1
|
Mistretta M, Fiorito V, Allocco AL, Ammirata G, Hsu MY, Digiovanni S, Belicchi M, Napoli L, Ripolone M, Trombetta E, Mauri P, Farini A, Meregalli M, Villa C, Porporato PE, Miniscalco B, Crich SG, Riganti C, Torrente Y, Tolosano E. Flvcr1a deficiency promotes heme-based energy metabolism dysfunction in skeletal muscle. Cell Rep 2024; 43:113854. [PMID: 38412099 DOI: 10.1016/j.celrep.2024.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
The definition of cell metabolic profile is essential to ensure skeletal muscle fiber heterogeneity and to achieve a proper equilibrium between the self-renewal and commitment of satellite stem cells. Heme sustains several biological functions, including processes profoundly implicated with cell metabolism. The skeletal muscle is a significant heme-producing body compartment, but the consequences of impaired heme homeostasis on this tissue have been poorly investigated. Here, we generate a skeletal-muscle-specific feline leukemia virus subgroup C receptor 1a (FLVCR1a) knockout mouse model and show that, by sustaining heme synthesis, FLVCR1a contributes to determine the energy phenotype in skeletal muscle cells and to modulate satellite cell differentiation and muscle regeneration.
Collapse
Affiliation(s)
- Miriam Mistretta
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Veronica Fiorito
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Anna Lucia Allocco
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Giorgia Ammirata
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Myriam Y Hsu
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sabrina Digiovanni
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - PierLuigi Mauri
- National Research Council of Italy, Proteomics and Metabolomics Unit, Institute for Biomedical Technologies, ITB-CNR, 20054 Segrate, Milan, Italy; Clinical Proteomics Laboratory c/o ITB-CNR, CNR.Biomics Infrastructure, ElixirNextGenIT, 20054 Segrate, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paolo Ettore Porporato
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Barbara Miniscalco
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Torino, Italy
| | - Simonetta Geninatti Crich
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Chiara Riganti
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Emanuela Tolosano
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
2
|
Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol 2022; 199:115008. [PMID: 35318039 DOI: 10.1016/j.bcp.2022.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
3
|
Bussulo SKD, Ferraz CR, Carvalho TT, Verri WA, Borghi SM. Redox interactions of immune cells and muscle in the regulation of exercise-induced pain and analgesia: implications on the modulation of muscle nociceptor sensory neurons. Free Radic Res 2021; 55:757-775. [PMID: 34238089 DOI: 10.1080/10715762.2021.1953696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.
Collapse
Affiliation(s)
- Sylvia K D Bussulo
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Sergio M Borghi
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil.,Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| |
Collapse
|
4
|
Skeletal muscle heme oxygenase-1 activity regulates aerobic capacity. Cell Rep 2021; 35:109018. [PMID: 33882313 PMCID: PMC8196422 DOI: 10.1016/j.celrep.2021.109018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Physical exercise has profound effects on quality of life and susceptibility to chronic disease; however, the regulation of skeletal muscle function at the molecular level after exercise remains unclear. We tested the hypothesis that the benefits of exercise on muscle function are linked partly to microtraumatic events that result in accumulation of circulating heme. Effective metabolism of heme is controlled by Heme Oxygenase-1 (HO-1, Hmox1), and we find that mouse skeletal muscle-specific HO-1 deletion (Tam-Cre-HSA-Hmox1fl/fl) shifts the proportion of muscle fibers from type IIA to type IIB concomitant with a disruption in mitochondrial content and function. In addition to a significant impairment in running performance and response to exercise training, Tam-Cre-HSA-Hmox1fl/fl mice show remarkable muscle atrophy compared to Hmox1fl/fl controls. Collectively, these data define a role for heme and HO-1 as central regulators in the physiologic response of skeletal muscle to exercise.
