, Madison, WI, USA
| | - H Fenton
- 5 Southeastern Cooperative Wildlife Disease Study, Athens, GA, USA
| | - M G Ruder
- 5 Southeastern Cooperative Wildlife Disease Study, Athens, GA, USA
| | - A C Dolinski
- 6 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - J Lankton
- 4 National Wildlife Health Center-US Geological Survey, Madison, WI, USA
| |
Collapse
|
13
|
Jeckel S, Wood A, Grant K, Amar C, King SA, Whatmore AM, Koylass M, Anjum M, James J, Welchman DDB. Outbreak of encephalitic listeriosis in red-legged partridges (Alectoris rufa). Avian Pathol 2016; 44:269-77. [PMID: 25921827 DOI: 10.1080/03079457.2015.1042427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An outbreak of neurological disease was investigated in red-legged partridges between 8 and 28 days of age. Clinical signs included torticollis, head tilt and incoordination and over an initial eight day period approximately 30-40 fatalities occurred per day. No significant gross post mortem findings were detected. Histopathological examination of the brain and bacterial cultures followed by partial sequencing confirmed a diagnosis of encephalitis due to Listeria monocytogenes. Further isolates were obtained from follow-up carcasses, environmental samples and pooled tissue samples of newly imported day-old chicks prior to placement on farm. These isolates had the same antibiotic resistance pattern as the isolate of the initial post mortem submission and belonged to the same fluorescent amplified fragment length polymorphism (fAFLP) subtype. This suggested that the isolates were very closely related or identical and that the pathogen had entered the farm with the imported day-old chicks, resulting in disease manifestation in partridges between 8 and 28 days of age. Reports of outbreaks of encephalitic listeriosis in avian species are rare and this is to the best of our knowledge the first reported outbreak in red-legged partridges.
Collapse
Affiliation(s)
- S Jeckel
- a Animal Health and Veterinary Laboratory Agency , Royal Veterinary College , Hawkshead Lane, North Mymms , UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Śmietanka K, Olszewska M, Domańska-Blicharz K, Bocian Ł, Minta Z. Experimental Infection of Different Species of Birds with Pigeon Paramyxovirus Type 1 Virus—Evaluation of Clinical Outcomes, Viral Shedding, and Distribution in Tissues. Avian Dis 2014; 58:523-30. [DOI: 10.1637/10769-011514-reg.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Miller PJ, Haddas R, Simanov L, Lublin A, Rehmani SF, Wajid A, Bibi T, Khan TA, Yaqub T, Setiyaningsih S, Afonso CL. Identification of new sub-genotypes of virulent Newcastle disease virus with potential panzootic features. INFECTION GENETICS AND EVOLUTION 2014; 29:216-29. [PMID: 25445644 DOI: 10.1016/j.meegid.2014.10.032] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/25/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022]
Abstract
Virulent Newcastle disease virus (NDV) isolates from new sub-genotypes within genotype VII are rapidly spreading through Asia and the Middle East causing outbreaks of Newcastle disease (ND) characterized by significant illness and mortality in poultry, suggesting the existence of a fifth panzootic. These viruses, which belong to the new sub-genotypes VIIh and VIIi, have epizootic characteristics and do not appear to have originated directly from other genotype VII NDV isolates that are currently circulating elsewhere, but are related to the present and past Indonesian NDV viruses isolated from wild birds since the 80s. Viruses from sub-genotype VIIh were isolated in Indonesia (2009-2010), Malaysia (2011), China (2011), and Cambodia (2011-2012) and are closely related to the Indonesian NDV isolated in 2007, APMV1/Chicken/Karangasem, Indonesia (Bali-01)/2007. Since 2011 and during 2012 highly related NDV isolates from sub-genotype VIIi have been isolated from poultry production facilities and occasionally from pet birds, throughout Indonesia, Pakistan and Israel. In Pakistan, the viruses of sub-genotype VIIi have replaced NDV isolates of genotype XIII, which were commonly isolated in 2009-2011, and they have become the predominant sub-genotype causing ND outbreaks since 2012. In a similar fashion, the numbers of viruses of sub-genotype VIIi isolated in Israel increased in 2012, and isolates from this sub-genotype are now found more frequently than viruses from the previously predominant sub-genotypes VIId and VIIb, from 2009 to 2012. All NDV isolates of sub-genotype VIIi are approximately 99% identical to each other and are more closely related to Indonesian viruses isolated from 1983 through 1990 than to those of genotype VII, still circulating in the region. Similarly, in addition to the Pakistani NDV isolates of the original genotype XIII (now called sub-genotype XIIIa), there is an additional sub-genotype (XIIIb) that was initially detected in India and Iran. This sub-genotype also appears to have as an ancestor a NDV strain from an Indian cockatoo isolated in 1982. These data suggest the existence of a new panzootic composed of viruses of subgenotype VIIi and support our previous findings of co-evolution of multiple virulent NDV genotypes in unknown reservoirs, e.g. as recorded with the virulent NDV identified in Dominican Republic in 2008. The co-evolution of at least three different sub-genotypes reported here and the apparent close relationship of some of those genotypes from ND viruses isolated from wild birds, suggests that identifying wild life reservoirs may help predict new panzootics.
