1
|
Conrad NJ, Heckler EP, Lee BJ, Hill GW, Flood TR, Wheeler LEV, Costello R, Walker EF, Gillum TL, Willems MET, Kuennen MR. New Zealand blackcurrant extract modulates the heat shock response in men during exercise in hot ambient conditions. Eur J Appl Physiol 2024; 124:2315-2328. [PMID: 38448730 PMCID: PMC11322260 DOI: 10.1007/s00421-024-05439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE To determine if 7d of New Zealand blackcurrant (NZBC) extract alters the heat shock, inflammatory and apoptotic response during prolonged exertional-heat stress. METHODS Ten men (Age: 29 ± 2 years, Stature: 1.82 ± 0.02 m, Mass: 80.3 ± 2.7 kg, V̇O2max: 56 ± 2 mL·kg-1·min-1) ingested two capsules of CurraNZ™ (NZBC extract: 210 mg anthocyanins·day-1) or PLACEBO for 7d prior to 1 h treadmill run (65% V̇O2max) in hot ambient conditions (34 °C/40% RH). Blood samples were collected before (Pre), immediately after (Post), 1 h after (1-Post), and 4 h after (4-Post) exercise. Heat shock proteins (HSP90, HSP70, HSP32) were measured in plasma. HSP and protein markers of inflammatory capacity (TLR4, NF-κB) and apoptosis (BAX/BCL-2, Caspase 9) were measured in peripheral blood mononuclear cells (PBMC). RESULTS eHSP32 was elevated at baseline in NZBC(+ 31%; p < 0.001). In PLACEBO HSP32 content in PBMC was elevated at 4-Post(+ 98%; p = 0.002), whereas in NZBC it fell at Post(- 45%; p = 0.030) and 1-Post(- 48%; p = 0.026). eHSP70 was increased at Post in PLACEBO(+ 55.6%, p = 0.001) and NZBC (+ 50.7%, p = 0.010). eHSP90 was increased at Post(+ 77.9%, p < 0.001) and 1-Post(+ 73.2%, p < 0.001) in PLACEBO, with similar increases being shown in NZBC (+ 49.0%, p = 0.006 and + 66.2%, p = 0.001; respectively). TLR4 and NF-κB were both elevated in NZBC at PRE(+ 54%, p = 0.003 and + 57%, p = 0.004; respectively). Main effects of study condition were also shown for BAX/BCL-2(p = 0.025) and Caspase 9 (p = 0.043); both were higher in NZBC. CONCLUSION 7d of NZBC extract supplementation increased eHSP32 and PBMC HSP32 content. It also increased inflammatory and apoptotic markers in PBMC, suggesting that NZBC supports the putative inflammatory response that accompanies exertional-heat stress.
Collapse
Affiliation(s)
- Nathan J Conrad
- Department of Health & Human Performance, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Emerson P Heckler
- Department of Health & Human Performance, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, England
- Institute of Applied Sciences, University of Chichester, Chichester, UK
| | - Garrett W Hill
- Department of Health & Human Performance, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Tessa R Flood
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Institute of Applied Sciences, University of Chichester, Chichester, UK
| | - Lucy E V Wheeler
- Institute of Applied Sciences, University of Chichester, Chichester, UK
| | - Rianne Costello
- Global Food Security Programme, Biotechnology and Biological Sciences Research Council, Swindon, UK
| | - Ella F Walker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Mark E T Willems
- Institute of Applied Sciences, University of Chichester, Chichester, UK
| | - Matthew R Kuennen
- Department of Health & Human Performance, High Point University, One University Parkway, High Point, NC, 27268, USA.
| |
Collapse
|
2
|
Willems MET, Bray PW, Bassett HM, Spurr TJ, West AT. Effects of CurraNZ, a New Zealand Blackcurrant Extract during 1 Hour of Treadmill Running in Female and Male Marathon des Sables Athletes in Hot Conditions: Two Case Studies. J Funct Morphol Kinesiol 2024; 9:76. [PMID: 38651434 PMCID: PMC11036262 DOI: 10.3390/jfmk9020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Four weeks before competition in the 2023 Marathon des Sables, a 6-stage, ~250 km running event in the Sahara Desert, we examined the effects of a 7-day intake of New Zealand blackcurrant extract (210 mg anthocyanins per day) on 1 h treadmill running-induced physiological and metabolic responses in the heat (~34 °C, relative humidity: ~30%) in non-acclimatized amateur female and male athletes (age: 23, 38 yrs, BMI: 24.2, 28.4 kg·m-2, body fat%: 29.2, 18.8%, V˙O2max: 50.1, 52.1 mL·kg-1·min-1). During the 1 h run at 50%V˙O2max (speed female: 7.3, male: 7.5 km·h-1), indirect calorimetry was used, and heart rate was recorded at 15 min intervals with core temperature monitoring (0.05 Hz). The 1 h runs took place 3 h after a light breakfast and 2 h after intake of the final dose of New Zealand blackcurrant extract with water allowed ad libitum during the run. The New Zealand blackcurrant extract had no effects on the female athlete. The respiratory exchange ratio (RER) of the female athlete in the non-supplement control condition was 0.77 ± 0.01, indicating an existing ~77% contribution of fat oxidation to the energy requirements. In the male athlete, during 1 h of running, fat oxidation was higher by 21% (p < 0.01), carbohydrate oxidation was 31% lower (p = 0.05), RER was 0.03 units lower (p = 0.04), and core temperature was 0.4 °C lower (p < 0.01) with no differences for heart rate, minute ventilation, oxygen uptake, and carbon dioxide production for the New Zealand blackcurrant condition compared to the non-supplement control condition. Seven-day intake of New Zealand blackcurrant extract (210 mg anthocyanins per day) provided beneficial physiological and metabolic responses during exertional heat stress by 1 h of indoor (~34 °C) treadmill running in a male Marathon des Sables athlete 4 weeks before competition. Future work is required to address whether New Zealand blackcurrant provides a nutritional ergogenic effect for Marathon des Sables athletes during long-duration running in the heat combined with personalized nutrition.
