1
|
Stange K, Schumacher T, Miersch C, Whelan R, Klünemann M, Röntgen M. Methionine Sources Differently Affect Production of Reactive Oxygen Species, Mitochondrial Bioenergetics, and Growth of Murine and Quail Myoblasts In Vitro. Curr Issues Mol Biol 2023; 45:2661-2680. [PMID: 37185698 PMCID: PMC10136669 DOI: 10.3390/cimb45040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
An optimal supply of L-methionine (L-Met) improves muscle growth, whereas over-supplementation exerts adverse effects. To understand the underlying mechanisms, this study aims at exploring effects on the growth, viability, ROS production, and mitochondrial bioenergetics of C2C12 (mouse) and QM7 (quail) myoblasts additionally supplemented (100 or 1000 µM) with L-Met, DL-methionine (DL-Met), or DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA). In both cell lines, all the supplements stimulated cell growth. However, in contrast to DL-Met, 1000 µM of L-Met (C2C12 cells only) or DL-HMTBA started to retard growth. This negative effect was stronger with DL-HMTBA and was accompanied by significantly elevated levels of extracellular H2O2, an indicator for OS, in both cell types. In addition, oversupplementation with DL-HMTBA (1000 µM) induced adaptive responses in mitochondrial bioenergetics, including reductions in basal (C2C12 and QM7) and ATP-synthase-linked (C2C12) oxygen consumption, maximal respiration rate, and reserve capacity (QM7). Only QM7 cells switched to nonmitochondrial aerobic glycolysis to reduce ROS production. In conclusion, we found a general negative effect of methionine oversupplementation on cell proliferation. However, only DL-HMTBA-induced growth retardation was associated with OS and adaptive, species-specific alterations in mitochondrial functionality. OS could be better compensated by quail cells, highlighting the role of species differences in the ability to cope with methionine oversupplementation.
Collapse
Affiliation(s)
- Katja Stange
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Toni Schumacher
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Claudia Miersch
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Nutritional Physiology and Dietetics, International University of Applied Sciences (IU), Juri-Gagarin-Ring 152, 99084 Erfurt, Germany
| | - Rose Whelan
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Martina Klünemann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Monika Röntgen
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
2
|
Lerin C, Collado MC, Isganaitis E, Arning E, Wasek B, Demerath EW, Fields DA, Bottiglieri T. Revisiting One-Carbon Metabolites in Human Breast Milk: Focus on S-Adenosylmethionine. Nutrients 2023; 15:282. [PMID: 36678154 PMCID: PMC9863976 DOI: 10.3390/nu15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.
Collapse
Affiliation(s)
- Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, The University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - David A. Fields
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| |
Collapse
|
3
|
Bertolo RF. The multifactorial consequences of sulfur amino acid deficiency. Am J Clin Nutr 2021; 114:839-840. [PMID: 34113964 DOI: 10.1093/ajcn/nqab197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Zambrana LE, Weber AM, Borresen EC, Zarei I, Perez J, Perez C, Rodríguez I, Becker-Dreps S, Yuan L, Vilchez S, Ryan EP. Daily Rice Bran Consumption for 6 Months Influences Serum Glucagon-Like Peptide 2 and Metabolite Profiles without Differences in Trace Elements and Heavy Metals in Weaning Nicaraguan Infants at 12 Months of Age. Curr Dev Nutr 2021; 5:nzab101. [PMID: 34514286 PMCID: PMC8421236 DOI: 10.1093/cdn/nzab101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Environmental enteric dysfunction (EED) is associated with chronic gut inflammation affecting nutrient absorption and development of children, primarily in low- and middle-income countries. Several studies have shown that rice bran (RB) supplementation provides nutrients and modulates gut inflammation, which may reduce risk for undernutrition. OBJECTIVE The aim was to evaluate the effect of daily RB dietary supplementation for 6 mo on serum biomarkers in weaning infants and associated changes in serum and stool metabolites. METHODS A 6-mo randomized-controlled dietary intervention was conducted in a cohort of weaning 6-mo-old infants in León, Nicaragua. Anthropometric