1
|
Xu S, Zhang Y, Cai H, He Y, Chen L, Zhang G, Chen R, Gu C, Teng X, Duan E, Jiang L, Ren Y, Wang Y, Dong H, Wan J. Lysine 98 in NAC20/NAC26 transcription factors: a key regulator of starch and protein synthesis in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112258. [PMID: 39277049 DOI: 10.1016/j.plantsci.2024.112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Starch and proteins are main storage product to determine the appearance, cooking, texture, and nutritional quality of rice (Oryza sativa L.). OsNAC20 and OsNAC26, as pivotal transcription factors, redundantly regulate the expression of genes responsible for starch and protein synthesis in the rice endosperm. Any knockout of OsNAC20 or OsNAC26 did not result in visible endosperm defects. In this study, we had isolated and characterized a mutant named as floury endosperm25 (flo25). The caryopsis of the flo25 mutant exhibits a floury endosperm, accompanied by reductions in both the 1000-grain weight and grain length, as well as diminished levels of total starch and protein. Through map-based cloning, it was determined that FLO25 encodes a NAM, ATAF, and CUC (NAC) transcription factors, namely OsNAC26, with a lysine to asparagine substitution at position 98 in the flo25 mutant. Remarkably, lysine 98 is conserved across plants species, and this mutation does not alter the subcellular localization of OsNAC26 but significantly attenuates its transcriptional activity and its ability to activate downstream target genes. Furthermore, the mutant protein encoded by OsNAC26-flo25 could interact with OsNAC20, disrupting the native interaction between OsNAC20 proteins. Additionally, when lysine 98 is substituted with asparagine in OsNAC20, the resulting mutant protein, OsNAC20(K98N), similarly disrupts the interaction between OsNAC26 proteins. Collectively, these findings underscore the pivotal role of Lysine 98 (K) in modulating the transcriptional activity of NAC20/NAC26 within the rice endosperm.
Collapse
Affiliation(s)
- Shanbin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhe He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Laibao Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanwei Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
2
|
Dong X, Yang H, Chai Y, Han B, Liu J, Tian L, Cui S, Xiong S, Zhong M, Fu B, Qu LQ. Simultaneous knockout of cytosolic and plastidial disproportionating enzymes disrupts grain setting and filling in rice. PLANT PHYSIOLOGY 2024; 196:1391-1406. [PMID: 39056538 DOI: 10.1093/plphys/kiae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Rice (Oryza sativa) plants contain plastidial and cytosolic disproportionating enzymes (DPE1 and DPE2). Our previous studies showed that DPE2 acts on maltose, the major product of starch degradation in pollens, releasing one glucose to fuel pollen tube growth and fertilization, whereas DPE1 participates in endosperm starch synthesis by transferring maltooligosyl groups from amylose to amylopectin, and removing excess short maltooligosaccharides. However, little is known about their integrated function. Here, we report that the coordinated actions of DPE1 and DPE2 contribute to grain setting and filling in rice. The dpe1dpe2 mutants could not be isolated from the progeny of heterozygous parental plants but were obtained via anther culture. Unlike that reported in Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), the dpe1dpe2 rice plants grew normally but only yielded a small number of empty, unfilled seeds. In the dpe1dpe2 seeds, nutrient accumulation was substantially reduced, and dorsal vascular bundles were also severely malnourished. Zymogram analyses showed that changes in the activities of the major starch-synthesizing enzymes matched well with various endosperm phenotypes of mutant seeds. Mechanistically, DPE1 deficiency allowed normal starch mobilization in leaves and pollens but affected starch synthesis in endosperm, while DPE2 deficiency blocked starch degradation, resulting in substantially decreased levels of the sugars available for pollen tube growth and grain filling. Overall, our results demonstrate the great potential of DPE1-DPE2 as an important regulatory module to realize higher crop yields and present a promising target for regulating nutrient accumulation in cereal crop endosperm.
Collapse
Affiliation(s)
- Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuai Cui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Xiong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Manfang Zhong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Fu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ullah R, Yin M, Li S, Israr Y, Wu Z, Wang X, Yu J, Li B, Ni Z, Liang R. Genome-wide association study identifies loci and candidate genes for RVA parameters in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1421924. [PMID: 39104845 PMCID: PMC11298398 DOI: 10.3389/fpls.2024.1421924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024]
Abstract
The gelatinization and retrogradation characteristics of wheat starch affect the eating quality of Chinese-style food. Rapid Visco Analyzer (RVA) parameters have been widely used as important indicators to evaluate and improve the quality of wheat starch. However, the genetic basis of RVA parameters remains to be further explored. In the present study, a natural population was genotyped using 90K single nucleotide polymorphism (SNP) arrays, and the RVA parameters of this population grown in five environments were evaluated. The results showed that 22,068 high-quality SNP markers were identified and distributed unequally on the chromosomes. According to the genetic distance, 214 wheat materials were divided into four groups. Except for the pasting temperature (PTT), six parameters followed a normal distribution. Based on the general linear model, 969 significant association SNPs were detected by genome-wide association studies (GWAS), and chromosomes 7A and 2B had the most associated SNPs. Breakdown viscosity (BV) was associated with the most SNPs (n = 238), followed by PTT (n = 186), peak viscosity (PV; n = 156), trough viscosity (TV; n = 127), and final viscosity (FV; n = 126). According to the average linkage disequilibrium (LD), 33 stable quantitative trait loci (QTLs) were identified for single parameters in multiple environments, of which 12 were associated with BV, followed by peak time (PT; n = 8) and PTT (n = 7). On the other hand, 67 pleiotropic QTLs were identified for multiple parameters. Three candidate genes-TasbeIIa, TasbeI, and TassIIa-were screened for phenotyping analysis. The grain width and the weight of the TasbeIIa and TaSSIIa knockout (KO) lines were significantly lower than those of the TasbeI KO lines and the control (CK). The KO lines had smaller endosperm cells, smaller A-type starch granules, and higher amylose content. The TasbeI KO lines showed normal RVA curves, while the TasbeIIa KO lines showed flat curves. However, the TaSSIIa lines failed to paste under the RVA temperatures. Conclusively, the SNPs/QTLs significantly associated with the RVA parameters and genetic resources with novel haplotypes could be used to improve the quality of wheat starch.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rongqi Liang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Dong X, Chen L, Yang H, Tian L, Dong F, Chai Y, Qu LQ. Pho1 cooperates with DPE1 to control short maltooligosaccharide mobilization during starch synthesis initiation in rice endosperm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:47. [PMID: 36912930 DOI: 10.1007/s00122-023-04250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/18/2022] [Indexed: 06/18/2023]
Abstract
Plastidial α-glucan phosphorylase is a key factor that cooperates with plastidial disproportionating enzyme to control short maltooligosaccharide mobilization during the initiation process of starch molecule synthesis in developing rice endosperm. Storage starch synthesis is essential for grain filling. However, little is known about how cereal endosperm controls starch synthesis initiation. One of core events for starch synthesis initiation is short maltooligosaccharide (MOS) mobilization consisting of long MOS primer production and excess MOS breakdown. By mutant analyses and biochemical investigations, we present here functional identifications of plastidial α-glucan phosphorylase (Pho1) and disproportionating enzyme (DPE1) during starch synthesis initiation in rice (Oryza sativa) endosperm. Pho1 deficiency impaired MOS mobilization, triggering short MOS accumulation and starch synthesis reduction during early seed development. The mutant seeds differed significantly in MOS level and starch content at 15 days after flowering and exhibited diverse endosperm phenotypes during mid-late seed development: ranging from pseudonormal to shrunken (Shr), severely or excessively Shr. The level of DPE1 was almost normal in the PN seeds but significantly reduced in the Shr seeds. Overexpression of DPE1 in pho1 resulted in plump seeds only. DPE1 deficiency had no obvious effects on MOS mobilization. Knockout of DPE1 in pho1 completely blocked MOS mobilization, resulting in severely and excessively Shr seeds only. These findings show that Pho1 cooperates with DPE1 to control short MOS mobilization during starch synthesis initiation in rice endosperm.
