1
|
Hussein RM, Kandeil MA, Soliman HM, El-Shahawy AA. Effect of quercetin-loaded poly (lactic-co-glycolic) acid nanoparticles on lipopolysaccharide-induced memory decline, oxidative stress, amyloidogenesis, neurotransmission, and Nrf2/HO-1 expression. Heliyon 2024; 10:e23527. [PMID: 38169932 PMCID: PMC10758873 DOI: 10.1016/j.heliyon.2023.e23527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Neuroinflammation contributes to the pathogenesis of several neurodegenerative disorders. This study examined the neuroprotective effect of quercetin (QUR)-loaded poly (lactic-co-glycolic) acid (PLGA) nanoparticles (QUR NANO) against the neurotoxicity induced by lipopolysaccharide (LPS) in mice. A QUR NANO formulation was prepared and characterized by differential scanning calorimetry, X-ray diffraction, entrapment efficiency (EE), high-resolution transmission electron microscopy, field emission scanning electron microscopy, and in vitro drug release profile. Levels of glutathione, malondialdehyde, catalase, inducible nitric oxide synthase (iNOS), amyloid beta 42 (Aβ42), β-secretase, gamma-aminobutyric acid (GABA), and acetylcholine esterase (AChE) were measured in the mouse brain tissues. The gene expression of nuclear factor erythroid-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) were also determined. The prepared QUR NANO formulation showed 92.07 ± 3.21% EE and drug loading of 4.62 ± 0.55. It exhibited clusters of nano-spherical particles with smooth surface areas, and the loading process was confirmed. In vivo, the QUR NANO preserved the spatial memory of mice and protected the hippocampus from LPS-induced histological lesions. The QUR NANO significantly reduced the levels of malondialdehyde, iNOS, Aβ42, β-secretase, and AChE in brain tissue homogenates. Conversely, QUR NANO increased the glutathione, catalase, and GABA concentrations and upregulated the expression of Nrf-2 and HO-1 genes. Remarkably, the neuroprotective effect of QUR NANO was significantly greater than that of herbal QUR. In summary, the prepared QUR NANO formulation was efficient in mitigating LPS-induced neurotoxicity by reducing memory loss, oxidative stress, and amyloidogenesis while preserving neurotransmission and upregulating the expression of Nrf2 and HO-1 genes. This study addresses several key factors in neuroinflammatory disorders and explores the potential of QUR-loaded nanoparticles as a novel therapeutic approach to alleviate these factors.
Collapse
Affiliation(s)
- Rasha M. Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mohamed A. Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hatem M. Soliman
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A.G. El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| |
Collapse
|
2
|
Kodidela S, Shaik FB, Mittameedi CM, Mugudeeswaran S. Influence of green tea on alcohol aggravated neurodegeneration of cortex, cerebellum and hippocampus of STZ-induced diabetic rats. Heliyon 2023; 9:e17385. [PMID: 37449181 PMCID: PMC10336454 DOI: 10.1016/j.heliyon.2023.e17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
The main aim of this study was to evaluate the cytotoxic effects of chronic alcohol consumption on various regions of diabetic brain and preventive role of GTE. Clinical, experimental and histopathological observations indicate chronic, excessive alcohol consumption aggravates the free radical-mediated oxidative and nitrosative stress in several tissues including brain. Treatment with Epigallocatechin gallate (EGCG) significantly reduced the levels of oxidative/nitrosative stress paradigms, increased glutathione (GSH) levels and enhanced the activities of antioxidant enzymes. Histopathology evaluation revealed the possible influence of EGCG in reversing alcohol exacerbated diabetes-induced damage in cortex, cerebellum and hippocampus of brain. Furthermore, these studies have provided evidence to show how EGCG can exactly occupy the position in functional sites of nNOS (neuronal nitric oxide synthase) and induce a conformational change, inhibition of enzymatic activity and prevention of neurodegeneration/necrotic changes of tissue, in comparison with the rosiglitazone and glibenclamide. To summarise, this research has offered useful information on the action of EGCG that would provide potential protection against ethanol exacerbated diabetic brain damageand additional evidence for the use of EGCG as a lead compound for drug discovery.