Collapse
Affiliation(s)
- Patti J Miller
- Southeast Poultry Research Laboratory, Agricultural Research Service-United States Department of Agriculture (USDA), Athens, GA 30605, USA
| | - Ruth Haddas
- Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | - Luba Simanov
- Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | | | - Shafqat Fatima Rehmani
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Abdul Wajid
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Tasra Bibi
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Taseer Ahmad Khan
- Poultry Research Laboratory, Department of Physiology, University of Karachi, Karachi, Pakistan
| | - Tahir Yaqub
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Out Fall Road, Lahore, Pakistan
| | - Surachmi Setiyaningsih
- Department of Infectious Diseases & Veterinary Public Health, Faculty of Veterinary Medicine-Bogor Agricultural University, Jl. Agatis, IPB Dramaga, Bogor 16680, Indonesia
| | - Claudio L Afonso
- Southeast Poultry Research Laboratory, Agricultural Research Service-United States Department of Agriculture (USDA), Athens, GA 30605, USA.
| |
Collapse
|
16
|
Whitehead ML, Roberts V. Backyard poultry: legislation, zoonoses and disease prevention. J Small Anim Pract 2014; 55:487-96. [PMID: 25109514 DOI: 10.1111/jsap.12254] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/19/2014] [Accepted: 06/12/2014] [Indexed: 11/29/2022]
Abstract
In law, backyard poultry are "food-producing animals" and "farmed animals" and are subject to regulations regarding welfare, prescribing, banned procedures, disposal of carcases, feeding bans, notifiable diseases and disease surveillance in addition to those applying to most other pets. Many owners and some veterinary surgeons are unclear about the requirements of these regulations. Backyard poultry are also associated with some different zoonotic disease risks to mammalian pets. Because a high proportion of poultry morbidity and mortality relates to infectious diseases, the health of backyard poultry is amenable to improvement through basic husbandry, biosecurity, hygiene and preventive medicine measures that can be incorporated into a simple "flock-health plan". This article reviews these topics.
Collapse
Affiliation(s)
- M L Whitehead
- Chipping Norton Veterinary Hospital, Chipping Norton, Oxon OX7 5BN
| | | |
Collapse
|
17
|
Genetic diversity of newcastle disease virus in wild birds and pigeons in West Africa. Appl Environ Microbiol 2013; 79:7867-74. [PMID: 24123735 DOI: 10.1128/aem.02716-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In West and Central Africa, virulent Newcastle disease virus (NDV) strains of the recently identified genotypes XIV, XVII, and XVIII are enzootic in poultry, representing a considerable threat to the sector. The increasing number of reports of virulent strains in wild birds at least in other parts of the world raised the question of a potential role of wild birds in the spread of virulent NDV in sub-Saharan Africa as well. We investigated 1,723 asymptomatic birds sampled at live-bird markets and sites important for wild-bird conservation in Nigeria and 19 sick or dead wild birds in Côte d'Ivoire for NDV class I and II. Typical avirulent wild-type genotype I strains were found in wild waterfowl in wetlands in northeastern Nigeria. They were unrelated to vaccine strains, and the involvement of inter- or intracontinental migratory birds in their circulation in the region is suggested. Phylogenetic analyses also revealed that genotype VI strains found in pigeons, including some putative new subgenotype VIh and VIi strains, were introduced on multiple separate occasions in Nigeria. A single virulent genotype XVIII strain was found in a dead wild bird in Côte d'Ivoire, probably as a result of spillover from sick poultry. In conclusion, screening of wild birds and pigeons for NDV revealed the presence a variety of virulent and avirulent strains in West Africa but did not provide strong evidence that wild birds play an important role in the spread of virulent strains in the region.