Collapse
Affiliation(s)
- Mark E. T. Willems
- Institute of Applied Sciences, University of Chichester, College Lane, Chichester PO19 6PE, UK; (P.W.B.); (H.M.B.); (T.J.S.); (A.T.W.)
| | | | | | | | | |
Collapse
|
3
|
Mohr AE, Pyne DB, Leite GSF, Akins D, Pugh J. A systematic scoping review of study methodology for randomized controlled trials investigating probiotics in athletic and physically active populations. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:61-71. [PMID: 36539062 PMCID: PMC10818115 DOI: 10.1016/j.jshs.2022.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The purported ergogenic and health effects of probiotics have been a topic of great intrigue among researchers, practitioners, and the lay public alike. There has also been an increased research focus within the realm of sports science and exercise medicine on the athletic gut microbiota. However, compared to other ergogenic aids and dietary supplements, probiotics present unique study challenges. The objectives of this systematic scoping review were to identify and characterize study methodologies of randomized controlled trials investigating supplementation with probiotics in athletes and physically active individuals. METHODS Four databases (MEDLINE, CINAHL, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews) were searched for randomized controlled studies involving healthy athletes or physically active individuals. An intervention with probiotics and inclusion of a control and/or placebo group were essential. Only peer-reviewed articles in English were considered, and there were no date restrictions. Results were extracted and presented in tabular form to detail study protocols, characteristics, and outcomes. Bias in randomized controlled trials was determined with the RoB 2.0 tool. RESULTS A total of 45 studies were included in the review, with 35 using a parallel group design and 10 using a cross-over design. Approximately half the studies used a single probiotic and the other half a multi-strain preparation. The probiotic dose ranged from 2 × 108 to 1 × 1011 colony forming units daily, and the length of intervention was between 7 and 150 days. Fewer than half the studies directly assessed gastrointestinal symptoms, gut permeability, or the gut microbiota. The sex ratio of participants was heavily weighted toward males, and only 3 studies exclusively investigated females. Low-level adverse events were reported in only 2 studies, although the methodology of reporting varied widely. The risk of bias was generally low, although details on randomization were lacking in some studies. CONCLUSION There is a substantial body of research on the effects of probiotic supplementation in healthy athletes and physically active individuals. Considerable heterogeneity in probiotic selection and dosage as well as outcome measures has made clinical and mechanistic interpretation challenging for both health care practitioners and researchers. Attention to issues of randomization of participants, treatments and interventions, selection of outcomes, demographics, and reporting of adverse events will facilitate more trustworthy interpretation of probiotic study results and inform evidence-based guidelines.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia
| | - Geovana Silva Fogaça Leite
- Laboratory of Functional Fermented Food, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-030, Brazil
| | - Deborah Akins
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Jamie Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
4
|
Mazur-Kurach P, Frączek B, Klimek AT. Does Multi-Strain Probiotic Supplementation Impact the Effort Capacity of Competitive Road Cyclists? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12205. [PMID: 36231510 PMCID: PMC9566127 DOI: 10.3390/ijerph191912205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: The aim of this study was to assess the impact of multi-strain probiotic supplementation on the physical capacity and selected health indicators related to the exercise capacity of competitive road cyclists such as body composition, markers of intestinal permeability, pro- and anti-inflammatory markers, and anti-/pro-oxidant potential. (2) Methods: The group comprised 26 competitive road cyclists aged between 18 and 26. The study was a 4-month double-blind, random-assignment, parallel-group, and placebo-controlled trial. The measurements of physical capacity in the exercise tests of the anaerobic Wingate test (the level of total work volume, maximal anaerobic power, average power per revolution, mean time to achieve maximal anaerobic power, and time to maintain maximal anaerobic power) and the aerobic test using a cycle ergometer (maximum oxygen uptake, exercise duration, maximum load power, and maximal heart rate) were repeated after one, three, and four months. (3) Results: The probiotic supplementation resulted in increased levels of the relative magnitude of maximal oxygen uptake (65.28 vs. 69.18), the duration of training until failure (14.35 vs. 15.65), the load on the ergometer (5.11 vs. 5.36), and the degree of decrease in heart rate (193.3 vs. 188.6) together with a feeling of less discomfort during the exercise test (Borg scale) (19.38 vs. 18.43), confirming the beneficial effect of probiotics on the cyclists' aerobic capacity during exercise. The probiotic supplementation produces no effects on the anaerobic capacity and body composition of the athletes, except for an observed increase in muscle mass. The concentration of zonulin in the stool mass decreased as a result of the probiotic therapy (81.2 vs. 25.21), and α1-atitrypsin was maintained at a similar level during the experiment (0.95 vs. 1.05), indicating a sealing of the intestinal barrier and beneficial changes in the cyclists' intestinal function. The supplementation resulted in a reduction in the concentrations of: tumor necrosis factor TNF-α after the aerobic (13.88 vs. 9.75) and anaerobic tests (8.54 vs. 6.8), IL-6 before (1.2 vs. 0.86) and after the anaerobic test (1.47 vs. 0.97), IL-10 before the anaerobic test (0.70 vs. 0.44), and the total oxidative status (TOS) of the blood plasma before (663.7 vs. 484.6) and after the anaerobic test (643.1 vs. 435.9). (4) Conclusions: The probiotic supplementation resulted in increased levels of the cyclists' aerobic capacity and their maintenance of anaerobic capacity and positively affected selected health indicators related to the exercise capacity of competitive road cyclists.