Collapse
|
5
|
Zannoni A, Pietra M, Gaspardo A, Accorsi PA, Barone M, Turroni S, Laghi L, Zhu C, Brigidi P, Forni M. Non-invasive Assessment of Fecal Stress Biomarkers in Hunting Dogs During Exercise and at Rest. Front Vet Sci 2020; 7:126. [PMID: 32373631 PMCID: PMC7186473 DOI: 10.3389/fvets.2020.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Intense exercise causes to organisms to have oxidative stress and inflammation at the gastrointestinal (GI) level. The reduction in intestinal blood flow and the exercise-linked thermal damage to the intestinal mucosa can cause intestinal barrier disruption, followed by an inflammatory response. Furthermore, the adaptation to exercise may affect the gut microbiota and the metabolome of the biofluids. The aim of the present research was to evaluate the presence of a GI derangement in hunting dogs through a non-invasive sampling as a consequence of a period of intense exercise in comparison with samples collected at rest. The study included nine dogs that underwent the same training regime for hunting wild boar. In order to counterbalance physiological variations, multiple-day replicates were collected and pooled at each experimental point for each dog. The samples were collected immediately at rest before the training (T0), after 60 days of training (T1), after 60 days of hunting wild boar (T2), and finally, at 60 days of rest after hunting (T3). A number of potential stress markers were evaluated: fecal cortisol metabolites (FCMs) as a major indicator of altered physiological states, immunoglobulin A (IgA) as an indicator of intestinal immune protection, and total antioxidant activity [total antioxidant capacity (TAC)]. Since stool samples contain exfoliated cells, we investigated also the presence of some transcripts involved in GI permeability [occludin (OCLN), protease-activated receptor-2 (PAR-2)] and in the inflammatory mechanism [interleukin (IL)-8, IL-6, IL-1b, tumor necrosis factor alpha (TNFα), calprotectin (CALP), heme oxygenase-1 (HO-1)]. Finally, the metabolome and the microbiota profiles were analyzed. No variation in FCM and IgA content and no differences in OCLN and CALP gene expression between rest and training were observed. On the contrary, an increase in PAR-2 and HO-1 transcripts, a reduction in total antioxidant activity, and a different profile of microbiota and metabolomics data were observed. Collectively, the data in the present study indicated that physical exercise in our model could be considered a mild stressor stimulus.
Collapse
Affiliation(s)
- Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.,Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alba Gaspardo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Pier Attilio Accorsi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Barone
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Bologna, Italy
| | - Luca Laghi
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Bologna, Italy.,Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | - Chenglin Zhu
- Department of Agro-Food Science and Technology, Centre of Foodomics, University of Bologna, Cesena, Italy
| | - Patrizia Brigidi
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.,Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Brendel H, Shahid A, Hofmann A, Mittag J, Bornstein SR, Morawietz H, Brunssen C. NADPH oxidase 4 mediates the protective effects of physical activity against obesity-induced vascular dysfunction. Cardiovasc Res 2019; 116:1767-1778. [DOI: 10.1093/cvr/cvz322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Aims
Physical activity is one of the most potent strategies to prevent endothelial dysfunction. Recent evidence suggests vaso-protective properties of hydrogen peroxide (H2O2) produced by main endothelial NADPH oxidase isoform 4 (Nox4) in the vasculature. Therefore, we hypothesized that Nox4 connects physical activity with vaso-protective effects.
Methods and results
Analysis of the endothelial function using Mulvany Myograph showed endothelial dysfunction in wild-type (WT) as well as in C57BL/6J/ Nox4−/− (Nox4−/−) mice after 20 weeks on high-fat diet (HFD). Access to running wheels during the HFD prevented endothelial dysfunction in WT but not in Nox4−/− mice. Mechanistically, exercise led to an increased H2O2 release in the aorta of WT mice with increased phosphorylation of eNOS pathway member AKT serine/threonine kinase 1 (AKT1). Both H2O2 release and phosphorylation of AKT1 were diminished in aortas of Nox4−/− mice. Deletion of Nox4 also resulted in lower intracellular calcium release proven by reduced phenylephrine-mediated contraction, whilst potassium-induced contraction was not affected. H2O2 scavenger catalase reduced phenylephrine-induced contraction in WT mice. Supplementing H2O2 increased phenylephrine-induced contraction in Nox4−/− mice. Exercise-induced peroxisome proliferative-activated receptor gamma, coactivator 1 alpha (Ppargc1a), as key regulator of mitochondria biogenesis in WT but not Nox4−/− mice. Furthermore, exercise-induced citrate synthase activity and mitochondria mass were reduced in the absence of Nox4. Thus, Nox4−/− mice became less active and ran less compared with WT mice.