Collapse
|
18
|
Luo C, Qu H, Ma J, Wang J, Li C, Yang C, Hu X, Li N, Shu D. Genome-wide association study of antibody response to Newcastle disease virus in chicken. BMC Genet 2013; 14:42. [PMID: 23663563 PMCID: PMC3654938 DOI: 10.1186/1471-2156-14-42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 05/06/2013] [Indexed: 11/21/2022] Open
Abstract
Background Since the first outbreak in Indonesia in 1926, Newcastle disease has become one of the most common and contagious bird diseases throughout the world. To date, enhancing host antibody response by vaccination remains the most efficient strategy to control outbreaks of Newcastle disease. Antibody response plays an important role in host resistance to Newcastle disease, and selection for antibody response can effectively improve disease resistance in chickens. However, the molecular basis of the variation in antibody response to Newcastle disease virus (NDV) is not clear. The aim of this study was to detect genes modulating antibody response to NDV by a genome-wide association study (GWAS) in chickens. Results To identify genes or chromosomal regions associated with antibody response to NDV after immunization, a GWAS was performed using 39,833 SNP markers in a chicken F2 resource population derived from a cross between two broiler lines that differed in their resistance. Two SNP effects reached 5% Bonferroni genome-wide significance (P<1.26×10-6). These two SNPs, rs15354805 and rs15355555, were both on chicken (Gallus gallus) chromosome 1 and spanned approximately 600 Kb, from 100.4 Mb to 101.0 Mb. Rs15354805 is in intron 7 of the chicken Roundabout, axon guidance receptor, homolog 2 (ROBO2) gene, and rs15355555 is located about 243 Kb upstream of ROBO2. Rs15354805 explained 5% of the phenotypic variation in antibody response to NDV, post immunization, in chickens. Rs15355555 had a similar effect as rs15354805 because of its linkage disequilibrium with rs15354805 (r2=0.98). Conclusion The region at about 100 Mb from the proximal end of chicken chromosome 1, including the ROBO1 and ROBO2 genes, has a strong effect on the antibody response to the NDV in chickens. This study paves the way for further research on the host immune response to NDV.
Collapse
Affiliation(s)
- Chenglong Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou 510640, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Naveen KA, Singh SD, Kataria JM, Barathidasan R, Dhama K. Detection and differentiation of pigeon paramyxovirus serotype-1 (PPMV-1) isolates by RT-PCR and restriction enzyme analysis. Trop Anim Health Prod 2013; 45:1231-6. [DOI: 10.1007/s11250-013-0352-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2013] [Indexed: 11/28/2022]
|
20
|
Characterization of newcastle disease viruses in wild and domestic birds in Luxembourg from 2006 to 2008. Appl Environ Microbiol 2012; 79:639-45. [PMID: 23160119 DOI: 10.1128/aem.02437-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) is one of the most important viral diseases of birds. Wild birds constitute a natural reservoir of low-virulence viruses, while poultry are the main reservoir of virulent strains. Exchange of virus between these reservoirs represents a risk for both bird populations. Samples from wild and domestic birds collected between 2006 and 2010 in Luxembourg were analyzed for NDV. Three similar avirulent genotype I strains were found in ducks during consecutive years, suggesting that the virus may have survived and spread locally. However, separate introductions cannot be excluded, because no recent complete F gene sequences of genotype I from other European countries are available. Detection of vaccine-like strains in wild waterbirds suggested the spread of vaccine strains, despite the nonvaccination policy in Luxembourg. Among domestic birds, only one chicken was positive for a genotype II strain differing from the LaSota vaccine and exhibiting a so-far-unrecognized fusion protein cleavage site of predicted low virulence. Three genotype VI strains from pigeons were the only virulent strains found. The circulation of NDV in wild and free-ranging domestic birds warrants continuous surveillance because of increased concern that low-virulence wild-bird viruses could become more virulent in domestic populations.