Collapse
Affiliation(s)
- Paulina Mazur-Kurach
- Department of Physical Education and Sport, Institute of Biomedical Sciences, Faculty of Sports Medicine and Human Nutrition, University of Physical Education, Jana Pawła II 78, 31-571 Kraków, Poland
| | - Barbara Frączek
- Department of Physical Education and Sport, Institute of Biomedical Sciences, Faculty of Sports Medicine and Human Nutrition, University of Physical Education, Jana Pawła II 78, 31-571 Kraków, Poland
| | - Andrzej T. Klimek
- Department of Physical Education and Sport, Institute of Biomedical Sciences, Faculty of Physiology and Biochemistry, University of Physical Education, Jana Pawła II 78, 31-571 Kraków, Poland
| |
Collapse
|
5
|
Giron M, Thomas M, Dardevet D, Chassard C, Savary-Auzeloux I. Gut microbes and muscle function: can probiotics make our muscles stronger? J Cachexia Sarcopenia Muscle 2022; 13:1460-1476. [PMID: 35278043 PMCID: PMC9178375 DOI: 10.1002/jcsm.12964] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
Evidence suggests that gut microbiota composition and diversity can be a determinant of skeletal muscle metabolism and functionality. This is true in catabolic (sarcopenia and cachexia) or anabolic (exercise or in athletes) situations. As gut microbiota is known to be causal in the development and worsening of metabolic dysregulation phenotypes such as obesity or insulin resistance, it can regulate, at least partially, skeletal muscle mass and function. Skeletal muscles are physiologically far from the gut. Signals generated by the gut due to its interaction with the gut microbiome (microbial metabolites, gut peptides, lipopolysaccharides, and interleukins) constitute links between gut microbiota activity and skeletal muscle and regulate muscle functionality via modulation of systemic/tissue inflammation as well as insulin sensitivity. The probiotics able to limit sarcopenia and cachexia or promote health performances in rodents are mainly lactic acid bacteria and bifidobacteria. In humans, the same bacteria have been tested, but the scarcity of the studies, the variability of the populations, and the difficulty to measure accurately and with high reproducibility muscle mass and function have not allowed to highlight specific strains able to optimize muscle mass and function. Further studies are required on more defined population, in order to design personalized nutrition. For elderly, testing the efficiency of probiotics according to the degree of frailty, nutritional state, or degree of sarcopenia before supplementation is essential. For exercise, selection of probiotics capable to be efficient in recreational and/or elite athletes, resistance, and/or endurance exercise would also require further attention. Ultimately, a combination of strategies capable to optimize muscle functionality, including bacteria (new microbes, bacterial ecosystems, or mix, more prone to colonize a specific gut ecosystem) associated with prebiotics and other 'traditional' supplements known to stimulate muscle anabolism (e.g. proteins), could be the best way to preserve muscle functionality in healthy individuals at all ages or patients.
