1
|
Yang B, Voiniciuc C, Fu L, Dieluweit S, Klose H, Usadel B. TRM4 is essential for cellulose deposition in Arabidopsis seed mucilage by maintaining cortical microtubule organization and interacting with CESA3. THE NEW PHYTOLOGIST 2019; 221:881-895. [PMID: 30277578 PMCID: PMC6585848 DOI: 10.1111/nph.15442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/10/2018] [Indexed: 05/07/2023]
Abstract
The differentiation of the seed coat epidermal (SCE) cells in Arabidopsis thaliana leads to the production of a large amount of pectin-rich mucilage and a thick cellulosic secondary cell wall. The mechanisms by which cortical microtubules are involved in the formation of these pectinaceous and cellulosic cell walls are still largely unknown. Using a reverse genetic approach, we found that TONNEAU1 (TON1) recruiting motif 4 (TRM4) is implicated in cortical microtubule organization in SCE cells, and functions as a novel player in the establishment of mucilage structure. TRM4 is preferentially accumulated in the SCE cells at the stage of mucilage biosynthesis. The loss of TRM4 results in compact seed mucilage capsules, aberrant mucilage cellulosic structure, short cellulosic rays and disorganized cellulose microfibrils in mucilage. The defects could be rescued by transgene complementation of trm4 alleles. Probably, this is a consequence of a disrupted organization of cortical microtubules, observed using fluorescently tagged tubulin proteins in trm4 SCE cells. Furthermore, TRM4 proteins co-aligned with microtubules and interacted directly with CELLULOSE SYNTHASE 3 in two independent assays. Together, the results indicate that TRM4 is essential for microtubule array organization and therefore correct cellulose orientation in the SCE cells, as well as the establishment of the subsequent mucilage architecture.
Collapse
Affiliation(s)
- Bo Yang
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
| | - Cătălin Voiniciuc
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
- Institute for Bio‐ and Geosciences (IBG‐2: Plant Sciences)Forschungszentrum Jülich52425JülichGermany
| | - Lanbao Fu
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
| | - Sabine Dieluweit
- Institute of Complex Systems (ICS‐7)Forschungszentrum Jülich52425JülichGermany
| | - Holger Klose
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
- Institute for Bio‐ and Geosciences (IBG‐2: Plant Sciences)Forschungszentrum Jülich52425JülichGermany
| | - Björn Usadel
- Institute for Botany and Molecular Genetics (IBMG)BioEconomy Science CenterRWTH Aachen University52056AachenGermany
- Institute for Bio‐ and Geosciences (IBG‐2: Plant Sciences)Forschungszentrum Jülich52425JülichGermany
| |
Collapse
|
2
|
Dai X, Zhao G, Jiao T, Wu Y, Li X, Zhou K, Gao L, Xia T. Involvement of Three CsRHM Genes from Camellia sinensis in UDP-Rhamnose Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7139-7149. [PMID: 29916708 DOI: 10.1021/acs.jafc.8b01870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
UDP-Rhamnose synthase (RHM), the branch-point enzyme controlling the nucleotide sugar interconversion pathway, converts UDP-d-glucose into UDP-rhamnose. As a rhamnose residue donor, UDP-l-rhamnose is essential for the biosynthesis of pectic polysaccharides and secondary metabolites in plants. In this study, three CsRHM genes from tea plants ( Camellia sinensis) were cloned and characterized. Enzyme assays showed that three recombinant proteins displayed RHM activity and were involved in the biosynthesis of UDP-rhamnose in vitro. The transcript profiles, metabolite profiles, and mucilage location suggest that the three CsRHM genes likely contribute to UDP-rhamnose biosynthesis and may be involved in primary wall formation in C. sinensis. These analyses of CsRHM genes and metabolite profiles provide a comprehensive understanding of secondary metabolite biosynthesis and regulation in tea plants. Moreover, our results can be applied for the synthesis of the secondary metabolite rhamnoside in future studies.