Collapse
Affiliation(s)
- Swarnalatha Kodidela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Fareeda Begum Shaik
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | | | - Sivanandam Mugudeeswaran
- Department of Physics, Centre for Research and Development (CFRD), KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamilnadu, India
| |
Collapse
|
3
|
Bernardo A, Malara M, Bertuccini L, De Nuccio C, Visentin S, Minghetti L. The Antihypertensive Drug Telmisartan Protects Oligodendrocytes from Cholesterol Accumulation and Promotes Differentiation by a PPAR-γ-Mediated Mechanism. Int J Mol Sci 2021; 22:ijms22179434. [PMID: 34502342 PMCID: PMC8431237 DOI: 10.3390/ijms22179434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Our previous studies have demonstrated that specific peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists play a fundamental role in oligodendrocyte progenitor (OP) differentiation, protecting them against oxidative and inflammatory damage. The antihypertensive drug Telmisartan (TLM) was shown to act as a PPAR-γ modulator. This study investigates the TLM effect on OP differentiation and validates its capability to restore damage in a pharmacological model of Niemann-Pick type C (NPC) disease through a PPAR-γ-mediated mechanism. For the first time in purified OPs, we demonstrate that TLM-induced PPAR-γ activation downregulates the type 1 angiotensin II receptor (AT1), the level of which naturally decreases during differentiation. Like other PPAR-γ agonists, we show that TLM promotes peroxisomal proliferation and promotes OP differentiation. Furthermore, TLM can offset the OP maturation arrest induced by a lysosomal cholesterol transport inhibitor (U18666A), which reproduces an NPC1-like phenotype. In the NPC1 model, TLM also reduces cholesterol accumulation within peroxisomal and lysosomal compartments and the contacts between lysosomes and peroxisomes, revealing that TLM can regulate intracellular cholesterol transport, crucial for myelin formation. Altogether, these data indicate a new potential use of TLM in hypomyelination pathologies such as NPC1, underlining the possible repositioning of the drug already used in other pathologies.
Collapse
Affiliation(s)
- Antonietta Bernardo
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
- Correspondence: ; Tel.: +39-06-4990-2927
| | | | - Lucia Bertuccini
- Core Facilities, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Chiara De Nuccio
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00169 Rome, Italy; (C.D.N.); (L.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00169 Rome, Italy; (C.D.N.); (L.M.)
| |
Collapse
|
4
|
Hosseini M, Salmani H, Baghcheghi Y. Losartan improved hippocampal long-term potentiation impairment induced by repeated LPS injection in rats. Physiol Rep 2021; 9:e14874. [PMID: 34042283 PMCID: PMC8157761 DOI: 10.14814/phy2.14874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/24/2022] Open
Abstract
Cognitive impairment has been known as a common consequence of brain inflammation. Long-term potentiation (LTP), the generally accepted cellular mechanism for memory formation in the mammalian brain, has been shown to be suppressed by inflammation. Studies have shown that angiotensin II (Ang II) through the Ang II type 1 receptor (AT1R) has a role in brain and peripheral immune system communication and brain inflammation. Here, the effect of AT1R blockade on hippocampal LTP in rats undergoing repeated lipopolysaccharide (LPS) injection was investigated. Rats received intraperitoneal (ip) injections of LPS (250 μg kg-1 day-1 ) for seven days. Treatment with losartan (ip; 3 mg kg-1 day-1 ) was started 3 days before LPS injection and continued during the LPS injections. Rats were anesthetized, and field excitatory postsynaptic potential (fEPSP) was recorded from the stratum radiatum of the CA1 area of the hippocampus in response to stimulation of the Schaffer collateral pathway. Results showed that LTP was suppressed in the LPS-injected rats as no significant differences were found in the fEPSP slope and amplitude before and after the LTP induction. AT1R blockade by losartan restored fEPSP to the control levels. These findings indicate that Ang II, through AT1R, has a role in LTP suppression induced by systemic inflammation.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