indices were obtained at 6, 8, and 12 mo. Serum and stool ionomics and metabolomics were completed at the end of the 6-mo intervention using inductively coupled plasma MS and ultra-high performance LC-tandem MS. The ɑ1-acid glycoprotein, C-reactive protein, and glucagon-like peptide 2 (GLP-2) serum EED biomarkers were measured by ELISA. RESULTS Twenty-four infants in the control group and 23 in the RB group successfully completed the 6-mo dietary intervention with 90% dietary compliance. RB participants had higher concentrations of GLP-2 as compared with control participants at 12 mo [median (IQR): 743.53 (380.54) pg/mL vs. 592.50 (223.59) pg/mL; P = 0.04]. Metabolite profiles showed significant fold differences of 39 serum metabolites and 44 stool metabolites from infants consuming RB compared with control, and with significant metabolic pathway enrichment scores of 4.7 for the tryptophan metabolic pathway, 5.7 for polyamine metabolism, and 5.7 for the fatty acid/acylcholine metabolic pathway in the RB group. No differences were detected in serum and stool trace elements or heavy metals following daily RB intake for 6 mo. CONCLUSIONS RB consumption influences a suite of metabolites associated with growth promotion and development, while also supporting nutrient absorption as measured by changes in serum GLP-2 in Nicaraguan infants. This clinical trial was registered at https://clinicaltrials.gov as NCT02615886.
Collapse
Affiliation(s)
- Luis E Zambrana
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Annika M Weber
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Iman Zarei
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Johann Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Claudia Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Iker Rodríguez
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Biotic Products Development Center, National Polytechnic Institute, Morelos, Mexico
| | - Sylvia Becker-Dreps
- Departments of Family Medicine and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Dinesh OC, Kankayaliyan T, Rademacher M, Tomlinson C, Bertolo RF, Brunton JA. Neonatal Piglets Can Synthesize Adequate Creatine, but Only with Sufficient Dietary Arginine and Methionine, or with Guanidinoacetate and Excess Methionine. J Nutr 2021; 151:531-539. [PMID: 33437999 DOI: 10.1093/jn/nxaa369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Suckling piglets synthesize most of their creatine requirement, which consumes substantial amounts of arginine in order to synthesize guanidinoacetic acid (GAA) and methionine in order to transmethylate GAA to creatine. OBJECTIVES To determine whether supplemental GAA or creatine spare arginine and/or methionine for protein synthesis and, if GAA is supplemented, whether excess methionine is needed for conversion to creatine. METHODS Yucatan miniature piglets (9-11 days old; both sexes) were fed 1 of 5 elemental diets for 5 days: 1) low arginine (0.3 g·kg-1·d-1) and low methionine (0.20 g·kg-1·d-1; Base); 2) Base plus GAA (0.093 g·kg-1·d-1; +GAA); 3) Base plus GAA plus excess methionine (0.5 g·kg-1·d-1; +GAA/Met); 4) Base plus creatine (0.12 g·kg-1·d-1; +Cre); or 5) excess arginine (1.8 g·kg-1·d-1) and excess methionine (+Arg/Met). Isotope tracers were infused to determine whole-body GAA, creatine, and protein synthesis; tissues were analyzed for creatine synthesis enzymes and metabolite concentrations. Data were analyzed by 1-way ANOVA. RESULTS : GAA and creatine syntheses were 115% and 32% higher, respectively, with the +Arg/Met diet (P < 0.0001), in spite of 33% lower renal L-arginine: glycine amidinotransferase activity (P < 0.0001) compared to Base, suggesting substrate availability dictates synthesis rather than enzyme capacity. GAA or creatine supplementation reduced arginine conversion to creatine by 46% and 43%, respectively (P < 0.01), but did not spare amino acids for whole-body protein synthesis, suggesting that limited amino acids were diverted to protein at the expense of creatine synthesis. The +GAA/Met diet led to higher creatine concentrations in the kidney (2.6-fold) and liver (7.6-fold) than the +GAA diet (P < 0.01), suggesting excess methionine is needed for GAA conversion to creatine. CONCLUSIONS Piglets are capable of synthesizing sufficient creatine from the precursor amino acids arginine and methionine, or from GAA plus methionine.