Collapse
Affiliation(s)
- Xinlong Dai
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Guifu Zhao
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Tianming Jiao
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Yingling Wu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Xinmin Li
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Kang Zhou
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Liping Gao
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| |
Collapse
|
3
|
De Novo Transcriptome Analysis of Medicinally Important Plantago ovata Using RNA-Seq. PLoS One 2016; 11:e0150273. [PMID: 26943165 PMCID: PMC4778938 DOI: 10.1371/journal.pone.0150273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
Plantago ovata is an economically and medicinally important plant of the family Plantaginaceae. It is used extensively for the production of seed husk for its application in pharmaceutical, food and cosmetic industries. In the present study, the transcriptome of P. ovata ovary was sequenced using Illumina Genome Analyzer platform to characterize the mucilage biosynthesis pathway in the plant. De novo assembly was carried out using Oases followed by velvet. A total of 46,955 non-redundant transcripts (≥100 bp) using ~29 million high-quality paired end reads were generated. Functional categorization of these transcripts revealed the presence of several genes involved in various biological processes like metabolic pathways, mucilage biosynthesis, biosynthesis of secondary metabolites and antioxidants. In addition, simple sequence-repeat motifs, non-coding RNAs and transcription factors were also identified. Expression profiling of some genes involved in mucilage biosynthetic pathway was performed in different tissues of P. ovata using Real time PCR analysis. The study has resulted in a valuable resource for further studies on gene expression, genomics and functional genomics in P. ovata.
Collapse
|
4
|
Voiniciuc C, Yang B, Schmidt MHW, Günl M, Usadel B. Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls. Int J Mol Sci 2015; 16:3452-73. [PMID: 25658798 PMCID: PMC4346907 DOI: 10.3390/ijms16023452] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 11/30/2022] Open
Abstract
For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Bo Yang
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Maximilian Heinrich-Wilhelm Schmidt
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| | - Markus Günl
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, 52425 Jülich, Germany.
- Institute for Botany and Molecular Genetics (IBMG), RWTH Aachen University, 52056 Aachen, Germany.
| |
Collapse
|
5
|
North HM, Berger A, Saez-Aguayo S, Ralet MC. Understanding polysaccharide production and properties using seed coat mutants: future perspectives for the exploitation of natural variants. ANNALS OF BOTANY 2014; 114:1251-63. [PMID: 24607722 PMCID: PMC4195541 DOI: 10.1093/aob/mcu011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/14/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND The epidermal cells of the seed coat of certain species accumulate polysaccharides during seed development for cell wall reinforcement or release on imbibition to form mucilage. Seed-coat epidermal cells show natural variation in their structure and mucilage production, which could explain the diverse ecophysiological roles proposed for the latter. Arabidopsis mucilage mutants have proved to be an important tool for the identification of genes involved in the production of seed-coat polysaccharides. SCOPE This review documents genes that have been characterized as playing a role in the differentiation of the epidermal cells of the arabidopsis seed coat, the natural variability in polysaccharide features of these cells and the physiological roles attributed to seed mucilage. CONCLUSIONS Seed-coat epidermal cells are an excellent model for the study of polysaccharide metabolism and properties. Intra- and interspecies natural variation in the differentiation of these epidermal cells is an under-exploited resource for such studies and promises to play an important part in improving our knowledge of polysaccharide production and ecophysiological function.
Collapse
Affiliation(s)
- Helen M North
- INRA, Institut Jean-Pierre Bourgin, UMR1318, Saclay Plant Sciences, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, Saclay Plant Sciences, F-78026 Versailles, France
| | - Adeline Berger
- INRA, Institut Jean-Pierre Bourgin, UMR1318, Saclay Plant Sciences, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, Saclay Plant Sciences, F-78026 Versailles, France
| | - Susana Saez-Aguayo
- INRA, Institut Jean-Pierre Bourgin, UMR1318, Saclay Plant Sciences, F-78026 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, Saclay Plant Sciences, F-78026 Versailles, France
| | | |
Collapse
|
6
|
Bhargava A, Ahad A, Wang S, Mansfield SD, Haughn GW, Douglas CJ, Ellis BE. The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. PLANTA 2013; 237:1199-211. [PMID: 23328896 DOI: 10.1007/s00425-012-1821-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/20/2012] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana KNAT7 (KNOX family) and MYB75 (MYB family) transcription factors were each shown earlier to interact in yeast two-hybrid assays, and to modulate secondary cell wall formation in inflorescence stems. We demonstrate here that their interaction also occurs in vivo, and that specific domains of each protein mediate this process. The participation of these interacting transcription factors in secondary cell wall formation was then extended to the developing seed coat through the use of targeted transcript analysis and SEM in single loss-of-function mutants. Novel genetic and protein-protein interactions of MYB75 and KNAT7 with other transcription factors known to be involved in seed coat regulation were also identified. We propose that a MYB75-associated protein complex is likely to be involved in modulating secondary cell wall biosynthesis in both the Arabidopsis inflorescence stem and seed coat, and that at least some parts of the transcriptional regulatory network in the two tissues are functionally conserved.