Conclusions
Nox4 derived H2O2 plays a key role in exercise-induced adaptations of eNOS and Ppargc1a pathway and intracellular calcium release. Hence, loss of Nox4 diminished physical activity performance and vascular protective effects of exercise.
Collapse
Affiliation(s)
- Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Amna Shahid
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Jennifer Mittag
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
7
|
Li L, Liu T, Liu L, Li S, Zhang Z, Zhang R, Zhou Y, Liu F. Effect of hydrogen-rich water on the Nrf2/ARE signaling pathway in rats with myocardial ischemia-reperfusion injury. J Bioenerg Biomembr 2019; 51:393-402. [DOI: 10.1007/s10863-019-09814-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
|
8
|
Szabó R, Börzsei D, Karácsonyi Z, Gesztelyi R, Nemes K, Berkó AM, Veszelka M, Török S, Kupai K, Varga C, Juhász B, Pósa A. Postconditioning-like effect of exercis: new paradigm in experimental menopause. Am J Physiol Heart Circ Physiol 2018; 316:H400-H407. [PMID: 30575421 DOI: 10.1152/ajpheart.00485.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The progression of coronary artery diseases in premenopausal women is lower than in age-matched men; however, its probability increases rapidly after menopause. The aim of our study was to investigate the postconditioning-like effects of voluntary physical exercise on postmenopausal cardiovascular outcomes after myocardial infarction. We used fertile Wistar females [control (CTRL)] and pharmacologically induced estrogen-deficient (POVX; 750 µg/kg triptorelin im, every 4th week) rats. CTRL and POVX animals were randomly assigned to receive an injection of 0.1 mg isoproterenol (ISO)/kg. At the 20th hour after ISO injection, serum markers of myocardial injury, such as lactate dehydrogenase (LDH) and myoglobin, were measured. After a 3-wk resting period, ISO-treated and untreated animals were further divided into subgroups on the basis of 6 wk of physical exercise. At the end of the experiment, cardiac activity and content of the antioxidative heme oxygenase (HO) enzyme, levels of GSH and GSH + GSSG, activity of myeloperoxidase, as well as the concentration of TNF-α were determined. At the end of the experimental period, we observed a significant decrease in the activity and content of HO enzymes in POVX and POVX/ISO rats, whereas physical exercise significantly improved HO and GSH values in both CTRL and POVX rats. Furthermore, our training protocol significantly reduced the pathological levels of myeloperoxidase and TNF-α. Our findings clearly demonstrate that modulation of the HO system by voluntary physical exercise is a key process to decrease inflammatory parameters and ameliorate the antioxidative status in estrogen-deficient conditions postmyocardial injury. NEW & NOTEWORTHY We used a noninvasive rat model of estrogen deficiency and myocardial infarction. The long-term effects of isoproterenol treatment revealed reduced heme oxygenase enzyme activity and expression and decreased glutathione levels. Isoproterenol treatment enhanced the myeloperoxidase enzyme activity. Voluntary physical exercise ameliorated the antioxidative status by increasing of the heme oxygenase enzyme system. Voluntary physical exercise is a potential therapeutic tool to improve cardiac antioxidant status in menopausal women postmyocardial injury.