Collapse
|
21
|
Aldous EW, Fuller CM, Ridgeon JH, Irvine RM, Alexander DJ, Brown IH. The evolution of pigeon paramyxovirus type 1 (PPMV-1) in Great Britain: a molecular epidemiological study. Transbound Emerg Dis 2012; 61:134-9. [PMID: 22966870 DOI: 10.1111/tbed.12006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Indexed: 11/30/2022]
Abstract
Newcastle disease (ND), caused by virulent strains of avian paramyxovirus type 1 (APMV-1), is considered throughout the world as one of the most important animal diseases. For over three decades now, there has been a continuing panzootic caused by a variant virulent APMV-1 strain, so-called pigeon paramyxovirus type 1 (PPMV-1), primarily in racing pigeons, which has also spread to wild birds and poultry. PPMV-1 isolations have been made in Great Britain every year since 1983. In this study, we have completed a comparative phylogenetic analysis based on a 374 nucleotide section of the fusion protein gene of 63 isolates of PPMV-1 that were isolated over a 26-year period; 43 of these were sequenced for this study. Phylogenetic analysis of these sequences revealed that all were closely related and placed in the genetic sublineage 4b (VIb), subdivision 4biif.
Collapse
|
22
|
Newcastle disease virus outbreaks: vaccine mismatch or inadequate application? Vet Microbiol 2012; 160:17-22. [PMID: 22655976 DOI: 10.1016/j.vetmic.2012.05.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/01/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
Newcastle disease (ND) is one of the most important diseases of poultry, and may cause devastating losses in the poultry industry worldwide. Its causative agent is Newcastle disease virus (NDV), also known as avian paramyxovirus type 1. Many countries maintain a stringent vaccination policy against ND, but there are indications that ND outbreaks can still occur despite intensive vaccination. It has been argued that this may be due to antigenic divergence between the vaccine strains and circulating field strains. Here we present the complete genome sequence of a highly virulent genotype VII virus (NL/93) obtained from vaccinated poultry during an outbreak of ND in the Netherlands in 1992-1993. Using this strain, we investigated whether the identified genetic evolution of NDV is accompanied by antigenic evolution. In this study we show that a live vaccine that is antigenically adapted to match the genotype VII NL/93 outbreak strain does not provide increased protection compared to a classic genotype II live vaccine. When challenged with the NL/93 strain, chickens vaccinated with a classic vaccine were completely protected against clinical disease and mortality and virus shedding was significantly reduced, even with a supposedly suboptimal vaccine dose. These results suggest that it is not antigenic variation but rather poor flock immunity due to inadequate vaccination practices that may be responsible for outbreaks and spreading of virulent NDV field strains.
Collapse
|
23
|
Abstract
Newcastle disease (ND) is a devastating disease of poultry that has to some extent been neglected by those working in the field in the past 10 to 15 years while attention has been focused on the emergence and spread of highly pathogenic avian influenza caused by a H5N1 subtype virus. During 2000 to 2009 in the European Union (EU) member states, ND viruses virulent for chickens have been detected in wild birds, domesticated pigeons and poultry. Based on these isolations it appears that the epizootic in racing pigeons caused by the variant viruses termed pigeon avian paramyxovirus type 1, which form the genetic group 4b(VIb) first seen in Europe in 1981, continued during 2000 to 2009, and the virus is probably enzootic in racing pigeons in some EU countries. This virus appears to have spread regularly to wild birds, especially those of the Columbidae family, and has been the cause of significant outbreaks in poultry. Other avian paramyxovirus type 1 viruses responsible for ND outbreaks in the EU during 2000 to 2009 have been those from genetic groups 5b(VIIb) and 5d(VIId). There is evidence that the former may well represent spread from a wild bird source and these viruses have also been isolated from wild birds, while the latter represents continuing spread from the East. Future legislation or recommendations aimed at the control and eradication of ND will need to encompass these three sources of virulent ND viruses.