Collapse
Affiliation(s)
- Apurva Bhargava
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Vasilevski A, Giorgi FM, Bertinetti L, Usadel B. LASSO modeling of the Arabidopsis thaliana seed/seedling transcriptome: a model case for detection of novel mucilage and pectin metabolism genes. MOLECULAR BIOSYSTEMS 2013; 8:2566-74. [PMID: 22735692 DOI: 10.1039/c2mb25096a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Whole genome transcript correlation-based approaches have been shown to be enormously useful for candidate gene detection. Consequently, simple Pearson correlation has been widely applied in several web based tools. That said, several more sophisticated methods based on e.g. mutual information or Bayesian network inference have been developed and have been shown to be theoretically superior but are not yet commonly applied. Here, we propose the application of a recently developed statistical regression technique, the LASSO, to detect novel candidates from high throughput transcriptomic datasets. We apply the LASSO to a tissue specific dataset in the model plant Arabidopsis thaliana to identify novel players in Arabidopsis thaliana seed coat mucilage synthesis. We built LASSO models based on a list of genes known to be involved in a sub-pathway of Arabidopsis mucilage synthesis. After identifying a putative transcription factor, we verified its involvement in mucilage synthesis by obtaining knock-out mutants for this gene. We show that a loss of function of this putative transcription factor leads to a significant decrease in mucilage pectin.
Collapse
Affiliation(s)
- Aleksandar Vasilevski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
8
|
Yang X, Baskin CC, Baskin JM, Zhang W, Huang Z. Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant. PLANT, CELL & ENVIRONMENT 2012; 35:872-83. [PMID: 22070663 DOI: 10.1111/j.1365-3040.2011.02459.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted.
Collapse
Affiliation(s)
- Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
9
|
Harpaz-Saad S, Western TL, Kieber JJ. The FEI2-SOS5 pathway and CELLULOSE SYNTHASE 5 are required for cellulose biosynthesis in the Arabidopsis seed coat and affect pectin mucilage structure. PLANT SIGNALING & BEHAVIOR 2012; 7:285-8. [PMID: 22353871 PMCID: PMC3405700 DOI: 10.4161/psb.18819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A common adaptation in angiosperms is the deposition of hydrophilic mucilage into the apoplast of seed coat epidermal cells during the course of their differentiation. Upon imbibition, seed mucilage, composed mainly of carbohydrates (i.e. pectins, hemicelluloses and glycans) expands rapidly, encapsulating the seed and aiding in seed dispersal and germination. The FEI1/FEI2 receptor-like kinases and the SOS5 extracellular GPI-anchored protein were previously shown to act on a pathway regulating cellulose biosynthesis during Arabidopsis root elongation. In the highlighted study, we demonstrated that FEI2 and SOS5 regulate the production of the cellulosic rays deposited across the inner adherent-layer of seed mucilage. Mutations in either fei2 or sos5 disrupted the formation of rays, which was associated with an increase in the soluble, outer layer of pectin mucilage and accompanied by a reduction in the inner adherent-layer. Mutations in CELLULOSE SYNTHASE 5 also led to reduced rays and mal-partitioning of the pectic component of seed mucilage, further establishing a structural role for cellulose in seed mucilage. Here, we show that FEI2 expressed from a CaMV 35S promoter complemented both root and seed mucilage defects of the fei1 fei2 double mutant. In contrast, expression of FEI1 from a 35S promoter complemented the root, but not the seed phenotype of the fei1 fei2 double mutant, suggesting that unlike in the root, FEI2 plays a unique and non-redundant role in the regulation of cellulose synthesis in seed mucilage. Altogether, these data suggest a novel role for cellulose in anchoring the pectic component of seed mucilage to the seed surface and indicate that the FEI2 protein has a function distinct from that of FEI1, despite the high sequence similarity of these RLKs.