Collapse
Affiliation(s)
- Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged , Szeged , Hungary.,Department of Physiology, Anatomy, and Neuroscience, Interdisciplinary Excellence Centre, University of Szeged , Szeged , Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged , Szeged , Hungary
| | - Zoltán Karácsonyi
- Department of Orthopaedics, University of Debrecen , Debrecen , Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, University of Debrecen , Debrecen , Hungary
| | - Kolos Nemes
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged , Szeged , Hungary
| | - Anikó Magyariné Berkó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged , Szeged , Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged , Szeged , Hungary
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged , Szeged , Hungary
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged , Szeged , Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged , Szeged , Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, University of Debrecen , Debrecen , Hungary
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged , Szeged , Hungary.,Department of Physiology, Anatomy, and Neuroscience, Interdisciplinary Excellence Centre, University of Szeged , Szeged , Hungary
| |
Collapse
|
9
|
Kilic-Toprak E, Kilic-Erkek O, Abban-Mete G, Caner V, Baris IC, Turhan G, Kucukatay V, Senol H, Kuru O, Bor-Kucukatay M. Contribution of Heme Oxygenase 2 to Blood Pressure Regulation in Response to Swimming Exercise and Detraining in Spontaneously Hypertensive Rats. Med Sci Monit 2018; 24:5851-5859. [PMID: 30132448 PMCID: PMC6116639 DOI: 10.12659/msm.908992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background We aimed to determine the effects of exercise followed by detraining on systolic blood pressure (SBP), heme oxygenase 2 (HO-2) expression, and carboxyhemoglobin (COHb) concentration in spontaneously hypertensive rats (SHR) to explain the role of carbon monoxide (CO) in this process. Material/Methods Animals were randomized into exercised and detrained groups. Corresponding sedentary rats were grouped as Time 1–2. Swimming of 60 min/5 days/week for 10 weeks was applied. Detraining rats discontinued training for an additional 5 weeks. Gene and protein expressions were determined by real-time PCR and immunohistochemistry. Results Aorta HO-2 histological scores (HSCORE) of hypertensive rats were lower, while SBP was higher. Swimming caused enhancement of HO-2 immunostaining in aorta endothelium and adventitia of SHR. Exercise induced elevation of blood COHb index in SHR. Synchronous BP lowering effect of exercise was observed. HO-2 mRNA expression, HSCORE, and blood COHb index were unaltered during detraining, while SBP was still low in SHR. Conclusions CO synthesized by HO-2 at least partly plays a role in SBP regulation in the SHR- and BP-lowering effect of exercise. Regular exercise with short-term pauses may be advised to both hypertensives and individuals who are at risk.
Collapse
Affiliation(s)
- Emine Kilic-Toprak
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ozgen Kilic-Erkek
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulcin Abban-Mete
- Department of Histology-Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Vildan Caner
- Department of Medical Genetics, Faculty of Medicine Kinikli, Pamukkale University, Denizli, Turkey
| | - Ikbal Cansu Baris
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gurkan Turhan
- Department of Histology-Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Vural Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Hande Senol
- Department of Biostatistics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Oktay Kuru
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Melek Bor-Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
10
|
Ghio AJ, Case MW, Soukup JM. Heme oxygenase activity increases after exercise in healthy volunteers. Free Radic Res 2018; 52:267-272. [PMID: 29343136 DOI: 10.1080/10715762.2018.1428965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Heme oxygenase (HO) is an essential, rate-limiting protein which catalyses the breakdown of heme to iron, carbon monoxide (CO), and biliverdin. The alpha methene bridge of the heme is eliminated as CO which can be measured as blood carboxyhaemoglobin (COHb). Using blood concentrations of COHb as a measure reflecting HO activity, we tested the postulate that the activity of HO changes with exercise. Ten healthy, nonsmoking volunteers (5 females and 5 males with a mean age ± standard deviation of 25.7 ± 3.2 years), lifetime nonsmokers with no history of respiratory diseases and not taking any medication, were included in the study. Subjects were exposed to filtered air for 2 hrs while alternating exercise for 15 minutes on a cycle ergometer with rest for 15 minutes. Workload was adjusted so that subjects breathed at a ventilatory rate, normalised for body surface area, of 25 L/m2/minute. Immediately before, immediately after, and the day following exercise, blood was drawn by standard venipuncture technique. COHb was determined using the interleukin (IL) 682 Co-Oximeter (Instrumentation Laboratory, Bedford, MA). COHb increased in each participant during the exercise session with the mean value (± standard deviation) almost doubling (1.1 ± 1.6 to 2.1 ± 1.6%) and returned to baseline by the following day (1.3 ± 1.3%). We conclude that exercise increases HO activity.