Collapse
Affiliation(s)
- Dennis J Alexander
- Virology Department, Animal Health and Veterinary Laboratories Agency Weybridge, Addlestone, Surrey, UK.
| |
Collapse
|
24
|
Barnett J, Booth P, Arrow M, Garcia-Rueda C, Irvine RM. Spinal aspergillosis in pheasants. Vet Rec 2011; 169:449-50. [DOI: 10.1136/vr.d6805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | - Mark Arrow
- AHVLA - Pydar House; Pydar Street Truro TR1 2XD
| | | | | |
Collapse
|
25
|
Dundon WG, Heidari A, Fusaro A, Monne I, Beato MS, Cattoli G, Koch G, Starick E, Brown IH, Aldous EW, Briand FX, Le Gall-Reculé G, Jestin V, Jørgensen PH, Berg M, Zohari S, Metreveli G, Munir M, Ståhl K, Albina E, Hammoumi S, Gil P, de Almeida RS, Smietanka K, Domańska-Blicharz K, Minta Z, Van Borm S, van den Berg T, Martin AM, Barbieri I, Capua I. Genetic data from avian influenza and avian paramyxoviruses generated by the European network of excellence (EPIZONE) between 2006 and 2011--review and recommendations for surveillance. Vet Microbiol 2011; 154:209-21. [PMID: 21925809 DOI: 10.1016/j.vetmic.2011.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/13/2011] [Accepted: 08/17/2011] [Indexed: 01/29/2023]
Abstract
Since 2006, the members of the molecular epidemiological working group of the European "EPIZONE" network of excellence have been generating sequence data on avian influenza and avian paramyxoviruses from both European and African sources in an attempt to more fully understand the circulation and impact of these viruses. This review presents a timely update on the epidemiological situation of these viruses based on sequence data generated during the lifetime of this project in addition to data produced by other groups during the same period. Based on this information and putting it all into a European context, recommendations for continued surveillance of these important viruses within Europe are presented.
Collapse
Affiliation(s)
- William G Dundon
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dortmans JCFM, Koch G, Rottier PJM, Peeters BPH. A comparative infection study of pigeon and avian paramyxovirus type 1 viruses in pigeons: evaluation of clinical signs, virus shedding and seroconversion. Avian Pathol 2011; 40:125-30. [PMID: 21500031 DOI: 10.1080/03079457.2010.542131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pathogenesis of pigeon paramyxovirus type 1 (PPMV-1) isolate AV324/96 and of its recombinant derivative, rgAV324, was studied in pigeons. For comparison, the virulent chicken virus FL-Herts, which is a recombinant derivative of strain Herts/33, was also included. After inoculation by the combined intraocular, intranasal and intratracheal route, clinical signs, virus shedding and serological responses were examined. Clinical signs were observed only in the FL-Herts-infected group. All virus-inoculated pigeons had positive tracheal swabs until 5 days post infection. However, only the AV324/96-infected and rgAV324-infected birds, and not the FL-Herts-infected birds, shed virus in the cloaca. The AV324/96-infected pigeons showed higher mean antibody titres than the rgAV324-infected birds, whereas the antibody titres of the FL-Herts-infected group were rather low. The results show that the pigeon strain AV324 is not virulent for pigeons, but underlines the potential risk of poultry becoming infected by PPMV-1 shed by non-symptomatic pigeons.