Collapse
Affiliation(s)
- O Chandani Dinesh
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | | | - Meike Rademacher
- Animal Nutrition, Evonik Nutrition & Care GmbH (Gesellschaft mit beschränkter Haftung), Hanau, Germany
| | - Christopher Tomlinson
- Departments of Paediatrics and Nutritional Sciences, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robert F Bertolo
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | - Janet A Brunton
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| |
Collapse
|
6
|
Ligthart-Melis GC, Engelen MPKJ, Simbo SY, Ten Have GAM, Thaden JJ, Cynober L, Deutz NEP. Metabolic Consequences of Supplemented Methionine in a Clinical Context. J Nutr 2020; 150:2538S-2547S. [PMID: 33000166 DOI: 10.1093/jn/nxaa254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/01/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022] Open
Abstract
The central position of methionine (Met) in protein metabolism indicates the importance of this essential amino acid for growth and maintenance of lean body mass. Therefore, Met might be a tempting candidate for supplementation. However, because Met is also the precursor of homocysteine (Hcy), a deficient intake of B vitamins or excessive intake of Met may result in hyperhomocysteinemia (HHcy), which is a risk factor for cardiovascular disease. This review discusses the evidence generated in preclinical and clinical studies on the importance and potentially harmful effects of Met supplementation and elaborates on potential clinical applications of supplemental Met with reference to clinical studies performed over the past 20 y. Recently acquired knowledge about the NOAEL (no observed adverse effect level) of 46.3 mg · kg-1 · d-1 and the LOAEL (lowest observed adverse effect level) of 91 mg · kg-1 · d-1 of supplemented Met will guide the design of future studies to further establish the role of Met as a potential (safe) candidate for nutritional supplementation in clinical applications.
Collapse
Affiliation(s)
- Gerdien C Ligthart-Melis
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Sunday Y Simbo
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Gabrie A M Ten Have
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - John J Thaden
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Luc Cynober
- Department of Clinical Chemistry, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
The Effects of Maternal and Postnatal Dietary Methyl Nutrients on Epigenetic Changes that Lead to Non-Communicable Diseases in Adulthood. Int J Mol Sci 2020; 21:ijms21093290. [PMID: 32384688 PMCID: PMC7246552 DOI: 10.3390/ijms21093290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
The risk for non-communicable diseases in adulthood can be programmed by early nutrition. This programming is mediated by changes in expression of key genes in various metabolic pathways during development, which persist into adulthood. These developmental modifications of genes are due to epigenetic alterations in DNA methylation patterns. Recent studies have demonstrated that DNA methylation can be affected by maternal or early postnatal diets. Because methyl groups for methylation reactions come from methionine cycle nutrients (i.e., methionine, choline, betaine, folate), deficiency or supplementation of these methyl nutrients can directly change epigenetic regulation of genes permanently. Although many studies have described the early programming of adult diseases by maternal and infant nutrition, this review discusses studies that have associated early dietary methyl nutrient manipulation with direct effects on epigenetic patterns that could lead to chronic diseases in adulthood. The maternal supply of methyl nutrients during gestation and lactation can alter epigenetics, but programming effects vary depending on the timing of dietary intervention, the type of methyl nutrient manipulated, and the tissue responsible for the phenotype. Moreover, the postnatal manipulation of methyl nutrients can program epigenetics, but more research is needed on whether this approach can rescue maternally programmed offspring.
Collapse
|
8
|
Giallourou N, Fardus-Reid F, Panic G, Veselkov K, McCormick BJJ, Olortegui MP, Ahmed T, Mduma E, Yori PP, Mahfuz M, Svensen E, Ahmed MMM, Colston JM, Kosek MN, Swann JR. Metabolic maturation in the first 2 years of life in resource-constrained settings and its association with postnatal growths. SCIENCE ADVANCES 2020; 6:eaay5969. [PMID: 32284996 PMCID: PMC7141821 DOI: 10.1126/sciadv.aay5969] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/14/2020] [Indexed: 05/10/2023]
Abstract
Malnutrition continues to affect the growth and development of millions of children worldwide, and chronic undernutrition has proven to be largely refractory to interventions. Improved understanding of metabolic development in infancy and how it differs in growth-constrained children may provide insights to inform more timely, targeted, and effective interventions. Here, the metabolome of healthy infants was compared to that of growth-constrained infants from three continents over the first 2 years of life to identify metabolic signatures of aging. Predictive models demonstrated that growth-constrained children lag in their metabolic maturity relative to their healthier peers and that metabolic maturity can predict growth 6 months into the future. Our results provide a metabolic framework from which future nutritional programs may be more precisely constructed and evaluated.