Collapse
Affiliation(s)
- Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Liangke Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Han J, Guo Z, Wang M, Liu S, Hao Z, Zhang D, Yong H, Weng J, Zhou Z, Li M, Li X. Using the dominant mutation gene Ae1-5180 ( amylose extender) to develop high-amylose maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:57. [PMID: 37313014 PMCID: PMC10248602 DOI: 10.1007/s11032-022-01323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Maize amylose is a type of high value-added starch used for medical, food, and chemical applications. Mutations in the starch branching enzyme (SBEIIb), with recessive ae (amylose extender) and dominant Ae1-5180 alleles, are the primary way to improve maize endosperm amylose content (AC). However, studies on Ae1-5180 mutation are scarce, and its roles in starch synthesis and breeding potential are unclear. We found that the AC of the Ae1-5180 mutant was 47.23%, and its kernels were tarnished and glassy and are easily distinguished from those of the wild type (WT), indicating that the dominant mutant has the classical characteristics of the ae mutant. Starch granules of Ae1-5180 became smaller, and higher in amount with irregular shape. The degree of amylopectin polymerisation changed to induce an increase in starch thermal stability. Compared with WT, the activity of granule-bound starch synthase and starch synthase was higher in early stages and lower in later stages, and other starch synthesis enzymes decreased during kernel development in the Ae1-5180 mutant. We successfully developed a marker (mu406) for the assisted selection of 17 Ae1-5180 near isogenic lines (NILs) according to the position of insertion of the Mu1 transposon in the SBEIIb promoter of Ae1-5180. JH214/Ae1-5180, CANS-1/Ae1-5180, CA240/Ae1-5180, and Z1698/Ae1-5180 have high breeding application potential with their higher AC (> 40%) and their 100-kernel weight decreased to < 25% compared to respective recurrent parents. Therefore, using the dominant Ae1-5180 mutant as a donor can detect the kernel phenotype and AC of Ae1-5180-NILs in advance, thereby accelerating the high-amylose breeding process. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01323-7.
Collapse
Affiliation(s)
- Jienan Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zenghui Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Meijuan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Shiyuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Degui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Hongjun Yong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Jianfeng Weng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zhiqiang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Mingshun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Xinhai Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| |
Collapse
|
6
|
Yu B, Xiang D, Mahfuz H, Patterson N, Bing D. Understanding Starch Metabolism in Pea Seeds towards Tailoring Functionality for Value-Added Utilization. Int J Mol Sci 2021; 22:8972. [PMID: 34445676 PMCID: PMC8396644 DOI: 10.3390/ijms22168972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Humaira Mahfuz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Dengjin Bing
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| |
Collapse
|
7
|
Jing L, Chen C, Lu Q, Wang Y, Zhu J, Lai S, Wang Y, Yang L. How do elevated atmosphere CO 2 and temperature alter the physiochemical properties of starch granules and rice taste? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142592. [PMID: 33071134 DOI: 10.1016/j.scitotenv.2020.142592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 05/12/2023]
Abstract
Elevated atmospheric CO2 (EC) and temperature (ET) strongly affect agricultural production, but the mechanism through which EC and/or ET influence starch granules and their relationship to cooked rice taste remain largely unknown. Therefore, a field experiment using a popular japonica cultivar grown in a temperature/free-air CO2 enrichment environment was conducted to investigate the responses of volume and fine structure of starch granules and their formation physiology to EC (+200 ppm) and/or ET (+1 °C) in 2015-2016. EC markedly enhanced the activity of soluble-starch synthase and granule-bound starch synthase by 28.0% and 27.9% respectively, thereby increasing the long chains and the volume of starch granules. However, EC decreased the activity of starch-branch enzyme by 7.5% possibly via the pathway of ethylene signalling (EC prominently decreased the ethylene evolution rate of rice grains by 28.8%), resulting in a remarkable decrease in α-1'6 glucosidic bonds and significant increase in the iodine-binding capacity and double helix in starch molecules. These EC-induced changes in morphology and fine structure of starch granules synergistically altered the thermal properties of rice flour and eventually improved the cohesiveness and taste of cooked rice, as suggested by the significant relationships between them. ET partially offset the beneficial EC effects in most cases. However, few remarkable CO2 × temperature or CO2 × year effects were detected, indicating that the effects of EC on starch granules and rice taste less varied with meteorological conditions. These findings have important implications on rice palatability and for the development of adaptive strategies in the starch industry in future environment.
Collapse
Affiliation(s)
- Liquan Jing
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qi Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yunxia Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Shangkun Lai
- Suqian Institute, Jiangsu Academy of Agricultural Sciences, Suqian 223800, Jiangsu, China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Lianxin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
8
|
Lv X, Ding Y, Long M, Liang W, Gu X, Liu Y, Wen X. Effect of Foliar Application of Various Nitrogen Forms on Starch Accumulation and Grain Filling of Wheat ( Triticum aestivum L.) Under Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:645379. [PMID: 33841473 PMCID: PMC8030621 DOI: 10.3389/fpls.2021.645379] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Foliar nitrogen (N) fertilizer application at later stages of wheat (Triticum aestivum L.) growth is an effective method of attenuating drought stress and improving grain filling. The influences or modes of action of foliar application of various nitrogen forms on wheat growth and grain filling need further research. The objective of this study was to examine the regulatory effects of various forms of foliar nitrogen [NO3 -, NH4 +, and CO(NH2)2] on wheat grain filling under drought stress and to elucidate their underlying mechanisms. The relative effects of each nitrogen source differed in promoting grain filling. Foliar NH4 +-N application notably prolonged the grain filling period. In contrast, foliar application of CO(NH2)2 and NO3 --N accelerated the grain filling rate and regulated levels of abscisic acid (ABA), z-riboside (ZR), and ethylene (ETH) in wheat grains. Analysis of gene expression revealed that CO(NH2)2 and NO3 --N upregulated the genes involved in the sucrose-starch conversion pathway, promoting the remobilization of carbohydrates and starch synthesis in the grains. Besides, activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased, whereas the content of malondialdehyde (MDA) declined under foliar nitrogen application (especially NH4 +-N). Under drought stress, enhancement of carbohydrate remobilization and sink strength became key factors in grain filling, and the relative differences in the effects of three N forms became more evident. In conclusion, NH4 +-N application improved the antioxidant enzyme system and delayed photoassimilate transportation. On the other hand, foliar applications of NO3 --N and CO(NH2)2 enhanced sink capacity and alleviated drought stress injury in wheat.
Collapse
|
9
|
Zhong Y, Qu J, Blennow A, Liu X, Guo D. Expression Pattern of Starch Biosynthesis Genes in Relation to the Starch Molecular Structure in High-Amylose Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2805-2815. [PMID: 33645979 DOI: 10.1021/acs.jafc.0c07354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The molecular structure and the expression levels of starch biosynthesis-related genes of three types of high-amylose maize (HAM) genotypes and one normal maize (NM) genotype at 5-35 days after pollination (DAP) were studied. Size exclusion chromatography (SEC) analysis showed that the molecular size of amylopectin molecules in NM increased from 5 to 35 DAP and the amylose content in HAM genotypes increased from 15 to 35 DAP. Correlation analysis for both NM and HAMs combined showed that SBEIIb and ISAII were negatively correlated with the contents of amylose and long amylopectin chains (DP > 30) and positively correlated with the content of short amylopectin chains (DP ≤ 31) and the molecular size of amylopectin molecules. Correlation analysis for only the HAMs showed that amylose content was negatively correlated with SBEI and SSIIa. In both correlation analyses, SSIIa showed a negative correlation with the average chain lengths of amylose chains.