Collapse
Affiliation(s)
- J C F M Dortmans
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | | | | | | |
Collapse
|
27
|
Irvine RM, Aldous E, Fuller C, Alexander D, Brown IH, Davis C. Newcastle disease: a continuing threat to UK poultry. Vet Rec 2011; 168:673. [DOI: 10.1136/vr.d3899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Richard M. Irvine
- Avian Virology and Mammalian Influenza Group; EU/OIE/FAO International Reference Laboratory for Avian Influenza and Newcastle Disease; AHVLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - Elizabeth Aldous
- Avian Virology and Mammalian Influenza Group; EU/OIE/FAO International Reference Laboratory for Avian Influenza and Newcastle Disease; AHVLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - Chad Fuller
- Avian Virology and Mammalian Influenza Group; EU/OIE/FAO International Reference Laboratory for Avian Influenza and Newcastle Disease; AHVLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - Dennis Alexander
- Avian Virology and Mammalian Influenza Group; EU/OIE/FAO International Reference Laboratory for Avian Influenza and Newcastle Disease; AHVLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - Ian H. Brown
- Avian Virology and Mammalian Influenza Group; EU/OIE/FAO International Reference Laboratory for Avian Influenza and Newcastle Disease; AHVLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - Chris Davis
- Game and Wildlife Conservation Trust, Burgate Manor; Fordingbridge Hampshire SP6 1EF
| |
Collapse
|
28
|
Aldous EW, Mynn JK, Irvine RM, Alexander DJ, Brown IH. A molecular epidemiological investigation of avian paramyxovirus type 1 viruses isolated from game birds of the order Galliformes. Avian Pathol 2011; 39:519-24. [PMID: 21154063 DOI: 10.1080/03079457.2010.530938] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The partial (370 nucleotides) fusion gene sequences of 55 avian paramyxovirus type 1 (APMV-1) isolates were obtained. Included were 41 published sequences, of which 16 were from strains of APMV-1 of previously determined lineages included as markers for the data analysed and 25 were from APMV-1 viruses isolated from game birds of the order Galliformes. In addition, we sequenced a further 14 game bird isolates obtained from the repository at the Veterinary Laboratories Agency. The game bird isolates had been obtained from 17 countries, and spanned four decades. Earlier studies have shown that class II APMV-1 viruses can be divided into at least 15 lineages and sub-lineages. Phylogenetic analysis revealed that the 39 game bird isolates were distributed across 12 of these sub-lineages. We conclude that no single lineage of Newcastle disease viruses appears to be prevalent in game birds, and the isolates obtained from these hosts reflected the prevailing, both geographically and temporally, viruses in poultry, pigeons or wild birds.
Collapse
Affiliation(s)
- E W Aldous
- Virology Department, Veterinary Laboratories Agency Weybridge, Addlestone, Surrey, UK.
| | | | | | | | | |
Collapse
|
29
|
Irvine RM, Cox WJ, Ceeraz V, Reid SM, Ellis RJ, Jones RM, Errington J, Wood AM, McVicar C, Clark MI. Detection of IBV QX in commercial broiler flocks in the UK. Vet Rec 2010; 167:877-9. [DOI: 10.1136/vr.c6692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- R. M. Irvine
- Avian Virology and Mammalian Influenza Group; VLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
- VLA - Penrith, Merrythought, Calthwaite; Penrith Cumbria CA11 9RR
| | - W. J. Cox
- Avian Virology and Mammalian Influenza Group; VLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - V. Ceeraz
- Avian Virology and Mammalian Influenza Group; VLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - S. M. Reid
- Avian Virology and Mammalian Influenza Group; VLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - R. J. Ellis
- VLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - R. M. Jones
- VLA - Weybridge; New Haw Addlestone Surrey KT15 3NB
| | - J. Errington
- VLA - Penrith, Merrythought, Calthwaite; Penrith Cumbria CA11 9RR
| | - A. M. Wood
- VLA - Lasswade; International Research Centre; Pentland Science Park, Bush Loan Penicuik Midlothian EH26 0PZ
| | - C. McVicar
- Minster Veterinary Practice; College Road, Sutton Bonington Loughborough Leicestershire LE12 5RA
| | - M. I. Clark
- Minster Veterinary Practice; College Road, Sutton Bonington Loughborough Leicestershire LE12 5RA
| |
Collapse
|
30
|