| | - Hossein Salmani
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Yousef Baghcheghi
- Student Research CommitteeJiroft University of Medical SciencesJiroftIran
| |
Collapse
|
5
|
Kwon HS, Ha J, Kim JY, Park HH, Lee EH, Choi H, Lee KY, Lee YJ, Koh SH. Telmisartan Inhibits the NLRP3 Inflammasome by Activating the PI3K Pathway in Neural Stem Cells Injured by Oxygen-Glucose Deprivation. Mol Neurobiol 2021; 58:1806-1818. [PMID: 33404978 DOI: 10.1007/s12035-020-02253-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
Angiotensin II receptor blockers (ARBs) have been shown to exert neuroprotective effects by suppressing inflammatory and apoptotic responses. In the present study, the effects of the ARB telmisartan on the NLRP3 inflammasome induced by oxygen-glucose deprivation (OGD) in neural stem cells (NSCs) were investigated, as well as their possible association with the activation of the PI3K pathway. Cultured NSCs were treated with different concentrations of telmisartan and subjected to various durations of OGD. Cell counting, lactate dehydrogenase, bromodeoxyuridine, and colony-forming unit assays were performed to measure cell viability and proliferation. In addition, the activity of intracellular signaling pathways associated with the PI3K pathway and NLRP3 inflammasome was evaluated. Telmisartan alone did not affect NSCs up to a concentration of 10 μM under normal conditions but showed toxicity at a concentration of 100 μM. Moreover, OGD reduced the viability of NSCs in a time-dependent manner. Nevertheless, treatment with telmisartan increased the viability and proliferation of OGD-injured NSCs. Furthermore, telmisartan promoted the expression of survival-related proteins and mRNA while inhibiting the expression of death-related proteins induced by OGD. In particular, telmisartan attenuated OGD-dependent expression of the NLRP3 inflammasome and its related signaling proteins. These beneficial effects of telmisartan were blocked by a PI3K inhibitor. Together, these results indicate that telmisartan attenuated the activation of the NLRP3 inflammasome by triggering the PI3K pathway, thereby contributing to neuroprotection.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Jungsoon Ha
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
- GemVax & Kael Co., Ltd, Seongnam-si, Republic of Korea
| | - Ji Young Kim
- Department of Nuclear Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea.
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Beheshti F, Akbari HR, Baghcheghi Y, Mansouritorghabeh F, Mortazavi Sani SS, Hosseini M. Beneficial effects of angiotensin converting enzyme inhibition on scopolamine-induced learning and memory impairment in rats, the roles of brain-derived neurotrophic factor, nitric oxide and neuroinflammation. Clin Exp Hypertens 2021; 43:505-515. [PMID: 33724113 DOI: 10.1080/10641963.2021.1901112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of the brain-derived neurotrophic factor (BDNF), cytokines, and renin angiotensin system (RAS) on memory function have been demonstrated. In this study, the effects of RAS inhibitor captopril (Capto) on hippocampal BDNF, interleukin -6 (IL-6), oxidative stress indicators, and nitric oxide (NO) in scopolamine (Sco)-induced memory impairment in rats were examined. The groups were (1) control, (2) Sco in which Sco was applied 30 min prior to the behavioral tests, and (3-5) Sco-Capto 10, 50, and 100 groups, where Capto (10, 50, or 100 mg/kg), were applied 2 weeks prior to the experiment, as well as 30 min prior to each Sco injection. The Morris Water Maze (MWM) test was conducted, and BDNF, IL-6, NO metabolites, malondialdehyde (MDA), thiol, superoxide dismutase (SOD), and catalase (CAT) were measured. Sco increased the delay and distance to the platform in the MWM test (P < .01 to P < .001), while shortening the time and distance in the target area (P < .01 to P < .001). Additionally, Sco increased IL-6, NO metabolites, and MDA, while decreasing BDNF, thiol, SOD, and CAT (P < .01 to P < .001). Although the Capto reduced the latency and distance traveled to the platform (P < .05 to P < .001), it elevated the time and distance traveled in the target area (P < .05 to P < .01). Furthermore, Capto improved BDNF, thiol, SOD, and CAT levels, and decreased IL-6, NO metabolites, and MDA (P < .05 to P < .001). RAS has a role in learning and memory impairment due to cholinergic system dysfunction. The possible mechanism(s) are including its effects on BDNF, neuro-inflammation and oxidative stress.