Collapse
Affiliation(s)
- Yuyue Zhong
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, København 1017, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, København 1017, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Transcriptome analysis of genes involved in starch biosynthesis in developing Chinese chestnut (Castanea mollissima Blume) seed kernels. Sci Rep 2021; 11:3570. [PMID: 33574357 PMCID: PMC7878784 DOI: 10.1038/s41598-021-82130-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chinese chestnut (Castanea mollissima Blume) seed kernels (CCSK) with high quality and quantity of starch has emerged as a potential raw material for food industry, but the molecular regulatory mechanism of starch accumulation in developing CCSK is still unclear. In this study, we firstly analyzed the fruit development, starch accumulation, and microscopic observation of dynamic accumulation of starch granules of developing CCSK from 10 days after flowering (DAF) to 100 DAF, of which six representative CCSK samples (50–100 DAF) were selected for transcriptome sequencing analysis. Approximately 40 million valid reads were obtained, with an average length of 124.95 bp, which were searched against a reference genome, returning 38,146 unigenes (mean size = 1164.19 bp). Using the DESeq method, 1968, 1573, 1187, 1274, and 1494 differentially expressed unigenes were identified at 60:50, 70:60, 80:70, 90:80 and 100:90 DAF, respectively. The relationship between the unigene transcriptional profiles and starch dynamic patterns in developing CCSK was comparatively analyzed, and the specific unigenes encoding for metabolic enzymes (SUSY2, PGM, PGI, GPT, NTT, AGP3, AGP2, GBSS1, SS1, SBE1, SBE2.1, SBE2.2, ISA1, ISA2, ISA3, and PHO) were characterized to be involved potentially in the biosynthesis of G-1-P, ADPG, and starch. Finally, the temporal transcript profiles of genes encoding key enzymes (susy2, pgi2, gpt1, agp2, agp3, gbss1, ss1, sbe1, sbe2.1, sbe2.2, isa1, isa2, isa3, and pho) were validated by quantitative real-time PCR (qRT-PCR). Our findings could help to reveal the molecular regulatory mechanism of starch accumulation in developing CCSK and may also provide potential candidate genes for increasing starch content in Chinese chestnut or other starchy crops.
Collapse
|
11
|
Guo J, Li H, Liu J, Liu A, Cao X, Liu C, Cheng D, Zhao Z, Song J. Genome-Wide Identification and Expression Profiling of Starch-Biosynthetic Genes in Common Wheat. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542012008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ran L, Yu X, Li Y, Zou J, Deng J, Pan J, Xiong F. Analysis of development, accumulation and structural characteristics of starch granule in wheat grain under nitrogen application. Int J Biol Macromol 2020; 164:3739-3750. [DOI: 10.1016/j.ijbiomac.2020.08.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
|
13
|
You Y, Zhang M, Yang W, Li C, Liu Y, Li C, He J, Wu W. Starch phosphorylation and the in vivo regulation of starch metabolism and characteristics. Int J Biol Macromol 2020; 159:823-831. [PMID: 32445823 DOI: 10.1016/j.ijbiomac.2020.05.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Starch is the most significant carbon and energy reserve in plants and is also a sustainable feedstock for many industrial applications. Substantial research effort has been devoted to enhancing the yield and quality of starch. Over the past century, starch phosphorylation has aroused increasing interest as the only naturally occurring covalent modification in starch. Many studies have investigated the role of phosphorylation in starch metabolism and its impact on the starch granule. In this review, the two key enzymes involved in starch phosphorylation and their catalytic mechanisms are described at the molecular level; the vital roles of phosphorylation in starch degradation and biosynthesis are illuminated in detail; and the multiple influences of phosphorylation on starch composition, granule structure and physicochemical properties are discussed. This review systematically summarizes the importance of phosphorylation in starch metabolism, and describes the advanced methods used to precisely measure phosphate and increase the level of starch phosphorylation.
Collapse
Affiliation(s)
- Yuxian You
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingyue Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wen Yang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jialiang He
- School of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| |
Collapse
|
14
|
Transcriptional Analysis of Masson Pine ( Pinus massoniana) under High CO 2 Stress. Genes (Basel) 2019; 10:genes10100804. [PMID: 31614914 PMCID: PMC6826509 DOI: 10.3390/genes10100804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
To explore the molecular mechanism of the response of Masson pine (Pinus massoniana), the main coniferous tree in southern China, to high CO2 stress, transcriptome sequencing was carried out to analyze the genome-wide responses of annual seedlings under different durations (0 h, 6 h, 12 h and 24 h) of high CO2 stress. The results showed that a total of 3080/1908, 3110/2115 and 2684/1483 genes were up-/down-regulated after 6 h, 12 h and 24 h of treatment, respectively, compared with control check group (CK, 0 h). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that most of these differentially expressed genes (DEGs) were enriched in energy metabolism, carbohydrate synthesis, cell wall precursor synthesis and hormone regulation pathways. For energy metabolism, the expression of most genes involved in photosynthesis (including the light reaction and Calvin cycle) was generally inhibited, while the expression of genes related glycolysis, the tricarboxylic acid (TCA) cycle and PPP pathway was up-regulated. In addition, the increase in the CO2 concentration induced the up-regulation of gene expression in the sucrose synthesis pathway. Among all starch synthesis genes, GBSS (granule-bound starch synthase) had the highest expression level. On the other hand, during the synthesis of hemicellulose and pectin (cell wall precursor substances), the expression levels of GMD (GDP-mannose 4,6-dehydratase), MGP (Mannose-1-phosphate guanylyl transferase) and RHM (Rhamnose biosynthetic enzyme) were the highest, suggesting that the synthesis of the raw materials hemicellulose and pectin in Masson pine under stress were mainly supplied by GDP-Man, GDP-Fuc and UDP-Rha. Finally, stress inhibited gene expression in the ABA (Abscisic Acid) synthesis pathway and induced gene expression in the GA (Gibberellin), SA (Salicylic acid), BR(Brassinolide) and MeJA (Methyl Jasmonate) pathways. Stomatal switches were regulated by hormonal interactions. This experiment elaborated on the response and molecular mechanism of Masson pine to CO2 stress and aided in screening carbon sequestration genes for the corresponding molecular research of Masson pine in the future.
Collapse
|
15
|
Wang H, Wu Y, Zhang Y, Yang J, Fan W, Zhang H, Zhao S, Yuan L, Zhang P. CRISPR/Cas9-Based Mutagenesis of Starch Biosynthetic Genes in Sweet Potato (Ipomoea Batatas) for the Improvement of Starch Quality. Int J Mol Sci 2019; 20:E4702. [PMID: 31547486 PMCID: PMC6801948 DOI: 10.3390/ijms20194702] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas9-mediated genome editing is a powerful technology that has been used for the genetic modification of a number of crop species. In order to evaluate the efficacy of CRISPR/Cas9 technology in the root crop, sweet potato (Ipomoea batatas), two starch biosynthetic pathway genes, IbGBSSI (encoding granule-bound starch synthase I), and IbSBEII (encoding starch branching enzyme II), were targeted in the starch-type cultivar Xushu22 and carotenoid-rich cultivar Taizhong6. I. batatas was transformed using a binary vector, in which the Cas9 gene is driven by the Arabidopsis AtUBQ promoter and the guide RNA is controlled by the Arabidopsis AtU6 promoter. A total of 72 Xushu22 and 35 Taizhong6 transgenic lines were generated and analyzed for mutations. The mutation efficiency was 62-92% with multi-allelic mutations in both cultivars. Most of the mutations were nucleotide substitutions that lead to amino acid changes and, less frequently, stop codons. In addition, short nucleotide insertions or deletions were also found in both IbGBSSI and IbSBEII. Furthermore, a 2658 bp deletion was found in one IbSBEII transgenic line. The total starch contents were not significantly changed in IbGBSSI- and IbSBEII-knockout transgenic lines compared to the wild-type control. However, in the allopolyploid sweet potato, the IbGBSSI-knockout reduced, while the IbSBEII-knockout increased, the amylose percentage. Our results demonstrate that CRISPR/Cas9 technology is an effective tool for the improvement of starch qualities in sweet potato and breeding of polyploid root crops.