Collapse
Affiliation(s)
| | | | - Joseph J. Kieber
- Biology Department; University of North Carolina; Chapel Hill, NC USA
- Correspondence to: Joseph Kieber;
| |
Collapse
|
10
|
Harpaz-Saad S, McFarlane HE, Xu S, Divi UK, Forward B, Western TL, Kieber JJ. Cellulose synthesis via the FEI2 RLK/SOS5 pathway and cellulose synthase 5 is required for the structure of seed coat mucilage in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:941-53. [PMID: 21883548 DOI: 10.1111/j.1365-313x.2011.04760.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The seeds of Arabidopsis thaliana and many other plants are surrounded by a pectinaceous mucilage that aids in seed hydration and germination. Mucilage is synthesized during seed development within maternally derived seed coat mucilage secretory cells (MSCs), and is released to surround the seed upon imbibition. The FEI1/FEI2 receptor-like kinases and the SOS5 extracellular GPI-anchored protein were shown previously to act on a pathway that regulates the synthesis of cellulose in Arabidopsis roots. Here, we demonstrate that both FEI2 and SOS5 also play a role in the synthesis of seed mucilage. Disruption of FEI2 or SOS5 leads to a reduction in the rays of cellulose observed across the seed mucilage inner layer, which alters the structure of the mucilage in response to hydration. Mutations in CESA5, which disrupts an isoform of cellulose synthase involved in primary cell wall synthesis, result in a similar seed mucilage phenotype. The data indicate that CESA5-derived cellulose plays an important role in the synthesis and structure of seed coat mucilage and that the FEI2/SOS5 pathway plays a role in the regulation of cellulose synthesis in MSCs. Moreover, these results establish a novel structural role for cellulose in anchoring the pectic component of seed coat mucilage to the seed surface.
Collapse
Affiliation(s)
- Smadar Harpaz-Saad
- University of North Carolina, Biology Department, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Walker M, Tehseen M, Doblin MS, Pettolino FA, Wilson SM, Bacic A, Golz JF. The transcriptional regulator LEUNIG_HOMOLOG regulates mucilage release from the Arabidopsis testa. PLANT PHYSIOLOGY 2011; 156:46-60. [PMID: 21402796 PMCID: PMC3091065 DOI: 10.1104/pp.111.172692] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/12/2011] [Indexed: 05/17/2023]
Abstract
Exposure of the mature Arabidopsis (Arabidopsis thaliana) seed to water results in the rapid release of pectinaceous mucilage from the outer cells of the testa. Once released, mucilage completely envelops the seed in a gel-like capsule. The physical force required to rupture the outer cell wall of the testa comes from the swelling of the mucilage as it expands rapidly following hydration. In this study, we show that mutations in the transcriptional regulator LEUNIG_HOMOLOG (LUH) cause a mucilage extrusion defect due to altered mucilage swelling. Based on sugar linkage and immunomicroscopic analyses, we show that the structure of luh mucilage is altered, having both an increase in substituted rhamnogalacturonan I and in methyl-esterified homogalacturonan. Also correlated with the structural modification of luh mucilage is a significant decrease in MUCILAGE MODIFIED2 (MUM2; a β-galactosidase) expression in the luh seed coat, raising the possibility that reduced activity of this glycosidase is directly responsible for the luh mucilage defects. Consistent with this is the structural similarity between mum2 and luh mucilage as well as the observation that elevating MUM2 expression in luh mutants completely suppresses the mucilage extrusion defect. Suppression of the luh mutant phenotype was also observed when LEUNIG, a transcriptional corepressor closely related to LUH, was introduced in luh mutants under the control of the LUH promoter. Based on these data, we propose a new model for the regulation of pectin biosynthesis during plant growth and development.