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hamid Reza Akbari
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Baghcheghi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Killingsworth J, Sawmiller D, Shytle RD. Propionate and Alzheimer's Disease. Front Aging Neurosci 2021; 12:580001. [PMID: 33505301 PMCID: PMC7831739 DOI: 10.3389/fnagi.2020.580001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Propionate, a short-chain fatty acid, serves important roles in the human body. However, our review of the current literature suggests that under certain conditions, excess levels of propionate may play a role in Alzheimer's disease (AD). The cause of the excessive levels of propionate may be related to the Bacteroidetes phylum, which are the primary producers of propionate in the human gut. Studies have shown that the relative abundance of the Bacteroidetes phylum is significantly increased in older adults. Other studies have shown that levels of the Bacteroidetes phylum are increased in persons with AD. Studies on the diet, medication use, and propionate metabolism offer additional potential causes. There are many different mechanisms by which excess levels of propionate may lead to AD, such as hyperammonemia. These mechanisms offer potential points for intervention.
Collapse
Affiliation(s)
- Jessica Killingsworth
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
8
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2020; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
9
|
Zhang H, Ma L, Guo WZ, Jiao LB, Zhao HY, Ma YQ, Hao XM. TSPO ligand etifoxine attenuates LPS-induced cognitive dysfunction in mice. Brain Res Bull 2020; 165:178-184. [PMID: 33075418 DOI: 10.1016/j.brainresbull.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
The translocator protein (TSPO), once known as peripheral-type benzodiazepine receptor, was reported to be related with several physiological functions. Etifoxine is a clinically available anxiolytic drug, and has recently shown neuroprotective effects as a TSPO ligand. The aim of the present study was to investigate the influence of etifoxine on LPS-induced neuroinflammation and cognitive dysfunction. C57/BL6 male mice were injected with etifoxine (50 mg/kg, i.p.) three days before lipopolysaccharide (LPS, 500 μg/kg, i.p.) administration. Etifoxine pretreatment alleviated hippocampal inflammation, increased brain levels of progesterone, allopregnanolone and attenuated cognitive dysfunction in LPS-injected mice. While LPS increased expression of caspase-3 and decreased p-Akt/Akt, etifoxine returned caspase-3 and p-Akt/Akt to control levels. Finasteride, a 5α-reductase inhibitor that blocked allopregnanolone production, partially reversed the effects of etifoxine. We concluded that etifoxine exerted neuroprotective effects in LPS-induced neuroinflammation and the neuroprotection may be related with increase of neurosteroids synthesis and decrease of apoptosis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery, Air Force Medical Center of the Chinese PLA, Beijing, 100142, China.
| | - Li Ma
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Wen-Zhi Guo
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Lin-Bo Jiao
- Department of Anesthesiology, Beijing Shouda E.E.N.T Hospital, Beijing, 100070, China
| | - Hong-Yu Zhao
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Ya-Qun Ma
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Xue-Mei Hao
- Operating Room, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China.