Collapse
Affiliation(s)
- N. Giallourou
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | - F. Fardus-Reid
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | - G. Panic
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | - K. Veselkov
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
| | | | - M. P. Olortegui
- Asociación Benéfica PRISMA, Unidad de Investigación Biomedica, Iquitos, Peru
| | - T. Ahmed
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - E. Mduma
- Haydom Global Health Institute, Haydom, Tanzania
| | - P. P. Yori
- Asociación Benéfica PRISMA, Unidad de Investigación Biomedica, Iquitos, Peru
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - M. Mahfuz
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - E. Svensen
- Haydom Global Health Institute, Haydom, Tanzania
- Haukeland University Hospital, Bergen, Norway
| | - M. M. M. Ahmed
- International Center for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - J. M. Colston
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - M. N. Kosek
- Asociación Benéfica PRISMA, Unidad de Investigación Biomedica, Iquitos, Peru
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
- Corresponding author.
| | - J. R. Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
9
|
Zambrana LE, McKeen S, Ibrahim H, Zarei I, Borresen EC, Doumbia L, Boré A, Cissoko A, Douyon S, Koné K, Perez J, Perez C, Hess A, Abdo Z, Sangaré L, Maiga A, Becker-Dreps S, Yuan L, Koita O, Vilchez S, Ryan EP. Rice bran supplementation modulates growth, microbiota and metabolome in weaning infants: a clinical trial in Nicaragua and Mali. Sci Rep 2019; 9:13919. [PMID: 31558739 PMCID: PMC6763478 DOI: 10.1038/s41598-019-50344-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Rice bran supplementation provides nutrients, prebiotics and phytochemicals that enhance gut immunity, reduce enteric pathogens and diarrhea, and warrants attention for improvement of environmental enteric dysfunction (EED) in children. EED is a subclinical condition associated with stunting due to impaired nutrient absorption. This study investigated the effects of rice bran supplementation on weight for age and length for age z-scores (WAZ, LAZ), EED stool biomarkers, as well as microbiota and metabolome signatures in weaning infants from 6 to 12 months old that reside in Nicaragua and Mali. Healthy infants were randomized to a control (no intervention) or a rice bran group that received daily supplementation with increasing doses at each month (1–5 g/day). Stool microbiota were characterized using 16S rDNA amplicon sequencing. Stool metabolomes were analyzed using ultra-high-performance liquid-chromatography tandem mass-spectrometry. Statistical comparisons were completed at 6, 8, and 12 months of age. Daily consumption of rice bran was safe and feasible to support changes in LAZ from 6–8 and 8–12 months of age in Nicaragua and Mali infants when compared to control. WAZ was significantly improved only for Mali infants at 8 and 12 months. Mali and Nicaraguan infants showed major differences in the overall gut microbiota and metabolome composition and structure at baseline, and thus each country cohort demonstrated distinct microbial and metabolite profile responses to rice bran supplementation when compared to control. Rice bran is a practical dietary intervention strategy that merits development in rice-growing regions that have a high prevalence of growth stunting due to malnutrition and diarrheal diseases. Rice is grown as a staple food, and the bran is used as animal feed or wasted in many low- and middle-income countries where EED and stunting is prevalent.
Collapse
Affiliation(s)
- Luis E Zambrana
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.,Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Starin McKeen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Hend Ibrahim
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.,Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Iman Zarei
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lassina Doumbia
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Abdoulaye Boré
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Alima Cissoko
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Seydou Douyon
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Karim Koné
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Johann Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Claudia Perez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Ann Hess
- Department of Statistics, Colorado State University, Fort Collins, CO, 80523, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80521, USA
| | - Lansana Sangaré
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Ababacar Maiga
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Sylvia Becker-Dreps
- Departments of Family Medicine and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7595, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali.