Collapse
Affiliation(s)
- Hongxia Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China.
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Yinliang Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China.
- Shanghai Sanshu Biotechnology Co., LTD. Shanghai 201210, China.
| | - Yandi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Weijuan Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Hui Zhang
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Shanshan Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Zhang X, Xie S, Han J, Zhou Y, Liu C, Zhou Z, Wang F, Cheng Z, Zhang J, Hu Y, Hao Z, Li M, Zhang D, Yong H, Huang Y, Weng J, Li X. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize. BMC Genomics 2019; 20:574. [PMID: 31296166 PMCID: PMC6625009 DOI: 10.1186/s12864-019-5945-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Starch biosynthesis in endosperm is a key process influencing grain yield and quality in maize. Although a number of starch biosynthetic genes have been well characterized, the mechanisms by which the expression of these genes is regulated, especially in regard to microRNAs (miRNAs), remain largely unclear. Results Sequence data for small RNAs, degradome, and transcriptome of maize endosperm at 15 and 25 d after pollination (DAP) from inbred lines Mo17 and Ji419, which exhibit distinct starch content and starch granule structure, revealed the mediation of starch biosynthetic pathways by miRNAs. Transcriptome analysis of these two lines indicated that 33 of 40 starch biosynthetic genes were differentially expressed, of which 12 were up-regulated in Ji419 at 15 DAP, one was up-regulated in Ji419 at 25 DAP, 14 were up-regulated in Ji419 at both 15 and 25 DAP, one was down-regulated in Ji419 at 15 DAP, two were down-regulated in Ji419 at 25 DAP, and three were up-regulated in Ji419 at 15 DAP and down-regulated in Ji419 at 25 DAP, compared with Mo17. Through combined analyses of small RNA and degradome sequences, 22 differentially expressed miRNAs were identified, including 14 known and eight previously unknown miRNAs that could target 35 genes. Furthermore, a complex co-expression regulatory network was constructed, in which 19 miRNAs could modulate starch biosynthesis in endosperm by tuning the expression of 19 target genes. Moreover, the potential operation of four miRNA-mediated pathways involving transcription factors, miR169a-NF-YA1-GBSSI/SSIIIa and miR169o-GATA9-SSIIIa/SBEIIb, was validated via analyses of expression pattern, transient transformation assays, and transactivation assays. Conclusion Our results suggest that miRNAs play a critical role in starch biosynthesis in endosperm, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing maize endosperm. Electronic supplementary material The online version of this article (10.1186/s12864-019-5945-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaocong Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sidi Xie
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feifei Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixiang Cheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yufeng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Hogg AC, Giroux MJ. Milling and baking quality of hexaploid spring wheat starch synthase IIa ( ssIIa) mutants with elevated amylose content. Cereal Chem 2019. [DOI: 10.1002/cche.10153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew C. Hogg
- Department of Plant Sciences and Plant Pathology Montana State University Bozeman Montana
| | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology Montana State University Bozeman Montana
| |
Collapse
|
18
|
Wu J, Chen L, Chen M, Zhou W, Dong Q, Jiang H, Cheng B. The DOF-Domain Transcription Factor ZmDOF36 Positively Regulates Starch Synthesis in Transgenic Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:465. [PMID: 31031791 PMCID: PMC6474321 DOI: 10.3389/fpls.2019.00465] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/28/2019] [Indexed: 05/06/2023]
Abstract
Starch synthesis is a complex process that influences crop yield and grain quality in maize. Many key enzymes have been identified in starch biosynthesis; however, the regulatory mechanisms have not been fully elucidated. In this study, we identified a DOF family gene, ZmDOF36, through transcriptome sequencing analysis. Real-time PCR indicated that ZmDOF36 was highly expressed in maize endosperm, with lower expression in leaves and tassels. ZmDOF36 is a typical DOF transcription factor (TF) that is localized to the nucleus and possesses transcriptional activation activity, and its transactivation domain is located in the C-terminus (amino acids 227-351). Overexpression of ZmDOF36 can increase starch content and decrease the contents of soluble sugars and reducing sugars. In addition, abnormal starch structure in transgenic maize was also observed by scanning electron microscopy (SEM). Furthermore, the expression levels of starch synthesis-related genes were up-regulated in ZmDOF36-expressing transgenic maize. ZmDOF36 was also shown to bind directly to the promoters of six starch biosynthesis genes, ZmAGPS1a, ZmAGPL1, ZmGBSSI, ZmSSIIa, ZmISA1, and ZmISA3 in yeast one-hybrid assays. Transient expression assays showed that ZmDOF36 can activate the expression of ZmGBSSI and ZmISA1 in tobacco leaves. Collectively, the results presented here suggest that ZmDOF36 acts as an important regulatory factor in starch synthesis, and could be helpful in devising strategies for modulating starch production in maize endosperm.
Collapse
|
19
|
Patterson JA, Tetlow IJ, Emes MJ. Bioinformatic and in vitro Analyses of Arabidopsis Starch Synthase 2 Reveal Post-translational Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2018; 9:1338. [PMID: 30283470 PMCID: PMC6156364 DOI: 10.3389/fpls.2018.01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/24/2018] [Indexed: 05/13/2023]
Abstract
Starch synthase 2 (SS2) is an important enzyme in leaf starch synthesis, elongating intermediate-length glucan chains. Loss of SS2 results in a distorted starch granule phenotype and altered physiochemical properties, highlighting its importance in starch biosynthesis, however, the post-translational regulation of SS2 is poorly understood. In this study, a combination of bioinformatic and in vitro analysis of recombinant SS2 was used to identify and characterize SS2 post-translational regulatory mechanisms. The SS2 N-terminal region, comprising the first 185 amino acids of the mature protein sequence, was shown to be highly variable between species, and was predicted to be intrinsically disordered. Intrinsic disorder in proteins is often correlated with protein phosphorylation and protein-protein interactions. Recombinant Arabidopsis thaliana SS2 formed homodimers that required the N-terminal region, but N-terminal peptides could not form stable homodimers alone. Recombinant SS2 was shown to be phosphorylated by chloroplast protein kinases and recombinant casein kinase II at two N-terminal serine residues (S63, S65), but mutation of these phosphorylation sites (Ser>Ala) revealed that they are not required for homo-dimerization. Heteromeric enzyme complex (HEC) formation between SS2 and SBE2.2 was shown to be ATP-dependent. However, SS2 homo-dimerization and protein phosphorylation are not required for its interaction with SBE2.2, as truncation of the SS2 N-terminus did not disrupt ATP-dependent HEC assembly. SS2 phosphorylation had no affect on its catalytic activity. Intriguingly, the removal of the N-terminal region of SS2 resulted in a 47-fold increase in its activity. As N-terminal truncation disrupted dimerization, this suggests that SS2 is more active when monomeric, and that transitions between oligomeric state may be a mechanism for SS2 regulation.