Collapse
|
12
|
Arsovski AA, Popma TM, Haughn GW, Carpita NC, McCann MC, Western TL. AtBXL1 encodes a bifunctional beta-D-xylosidase/alpha-L-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells. PLANT PHYSIOLOGY 2009; 150:1219-34. [PMID: 19458117 PMCID: PMC2705025 DOI: 10.1104/pp.109.138388] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/14/2009] [Indexed: 05/17/2023]
Abstract
Following pollination, the epidermal cells of the Arabidopsis (Arabidopsis thaliana) ovule undergo a complex differentiation process that includes the synthesis and polar secretion of pectinaceous mucilage followed by the production of a secondary cell wall. Wetting of mature seeds leads to the rapid bursting of these mucilage secretory cells to release a hydrophilic gel that surrounds the seed and is believed to aid in seed hydration and germination. A novel mutant is identified where mucilage release is both patchy and slow and whose seeds display delayed germination. While developmental analysis of mutant seeds reveals no change in mucilage secretory cell morphology, changes in monosaccharide quantities are detected, suggesting the mucilage release defect results from altered mucilage composition. Plasmid rescue and cloning of the mutant locus revealed a T-DNA insertion in AtBXL1, which encodes a putative bifunctional beta-d-xylosidase/alpha-l-arabinofuranosidase that has been implicated as a beta-d-xylosidase acting during vascular development. Chemical and immunological analyses of mucilage extracted from bxl1 mutant seeds and antibody staining of developing seed coats reveal an increase in (1-->5)-linked arabinans, suggesting that BXL1 is acting as an alpha-l-arabinofuranosidase in the seed coat. This implication is supported by the ability to rescue mucilage release through treatment of bxl1 seeds with exogenous alpha-l-arabinofuranosidases. Together, these results suggest that trimming of rhamnogalacturonan I arabinan side chains is required for correct mucilage release and reveal a new role for BXL1 as an alpha-l-arabinofuranosidase acting in seed coat development.
Collapse
Affiliation(s)
- Andrej A Arsovski
- Biology Department, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | | | | | | | | | |
Collapse
|
13
|
Arsovski AA, Villota MM, Rowland O, Subramaniam R, Western TL. MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2601-12. [PMID: 19401413 PMCID: PMC2692007 DOI: 10.1093/jxb/erp102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/20/2009] [Accepted: 03/11/2009] [Indexed: 05/17/2023]
Abstract
Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and secretion of pectinaceous mucilage. A number of genes have been identified affecting mucilage secretory cell differentiation, including MUCILAGE-MODIFIED4 (MUM4). mum4 mutants produce a reduced amount of mucilage and cloning of MUM4 revealed that it encodes a UDP-L-rhamnose synthase that is developmentally up-regulated to provide rhamnose for mucilage pectin synthesis. To identify additional genes acting in mucilage synthesis and secretion, a screen for enhancers of the mum4 phenotype was performed. Eight mum enhancers (men) have been identified, two of which result from defects in known mucilage secretory cell genes (MUM2 and MYB61). Our results show that, in a mum4 background, mutations in MEN1, MEN4, and MEN5 lead to further reductions in mucilage compared to mum4 single mutants, suggesting that they are involved in mucilage synthesis or secretion. Conversely, mutations in MEN2 and MEN6 appear to affect mucilage release rather than quantity. With the exception of men4, whose single mutant exhibits reduced mucilage, none of these genes have a single mutant phenotype, suggesting that they would not have been identified outside the compromised mum4 background.