Collapse
Affiliation(s)
- Muriel Giron
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.,Université Paris-Saclay, INRAE UMR1319, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,INRAE UMR0545, Unité Mixte de Recherche sur le Fromage, Aurillac, France
| | - Muriel Thomas
- Université Paris-Saclay, INRAE UMR1319, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
6
|
Mohr AE, Pugh J, O'Sullivan O, Black K, Townsend JR, Pyne DB, Wardenaar FC, West NP, Whisner CM, McFarland LV. Best Practices for Probiotic Research in Athletic and Physically Active Populations: Guidance for Future Randomized Controlled Trials. Front Nutr 2022; 9:809983. [PMID: 35350412 PMCID: PMC8957944 DOI: 10.3389/fnut.2022.809983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotic supplementation, traditionally used for the prevention or treatment of a variety of disease indications, is now recognized in a variety of population groups including athletes and those physically active for improving general health and performance. However, experimental and clinical trials with probiotics commonly suffer from design flaws and different outcome measures, making comparison and synthesis of conclusions difficult. Here we review current randomized controlled trials (RCTs) using probiotics for performance improvement, prevention of common illnesses, or general health, in a specific target population (athletes and those physically active). Future RCTs should address the key elements of (1) properly defining and characterizing a probiotic intervention, (2) study design factors, (3) study population characteristics, and (4) outcome measures, that will allow valid conclusions to be drawn. Careful evaluation and implementation of these elements should yield improved trials, which will better facilitate the generation of evidence-based probiotic supplementation recommendations for athletes and physically active individuals.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
- *Correspondence: Alex E. Mohr
| | - Jamie Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, United States
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Floris C. Wardenaar
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, QLD, Australia
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Lynne V. McFarland
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Heimer M, Teschler M, Schmitz B, Mooren FC. Health Benefits of Probiotics in Sport and Exercise - Non-existent or a Matter of Heterogeneity? A Systematic Review. Front Nutr 2022; 9:804046. [PMID: 35284446 PMCID: PMC8906887 DOI: 10.3389/fnut.2022.804046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background The use of probiotics in sports has been growing in recent years, as up to 50% of athletes suffer from training- and performance-limiting gastrointestinal (GI) problems. Moreover, repeated exhaustive exercise and high training loads may lead to a transiently depressed immune function, associated with an increased risk of upper respiratory tract infection (URTI). Aim To provide a qualitative analysis of probiotic effects on URTI, GI symptoms and the immune system in healthy individuals under consideration of performance level as main classifier. Methods A systematic review of the literature was conducted (PubMed, SPORTDiscus with Full Text, Web of Science) to analyze the effects of probiotics in athletes and healthy active individuals on GI problems, URTI, and the immune system. A qualitative synthesis with performance level and treatment duration as main classifiers was performed. Results Of 41 eligible studies, 24 evaluated the effects of probiotic supplements in athletes, 10 in recreationally active individuals and 7 in healthy untrained adults. Large heterogeneity was observed in terms of probiotic strains, mode of delivery, performance level, treatment duration and outcome assessment. Overall, studies provided inconsistent observations. Conclusion The effects of probiotics on immune system, URTI, and GI symptoms in athletes, healthy adults and recreationally active individuals remain inconclusive. Based on the analyzed studies and identified parameters, this article provides suggestions to align future research on the effects of probiotics in exercise. Systematic Review Registration PROSPERO, identifier: CRD42021245840.
Collapse
Affiliation(s)
- Melina Heimer
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
- DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Marc Teschler
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
- DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Boris Schmitz
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
- DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
| | - Frank C. Mooren
- Department of Rehabilitation Sciences, Faculty of Health, University of Witten/Herdecke, Witten, Germany
- DRV Clinic Königsfeld, Center for Medical Rehabilitation, Ennepetal, Germany
- *Correspondence: Frank C. Mooren
| |
Collapse
|
8
|
Santibañez-Gutierrez A, Fernández-Landa J, Calleja-González J, Delextrat A, Mielgo-Ayuso J. Effects of Probiotic Supplementation on Exercise with Predominance of Aerobic Metabolism in Trained Population: A Systematic Review, Meta-Analysis and Meta-Regression. Nutrients 2022; 14:nu14030622. [PMID: 35276980 PMCID: PMC8840281 DOI: 10.3390/nu14030622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The scientific literature about probiotic intake and its effect on sports performance is growing. Therefore, the main aim of this systematic review, meta-analysis and meta-regression was to review all information about the effects of probiotic supplementation on performance tests with predominance of aerobic metabolism in trained populations (athletes and/or Division I players and/or trained population: ≥8 h/week and/or ≥5 workouts/week). A structured search was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA®) statement and PICOS guidelines in PubMed/MEDLINE, Web of Science (WOS), and Scopus international databases from inception to 1 November 2021. Studies involving probiotic supplementation in trained population and execution of performance test with aerobic metabolism predominance (test lasted more than 5 min) were considered for inclusion. Fifteen articles were included in the final systematic review (in total, 388 participants were included). After 3 studies were removed due to a lack of data for the meta-analysis and meta-regression, 12 studies with 232 participants were involved. With the objective of assessing the risk of bias of included studies, Cochrane Collaboration Guidelines and the Physiotherapy Evidence Database (PEDro) scale were performed. For all included studies the following data was extracted: authors, year of publication, study design, the size of the sample, probiotic administration (dose and time), and characteristics of participants. The random effects model and pooled standardized mean differences (SMDs) were used according to Hedges’ g for the meta-analysis. In order to determine if dose and duration covariates could predict probiotic effects, a meta-regression was also conducted. Results showed a small positive and significant effect on the performance test with aerobic metabolic predominance (SMD = 0.29; CI = 0.08−0.50; p < 0.05). Moreover, the subgroup analysis displayed significant greater benefits when the dose was ≥30 × 109 colony forming units (CFU) (SMD, 0.47; CI, 0.05 to 0.89; p < 0.05), when supplementation duration was ≤4 weeks (SMD, 0.44; CI, 0.05 to 0.84; p < 0.05), when single strain probiotics were used (SMD, 0.33; CI, 0.06 to 0.60; p < 0.05), when participants were males (SMD, 0.30; CI, 0.04 to 0.56; p < 0.05), and when the test was performed to exhaustion (SMD, 0.45; CI, 0.05 to 0.48; p < 0.05). However, with references to the findings of the meta-regression, selected covariates did not predict probiotic effects in highly trained population. In summary, the current systematic review and meta-analysis supported the potential effects of probiotics supplementation to improve performance in a test in which aerobic metabolism is predominant in trained population. However, more research is needed to fully understand the mechanisms of action of this supplement.