Collapse
Affiliation(s)
| | | | - Michael J. Emes
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Zhu GR, Yan X, Zhu D, Deng X, Wu JS, Xia J, Yan YM. Lysine acetylproteome profiling under water deficit reveals key acetylated proteins involved in wheat grain development and starch biosynthesis. J Proteomics 2018; 185:8-24. [DOI: 10.1016/j.jprot.2018.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
|
21
|
Abstract
Waxy wheat has unique end-use properties; however, its production is limited due mainly to its low grain yield compared with non-waxy wheat. In order to increase its grain yield, it is critical to understand the eco-physiological differences in grain filling between the waxy and non-waxy wheat. In this study, two waxy wheat and two non-waxy wheat cultivars were used to investigate the differences in starch-associated enzymes processes, sucrose and starch dynamics, yield components, and the final grain yield. The results indicated that the mean total grain starch and amylose content, the average 1000-kernel weight and grain yield of the waxy wheat were lower than those of the non-waxy wheat at maturity. The amylose content was significantly and positively correlated with the activity of GBSS (r = 0.80, p < 0.01). Significant positive correlation also exists among activities of AGPase, SSS, GBSS, and SBE, except for GBSS-SBE. In summary, our study has revealed that the reduced conversion of sucrose to starch in the late grain filling stage is the main cause for the low kernel weight and total starch accumulation of the waxy wheat. The reduced conversion also appears to be a factor contributing to the lower grain yield of the waxy wheat.
Collapse
|
22
|
Hogg AC, Martin JM, Giroux MJ. Novel ssIIa Alleles Produce Specific Seed Amylose Levels in Hexaploid Wheat. Cereal Chem 2017. [DOI: 10.1094/cchem-06-17-0124-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andrew C. Hogg
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, U.S.A
| | - John M. Martin
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, U.S.A
| | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, U.S.A
| |
Collapse
|
23
|
Liu F, Zhao Q, Mano N, Ahmed Z, Nitschke F, Cai Y, Chapman KD, Steup M, Tetlow IJ, Emes MJ. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:976-985. [PMID: 26285603 DOI: 10.1111/pbi.12453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/25/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.
Collapse
Affiliation(s)
- Fushan Liu
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Qianru Zhao
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Noel Mano
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Zaheer Ahmed
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Felix Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yinqqi Cai
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, USA
| | - Kent D Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, USA
| | - Martin Steup
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
24
|
Characterization of genes encoding Starch Branching Enzyme I from Triticum monococcum and its diploid wheat relatives. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Singh A, Kumar P, Sharma M, Tuli R, Dhaliwal HS, Chaudhury A, Pal D, Roy J. Expression patterns of genes involved in starch biosynthesis during seed development in bread wheat (Triticum aestivum). MOLECULAR BREEDING 2015; 35:184. [DOI: 10.1007/s11032-015-0371-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
26
|
Ahmed N, Tetlow IJ, Nawaz S, Iqbal A, Mubin M, Nawaz ul Rehman MS, Butt A, Lightfoot DA, Maekawa M. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2237-43. [PMID: 25284759 DOI: 10.1002/jsfa.6941] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. RESULTS High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. CONCLUSION Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis.
Collapse
Affiliation(s)
- Nisar Ahmed
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Sehar Nawaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ahsan Iqbal
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shah Nawaz ul Rehman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Aisha Butt
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Carbondale, IL62901, USA
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| |
Collapse
|
27
|
Liu N, Zhang G, Xu S, Mao W, Hu Q, Gong Y. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development. FRONTIERS IN PLANT SCIENCE 2015; 6:1039. [PMID: 26635856 PMCID: PMC4658420 DOI: 10.3389/fpls.2015.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/09/2015] [Indexed: 05/19/2023]
Abstract
Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding.
Collapse
Affiliation(s)
- Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Guwen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Shengchun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Weihua Mao
- Center of Analysis and Measurement, Zhejiang UniversityHangzhou, China
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yaming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Yaming Gong
| |
Collapse
|
28
|
Comparative proteome analysis of A- and B-type starch granule-associated proteins in bread wheat (Triticum aestivum L.) and Aegilops crassa. J Proteomics 2014; 112:95-112. [PMID: 25154053 DOI: 10.1016/j.jprot.2014.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/27/2014] [Accepted: 08/05/2014] [Indexed: 11/23/2022]
Abstract
UNLABELLED Starch is the main component in the wheat endosperm and exists in two forms including A- and B-type granules. A bread wheat line CB037A and an Aegilops line Aegilops crassa were studied for the underlying starch biosynthesis mechanism in relation to granule types. The wheat line contains both types of starch granules while the Aegilops line only has the A-type. Differential starch granule development patterns of these two species were observed at the morphological level. A total of 190 differentially expressed proteins (DEPs) were detected between the two lines based on 2-D electrophoresis, among which 119 DEPs were identified, representing 13 unique proteins. Gene ontology annotation analysis indicated that both molecular functions and biological processes of the identified proteins are highly conserved. Different phosphorylation modification levels between the A- and B-type starch granules were found. Real-time quantitative reverse transcription PCR analysis revealed that a number of key genes including starch synthase I-1, pullulanase, isoamylase and starch branching enzyme IIa were differentially expressed between the two species. Our results demonstrated that the large granule size is associated with higher activities of multiple starch biosynthesis enzymes. The phosphorylation of starch biosynthesis enzymes is related with the formation of B-type starch granules. BIOLOGICAL SIGNIFICANCE Analyzed the proteome, transcriptome and phosphorylation of core starch granule biosynthesis enzymes and provided new insights into the differential mechanisms underlying the A- and B-type starch granule biosyntheses.
Collapse
|
29
|
FASAHAT PARVIZ, RAHMAN SADEQUR, RATNAM WICKNESWARI. Genetic controls on starch amylose content in wheat and rice grains. J Genet 2014; 93:279-92. [DOI: 10.1007/s12041-014-0325-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Kazłowski B, Chen MR, Chao PM, Lai CC, Ko YT. Identification and roles of proteins for seed development in mungbean (Vigna radiata L.) seed proteomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6650-6659. [PMID: 23758297 DOI: 10.1021/jf401170g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Proteomic analysis of developing mungbean (Vigna radiata L.) seeds has not yet been investigated in detail. Fifty-seven proteins were separated by 2-DE, identified by nanoelectrospray mass spectrometry from the present protein databases, and categorized according to their functions. Many of the identified enzymes were involved in central carbon metabolism; thus, a pathway illustrating starch synthesis/breakdown, sugar conversion for glycolysis, and tricarboxylic acid (TCA) cycle was proposed. Quantitative comparison of the protein expression revealed that during developmental process (11-21 days after flowering, DAF), proteins involved in glycolysis, TCA cycle, and alcoholic fermentation showed a trend to be down-regulated, whereas storage proteins were generally up-regulated. The downward tendency of central carbon metabolic proteins suggests a reduction in ATP and oxygen consumption associated with accumulation of storage compounds. UDP-glucose-1-pyrophosphorylase, an upstream enzyme in the starch ADP-Glc pathway, was found as a stably expressed protein throughout the growth stage, demonstrating its importance in mungbean starch biosynthesis. The temporal expression of metabolic enzymes suggests the coordination of an acclimation mechanism and cellular processes associated with accumulation of storage compounds in seed development.