Dortmans JCFM, Rottier PJM, Koch G, Peeters BPH. Passaging of a Newcastle disease virus pigeon variant in chickens results in selection of viruses with mutations in the polymerase complex enhancing virus replication and virulence. J Gen Virol 2010; 92:336-45. [PMID: 20965986 DOI: 10.1099/vir.0.026344-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some Newcastle disease virus (NDV) variants isolated from pigeons (pigeon paramyxovirus type 1; PPMV-1) do not show their full virulence potential for domestic chickens but may become virulent upon spread in these animals. In this study we examined the molecular changes responsible for this gain of virulence by passaging a low-pathogenic PPMV-1 isolate in chickens. Complete genome sequencing of virus obtained after 1, 3 and 5 passages showed the increase in virulence was not accompanied by changes in the fusion protein--a well known virulence determinant of NDV--but by mutations in the L and P replication proteins. The effect of these mutations on virulence was confirmed by means of reverse genetics using an infectious cDNA clone. Acquisition of three amino acid mutations, two in the L protein and one in the P protein, significantly increased virulence as determined by intracerebral pathogenicity index tests in day-old chickens. The mutations enhanced virus replication in vitro and in vivo and increased the plaque size in infected cell culture monolayers. Furthermore, they increased the activity of the viral replication complex as determined by an in vitro minigenome replication assay. Our data demonstrate that PPMV-1 replication in chickens results in mutations in the polymerase complex rather than the viral fusion protein, and that the virulence level of pigeon paramyxoviruses is directly related to the activity of the viral replication complex.
Collapse
Affiliation(s)
- J C F M Dortmans
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | | | | | | |
Collapse
|
31
|
Salmonella Typhimurium and Salmonella Enteritidis in England: costs to patients, their families, and primary and community health services of the NHS. Epidemiol Infect 2010; 139:742-53. [DOI: 10.1017/s0950268810001615] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYThis is the first study comparing societal costs of acute illness with Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE) in the UK. It included the cost and severity of the illness and explored the impact of each Salmonella serovar on the patients, their families, the NHS, and the wider economy. The study ascertained confirmed cases of ST and SE between July and November 2008. The mean costs per case were £1282 (ST) and £993 (SE). The indirect costs associated with the work-time lost by the case, parents, or carers were £409 (ST) and £228 (SE); this difference was statistically significant. The aggregate cost of ST and SE identified using laboratory test results for the UK as a whole was estimated as £6.5 million. Work-time lost and caring activities are cost categories that are not frequently investigated within the infectious intestinal disease literature, although they represent an important societal cost.
Collapse
|
32
|
Development of an L gene real-time reverse-transcription PCR assay for the detection of avian paramyxovirus type 1 RNA in clinical samples. Arch Virol 2010; 155:817-23. [PMID: 20428904 DOI: 10.1007/s00705-010-0632-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
A real-time reverse-transcription PCR (rRT-PCR) that targets a region of the polymerase (L) gene was developed to detect all known lineages of avian paramyxovirus type 1 (APMV-1), also known as Newcastle disease virus (NDV). A panel of 23 viruses representing the current known phylogenetic diversity of the APMV-1 population with a bias towards the more recent European strains, which had been grown in embryonated fowls' eggs, were tested. A range of positive and negative clinical samples (n = 350) provided by the National Reference Laboratory and International Reference Laboratory at VLA Weybridge were also tested. Positive clinical material included samples considered representative of lineages 3, 4 and 5 obtained from chickens, ducks, pigeons and partridges. The negative sample population was obtained from chickens, turkeys and ducks. The APMV-1 L gene rRT-PCR gave high relative sensitivity (96.05%) and specificity (98.18%) when compared with virus isolation in embryonated fowls' eggs. It is proposed that this assay could provide a first-line screening tool for the detection of APMV-1 in clinical samples.
Collapse
|