| |
Collapse
|
10
|
Campos J, Pacheco R. Involvement of dopaminergic signaling in the cross talk between the renin-angiotensin system and inflammation. Semin Immunopathol 2020; 42:681-696. [PMID: 32997225 PMCID: PMC7526080 DOI: 10.1007/s00281-020-00819-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) is a fundamental regulator of blood pressure and has emerged as an important player in the control of inflammatory processes. Accordingly, imbalance on RAS components either systemically or locally might trigger the development of inflammatory disorders by affecting immune cells. At the same time, alterations in the dopaminergic system have been consistently involved in the physiopathology of inflammatory disorders. Accordingly, the interaction between the RAS and the dopaminergic system has been studied in the context of inflammation of the central nervous system (CNS), kidney, and intestine, where they exert antagonistic actions in the regulation of the immune system. In this review, we summarized, integrated, and discussed the cross talk of the dopaminergic system and the RAS in the regulation of inflammatory pathologies, including neurodegenerative disorders, such as Parkinson’s disease. We analyzed the molecular mechanisms underlying the interaction between both systems in the CNS and in systemic pathologies. Moreover, we also analyzed the impact of the commensal microbiota in the regulation of RAS and dopaminergic system and how it is involved in inflammatory disorders. Furthermore, we summarized the therapeutic approaches that have yielded positive results in preclinical or clinical studies regarding the use of drugs targeting the RAS and dopaminergic system for the treatment of inflammatory conditions. Further understanding of the molecular and cellular regulation of the RAS-dopaminergic cross talk should allow the formulation of new therapies consisting of novel drugs and/or repurposing already existing drugs, alone or in combination, for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Javier Campos
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Ñuñoa, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Ñuñoa, Santiago, Chile. .,Universidad San Sebastián, 7510156 Providencia, Santiago, Chile.
| |
Collapse
|
11
|
El-Shoura EAM, Sharkawi SMZ, Messiha BAS, Bakr AG, Hemeida RAM. Perindopril mitigates LPS-induced cardiopulmonary oxidative and inflammatory damage via inhibition of renin angiotensin system, inflammation and oxidative stress. Immunopharmacol Immunotoxicol 2019; 41:630-643. [DOI: 10.1080/08923973.2019.1688346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ehab A. M. El-Shoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Souty M. Z. Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Basim A. S. Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Adel G. Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ramadan A. M. Hemeida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| |
Collapse
|
12
|
Wu Y, Qiu A, Yang Z, Wu J, Li X, Bao K, Wang M, Wu B. Malva sylvestris extract alleviates the astrogliosis and inflammatory stress in LPS-induced depression mice. J Neuroimmunol 2019; 336:577029. [PMID: 31487612 DOI: 10.1016/j.jneuroim.2019.577029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Neuro-inflammation is widely regarded as the inflammation occurred in the central nervous system (CNS) tissue, which authentically involved in the pathogenesis such as depression although the underlying mechanism remains to be elucidated. Malva sylvestris (MS), a plant widely used in traditional medicine to mitigate urological, respiratory and oral diseases, exhibits excellent anti-oxidative and anti-inflammatory properties. In the present study, we first used LPS-induced depression-like mice to evaluate the neuro-protective effect of MS extract. We found that, after 7 days' administration of MS extract, the cognitive impairment of LPS-induced depression-like mice was efficiently alleviated, evaluated by behavioral test including the Open field, Morris water maze (MWM), Elevated plus-maze (EPM) and Rota-rod test. Furthermore, we found that MS extract also inhibited the LPS-induced neuron apoptosis and astrogliosis both in the cortex and the CA1 region of hippocampus. Finally, our findings showed that the extract of MS relieved inflammatory stress induced by LPS injury, indicated by the down-regulation of IL-1β/6 and TNF-α, and up-regulation of IL-4 level both in vitro and in vivo. Collectively, MS extract exhibits neuro-protective activity in vivo, and therefore, it may be widely used for food to relieve the symptoms of neuro-inflammation associated disorders such as depression.