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua.
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
10
|
Zhang S, Liu S, Zhang J, Reiter RJ, Wang Y, Qiu D, Luo X, Khalid AR, Wang H, Feng L, Lin Z, Ren M. Synergistic anti-oomycete effect of melatonin with a biofungicide against oomycetic black shank disease. J Pineal Res 2018; 65:e12492. [PMID: 29575191 DOI: 10.1111/jpi.12492] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/09/2018] [Indexed: 01/19/2023]
Abstract
Human health, food safety, and agriculture have been threatened by oomycetic diseases caused by notorious pathogenic oomycetes. Chemical oomyceticides are the main approaches in control of pathogenic oomycetes. However, the overused chemical oomyceticides have resulted in serious environmental pollution and drug resistance. The eco-friendly bio-oomyceticides are required for sustainable development through screening synergistic drug combinations. In this study, Phytophthora nicotianae (P. nicotianae), as one of the most destructive oomycetic diseases in agriculture, was used as a model system to screen the novel bio-oomyceticides based on drug combination. The results showed that treatment of melatonin or ethylicin (IUPAC Name: 1-ethylsulfonylsulfanylethane) alone displayed similar phenotypes such as the inhibition of the hyphal growth, reduction of the cell viability, and suppression of the virulence of P. nicotianae. Importantly, melatonin and ethylicin shared the same targets of interfering with the amino acid metabolism, overexpressing apoptosis-inducing factor, and dysregulating the virulence-related genes. Furthermore, strong synergism against P. nicotianae was induced by combining melatonin with ethylicin. Under treatment of the combination of melatonin and ethylicin, the expression of genes associated with amino acid, the apoptosis-inducing factor, and the virulence-related genes was much more significantly dysregulated than that of single drug treatment. Thus, the tobacco black shank caused by P. nicotianae can be successfully controlled using the combination of melatonin and ethylicin. These observations suggest that the synergistic effect based on the combination of melatonin and ethylicin is an eco-friendly alternative for the control of the destructive oomycetic diseases.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Sen Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Russel J Reiter
- Department of Cellular and Structure Biology, UT Health, San Antonio, TX, USA
| | - Ying Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dan Qiu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiumei Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - A Rehman Khalid
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hanyan Wang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Li Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
11
|
Sadek KM, Lebda MA, Nasr NE, Nasr SM, El-Sayed Y. Role of lncRNAs as prognostic markers of hepatic cancer and potential therapeutic targeting by S-adenosylmethionine via inhibiting PI3K/Akt signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20057-20070. [PMID: 29748795 DOI: 10.1007/s11356-018-2179-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Hepatic cancer (HCC) is a well-identified dilemma throughout the world, and hence, the molecular mechanisms and strategy for preventive protection against this malignancy are critical. S-adenosylmethionine (SAM) is a unique methyl granter in vast reactions, including DNA methylation, and secures the genome against hypomethylation, which is a hallmark of tumors. Consequently, SAM may control the rate of gene expression. The objective of this investigation was to evaluate the expression of long noncoding RNAs (lncRNAs) transcript involved in hepatic tumorigenesis, including additional coding CEBPA (ecCEBPA) and urothelial carcinoma related 1 (UCA1), antioxidant enzymes transcripts, and relevant signaling pathway in diethylnitrosamine (DEN)-prompted HCC along with their conceivable targeting by SAM at different stages of HCC in rats. Our outcomes revealed that SAM particularly when given at the starting phase downregulates ecCEBPA and UCA1 gene transcripts and ameliorate histopathological