Collapse
Affiliation(s)
- Bartosz Kazłowski
- Department of Food Science, Biotechnology Division, College of Life Sciences, National Taiwan Ocean University , 2 Pei-Ning Road, Keelung 20224, Taiwan, Republic of China (ROC)
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Pandey MK, Rani NS, Madhav MS, Sundaram RM, Varaprasad GS, Sivaranjani AKP, Bohra A, Kumar GR, Kumar A. Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotechnol Adv 2012; 30:1697-706. [PMID: 22960619 DOI: 10.1016/j.biotechadv.2012.08.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/23/2012] [Accepted: 08/25/2012] [Indexed: 11/27/2022]
Abstract
Starch, composed of amylose and amylopectin, greatly influences rice cooking and textural quality, which in turn is controlled by various isoforms of several enzymes. Activity of one or more isoforms of starch-synthesizing enzymes results in various forms of starch structure based on the amylopectin chain length and average external, internal and core chain length distribution and hence results in varying physicochemical and cooking quality. Since the synthesis of starch is highly complex, it is crucial but essential to understand its biosynthetic pathway, starch structure and effects on the physicochemical properties that control eating and cooking quality, and alongside conduct research on gene/QTL mapping for use in marker-assisted selection (MAS) with a view to improve and select cultivars with most desirable range and class of rice starch properties. This article presents the updates on current understanding of the coordination among various enzymes/isoforms towards rice starch synthesis in endosperm and their effect on rice grain physicochemical, cooking and eating qualities. The efforts in identifying regions responsible for these enzymes by mapping the gene/QTLs have provided a glimpse on their association with physicochemical and cooking properties of rice and, hence, improvement is possible by modifying the allelic pattern, resulting in down or nil regulation of a particular enzyme. The clear understanding of the tissue specific coordination between enzyme isoforms and their subsequent effect in controlling eating and cooking properties will enhance the chances to manipulate them for getting desired range of amylose content (AC) and gelatinization temperature (GT) in improved cultivars through combining desired alleles through MAS.
Collapse
Affiliation(s)
- Manish K Pandey
- Crop Improvement Section, Directorate of Rice Research (DRR), Rajendranagar, Hyderabad 500030, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Theerawitaya C, Boriboonkaset T, Cha-um S, Supaibulwatana K, Kirdmanee C. Transcriptional regulations of the genes of starch metabolism and physiological changes in response to salt stress rice (Oryza sativa L.) seedlings. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2012; 18:197-208. [PMID: 23814434 PMCID: PMC3550511 DOI: 10.1007/s12298-012-0114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aim of this investigation was to compare the transcriptional expression of starch metabolism, involving genes and physiological characters, in seedlings of two contrasting salt-tolerant rice genotypes, in response to salt-stress. The soluble sugar content in rice seedlings of both salt-tolerant and salt-sensitive genotypes was enriched, relating to starch degradation, in plants subjected to 200 mM NaCl. In the salt-tolerant cultivar Pokkali, a major source of carbon may be that derived from the photosynthetic system and starch degradation. In starch degradation, only Pho and PWD genes in Pokkali were upregulated in plants subjected to salt stress. In contrast, the photosynthetic abilities of IR29 salt-susceptible cultivar dropped significantly, relating to growth reduction. The major source of carbohydrate in salt-stressed seedlings of the IR29 cultivar may be gained from starch metabolism, regulated by ADP-glucose pyrophosphorylase (AGP), starch synthase (SS), starch branching enzyme (SBE), starch debranching enzyme (ISA), glucan-water dikinase (GWD), dispropotionating enzyme (DPE), phospho glucan-water dikinase (PWD) and starch phosphorylase (Pho). Also, the major route of soluble sugar in salt-stressed Pokkali seedlings was derived from photosynthesis and starch metabolism. This was identified as novel information in the present study.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- />National Center for Genetic Engineering and Biotechnology, 113 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Thanapol Boriboonkaset
- />Department of Biotechnology, Faculty of Science, Mahidol University, Payathai, Bangkok 10400 Thailand
| | - Suriyan Cha-um
- />National Center for Genetic Engineering and Biotechnology, 113 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Kanyaratt Supaibulwatana
- />Department of Biotechnology, Faculty of Science, Mahidol University, Payathai, Bangkok 10400 Thailand
| | - Chalermpol Kirdmanee
- />National Center for Genetic Engineering and Biotechnology, 113 Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 Thailand
| |
Collapse
|
34
|
Lee J, Koh HJ. A label-free quantitative shotgun proteomics analysis of rice grain development. Proteome Sci 2011; 9:61. [PMID: 21957990 PMCID: PMC3190340 DOI: 10.1186/1477-5956-9-61] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 09/30/2011] [Indexed: 11/25/2022] Open
Abstract
Background Although a great deal of rice proteomic research has been conducted, there are relatively few studies specifically addressing the rice grain proteome. The existing rice grain proteomic researches have focused on the identification of differentially expressed proteins or monitoring protein expression patterns during grain filling stages. Results Proteins were extracted from rice grains 10, 20, and 30 days after flowering, as well as from fully mature grains. By merging all of the identified proteins in this study, we identified 4,172 non-redundant proteins with a wide range of molecular weights (from 5.2 kDa to 611 kDa) and pI values (from pH 2.9 to pH 12.6). A Genome Ontology category enrichment analysis for the 4,172 proteins revealed that 52 categories were enriched, including the carbohydrate metabolic process, transport, localization, lipid metabolic process, and secondary metabolic process. The relative abundances of the 1,784 reproducibly identified proteins were compared to detect 484 differentially expressed proteins during rice grain development. Clustering analysis and Genome Ontology category enrichment analysis revealed that proteins involved in the metabolic process were enriched through all stages of development, suggesting that proteome changes occurred even in the desiccation phase. Interestingly, enrichments of proteins involved in protein folding were detected in the desiccation phase and in fully mature grain. Conclusion This is the first report conducting comprehensive identification of rice grain proteins. With a label free shotgun proteomic approach, we identified large number of rice grain proteins and compared the expression patterns of reproducibly identified proteins during rice grain development. Clustering analysis, Genome Ontology category enrichment analysis, and the analysis of composite expression profiles revealed dynamic changes of metabolisms during rice grain development. Interestingly, we detected that proteins involved in glycolysis, TCA-cycle, lipid metabolism, and proteolysis accumulated at higher levels in fully mature grain compared to grain developing stages, suggesting that the accumulation of these proteins during the desiccation stage may be associated with the preparation of proteins required in germination.
Collapse
Affiliation(s)
- Joohyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea.
| | | |
Collapse
|
35
|
Wang Z, Li W, Qi J, Shi P, Yin Y. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents. Journal of Food Science and Technology 2011; 51:419-29. [PMID: 24587516 DOI: 10.1007/s13197-011-0520-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/11/2011] [Accepted: 08/26/2011] [Indexed: 12/01/2022]
Abstract
In order to investigate starch accumulation, and the enzymes activity changes and the expression levels of genes and their relationships among them at different developmental stages of wheat grain. We choose Annong9912 and E28 were used in the study. During starch accumulating rate and grain filling rate, and there were obvious genotype difference between Annong9912 and E28. Whether low or high starch content of starch content, the accumulation courses of amylopectin, amylose and total starch were well fitted to the logistic equation by relating starch contents against DAP. The simulation parameters revealed that the higher contents of amylopectin and amylose resulted from earlier initiating accumulation time and greater accumulation rate. And amylose, amylopectin and total starch accumulation rate of two wheat cultures were significantly and positively correlated with activities of SBE, SSS and GBSS, but amylose accumulation rate of E28 had no correlation with the activities of SBE. In addition, there were significant correlations among activities of SBE, SSS and GBSS in two wheat cultivars. We speculated that these enzymes proteins may have a coordinating action in starch biosynthesis within the amyloplast, operating as functional multiprotein complexes. And expression levels of enzyme genes demonstrated a single-peak curve, and 12-18 DAP reached their peaks and then began to drop, and all had high expression level in earlier stage of endosperm development, but in E28 were higher than in Annong9912. The GBSS-I transcripts on average were expressed over 60 times more than GBSS-II transcript in E28. SBE, SSS, DBE may control starch synthesis at the transcriptional level, and GBSS-I may control starch synthesis at the post transcriptional level. The expression level of DBE on average was lower than SS-1 and SBE-IIa genes, and similar to SS-III and SBE-IIb genes, but higher than GBSS-I and GBSS-II genes.
