1
|
Cota-Magaña AI, Vazquez-Moreno M, Rocha-Aguado A, Ángeles-Mejía S, Valladares-Salgado A, Díaz-Flores M, López-Díazguerrero NE, Cruz M. Obesity Is Associated with Oxidative Stress Markers and Antioxidant Enzyme Activity in Mexican Children. Antioxidants (Basel) 2024; 13:457. [PMID: 38671905 PMCID: PMC11047352 DOI: 10.3390/antiox13040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The relationship between metabolic disorders and oxidative stress is still controversial in the child population. The present cross-sectional study aimed to analyze the associations between obesity, cardiometabolic traits, serum level of carbonylated proteins (CPs), malondialdehyde (MDA), and the enzyme activity of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in children from Mexico City (normal weight: 120; obesity: 81). Obesity resulted in being positively associated with CAT (β = 0.05 ± 0.01, p = 5.0 × 10-3) and GPx (β = 0.13 ± 0.01, p = 3.7 × 10-19) enzyme activity. A significant interaction between obesity and sex was observed in MDA and SOD enzymatic activity (PMDA = 0.03; PSOD = 0.04). The associations between obesity, MDA level, and SOD enzyme activity were only significant in boys (boys: PMDA = 3.0 × 10-3; PSOD = 7.0 × 10-3; girls: p ≥ 0.79). In both children with normal weight and those with obesity, CP levels were positively associated with SOD enzyme activity (PNormal-weight = 2.2 × 10-3; PObesity = 0.03). In conclusion, in Mexican children, obesity is positively associated with CAT and GPx enzyme activity, and its associations with MDA levels and SOD enzyme activity are sex-specific. Therefore, CP level is positively related to SOD enzyme activity independently of body weight.
Collapse
Affiliation(s)
- Ana Isabel Cota-Magaña
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (A.I.C.-M.); (M.V.-M.)
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Miguel Vazquez-Moreno
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (A.I.C.-M.); (M.V.-M.)
| | - Andrés Rocha-Aguado
- OOAD Ciudad de México Norte, Unidad de Medicina Familiar No. 23, Instituto Mexicano del Seguro Social, Mexico City 07070, Mexico
| | - Selene Ángeles-Mejía
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (A.I.C.-M.); (M.V.-M.)
| | - Adán Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (A.I.C.-M.); (M.V.-M.)
| | - Margarita Díaz-Flores
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (A.I.C.-M.); (M.V.-M.)
| | - Norma Edith López-Díazguerrero
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (A.I.C.-M.); (M.V.-M.)
| |
Collapse
|
2
|
Goo B, Ahmadieh S, Zarzour A, Yiew NKH, Kim D, Shi H, Greenway J, Cave S, Nguyen J, Aribindi S, Wendolowski M, Veerapaneni P, Ogbi M, Chen W, Lei Y, Lu XY, Kim HW, Weintraub NL. Sex-Dependent Role of Adipose Tissue HDAC9 in Diet-Induced Obesity and Metabolic Dysfunction. Cells 2022; 11:2698. [PMID: 36078104 PMCID: PMC9454798 DOI: 10.3390/cells11172698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a major risk factor for both metabolic and cardiovascular disease. We reported that, in obese male mice, histone deacetylase 9 (HDAC9) is upregulated in adipose tissues, and global deletion of HDAC9 protected against high fat diet (HFD)-induced obesity and metabolic disease. Here, we investigated the impact of adipocyte-specific HDAC9 gene deletion on diet-induced obesity in male and female mice. The HDAC9 gene expression was increased in adipose tissues of obese male and female mice and HDAC9 expression correlated positively with body mass index in humans. Interestingly, female, but not male, adipocyte-specific HDAC9 KO mice on HFD exhibited reduced body weight and visceral adipose tissue mass, adipocyte hypertrophy, and improved insulin sensitivity, glucose tolerance and adipogenic differentiation gene expression. Furthermore, adipocyte-specific HDAC9 gene deletion in female mice improved metabolic health as assessed by whole body energy expenditure, oxygen consumption, and adaptive thermogenesis. Mechanistically, compared to female mice, HFD-fed male mice exhibited preferential HDAC9 expression in the stromovascular fraction, which may have offset the impact of adipocyte-specific HDAC9 gene deletion in male mice. These results suggest that HDAC9 expressed in adipocytes is detrimental to obesity in female mice and provides novel evidence of sex-related differences in HDAC9 cellular expression and contribution to obesity-related metabolic disease.