alterations in DEN-initiated HCC. Interestingly, SAM attenuates DEN-induced upregulation of PI3K/Akt protein expression. However, SAM upregulates the antioxidant enzymes mRNA transcripts and effectively diminishing DNA oxidation. The results of a DNA fragmentation assay further support the capacity of SAM to ameliorate DEN-induced hepatic malignancy. These results revealed the role of ecCEBPA and UCA1 in HCC and suggest that these lncRNAs may be helpful as prognostic and analytical biomarkers of HCC. Curiously, SAM readily targets the studied genes via inhibiting PI3K/Akt signaling pathway, which should make SAM an appealing agent for both chemoprevention and treatment of HCC.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nasr E Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Sherif M Nasr
- Department of Molecular Biology and Genetics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasser El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
12
|
Xu T, Alharthi ASM, Batistel F, Helmbrecht A, Parys C, Trevisi E, Shen X, Loor JJ. Hepatic phosphorylation status of serine/threonine kinase 1, mammalian target of rapamycin signaling proteins, and growth rate in Holstein heifer calves in response to maternal supply of methionine. J Dairy Sci 2018; 101:8476-8491. [PMID: 29908807 DOI: 10.3168/jds.2018-14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022]
Abstract
The study investigated whether methionine supply during late pregnancy is associated with liver mammalian target of rapamycin (MTOR) pathway phosphorylation, plasma biomarkers, and growth in heifer calves born to cows fed a control diet (CON) or the control diet plus ethylcellulose rumen-protected methionine (MET; 0.09% of dry matter intake) for the last 28 d prepartum. Calves were fed and managed similarly during the first 56 d of age. Plasma was harvested at birth and 2, 7, 21, 42, and 50 d of age and was used for biomarker profiling. Liver biopsies were harvested at 4, 14, 28, and 50 d of age and used for protein expression. Body weight, hip height, hip width, wither height, body length, rectal temperature, fecal score, and respiratory score were measured weekly. Starter intake was measured daily, and average daily gain was calculated during the first 8 wk of age. During the first 7 wk of age, compared with calves in the CON group, calves in the MET group had greater body weight, hip height, wither height, and average daily gain despite similar daily starter intake. Concentration of methionine in plasma was lower at birth but increased markedly at 2 and 7 d of age in MET calves. Plasma insulin, glucose, free fatty acids, and hydroxybutyrate did not differ. A greater ratio of phosphorylated α-serine/threonine kinase (AKT):total AKT protein expression was detected in MET calves, namely due to differences at 4 d of age. The phosphorylated MTOR:total MTOR ratio also was greater in MET calves due to differences at 28 and 50 d (8 d postweaning). The decrease in phosphorylated MTOR:total MTOR between 14 and 28 d in CON calves agreed with the increase in phosphorylated eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1):total EIF4EBP1 ratio during the same time frame. The overall expression of phosphorylated ribosomal protein S6 kinase B1 (RPS6KB1):total RPS6KB1 and phosphorylated eukaryotic translation elongation factor 2 (EEF2):total EEF2 was lower in MET calves. Regardless of methionine supply prepartum, there was an 11-fold temporal decrease from 4 to 50 d in phosphorylated AKT:total AKT. Similarly, regardless of methionine supply, there were overall decreases in phosphorylation ratios of AKT, MTOR, RPS6KB1, and eukaryotic translation initiation factor 2A (EIF2A) over time. Data provide evidence of a positive effect of methionine supply during the last month of pregnancy on rates of growth during the first 7 wk of age. Phosphorylation status of some components of the MTOR pathway in neonatal calf liver also was associated with greater maternal supply of methionine. Thus, the data suggest that molecular mechanisms in the liver might be programmed by supply of methionine during late pregnancy. The exact mechanisms coordinating the observed responses remain to be determined.