Collapse
Affiliation(s)
- Zibu Wang
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| | - Weihua Li
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| | - Juncang Qi
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| | - Peichun Shi
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| | - Yongan Yin
- School of Agronomy, Shihezi University, Shihezi, 832 003 China
| |
Collapse
|
36
|
Yun MS, Umemoto T, Kawagoe Y. Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. PLANT & CELL PHYSIOLOGY 2011; 52:1068-82. [PMID: 21551159 PMCID: PMC3110883 DOI: 10.1093/pcp/pcr058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/25/2011] [Indexed: 05/04/2023]
Abstract
Debranching enzymes, which hydrolyze α-1 and 6-glucosidic linkages in α-polyglucans, play a dual role in the synthesis and degradation of starch in plants. A transposon-inserted rice mutant of isoamylase3 (isa3) contained an increased amount of starch in the leaf blade at the end of the night, indicating that ISA3 plays a role in the degradation of transitory starch during the night. An epitope-tagged ISA3 expressed in Escherichia coli exhibited hydrolytic activity on β-limit dextrin and amylopectin. We investigated whether ISA3 plays a role in amyloplast development and starch metabolism in the developing endosperm. ISA3-green fluorescent protein (GFP) fusion protein expressed under the control of the rice ISA3 promoter was targeted to the amyloplast stroma in the endosperm. Overexpression of ISA3 in the sugary1 mutant, which is deficient in ISA1 activity, did not convert water-soluble phytoglycogen to starch granules, indicating that ISA1 and ISA3 are not functionally redundant. Both overexpression and loss of function of ISA3 in the endosperm generated pleomorphic amyloplasts and starch granules. Furthermore, chloroplasts in the leaf blade of isa3 seedlings were large and pleomorphic. These results suggest that ISA3 facilitates starch metabolism and affects morphological characteristics of plastids in rice.
Collapse
Affiliation(s)
- Min-Soo Yun
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, 305-8602 Japan
- Present address: Food Resource Division, National Food Research Institute, 2-1-12 Kannondai, Tsukuba, 305-8642 Japan
| | - Takayuki Umemoto
- Rice Quality Research Team, National Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, 305-8518, Japan
- Present address: National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira, Sapporo, 062-8555 Japan
| | - Yasushi Kawagoe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, 305-8602 Japan
| |
Collapse
|
37
|
Bancel E, Rogniaux H, Debiton C, Chambon C, Branlard G. Extraction and Proteome Analysis of Starch Granule-Associated Proteins in Mature Wheat Kernel (Triticum aestivum L.). J Proteome Res 2010; 9:3299-310. [DOI: 10.1021/pr9010525] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuelle Bancel
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| | - Hélène Rogniaux
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| | - Clément Debiton
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| | - Christophe Chambon
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| | - Gérard Branlard
- INRA UMR 1095 GDEC, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France, INRA UR 1268 BIA, BISB Platform, Rue de la Géraudière, 44316 Nantes cedex 3, France, and INRA UR 370 PFEM-Plateau Protéomique, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
38
|
SONG JM, DAI S, LI HS, LIU AF, CHENG DG, CHU XS, Ian J TETLOW, Michael JEMES. Expression of a Wheat Endosperm 14-3-3 Protein and Its Interactions with Starch Biosynthetic Enzymes in Amyloplasts. ZUOWU XUEBAO 2009. [DOI: 10.3724/sp.j.1006.2009.01445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Ding XZ, Wang BG, Gao QH, Zhang Q, Yan GQ, Duan K, Huang JH. Molecular diversity and differential expression of starch-synthesis genes in developing kernels of three maize inbreds. PLANT CELL REPORTS 2009; 28:1487-1495. [PMID: 19633858 DOI: 10.1007/s00299-009-0748-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/01/2009] [Accepted: 07/10/2009] [Indexed: 05/28/2023]
Abstract
The maize genome remains abundant in molecular diversity, and the rich genetic diversity of maize starch-synthesis genes is crucial for controlling various grain traits. To explore the unique mechanism controlling the advantageous waxy trait and characterize the molecular feature of genes relevant to starch composition in two elite waxy inbreds, expression profiling combined with gene organization analysis was performed in them as compared to one normal inbred. Genotype-specific expression patterns were observed for most genes studied. The waxy inbreds were shown to contain mutations in multiple starch-synthesis genes, namely gbssI (wx), gbssIIb and isa2 (potentially isa3 too).The mis-splicing events directly accounted for wx loss of function. Contrarily, disruption of 5' and 3' transcript sequence may contribute to the absence of GbssIIb and Isa2 transcripts in waxy inbreds, respectively. Besides, the splicing of Sugary1 transcript was developmentally regulated in the normal inbred, and DNA polymorphisms were detected within SSIIIb-1 gene in waxy inbreds.
Collapse
Affiliation(s)
- Xiang-Zhen Ding
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Biological Technique, Shanghai Academy of Agricultural Sciences (SAAS), Beidi Road 2901, Minhang Zone, 201106 Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Xu J, Frick M, Laroche A, Ni ZF, Li BY, Lu ZX. Isolation and characterization of the rye Waxy gene. Genome 2009; 52:658-64. [PMID: 19767896 DOI: 10.1139/g09-036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complete genomic and cDNA sequences of the Waxy gene encoding granule-bound starch synthase I (GBSSI) were isolated from the rye genome and characterized. The full-length rye Waxy genomic DNA and cDNA are 2767 bp and 1815 bp, respectively. The genomic sequence has 11 exons interrupted by 10 introns. The rye Waxy gene is GC-rich, with a higher GC frequency in the coding region, especially in the third position of the codons. Exon regions of the rye Waxy gene are more conserved than intron regions when compared with the homologous sequences of other cereals. The mature rye GBSSI proteins share more than 95% sequence identity with their homologs in wheat and barley. A phylogenetic tree based on sequence comparisons of available plant GBSSI proteins shows the evolutionary relationship among Waxy genes from rye and other plant genomes. The identification of the rye Waxy gene will enable the manipulation of starch metabolism in rye and triticale.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Crop Genomics and Genetic Improvement, College of Agriculture, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Stamova BS, Laudencia-Chingcuanco D, Beckles DM. Transcriptomic analysis of starch biosynthesis in the developing grain of hexaploid wheat. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2009; 2009:407426. [PMID: 20224818 PMCID: PMC2834961 DOI: 10.1155/2009/407426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/19/2009] [Accepted: 11/19/2009] [Indexed: 05/04/2023]
Abstract
The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes.