Collapse
Affiliation(s)
- Ye Wu
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Aizhen Qiu
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhongxiu Yang
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Wu
- Department of Rehabilitation Medicine, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xinjian Li
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kexiu Bao
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Min Wang
- Department of Rehabilitation, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Baoyu Wu
- Department of Pathology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Telmisartan Protects Against Aluminum-Induced Alzheimer-like Pathological Changes in Rats. Neurotox Res 2019; 37:275-285. [PMID: 31332715 DOI: 10.1007/s12640-019-00085-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Currently, there is no effective mean for treatment or prevention of Alzheimer's disease (AD). Commonly used AD drugs have a moderate effect and treat only the associated symptoms, therefore there is a strong need to search for more effective agents. Our goal is to examine telmisartan neuroprotective effect in aluminum-induced cognitive impairment in rats. Aluminum chloride (10 mg/kg, i.p) was administered for 2 months then behavioral tests (Y-maze and Morris water maze) were done. Hippocampal biochemical and histological analysis were then carried out. AD-like histological, biochemical, and behavioral alterations appeared in aluminum-treated rats. Telmisartan improved rats' condition on behavioral and histological levels. It reversed the increase in hippocampal amyloid beta protein, phosphorylated tau protein contents together with augmentation of neprilysin level, it also diminished levels of nuclear factor kappa-B, FAS ligand, tumor necrosis factor-alpha, malondialdehyde, and acetylcholinesterase content.These findings show the protective action of telmisartan against AD-like pathological alterations.
Collapse
|
14
|
Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, Xiu J, Xu Q. BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway. Aging Dis 2019; 10:611-625. [PMID: 31165005 PMCID: PMC6538223 DOI: 10.14336/ad.2018.0707] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Diabetes is a systemic disease that can cause brain damage such as synaptic impairments in the hippocampus, which is partly because of neuroinflammation induced by hyperglycemia. Brain-derived neurotrophic factor (BDNF) is essential in modulating neuroplasticity. Its role in anti-inflammation in diabetes is largely unknown. In the present study, we investigated the effects of BDNF overexpression on reducing neuroinflammation and the underlying mechanism in mice with type 1 diabetes induced by streptozotocin (STZ). Animals were stereotactically microinjected in the hippocampus with recombinant adeno-associated virus (AAV) expressing BDNF or EGFP. After virus infection, four groups of mice, the EGFP+STZ, BDNF+STZ, EGFP Control and BDNF Control groups, received STZ or vehicle treatment as indicated. Three weeks later brain tissues were collected. We found that BDNF overexpression in the hippocampus significantly rescued STZ-induced decreases in mRNA and protein expression of two synaptic plasticity markers, spinophilin and synaptophysin. More interestingly, BDNF inhibited hyperglycemia-induced microglial activation and reduced elevated levels of inflammatory factors (TNF-α, IL-6). BDNF blocked the increase in HMGB1 levels and specifically, in levels of one of the HMGB1 receptors, RAGE. Downstream of HMGB1/RAGE, the increase in the protein level of phosphorylated NF-κB was also reversed by BDNF in STZ-treated mice. These results show that BDNF overexpression reduces neuroinflammation in the hippocampus of type 1 diabetic mice and suggest that the HMGB1/RAGE/NF-κB signaling pathway may contribute to alleviation of neuroinflammation by BDNF in diabetic mice.