Collapse
Affiliation(s)
- Brandee Goo
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - Samah Ahmadieh
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th St., BI5076, Augusta, GA 30912, USA
| | - Abdalrahman Zarzour
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th St., BI5076, Augusta, GA 30912, USA
| | - Nicole K. H. Yiew
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - David Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - Hong Shi
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th St., BI5076, Augusta, GA 30912, USA
| | - Jacob Greenway
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - Stephen Cave
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - Jenny Nguyen
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - Swetha Aribindi
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - Mark Wendolowski
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - Praneet Veerapaneni
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - Mourad Ogbi
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
| | - Weiqin Chen
- Departments of Physiology and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th St., CA3126, Augusta, GA 30912, USA
| | - Yun Lei
- Departments of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th St., CA3008, Augusta, GA 30912, USA
| | - Xin-Yun Lu
- Departments of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th St., CA3008, Augusta, GA 30912, USA
| | - Ha Won Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th St., BI5076, Augusta, GA 30912, USA
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1120 15th St., CB3940, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th St., BI5076, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Eleazu C, Suleiman JB, Othman ZA, Zakaria Z, Nna VU, Hussain NHN, Mohamed M. Bee bread attenuates high fat diet induced renal pathology in obese rats via modulation of oxidative stress, downregulation of NF-kB mediated inflammation and Bax signalling. Arch Physiol Biochem 2022; 128:1088-1104. [PMID: 32319823 DOI: 10.1080/13813455.2020.1752258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Global prevalence of obesity is increasing. OBJECTIVE To study the effect of bee bread (BB) on serum renal function parameters, oxidative stress, inflammatory and B-cell associated protein X (Bax) in the kidneys of high fat diet (HFD) obese rats. METHODS Thirty-six male Sprague Dawley rats were used. Control: received rat diet and water (1 mL/kg); HFD group: received HFD and water (1 mL/kg): bee bread (BB) preventive or orlistat preventive: received HFD and BB (0.5 g/kg) or HFD and orlistat (10 mg/kg); BB or orlistat treatment: received BB (0.5 g/kg) or orlistat (10 mg/kg). RESULTS HFD group had increased body weight, Body Mass Index, Lee Obesity Indices, kidney weights, malondialdehyde, inflammatory markers, Bax; decreased glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, total antioxidant activity, no differences (p > .05) in food intakes, serum creatinine, sodium, potassium, chloride, catalase compared to control. CONCLUSION BB modulated most of these parameters, as corroborated by histology.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana, Ebonyi State, Nigeria
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | - Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Victor Udo Nna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Nik Hazlina Nik Hussain
- Women's Health Development Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
4
|
Valença HDM, E Silva CP, de Brito Gitirana L, Valença SS, Lanzetti M. Beneficial effects of Ilex paraguariensis in the prevention of obesity-associated metabolic disorders in mice. Phytother Res 2022; 36:1032-1042. [PMID: 35028976 DOI: 10.1002/ptr.7377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/11/2022]
Abstract
Obesity is a chronic condition involving inflammation and oxidative stress that commonly predisposes affected individuals to develop metabolic disorders. We hypothesize that Ilex paraguariensis (IP) can modulate oxidative stress and inflammation underpinning metabolic disorders caused by obesity. C57BL/6 mice were fed a high-fat diet (HFD group) for 12 weeks. Concomitantly, some mice were treated with roasted IP (15 mg/ml - HFD + IP) or dimethyl fumarate (DMF) as a positive control (2 mg/ml - HFD + DMF). The control group received standard chow and water ad libitum. Histological analyses of fat tissue and liver, and quantification of mediators related to oxidative stress (Kelch-like ECH-associated protein 1/NF-E2-related factor 2, NADP(H) quinone oxidoreductase-1 [NQO1], heme oxygenase 1 [HO1], and superoxide dismutase) as well as metabolic profile blood biomarkers (glucose, leptin, resistin, high-density lipoproteins [HDLs], and triglycerides) were performed. Metabolic disorders were prevented in mice treated with IP, as evidenced by the observation that glucose, HDL, and resistin levels were similar to those assessed in the control group. Morphological analyses showed that both IP and DMF treatments prevented hepatic steatosis and adipocyte hypertrophy in visceral adipose tissue. Finally, although the antioxidant response stimulated by IP was quite limited, significant effects were found on NQO1 and HO1 expression. In conclusion, IP has promising preventative effects on the development of metabolic disorders caused by obesity.