Collapse
Affiliation(s)
- Andrew J Ghio
- a National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Martin W Case
- a National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Joleen M Soukup
- a National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| |
Collapse
|
11
|
Bostick B, Aroor AR, Habibi J, Durante W, Ma L, DeMarco VG, Garro M, Hayden MR, Booth FW, Sowers JR. Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels. Metabolism 2017; 66:14-22. [PMID: 27923445 PMCID: PMC6581195 DOI: 10.1016/j.metabol.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Obesity is a global epidemic with profound cardiovascular disease (CVD) complications. Obese women are particularly vulnerable to CVD, suffering higher rates of CVD compared to non-obese females. Diastolic dysfunction is the earliest manifestation of CVD in obese women but remains poorly understood with no evidence-based therapies. We have shown early diastolic dysfunction in obesity is associated with oxidative stress and myocardial fibrosis. Recent evidence suggests exercise may increase levels of the antioxidant heme oxygenase-1 (HO-1). Accordingly, we hypothesized that diastolic dysfunction in female mice consuming a western diet (WD) could be prevented by daily volitional exercise with reductions in oxidative stress, myocardial fibrosis and maintenance of myocardial HO-1 levels. MATERIALS/METHODS Four-week-old female C57BL/6J mice were fed a high-fat/high-fructose WD for 16weeks (N=8) alongside control diet fed mice (N=8). A separate cohort of WD fed females was allowed a running wheel for the entire study (N=7). Cardiac function was assessed at 20weeks by high-resolution cardiac magnetic resonance imaging (MRI). Functional assessment was followed by immunohistochemistry, transmission electron microscopy (TEM) and Western blotting to identify pathologic mechanisms and assess HO-1 protein levels. RESULTS There was no significant body weight decrease in exercising mice, normalized body weight 14.3g/mm, compared to sedentary mice, normalized body weight 13.6g/mm (p=0.38). Total body fat was also unchanged in exercising, fat mass of 6.6g, compared to sedentary mice, fat mass 7.4g (p=0.55). Exercise prevented diastolic dysfunction with a significant reduction in left ventricular relaxation time to 23.8ms for exercising group compared to 33.0ms in sedentary group (p<0.01). Exercise markedly reduced oxidative stress and myocardial fibrosis with improved mitochondrial architecture. HO-1 protein levels were increased in the hearts of exercising mice compared to sedentary WD fed females. CONCLUSIONS This study provides seminal evidence that exercise can prevent diastolic dysfunction in WD-induced obesity in females even without changes in body weight. Furthermore, the reduction in myocardial oxidative stress and fibrosis and improved HO-1 levels in exercising mice suggests a novel mechanism for the antioxidant effect of exercise.
Collapse
Affiliation(s)
- Brian Bostick
- Division of Cardiovascular Medicine, Diabetes Cardiovascular Center, University of Missouri Columbia, Columbia, MO, USA; Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Annayya R Aroor
- Department of Medicine, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Javad Habibi
- Department of Medicine, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Lixin Ma
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Radiology, University of Missouri, Columbia, MO, USA
| | - Vincent G DeMarco
- Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Mona Garro
- Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Melvin R Hayden
- Department of Medicine, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA; Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - James R Sowers
- Department of Medicine, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Division of Endocrinology and Metabolism, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|