Collapse
Affiliation(s)
- Rongrong Han
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zeyue Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Sun
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanlan Li
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Protective effect of surface-modified berberine nanoparticles against LPS-induced neurodegenerative changes: a preclinical study. Drug Deliv Transl Res 2019; 9:906-919. [PMID: 30868509 DOI: 10.1007/s13346-019-00626-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Song Y, Zhao X, Wang D, Zheng Y, Dai C, Guo M, Qin L, Wen X, Zhou X, Liu Z. Inhibition of LPS-induced brain injury by NR2B antagonists through reducing assembly of NR2B–CaMKII–PSD95 signal module. Immunopharmacol Immunotoxicol 2019; 41:86-94. [DOI: 10.1080/08923973.2018.1549566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Department of Genetics, Research Center for Neurobiology Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Xiaofang Zhao
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Di Wang
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Yi Zheng
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Chunxiao Dai
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Mengyuan Guo
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Li Qin
- The Graduate School Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Xiangru Wen
- Department of Genetics, Research Center for Neurobiology Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| | - Zhian Liu
- Department of Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
17
|
Dong Y, Pu K, Duan W, Chen H, Chen L, Wang Y. Involvement of Akt/CREB signaling pathways in the protective effect of EPA against interleukin-1β-induced cytotoxicity and BDNF down-regulation in cultured rat hippocampal neurons. BMC Neurosci 2018; 19:52. [PMID: 30189852 PMCID: PMC6128001 DOI: 10.1186/s12868-018-0455-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Our published data have indicated that the omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) provides beneficial effects by attenuating neuronal damage induced by interleukin-1β (IL-1β), and up-regulation of the expression of brain-derived neurotrophic factor (BDNF) represents a crucial part in the neuroprotective effect of EPA. However, the mechanisms of how EPA regulates BDNF expression remains incompletely understood. The present study investigated the role of Akt/CREB signaling in the effect of EPA on BDNF expression and its neuroprotective effect. RESULTS The present results showed that IL-1β reduced hippocampal neuronal viability and that EPA showed a concentration-dependent neuroprotective effect, but the neuroprotective effects of EPA were abolished by inhibition of Akt using KRX-0401, an inhibitor of Akt. Treatment of hippocampal neurons with EPA also ameliorated the decrease in Akt and CREB phosphorylation induced by IL-1β and BDNF down-regulation mediated by IL-1β. However, inhibition of Akt reversed the effect of EPA on levels of p-Akt, p-CREB, and BDNF. CONCLUSIONS Our data indicate that EPA elicited neuroprotection toward IL-1β-induced cell damage and BDNF decrease and that its effects potentially occurred via the Akt/CREB signaling pathway.
Collapse
Affiliation(s)
- YiLong Dong
- School of Medicine, Yunnan University, 2 Cuihu Bei Road, Kunming, 650091 Yunnan People’s Republic of China
| | - KangJing Pu
- School of Medicine, Yunnan University, 2 Cuihu Bei Road, Kunming, 650091 Yunnan People’s Republic of China
| | - WenJing Duan
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650031 Yunnan People’s Republic of China
| | - HuiCheng Chen
- School of Medicine, Yunnan University, 2 Cuihu Bei Road, Kunming, 650091 Yunnan People’s Republic of China
| | - LiXing Chen
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650031 Yunnan People’s Republic of China
| | - YanMei Wang
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650031 Yunnan People’s Republic of China
| |
Collapse
|
18
|
El-Shoura EA, Messiha BA, Sharkawi SM, Hemeida RA. Perindopril ameliorates lipopolysaccharide-induced brain injury through modulation of angiotensin-II/angiotensin-1-7 and related signaling pathways. Eur J Pharmacol 2018; 834:305-317. [DOI: 10.1016/j.ejphar.2018.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
|
19
|
Abdel-Fattah MM, Messiha BAS, Mansour AM. Modulation of brain ACE and ACE2 may be a promising protective strategy against cerebral ischemia/reperfusion injury: an experimental trial in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1003-1020. [PMID: 29909460 DOI: 10.1007/s00210-018-1523-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
Abstract
The brain renin-angiotensin system (RAS) is considered a crucial regulator for physiological homeostasis and disease progression. We evaluated the protective effects of the angiotensin receptor blocker (ARB) telmisartan and the angiotensin-converting enzyme 2 (ACE2) activator xanthenone on experimental cerebral ischemia/reperfusion (I/R) injury. Rats were divided into a sham control, a cerebral I/R control, a standard treatment (nimodipine, 10 mg/kg/day, 15 days, p.o.), three telmisartan treatments (1, 3, and 10 mg/kg/day, 15 days, p.o.), and three xanthenone treatments (0.5, 1, and 2 mg/kg/day, 15 days, s.c.) groups. One hour after the last dose, all rats except the sham control group were exposed to 30-min cerebral ischemia followed by 24-h reperfusion. Brain ACE and ACE2 activities and the apoptotic marker caspase-3 levels were assessed. Glutathione (GSH), malondialdehyde (MDA), and nitric oxide end products (NOx) as oxidative markers and tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-10 as immunological markers were assessed. Histopathological examination and immunohistochemical evaluation of glial fibrillary acidic protein (GFAP) were performed in cerebral cortex and hippocampus sections. Telmisartan and xanthenone in the higher doses restored MDA, NOx, TNF-α, IL-6, caspase-3, ACE, and GFAP back to normal levels and significantly increased GSH, IL-10, and ACE2 compared to I/R control values. Histopathologically, both agents showed mild degenerative changes and necrosis of neurons in cerebral cortex and hippocampus compared with I/R control group. Modulation of brain RAS, either through suppression of the classic ACE pathway or stimulation of its antagonist pathway ACE2, may be a promising strategy against cerebral I/R damage.