Collapse
Affiliation(s)
| | - Maria M. Villota
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Owen Rowland
- Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Rajagopal Subramaniam
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON, Canada K1A 0C6
| | - Tamara L. Western
- Department of Biology, McGill University, Montreal, QC, Canada H3A 1B1
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
14
|
Li SF, Milliken ON, Pham H, Seyit R, Napoli R, Preston J, Koltunow AM, Parish RW. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. THE PLANT CELL 2009; 21:72-89. [PMID: 19136646 PMCID: PMC2648076 DOI: 10.1105/tpc.108.063503] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 12/02/2008] [Accepted: 12/20/2008] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana MYB5 gene is expressed in trichomes and seeds, including the seed coat. Constitutive expression of MYB5 resulted in the formation of more small trichomes and ectopic trichomes and a reduction in total leaf trichome numbers and branching. A myb5 mutant displayed minimal changes in trichome morphology, while a myb23 mutant produced increased numbers of small trichomes and two-branched trichomes. A myb5 myb23 double mutant developed more small rosette trichomes and two-branched trichomes than the single mutants. These results indicate that MYB5 and MYB23 regulate trichome extension and branching. The seed coat epidermal cells of myb5 and myb5 myb23 were irregular in shape, developed flattened columellae, and produced less mucilage than those of the wild type. Among the downregulated genes identified in the myb5 seeds using microarray analysis were ABE1 and ABE4 (alpha/beta fold hydrolase/esterase genes), MYBL2, and GLABRA2. The same genes were also downregulated in transparent testa glabra1 (ttg1) seeds, suggesting that MYB5 collaborates with TTG1 in seed coat development. These genes were upregulated in leaves and roots by ectopically expressed MYB5. The MYBL2, ABE1, and ABE4 promoters were active in seeds, including seed coats, and the latter two also in trichomes. Models of the MYB5 regulatory networks involved in seed coat and trichome development are presented.
Collapse
Affiliation(s)
- Song Feng Li
- Department of Botany, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
McFarlane HE, Young RE, Wasteneys GO, Samuels AL. Cortical microtubules mark the mucilage secretion domain of the plasma membrane in Arabidopsis seed coat cells. PLANTA 2008; 227:1363-75. [PMID: 18309515 DOI: 10.1007/s00425-008-0708-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 02/05/2008] [Indexed: 05/08/2023]
Abstract
During their differentiation Arabidopsis thaliana seed coat cells undergo a brief but intense period of secretory activity that leads to dramatic morphological changes. Pectic mucilage is secreted to one domain of the plasma membrane and accumulates under the primary cell wall in a ring-shaped moat around an anticlinal cytoplasmic column. Using cryofixation/transmission electron microscopy and immunofluorescence, the cytoskeletal architecture of seed coat cells was explored, with emphasis on its organization, function and the large amount of pectin secretion at 7 days post-anthesis. The specific domain of the plasma membrane where mucilage secretion is targeted was lined by abundant cortical microtubules while the rest of the cortical cytoplasm contained few microtubules. Actin microfilaments, in contrast, were evenly distributed around the cell. Disruption of the microtubules in the temperature-sensitive mor1-1 mutant affected the eventual release of mucilage from mature seeds but did not appear to alter the targeted secretion of vesicles to the mucilage pocket, the shape of seed coat cells or their secondary cell wall deposition. The concentration of cortical microtubules at the site of high vesicle secretion in the seed coat may utilize the same mechanisms required for the formation of preprophase bands or the bands of microtubules associated with spiral secondary cell wall thickening during protoxylem development.
Collapse
|
16
|
Rautengarten C, Usadel B, Neumetzler L, Hartmann J, Büssis D, Altmann T. A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:466-80. [PMID: 18266922 DOI: 10.1111/j.1365-313x.2008.03437.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During Arabidopsis seed development large quantities of mucilage, composed of pectins, are deposited into the apoplast underneath the outer wall of the seed coat. Upon imbibition of mature seeds, the stored mucilage expands through hydration and breaks the outer cell wall that encapsulates the whole seed. Mutant seeds carrying loss-of-function alleles of AtSBT1.7 that encodes one of 56 Arabidopsis thaliana subtilisin-like serine proteases (subtilases) do not release mucilage upon hydration. Microscopic analysis of the mutant seed coat revealed no visible structural differences compared with wild-type seeds. Weakening of the outer primary wall using cation chelators triggered mucilage release from the seed coats of mutants. However, in contrast to mature wild-type seeds, the mutant's outer cell walls did not rupture at the radial walls of the seed coat epidermal cells, but instead opened at the chalazal end of the seed, and were released in one piece. In atsbt1.7, the total rhamnose and galacturonic acid contents, representing the backbone of mucilage, remained unchanged compared with wild-type seeds. Thus, extrusion and solubility, but not the initial deposition of mucilage, are affected in atsbt1.7 mutants. AtSBT1.7 is localized in the developing seed coat, indicating a role in testa development or maturation. The altered mode of rupture of the outer seed coat wall and mucilage release indicate that AtSBT1.7 triggers the accumulation, and/or activation, of cell wall modifying enzymes necessary either for the loosening of the outer primary cell wall, or to facilitate swelling of the mucilage, as indicated by elevated pectin methylesterase activity in developing atsbt1.7 mutant seeds.