Collapse
Affiliation(s)
- Asier Santibañez-Gutierrez
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Julen Fernández-Landa
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Julio Calleja-González
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Anne Delextrat
- Department of Sport and Health Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
- Correspondence:
| |
Collapse
|
9
|
Impact of Probiotics on the Performance of Endurance Athletes: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111576. [PMID: 34770090 PMCID: PMC8583504 DOI: 10.3390/ijerph182111576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
Background: Probiotic supplements contain different strains of living microorganisms that promote the health of the host. These dietary supplements are increasingly being used by athletes to improve different aspects such as athletic performance, upper respiratory tract infections (URTIs), the immune system, oxidative stress, gastrointestinal (GI) problems, etc. This study aimed to identify the current evidence on the management of probiotics in endurance athletes and their relationship with sports performance. Methods: A systematic review of the last five years was carried out in PubMed, Scopus, Web of science, Sportdiscus and Embase databases. Results: Nine articles met the quality criteria. Of these, three reported direct benefits on sports performance. The remaining six articles found improvements in the reduction of oxidative stress, increased immune response and decreased incidence of URTIs. There is little scientific evidence on the direct relationship between the administration of probiotics in endurance athletes and sports performance. Conclusions: Benefits were found that probiotics could indirectly influence sports performance by improving other parameters such as the immune system, response to URTIs and decreased oxidative stress, as well as the monitoring of scheduled workouts.
Collapse
|
10
|
Tavares-Silva E, Caris AV, Santos SA, Ravacci GR, Thomatieli-Santos RV. Effect of Multi-Strain Probiotic Supplementation on URTI Symptoms and Cytokine Production by Monocytes after a Marathon Race: A Randomized, Double-Blind, Placebo Study. Nutrients 2021; 13:1478. [PMID: 33925633 PMCID: PMC8146695 DOI: 10.3390/nu13051478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
(1) Purpose: Performing strenuous exercises negatively impacts the immune and gastrointestinal systems. These alterations cause transient immunodepression, increasing the risk of minor infections, especially in the upper respiratory tract. Recent studies have shown that supplementation of probiotics confers benefits to athletes. Therefore, the objective of the current study was to verify the effects of probiotic supplementation on cytokine production by monocytes and infections in the upper respiratory tract after an acute strenuous exercise. (2) Methods: Fourteen healthy male marathon runners received either 5 billion colony forming units (CFU) of a multi-strain probiotic, consisting of 1 billion CFU of each of Lactobacillus acidophilus LB-G80, Lactobacillus paracasei LPc-G110, Lactococcus subp. lactis LLL-G25, Bifidobacterium animalis subp. lactis BL-G101, and Bifidobacterium bifidum BB-G90, or a placebo for 30 days before a marathon. Plasma cytokines, salivary parameters, glucose, and glutamine were measured at baseline, 24 h before, immediately after, and 1 h after the race. Subjects self-reported upper respiratory tract infection (URTI) using the Wisconsin Upper Respiratory Symptom Survey (WURSS-21). The statistical analyses comprised the general linear model (GLM) test followed by the Tukey post hoc and Student's t-test with p < 0.05. (3) Results: URTI symptoms were significantly lower in the probiotic group compared to placebo. The IL-2 and IL-4 plasma cytokines were lower 24 h before exercise, while the other cytokines showed no significant differences. A lower level of IL-6 produced by monocytes was verified immediately after the race and higher IL-10 at 1 h post. No differences were observed in salivary parameters. Conclusion: Despite the low number of marathoners participating in the study, probiotic supplementation suggests its capability to preserve the functionality of monocytes and mitigate the incidence of URTI.
Collapse
Affiliation(s)
- Edgar Tavares-Silva
- Department of Bioscience, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (E.T.-S.); (S.A.S.)
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo 04032-020, Brazil;
| | - Aline Venticinque Caris
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo 04032-020, Brazil;
| | - Samile Amorin Santos
- Department of Bioscience, Universidade Federal de São Paulo, Santos 11015-020, Brazil; (E.T.-S.); (S.A.S.)
| | - Graziela Rosa Ravacci
- Department of Gastroenterology, Medicine Faculty, University of São Paulo, Santos 11015-020, Brazil;
| | | |
Collapse
|
11
|
Marttinen M, Ala-Jaakkola R, Laitila A, Lehtinen MJ. Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients 2020; 12:nu12102936. [PMID: 32992765 PMCID: PMC7599951 DOI: 10.3390/nu12102936] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Among athletes, nutrition plays a key role, supporting training, performance, and post-exercise recovery. Research has primarily focused on the effects of diet in support of an athletic physique; however, the role played by intestinal microbiota has been much neglected. Emerging evidence has shown an association between the intestinal microbiota composition and physical activity, suggesting that modifications in the gut microbiota composition may contribute to physical performance of the host. Probiotics represent a potential means for beneficially influencing the gut microbiota composition/function but can also impact the overall health of the host. In this review, we provide an overview of the existing studies that have examined the reciprocal interactions between physical activity and gut microbiota. We further evaluate the clinical evidence that supports the effects of probiotics on physical performance, post-exercise recovery, and cognitive outcomes among athletes. In addition, we discuss the mechanisms of action through which probiotics affect exercise outcomes. In summary, beneficial microbes, including probiotics, may promote health in athletes and enhance physical performance and exercise capacity. Furthermore, high-quality clinical studies, with adequate power, remain necessary to uncover the roles that are played by gut microbiota populations and probiotics in physical performance and the modes of action behind their potential benefits.