Collapse
Affiliation(s)
- T Xu
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Veterinary Medicine, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - A S M Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - F Batistel
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A Helmbrecht
- Evonik Nutrition & Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - C Parys
- Evonik Nutrition & Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - E Trevisi
- Institute of Zootechnics, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - X Shen
- College of Veterinary Medicine, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
13
|
Zhang Y, Zhou X, Wan D, Lin X, Long C, Chen W, Wu X, Yin Y. Diurnal variations in methionine content and expression of certain genes involved in DNA methylation reaction in pigs. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1424776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yumei Zhang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xue Lin
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Guangzhou Tanke Industry Co., Ltd, Guangzhou, China
| | - Cimin Long
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wen Chen
- Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xin Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
14
|
Iannotti LL, Lutter CK, Waters WF, Gallegos Riofrío CA, Malo C, Reinhart G, Palacios A, Karp C, Chapnick M, Cox K, Aguirre S, Narvaez L, López F, Sidhu R, Kell P, Jiang X, Fujiwara H, Ory DS, Young R, Stewart CP. Eggs early in complementary feeding increase choline pathway biomarkers and DHA: a randomized controlled trial in Ecuador. Am J Clin Nutr 2017; 106:1482-1489. [PMID: 29092879 PMCID: PMC5698841 DOI: 10.3945/ajcn.117.160515] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/03/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Choline status has been associated with stunting among young children. Findings from this study showed that an egg intervention improved linear growth by a length-for-age z score of 0.63.Objective: We aimed to test the efficacy of eggs introduced early in complementary feeding on plasma concentrations of biomarkers in choline pathways, vitamins B-12 and A, and essential fatty acids.Design: A randomized controlled trial, the Lulun ("egg" in Kichwa) Project, was conducted in a rural indigenous population of Ecuador. Infants aged 6-9 mo were randomly assigned to treatment (1 egg/d for 6 mo; n = 80) and control (no intervention; n = 83) groups. Socioeconomic data, anthropometric measures, and blood samples were collected at baseline and endline. Household visits were made weekly for morbidity surveillance. We tested vitamin B-12 plasma concentrations by using chemiluminescent competitive immunoassay and plasma concentrations of choline, betaine, dimethylglycine, retinol, essential fatty acids, methionine, dimethylamine (DMA), trimethylamine, and trimethylamine-N-oxide (TMAO) with the use of liquid chromatography-tandem mass spectrometry.Results: Socioeconomic factors and biomarker concentrations were comparable at baseline. Of infants, 11.4% were vitamin B-12 deficient and 31.7% marginally deficient at baseline. In adjusted generalized linear regression modeling, the egg intervention increased plasma concentrations compared with control by the following effect sizes: choline, 0.35 (95% CI: 0.12, 0.57); betaine, 0.29 (95% CI: 0.01, 0.58); methionine, 0.31 (95% CI: 0.03, 0.60); docosahexaenoic acid, 0.43 (95% CI: 0.13, 0.73); DMA, 0.37 (95% CI: 0.37, 0.69); and TMAO, 0.33 (95% CI: 0.08, 0.58). No significant group differences were found for vitamin B-12, retinol, linoleic acid (LA), α-linolenic acid (ALA), or ratios of betaine to choline and LA to ALA.Conclusion: The findings supported our hypothesis that early introduction of eggs significantly improved choline and other markers in its methyl group metabolism pathway. This trial was registered at clinicaltrials.gov as NCT02446873.
Collapse
Affiliation(s)
| | - Chessa K Lutter
- School of Public Health, University of Maryland, College Park, MD;,RTI International, Research Triangle Park, NC
| | - William F Waters
- Institute for Research in Health and Nutrition, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carlos Andres Gallegos Riofrío
- Brown School, Institute for Public Health, and,Institute for Research in Health and Nutrition, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carla Malo
- Institute for Research in Health and Nutrition, Universidad San Francisco de Quito, Quito, Ecuador
| | - Gregory Reinhart
- The Mathile Institute for the Advancement of Human Nutrition, Dayton, OH
| | - Ana Palacios
- The Mathile Institute for the Advancement of Human Nutrition, Dayton, OH;,Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX
| | - Celia Karp
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | | | | | - Luis Narvaez
- NETLAB Laboratorios Especializados, Quito, Ecuador; and
| | | | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Pamela Kell
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis, St. Louis, MO
| | - Rebecca Young
- Department of Nutrition, University of California, Davis, Davis, CA
| | | |
Collapse
|
15
|
Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA, Flint DL, Olsen ML. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 2017; 8:56. [PMID: 29090078 PMCID: PMC5655833 DOI: 10.1186/s13229-017-0174-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Michael R. Heaven
- Vulcan Analytical, LLC, 1500 1st Ave. North, Birmingham, AL 35203 USA
| | - Leanne M. Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| | - David K. Crossman
- UAB Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Kaul 424A, 1720 2nd Ave. South, Birmingham, AL 35294 USA
| | - Kristin J. Boggio
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Daniel L. Flint
- Luxumbra Strategic Research, LLC, 1331 South Eads St, Arlington, VA 22202 USA
| | - Michelle L. Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| |
Collapse
|