Collapse
Affiliation(s)
- Carsten Rautengarten
- Institut für Biochemie und Biologie, Genetik, Universität Potsdam, 14476 Golm, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Dean GH, Zheng H, Tewari J, Huang J, Young DS, Hwang YT, Western TL, Carpita NC, McCann MC, Mansfield SD, Haughn GW. The Arabidopsis MUM2 gene encodes a beta-galactosidase required for the production of seed coat mucilage with correct hydration properties. THE PLANT CELL 2007; 19:4007-21. [PMID: 18165329 PMCID: PMC2217648 DOI: 10.1105/tpc.107.050609] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 05/17/2023]
Abstract
Seed coat development in Arabidopsis thaliana involves a complex pathway where cells of the outer integument differentiate into a highly specialized cell type after fertilization. One aspect of this developmental process involves the secretion of a large amount of pectinaceous mucilage into the apoplast. When the mature seed coat is exposed to water, this mucilage expands to break the primary cell wall and encapsulate the seed. The mucilage-modified2 (mum2) mutant is characterized by a failure to extrude mucilage on hydration, although mucilage is produced as normal during development. The defect in mum2 appears to reside in the mucilage itself, as mucilage fails to expand even when the barrier of the primary cell wall is removed. We have cloned the MUM2 gene and expressed recombinant MUM2 protein, which has beta-galactosidase activity. Biochemical analysis of the mum2 mucilage reveals alterations in pectins that are consistent with a defect in beta-galactosidase activity, and we have demonstrated that MUM2 is localized to the cell wall. We propose that MUM2 is involved in modifying mucilage to allow it to expand upon hydration, establishing a link between the galactosyl side-chain structure of pectin and its physical properties.
Collapse
Affiliation(s)
- Gillian H Dean
- Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Macquet A, Ralet MC, Kronenberger J, Marion-Poll A, North HM. In situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage. PLANT & CELL PHYSIOLOGY 2007; 48:984-99. [PMID: 17540691 DOI: 10.1093/pcp/pcm068] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A comprehensive analysis was carried out of the composition of seed coat mucilage from Arabidopsis thaliana using the Columbia-0 accession. Pectinaceous mucilage is released from myxospermous seeds upon imbibition, and in Arabidopsis consists of a water-soluble, outer layer and an adherent, inner layer. Analysis of monosaccharide composition in conjunction with digestion with pectolytic enzymes conclusively demonstrated that the principal pectic domain of both layers was rhamnogalacturonan I, and that in the outer layer this was unbranched. The macromolecular characteristics of the water-soluble mucilage indicated that the rhamnogalacturonan molecules in the outer layer were in a slightly expanded random-coil conformation. The inner, adherent layer remained attached to the seed, even after extraction with acid and alkali, suggesting that its integrity was maintained by covalent bonds. Confocal microscopy and monosaccharide composition analyses showed that the inner layer can be separated into two domains. The internal domain contained cellulose microfibrils, which could form a matrix with RGI and bind it to the seed. In effect, in the mum5-1 mutant where most of the inner and outer mucilage layers were water soluble, cellulose remained attached to the seed coat. Immunolabeling with anti-pectin antibodies indicated the presence of galactan and arabinan in the inner layer, with the latter only present in the non-cellulose-containing external domain. In addition, JIM5 and JIM7 antibodies labeled different domains of the inner layer, suggesting the presence of stretches of homogalacturonan with different levels of methyl esterification.
Collapse
Affiliation(s)
- Audrey Macquet
- Laboratoire de Biologie des Semences, UMR 204, INRA, INAPG, Institut Jean-Pierre Bourgin, INRA, F-78026 Versailles Cedex, France
| | | | | | | | | |
Collapse
|