Collapse
|
12
|
Agans RT, Giles GE, Goodson MS, Karl JP, Leyh S, Mumy KL, Racicot K, Soares JW. Evaluation of Probiotics for Warfighter Health and Performance. Front Nutr 2020; 7:70. [PMID: 32582752 PMCID: PMC7296105 DOI: 10.3389/fnut.2020.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
The probiotic industry continues to grow in both usage and the diversity of products available. Scientific evidence supports clinical use of some probiotic strains for certain gastrointestinal indications. Although much less is known about the impact of probiotics in healthy populations, there is increasing consumer and scientific interest in using probiotics to promote physical and psychological health and performance. Military men and women are a unique healthy population that must maintain physical and psychological health in order to ensure mission success. In this narrative review, we examine the evidence regarding probiotics and candidate probiotics for physical and/or cognitive benefits in healthy adults within the context of potential applications for military personnel. The reviewed evidence suggests potential for certain strains to induce biophysiological changes that may offer physical and/or cognitive health and performance benefits in military populations. However, many knowledge gaps exist, effects on health and performance are generally not widespread among the strains examined, and beneficial findings are generally limited to single studies with small sample sizes. Multiple studies with the same strains and using similar endpoints are needed before definitive recommendations for use can be made. We conclude that, at present, there is not compelling scientific evidence to support the use of any particular probiotic(s) to promote physical or psychological performance in healthy military personnel. However, plausibility for physical and psychological health and performance benefits remains, and additional research is warranted. In particular, research in military cohorts would aid in assessing the value of probiotics for supporting physical and psychological health and performance under the unique demands required of these populations.
Collapse
Affiliation(s)
- Richard T Agans
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Naval Medical Research Unit Dayton, Environmental Health Effects Laboratory, Dayton, OH, United States
| | - Grace E Giles
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command - Soldier Center, Natick, MA, United States
| | - Michael S Goodson
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH, United States
| | - J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Samantha Leyh
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH, United States.,Oak Ridge Institute for Science and Education, Wright Patterson Air Force Base, Oak Ridge, TN, United States
| | - Karen L Mumy
- Naval Medical Research Unit Dayton, Environmental Health Effects Laboratory, Dayton, OH, United States
| | - Kenneth Racicot
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command - Soldier Center, Natick, MA, United States
| | - Jason W Soares
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command - Soldier Center, Natick, MA, United States
| |
Collapse
|
13
|
Calero CQ, Rincón EO, Marqueta PM. Probiotics, prebiotics and synbiotics: useful for athletes and active individuals? A systematic review. Benef Microbes 2020; 11:135-149. [DOI: 10.3920/bm2019.0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of this review was to synthesise available knowledge on the main health effects associated with the use of probiotics, prebiotics and/or synbiotics in athletes and active individuals, including their effects on the immune system, oxidative stress, the gastrointestinal and respiratory symptoms, as well as other possible clinical outcomes. A systematic and comprehensive search in electronic databases, including Web of Science (WOS, Scielo), PubMed-MEDLINE, Biblioteca virtual de la Salud (LILACS, IBECS), EBSCO (Academic Search Complete CINAHL; SPORTDiscus) and Cochrane Library, focused on generic articles about probiotics, prebiotics and/or synbiotics and their functionality and effects on human health. The search process was completed using the keywords: ‘probiotics’, ‘prebiotics’, ‘synbiotics’, ‘athletes’ and ‘health’. The only exclusion criterion was experimental studies with animals. A total of 31 studies met the inclusion criteria and were included in the review. The vast majority were experimental studies about probiotics and health effects (n=28), while only a few demonstrated the results of consuming prebiotics and/or synbiotics (n=3) in athletes and active individuals. Although most of the studies reported positive health effects in athletes and active individuals, there is still no substantial scientific evidence to suggest that probiotics, prebiotics and synbiotics play an important role in improving an athlete´s performance. These studies are currently limited in number and quality, hence it is necessary to improve the selection of functional biomarkers and methodological approaches, as well as determining the specific nutritional supplement and exercise doses.