Collapse
Affiliation(s)
- Boryana S. Stamova
- Genomics and Gene Discovery Unit, USDA-ARS WRRC, 800 Buchanan Street, Albany, CA 94710, USA
- Department of Plant Sciences MS3, University of California-Davis, 1 Shields Avenue, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, M.I.N.D Institute, University of California Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - Debbie Laudencia-Chingcuanco
- Genomics and Gene Discovery Unit, USDA-ARS WRRC, 800 Buchanan Street, Albany, CA 94710, USA
- *Debbie Laudencia-Chingcuanco:
| | - Diane M. Beckles
- Department of Plant Sciences MS3, University of California-Davis, 1 Shields Avenue, Davis, CA 95618, USA
| |
Collapse
|
42
|
Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. PLANT PHYSIOLOGY 2008; 148:908-25. [PMID: 18753281 PMCID: PMC2556828 DOI: 10.1104/pp.108.125633] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 08/25/2008] [Indexed: 05/20/2023]
Abstract
Accumulation of reserve materials in filling grains involves the coordination of different metabolic and cellular processes, and understanding the molecular mechanisms underlying the interconnections remains a major challenge for proteomics. Rice (Oryza sativa) is an excellent model for studying grain filling because of its importance as a staple food and the available genome sequence database. Our observations showed that embryo differentiation and endosperm cellularization in developing rice seeds were completed approximately 6 d after flowering (DAF); thereafter, the immature seeds mainly underwent cell enlargement and reached the size of mature seeds at 12 DAF. Grain filling began at 6 DAF and lasted until 20 DAF. Dynamic proteomic analyses revealed 396 protein spots differentially expressed throughout eight sequential developmental stages from 6 to 20 DAF and determined 345 identities. These proteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism (45%) and protein synthesis/destination (20%). Expression analyses of protein groups associated with different functional categories/subcategories showed that substantially up-regulated proteins were involved in starch synthesis and alcoholic fermentation, whereas the down-regulated proteins in the process were involved in central carbon metabolism and most of the other functional categories/subcategories such as cell growth/division, protein synthesis, proteolysis, and signal transduction. The coordinated changes were consistent with the transition from cell growth and differentiation to starch synthesis and clearly indicated that a switch from central carbon metabolism to alcoholic fermentation may be important for starch synthesis and accumulation in the developmental process.
Collapse
Affiliation(s)
- Sheng Bao Xu
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
43
|
Smith AM. Prospects for increasing starch and sucrose yields for bioethanol production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:546-58. [PMID: 18476862 DOI: 10.1111/j.1365-313x.2008.03468.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the short term, the production of bioethanol as a liquid transport fuel is almost entirely dependent on starch and sugars from existing food crops. The sustainability of this industry would be enhanced by increases in the yield of starch/sugar per hectare without further inputs into the crops concerned. Efforts to achieve increased yields of starch over the last three decades, in particular via manipulation of the enzyme ADPglucose pyrophosphorylase, have met with limited success. Other approaches have included manipulation of carbon partitioning within storage organs in favour of starch synthesis, and attempts to manipulate source-sink relationships. Some of the most promising results so far have come from manipulations that increase the availability of ATP for starch synthesis. Future options for achieving increased starch contents could include manipulation of starch degradation in organs in which starch turnover is occurring, and introduction of starch synthesis into the cytosol. Sucrose accumulation is much less well understood than starch synthesis, but recent results from research on sugar cane suggest that total sugar content can be greatly increased by conversion of sucrose into a non-metabolizable isomer. A better understanding of carbohydrate storage and turnover in relation to carbon assimilation and plant growth is required, both for improvement of starch and sugar crops and for attempts to increase biomass production in second-generation biofuel crops.
Collapse
Affiliation(s)
- Alison M Smith
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
44
|
Tetlow IJ, Beisel KG, Cameron S, Makhmoudova A, Liu F, Bresolin NS, Wait R, Morell MK, Emes MJ. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. PLANT PHYSIOLOGY 2008; 146:1878-91. [PMID: 18263778 PMCID: PMC2287356 DOI: 10.1104/pp.108.116244] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 02/07/2008] [Indexed: 05/20/2023]
Abstract
Protein-protein interactions among enzymes of amylopectin biosynthesis were investigated in developing wheat (Triticum aestivum) endosperm. Physical interactions between starch branching enzymes (SBEs) and starch synthases (SSs) were identified from endosperm amyloplasts during the active phase of starch deposition in the developing grain using immunoprecipitation and cross-linking strategies. Coimmunoprecipitation experiments using peptide-specific antibodies indicate that at least two distinct complexes exist containing SSI, SSIIa, and either of SBEIIa or SBEIIb. Chemical cross linking was used to identify protein complexes containing SBEs and SSs from amyloplast extracts. Separation of extracts by gel filtration chromatography demonstrated the presence of SBE and SS forms in protein complexes of around 260 kD and that SBEII forms may also exist as homodimers. Analysis of cross-linked 260-kD aggregation products from amyloplast lysates by mass spectrometry confirmed SSI, SSIIa, and SBEII forms as components of one or more protein complexes in amyloplasts. In vitro phosphorylation experiments with gamma-(32)P-ATP indicated that SSII and both forms of SBEII are phosphorylated. Treatment of the partially purified 260-kD SS-SBE complexes with alkaline phosphatase caused dissociation of the assembly into the respective monomeric proteins, indicating that formation of SS-SBE complexes is phosphorylation dependent. The 260-kD SS-SBEII protein complexes are formed around 10 to 15 d after pollination and were shown to be catalytically active with respect to both SS and SBE activities. Prior to this developmental stage, SSI, SSII, and SBEII forms were detectable only in monomeric form. High molecular weight forms of SBEII demonstrated a higher affinity for in vitro glucan substrates than monomers. These results provide direct evidence for the existence of protein complexes involved in amylopectin biosynthesis.
Collapse
Affiliation(s)
- Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ahmed N, Maekawa M, Tetlow IJ. Effects of low temperature on grain filling, amylose content, and activity of starch biosynthesis enzymes in endosperm of basmati rice. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ar07340] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of low temperature on amylose contents and activities of key enzymes related to starch biosynthesis in basmati rice (Oryza sativa L.) endosperm were investigated. Low temperature treatment prolonged the grain-filling period from 32 days to 53 days, but had no significant effect on the final grain weight. Results showed that low temperature during grain filling had no significant effect on total starch content but increased the amylose content in the mature endosperm of hulled rice by 21%. The measurable activities of sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (AGPase), starch phosphorylase (SPase), starch branching enzyme (SBE), and soluble starch synthase (SS) in endosperms developed at 12°C were lower than those at 22°C when compared at a similar ripening stage on an endosperm basis, but the activity of granule-bound starch synthase (GBSS) was significantly higher than the corresponding activity in endosperms developing at 22°C. These findings suggest that GBSS might play a crucial role in increasing amylose during low-temperature growth conditions.
Collapse
|
46
|
Abstract
Starch occurs as highly organized structures, known as starch granules. Starch has unique thermal properties and functionality that have permitted its wide use in food products and industrial applications. When heated in water, starch undergoes a transition process, during which the granules break down into a mixture of polymers-in-solution, known as gelatinization. The sequence of structural transformations that the starch granule undergoes during this order-to-disorder transition has been extensively researched. None of the published starch gelatinization theories can fully and adequately explain the exact mechanism of sequential structural changes that starch granules undergo during gelatinization. This chapter analyzes several published theories and summarizes our current understanding of the starch gelatinization process.
Collapse
Affiliation(s)
- Wajira S Ratnayake
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583-0919, USA
| | | |
Collapse
|
47
|
Nowotna A, Gambuś H, Kratsch G, Krawontka J, Gambuś F, Sabat R, Ziobro R. Effect of Nitrogen Fertilization on the Physico-chemical Properties of Starch Isolated from German Triticale Varieties. STARCH-STARKE 2007. [DOI: 10.1002/star.200600589] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Liu Q, Gu Z, Donner E, Tetlow I, Emes M. Investigation of Digestibility In Vitro and Physicochemical Properties of A- and B-Type Starch from Soft and Hard Wheat Flour. Cereal Chem 2007. [DOI: 10.1094/cchem-84-1-0015] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Q. Liu
- Food Research Program, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, ON, Canada N1G 5C9
- Corresponding author. Phone: 519-780-8030. Fax: 519-829-2600. E-mail:
| | - Z. Gu
- School of Food Sci. and Technology, Southern Yangtze University, 170 Huihe Road, Wuxi City, Jiangsu, P.R. China
| | - E. Donner
- Food Research Program, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, ON, Canada N1G 5C9
| | - I. Tetlow
- Dept. of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - M. Emes
- Dept. of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|