Collapse
Affiliation(s)
- Helber da Maia Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cyntia Pecli E Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lycia de Brito Gitirana
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Samuel Santos Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manuella Lanzetti
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Goossens GH, Jocken JWE, Blaak EE. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat Rev Endocrinol 2021; 17:47-66. [PMID: 33173188 DOI: 10.1038/s41574-020-00431-8] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Obesity is associated with many adverse health effects, such as an increased cardiometabolic risk. Despite higher adiposity for a given BMI, premenopausal women are at lower risk of cardiometabolic disease than men of the same age. This cardiometabolic advantage in women seems to disappear after the menopause or when type 2 diabetes mellitus develops. Sexual dimorphism in substrate supply and utilization, deposition of excess lipids and mobilization of stored lipids in various key metabolic organs (such as adipose tissue, skeletal muscle and the liver) are associated with differences in tissue-specific insulin sensitivity and cardiometabolic risk profiles between men and women. Moreover, lifestyle-related factors and epigenetic and genetic mechanisms seem to affect metabolic complications and disease risk in a sex-specific manner. This Review provides insight into sexual dimorphism in adipose tissue distribution, adipose tissue, skeletal muscle and liver substrate metabolism and tissue-specific insulin sensitivity in humans, as well as the underlying mechanisms, and addresses the effect of these sex differences on cardiometabolic health. Additionally, this Review highlights the implications of sexual dimorphism in the pathophysiology of obesity-related cardiometabolic risk for the development of sex-specific prevention and treatment strategies.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| | - Johan W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands.
| |
Collapse
|
6
|
Stott NL, Marino JS. High Fat Rodent Models of Type 2 Diabetes: From Rodent to Human. Nutrients 2020; 12:nu12123650. [PMID: 33261000 PMCID: PMC7761287 DOI: 10.3390/nu12123650] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Poor dietary habits contribute to increased incidences of obesity and related co-morbidities, such as type 2 diabetes (T2D). The biological, genetic, and pathological implications of T2D, are commonly investigated using animal models induced by a dietary intervention. In spite of significant research contributions, animal models have limitations regarding the translation to human pathology, which leads to questioning their clinical relevance. Important considerations include diet-specific effects on whole organism energy balance and glucose and insulin homeostasis, as well as tissue-specific changes in insulin and glucose tolerance. This review will examine the T2D-like phenotype in rodents resulting from common diet-induced models and their relevance to the human disease state. Emphasis will be placed on the disparity in percentages and type of dietary fat, the duration of intervention, and whole organism and tissue-specific changes in rodents. An evaluation of these models will help to identify a diet-induced rodent model with the greatest clinical relevance to the human T2D pathology. We propose that a 45% high-fat diet composed of approximately one-third saturated fats and two-thirds unsaturated fats may provide a diet composition that aligns closely to average Western diet macronutrient composition, and induces metabolic alterations mirrored by clinical populations.
Collapse
|
7
|
Magalhães SC, de Oliveira KA, Freiras PA, Moreira Gomes MD, Pereira LM, Boa LF, de Carvalho DP, Fortunato RS, Carneiro Loureiro AC, Brito LC, de Oliveira AC. High-dose Nandrolone Decanoate induces oxidative stress and inflammation in retroperitoneal adipose tissue of male rats. J Steroid Biochem Mol Biol 2020; 203:105728. [PMID: 32712213 DOI: 10.1016/j.jsbmb.2020.105728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
The non-therapeutic use of the androgenic anabolic steroid Nandrolone Decanoate is popular due to its effects on physical performance and body composition, especially for its lipolytic and anabolic effects associated. However, high doses of such drugs are often associated with a series of pathologies related to unbalanced redox homeostasis, which, in turn, can be linked to inflammation. The oxidative stress onset could deregulate the secretion of cytokines, evidencing a dysfunctional adipocyte. Thus, the aim of this study was to investigate the effect of supraphysiological doses of Nandrolone Decanoate on redox homeostasis of retroperitoneal fatpad of male rats and its relationship with cytokines-based inflammatory signaling. Hydrogen peroxide production was assessed in the retroperitoneal fat pad of adult male rats which received either 10 mg kg of Nandrolone Decanoate or only a vehicle. Also, catalase, superoxide dismutase and glutathione peroxidase activities were measured, together with total reduced thiols and protein carbonylation, as well as IL-1β, TNF-α, and IL-6 local levels. High doses of Nandrolone Decanoate caused an increase in the hydrogen peroxide production, together with lower activities of the antioxidant enzymes and lower levels of total reduced thiol. There were also higher protein carbonylation and greater levels of IL-1β, TNF-α, and IL-6 in the treated group compared to control group. Therefore, it was possible to verify that high doses of Nandrolone Decanoate cause oxidative stress and induce higher inflammatory signaling in retroperitoneal fat pad of male rats.