Collapse
Affiliation(s)
- C.D. Quero Calero
- International Chair of Sport Medicine, Faculty of Medicine, Catholic University of Murcia, Campus de los Jerónimos, 30107, Murcia, Spain
| | - E. Ortega Rincón
- Immunophysiology Group, University Institute of Biosanitary Research of Extremadura (INUBE), University of Extremadura, Av. Elvas, s/n, 06006 Badajoz, Spain
| | - P. Manonelles Marqueta
- International Chair of Sport Medicine, Faculty of Medicine, Catholic University of Murcia, Campus de los Jerónimos, 30107, Murcia, Spain
| |
Collapse
|
14
|
Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr 2019; 16:62. [PMID: 31864419 PMCID: PMC6925426 DOI: 10.1186/s12970-019-0329-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
Collapse
Affiliation(s)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | | | - Adel Moussa
- University of Münster, Department of Physics Education, Münster, Germany
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN USA
| | - Manfred Lamprecht
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617 Australia
| | | | - Shawn M. Arent
- UofSC Sport Science Lab, Department of Exercise Science, University of South Carolina, Columbia, SC USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | | | | | | | | | - Douglas S. Kalman
- Scientific Affairs. Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario Canada
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, UK
| | | | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
15
|
Supplementation of Probiotics and Its Effects on Physically Active Individuals and Athletes: Systematic Review. Int J Sport Nutr Exerc Metab 2019; 29:481-492. [PMID: 30676130 DOI: 10.1123/ijsnem.2018-0227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022]
Abstract
The aim of this study was to conduct a systematic review of the effects of probiotic supplementation on physically active individuals. The participants, interventions, comparisons, outcome and study design inclusion criteria were (a) studies involving healthy adults or older subjects of both sexes who did physical exercise (including athletes and physically active individuals), (b) interventions with probiotics, (c) inclusion of a control group, (d) outcomes not previously defined, and (e) clinical trials and randomized clinical trials, with no language or date restrictions. The search was conducted in the following scientific databases: MEDLINE, Embase, SciELO, Scopus, and Lilacs. Search terms were "Probiotics" OR "Prebiotics" OR "Microbiota" AND "Exercise" OR "Athletes." The articles were first screened by title and abstract by two independent reviewers and disagreements resolved by a third reviewer. Data were extracted independently by the same two reviewers; results were extracted in duplicate and then compared to avoid errors. A total of 544 articles were retrieved and 24 were included. A total of 1,680 patients were included, most of them being male (n = 1,134, 67.5%), with a mean age of 30.9 ± 6.1 years. Following probiotic supplementation, positive effects have been reported for several outcomes including respiratory tract infection, immunologic markers, and gastrointestinal symptoms in both athletes and nonathletes. However, published studies have distinct protocols and measured outcomes, and some of them have small sample size and failed to prove beneficial effect on probiotic supplementation, leading to inconclusive results for standardized supplementation protocols.
Collapse
|
16
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
17
|
Costa RJS, Gaskell SK, McCubbin AJ, Snipe RMJ. Exertional-heat stress-associated gastrointestinal perturbations during Olympic sports: Management strategies for athletes preparing and competing in the 2020 Tokyo Olympic Games. Temperature (Austin) 2019; 7:58-88. [PMID: 32166105 PMCID: PMC7053925 DOI: 10.1080/23328940.2019.1597676] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Exercise-induced gastrointestinal syndrome (EIGS) is a common characteristic of exercise. The causes appear to be multifactorial in origin, but stem primarily from splanchnic hypoperfusion and increased sympathetic drive. These primary causes can lead to secondary outcomes that include increased intestinal epithelial injury and gastrointestinal hyperpermeability, systemic endotoxemia, and responsive cytokinemia, and impaired gastrointestinal function (i.e. transit, digestion, and absorption). Impaired gastrointestinal integrity and functional responses may predispose individuals, engaged in strenuous exercise, to gastrointestinal symptoms (GIS), and health complications of clinical significance, both of which may have exercise performance implications. There is a growing body of evidence indicating heat exposure during exercise (i.e. exertional-heat stress) can substantially exacerbate these gastrointestinal perturbations, proportionally to the magnitude of exertional-heat stress, which is of major concern for athletes preparing for and competing in the upcoming 2020 Tokyo Olympic Games. To date, various hydration and nutritional strategies have been explored to prevent or ameliorate exertional-heat stress associated gastrointestinal perturbations. The aims of the current review are to comprehensively explore the impact of exertional-heat stress on markers of EIGS, examine the evidence for the prevention and (or) management of EIGS in relation to exertional-heat stress, and establish best-practice nutritional recommendations for counteracting EIGS and associated GIS in athletes preparing for and competing in Tokyo 2020.
Collapse
Affiliation(s)
- Ricardo J S Costa
- Monash University, Department of Nutrition Dietetics and Food, Notting Hill, Victoria, Australia
| | - Stephanie K Gaskell
- Monash University, Department of Nutrition Dietetics and Food, Notting Hill, Victoria, Australia
| | - Alan J McCubbin
- Monash University, Department of Nutrition Dietetics and Food, Notting Hill, Victoria, Australia
| | - Rhiannon M J Snipe
- Deakin University, Centre for Sport Research, School of Exercise and Nutrition Science, Burwood, Victoria, Australia
| |
Collapse
|
18
|
Nikolaidis PT, Veniamakis E, Rosemann T, Knechtle B. Nutrition in Ultra-Endurance: State of the Art. Nutrients 2018; 10:nu10121995. [PMID: 30558350 PMCID: PMC6315825 DOI: 10.3390/nu10121995] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/02/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022] Open
Abstract
Athletes competing in ultra-endurance sports should manage nutritional issues, especially with regards to energy and fluid balance. An ultra-endurance race, considered a duration of at least 6 h, might induce the energy balance (i.e., energy deficit) in levels that could reach up to ~7000 kcal per day. Such a negative energy balance is a major health and performance concern as it leads to a decrease of both fat and skeletal muscle mass in events such as 24-h swimming, 6-day cycling or 17-day running. Sport anemia caused by heavy exercise and gastrointestinal discomfort, under hot or cold environmental conditions also needs to be considered as a major factor for health and performance in ultra-endurance sports. In addition, fluid losses from sweat can reach up to 2 L/h due to increased metabolic work during prolonged exercise and exercise under hot environments that might result in hypohydration. Athletes are at an increased risk for exercise-associated hyponatremia (EAH) and limb swelling when intake of fluids is greater than the volume lost. Optimal pre-race nutritional strategies should aim to increase fat utilization during exercise, and the consumption of fat-rich foods may be considered during the race, as well as carbohydrates, electrolytes, and fluid. Moreover, to reduce the risk of EAH, fluid intake should include sodium in the amounts of 10–25 mmol to reduce the risk of EAH and should be limited to 300–600 mL per hour of the race.