Collapse
Affiliation(s)
| | | | - Ahmed Mohamed Mansour
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Fan X, Song X, Zhao M, Jarskog LF, Natarajan R, Shukair N, Freudenreich O, Henderson DC, Goff DC. The effect of adjunctive telmisartan treatment on psychopathology and cognition in patients with schizophrenia. Acta Psychiatr Scand 2017; 136:465-472. [PMID: 28851055 PMCID: PMC5630515 DOI: 10.1111/acps.12799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study examined the effect of adjunctive telmisartan on psychopathology and cognition in olanzapine- or clozapine-treated patients with schizophrenia. METHOD In a 12-week randomized, double-blind, placebo-controlled study, patients diagnosed with schizophrenia or schizoaffective disorder received either telmisartan (80 mg once per day) or placebo. Psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS) and the Scale for Assessment of Negative Symptoms (SANS), and a neuropsychological battery was used to assess cognitive performance. Assessments for psychopathology and cognition were conducted at baseline and week 12. RESULTS Fifty-four subjects were randomized, and 43 completed the study (22 in the telmisartan group, 21 in the placebo group). After 12-weeks of treatment, the telmisartan group had a significant decrease in PANSS total score compared withthe placebo group (mean ± SD: - 4.1 ± 8.1 vs. 0.4 ± 7.5, P = 0.038, SCohen's d = 0.57). There were no significant differences between the two groups in change from baseline to week 12 in PANSS subscale scores, SANS total score, or any cognitive measures (P > 0.100). CONCLUSION The present study suggests that adjunctive treatment with telmisartan may improve schizophrenia symptoms. Future trials with larger sample sizes and longer treatment durations are warranted.
Collapse
Affiliation(s)
- Xiaoduo Fan
- Psychotic Disorders Program, University of Massachusetts Medical School/UMass Memorial Medical Center, Worcester, MA,Corresponding Author: Xiaoduo Fan, M.D., M.P.H., M.S., University of Massachusetts Medical School/UMass Memorial Medical Center, Worcester, MA 01605, ; Phone: (508) 856-3881. Xueqin Song, MD, PhD, The 1 Affiliated Hospital of Zhengzhou University,
| | - Xueqin Song
- Department of Psychiatry, The1 Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Corresponding Author: Xiaoduo Fan, M.D., M.P.H., M.S., University of Massachusetts Medical School/UMass Memorial Medical Center, Worcester, MA 01605, ; Phone: (508) 856-3881. Xueqin Song, MD, PhD, The 1 Affiliated Hospital of Zhengzhou University,
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai, China
| | - L. Fredrik Jarskog
- Department of Psychiatry, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Radhika Natarajan
- Psychotic Disorders Program, University of Massachusetts Medical School/UMass Memorial Medical Center, Worcester, MA
| | - Nawras Shukair
- Psychotic Disorders Program, University of Massachusetts Medical School/UMass Memorial Medical Center, Worcester, MA
| | - Oliver Freudenreich
- Schizophrenia Program, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - David C. Henderson
- Department of Psychiatry, Boston University/Boston Medical Center, Boston, MA
| | - Donald C. Goff
- Department of Psychiatry, New York University Medical School and Nathan Kline Institute, New York, NY
| |
Collapse
|