Collapse
Affiliation(s)
- Saulo Chaves Magalhães
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Keciany Alves de Oliveira
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Paula Alexandre Freiras
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Maria Diana Moreira Gomes
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Leonardo Matta Pereira
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Luiz Fonte Boa
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Denise Pires de Carvalho
- Laboratório de Fisiologia Endócrina Dóris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Soares Fortunato
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriano Cesar Carneiro Loureiro
- Laboratório de Bioquímica e Expressão Gênica, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil
| | - Luciana Catunda Brito
- Instututo de Educação Física e Esportes, Universidade Federal do Ceará, Ceará, Brazil
| | - Ariclécio Cunha de Oliveira
- Laboratório de Fisiologia Endócrina e Metabolismo, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Ceará, Brazil.
| |
Collapse
|
8
|
Oliveira LS, Caetano B, Miranda RA, Souza AFP, Cordeiro A, Woyames J, Andrade CBV, Atella GC, Takiya CM, Fortunato RS, Trevenzoli IH, Souza LL, Pazos-Moura CC. Differentiated Hepatic Response to Fructose Intake during Adolescence Reveals the Increased Susceptibility to Non-Alcoholic Fatty Liver Disease of Maternal High-Fat Diet Male Rat Offspring. Mol Nutr Food Res 2020; 64:e1900838. [PMID: 31916388 DOI: 10.1002/mnfr.201900838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/25/2019] [Indexed: 12/25/2022]
Abstract
SCOPE Non-alcoholic fatty liver disease (NAFLD) among adolescents has been related to fructose intake. Additionally, maternal high-fat diet (mHFD) increases the offspring susceptibility to NAFLD at adulthood. Here, it is hypothesized that mHFD may exacerbate the fructose impact in adolescent male rat offspring, by changing the response of contributing mechanisms to liver injury. METHODS AND RESULTS Female Wistar rats receive standard (mSTD: 9% fat) or high-fat diet (mHFD: 29% fat) prior mating throughout pregnancy and lactation. After weaning, offspring receive standard chow and, from the 25th to 45th day, receive water or fructose-drinking water (15%). At 46 days old, fructose groups show increased adiposity, increased serum and hepatic triglycerides, regardless of maternal diet. Fructose aggravates the hepatic imbalance of redox state already exhibited by mHFD offspring. The hepatic activation of cellular repair pathways by fructose, such as unfolded protein response and macroautophagy, is disrupted only in mHFD offspring. Fructose does not change the liver morphology of mSTD offspring. However, it intensifies the liver injury already present in mHFD offspring. CONCLUSION Fructose intake during adolescence accelerates the emergence of NAFLD observed previously at the adult life of mHFD offspring, and reveals a differentiated hepatic response to metabolic insult, depending on the maternal diet.
Collapse
Affiliation(s)
- Lorraine S Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Bruna Caetano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Rosiane A Miranda
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Aline F P Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Aline Cordeiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Juliana Woyames
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Cherley B V Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Isis H Trevenzoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Luana L Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| | - Carmen C Pazos-Moura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundao - 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Eleazu C, Omar N, Lim OZ, Yeoh BS, Nik Hussain NH, Mohamed M. Obesity and Comorbidity: Could Simultaneous Targeting of esRAGE and sRAGE Be the Panacea? Front Physiol 2019; 10:787. [PMID: 31293451 PMCID: PMC6603218 DOI: 10.3389/fphys.2019.00787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Obesity, a chronic multifaceted disease, predisposes its patients to increased risk of metabolic disorders such as: diabetes mellitus, cardiovascular diseases, dyslipidemia, etc. Recent studies reported it to be amongst the leading causes of deaths in the world. Although several treatment options for obesity abound, many of them have not been able to successfully reverse the existing obesity and metabolic dysregulation. This has therefore warranted the need for either alternative therapies or diversification of the treatment approach for obesity and its comorbidity. When the receptor for advanced glycation end products (RAGE) interacts with its ligand, RAGE-ligand activates an inflammatory signaling cascade, that leads to the activation of nuclear factor kappa B (NF-κB) and transcription of inflammatory cytokines. This action has been associated with the development of obesity and its mediated metabolic dysregulation. In view of the increasing prevalence of obesity globally and the potential threat it places on life expectancy, this article reviewed the promising potentials of targeting endogenous secretory receptor for advanced glycation end products/soluble receptors for advanced glycation end products signaling as a treatment approach for obesity. We carried out a literature search in several electronic data bases such as: Pubmed, Pubmed Central, Google, Google Scholar, Scopus, and Medline from 1980 to 2019 to acquire the status of information concerning this. The article suggests the need for the development of an esRAGE/sRAGE targeted pharmacotherapy as a treatment approach for obesity and its comorbidity.
Collapse
Affiliation(s)
- Chinedum Eleazu
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Chemistry/Biochemistry/Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Norsuhana Omar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Oon Zhi Lim
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Boon Seng Yeoh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- *Correspondence: Mahaneem Mohamed,
| |
Collapse
|