Collapse
Affiliation(s)
- Pantelis T Nikolaidis
- Laboratory of Exercise Testing, Hellenic Air Force Academy, 13671 Dekelia, Greece.
- Exercise Physiology Laboratory, 18450 Nikaia, Greece.
| | - Eleftherios Veniamakis
- Department of Nutrition and Dietetics, Technological Educational Institute, 72300 Sitia, Greece.
| | - Thomas Rosemann
- Institute of General Practice and for Health Services Research, University of Zurich, 8091 Zurich, Switzerland.
| | - Beat Knechtle
- Institute of General Practice and for Health Services Research, University of Zurich, 8091 Zurich, Switzerland.
- Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland.
| |
Collapse
|
19
|
Barrington JH, Chrismas BCR, Gibson OR, Tuttle J, Pegrum J, Govilkar S, Kabir C, Giannakakis N, Rayan F, Okasheh Z, Sanaullah A, Ng Man Sun S, Pearce O, Taylor L. Hypoxic Air Inhalation and Ischemia Interventions Both Elicit Preconditioning Which Attenuate Subsequent Cellular Stress In vivo Following Blood Flow Occlusion and Reperfusion. Front Physiol 2017; 8:560. [PMID: 28824456 PMCID: PMC5539087 DOI: 10.3389/fphys.2017.00560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Ischemic preconditioning (IPC) is valid technique which elicits reductions in femoral blood flow occlusion mediated reperfusion stress (oxidative stress, Hsp gene transcripts) within the systemic blood circulation and/or skeletal muscle. It is unknown whether systemic hypoxia, evoked by hypoxic preconditioning (HPC) has efficacy in priming the heat shock protein (Hsp) system thus reducing reperfusion stress following blood flow occlusion, in the same manner as IPC. The comparison between IPC and HPC being relevant as a preconditioning strategy prior to orthopedic surgery. In an independent group design, 18 healthy men were exposed to 40 min of (1) passive whole-body HPC (FiO2 = 0.143; no ischemia. N = 6), (2) IPC (FiO2 = 0.209; four bouts of 5 min ischemia and 5 min reperfusion. n = 6), or (3) rest (FiO2 = 0.209; no ischemia. n = 6). The interventions were administered 1 h prior to 30 min of tourniquet derived femoral blood flow occlusion and were followed by 2 h subsequent reperfusion. Systemic blood samples were taken pre- and post-intervention. Systemic blood and gastrocnemius skeletal muscle samples were obtained pre-, 15 min post- (15PoT) and 120 min (120PoT) post-tourniquet deflation. To determine the cellular stress response gastrocnemius and leukocyte Hsp72 mRNA and Hsp32 mRNA gene transcripts were determined by RT-qPCR. The plasma oxidative stress response (protein carbonyl, reduced glutathione/oxidized glutathione ratio) was measured utilizing commercially available kits. In comparison to control, at 15PoT a significant difference in gastrocnemius Hsp72 mRNA was seen in HPC (−1.93-fold; p = 0.007) and IPC (−1.97-fold; p = 0.006). No significant differences were observed in gastrocnemius Hsp32 and Hsp72 mRNA, leukocyte Hsp72 and Hsp32 mRNA, or oxidative stress markers (p > 0.05) between HPC and IPC. HPC provided near identical amelioration of blood flow occlusion mediated gastrocnemius stress response (Hsp72 mRNA), compared to an established IPC protocol. This was seen independent of changes in systemic oxidative stress, which likely explains the absence of change in Hsp32 mRNA transcripts within leukocytes and the gastrocnemius. Both the established IPC and novel HPC interventions facilitate a priming of the skeletal muscle, but not leukocyte, Hsp system prior to femoral blood flow occlusion. This response demonstrates a localized tissue specific adaptation which may ameliorate reperfusion stress.
Collapse
Affiliation(s)
- James H Barrington
- Institute of Sport and Physical Activity Research, University of BedfordshireLuton, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Centre for Human Performance, Exercise and Rehabilitation, Brunel University LondonUxbridge, United Kingdom
| | - James Tuttle
- Institute of Sport and Physical Activity Research, University of BedfordshireLuton, United Kingdom
| | - J Pegrum
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - S Govilkar
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - N Giannakakis
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - F Rayan
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Z Okasheh
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - A Sanaullah
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - S Ng Man Sun
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Lee Taylor
- ASPETAR, Athlete Health and Performance Research Centre, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar.,School of Sport, Exercise and Health Sciences. Loughborough UniversityLoughborough, United Kingdom
| |
Collapse
|