1
|
Garcia CS, da Rocha MJ, Presa MH, Pires CS, Besckow EM, Penteado F, Gomes CS, Lenardão EJ, Bortolatto CF, Brüning CA. Exploring the antioxidant potential of chalcogen-indolizines throughout in vitro assays. PeerJ 2024; 12:e17074. [PMID: 38500528 PMCID: PMC10946399 DOI: 10.7717/peerj.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/18/2024] [Indexed: 03/20/2024] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are highly reactive molecules produced naturally by the body and by external factors. When these species are generated in excessive amounts, they can lead to oxidative stress, which in turn can cause cellular and tissue damage. This damage is known to contribute to the aging process and is associated with age-related conditions, including cardiovascular and neurodegenerative diseases. In recent years, there has been an increased interest in the development of compounds with antioxidant potential to assist in the treatment of disorders related to oxidative stress. In this way, compounds containing sulfur (S) and/or selenium (Se) have been considered promising due to the relevant role of these elements in the biosynthesis of antioxidant enzymes and essential proteins with physiological functions. In this context, studies involving heterocyclic nuclei have significantly increased, notably highlighting the indolizine nucleus, given that compounds containing this nucleus have been demonstrating considerable pharmacological properties. Thus, the objective of this research was to evaluate the in vitro antioxidant activity of eight S- and Se-derivatives containing indolizine nucleus and different substituents. The in vitro assays 1,1-diphenyl-2-picryl-hydrazil (DPPH) scavenger activity, ferric ion (Fe3+) reducing antioxidant power (FRAP), thiobarbituric acid reactive species (TBARS), and protein carbonylation (PC) were used to access the antioxidant profile of the compounds. Our findings demonstrated that all the compounds showed FRAP activity and reduced the levels of TBARS and PC in mouse brains homogenates. Some compounds were also capable of acting as DPPH scavengers. In conclusion, the present study demonstrated that eight novel organochalcogen compounds exhibit antioxidant activity.
Collapse
Affiliation(s)
- Cleisson Schossler Garcia
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Evelyn Mianes Besckow
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Filipe Penteado
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Caroline Signorini Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Eder João Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Lv JF, Deng Y, Liang XY, Tan YF, He YH, Guan Z. Electrochemical Synthesis of Selenosulfonates from Diselenides and Sulfonyl Hydrazides. J Org Chem 2024; 89:3931-3940. [PMID: 38450634 DOI: 10.1021/acs.joc.3c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The electrochemical oxidative radical-radical cross-coupling of sulfonyl hydrazides with diselenides for the synthesis of selenosulfonates was successfully accomplished. The method is applicable to a wide range of aromatic/aliphatic sulfonyl hydrazides and diselenides, providing products in good to excellent yields. Notably, this protocol stands out for its green and sustainable nature, as it does not rely on transition metals and oxidizing agents, and the starting materials are cost-effective and readily available.
Collapse
Affiliation(s)
- Jin-Feng Lv
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yang Deng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin-Yi Liang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu-Fang Tan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Anghinoni JM, Birmann PT, da Rocha MJ, Gomes CS, Davies MJ, Brüning CA, Savegnago L, Lenardão EJ. Recent Advances in the Synthesis and Antioxidant Activity of Low Molecular Mass Organoselenium Molecules. Molecules 2023; 28:7349. [PMID: 37959771 PMCID: PMC10649092 DOI: 10.3390/molecules28217349] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.
Collapse
Affiliation(s)
- João M. Anghinoni
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| | - Paloma T. Birmann
- Neurobiotechnology Research Group (GPN), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Marcia J. da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Caroline S. Gomes
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Building 12.6, Blegdamsvej 3, 2200 Copenhagen, Denmark;
| | - César A. Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil;
| | - Eder J. Lenardão
- Laboratory of Clean Organic Synthesis (LASOL), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), P.O. Box 354, Pelotas 96010-900, RS, Brazil; (J.M.A.); (C.S.G.)
| |
Collapse
|
4
|
Synthesis, characterization, antioxidant potential, and cytotoxicity screening of new Cu(II) complexes with 4-(arylchalcogenyl)-1H-pyrazoles ligands. J Inorg Biochem 2022; 237:112013. [PMID: 36183642 DOI: 10.1016/j.jinorgbio.2022.112013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/18/2023]
Abstract
Two new Cu(II) complexes based on 4-(arylchalcogenyl)-1H-pyrazoles monodentate bis(ligand) containing selenium or sulfur groups (2a and 2b) have been synthesized and characterized by IR spectroscopy, high-resolution mass spectrometry (HRMS), and by X-ray crystallography. In the effort to propose new applications for the biomedical area, we evaluated the antioxidant activity and cytotoxicity of the newly synthesized complexes. The antioxidant activity of the Cu(II) complexes (2a - 2b) were assessed through their ability to inhibit the formation of reactive species (RS) induced by sodium azide and to scavenge the synthetic radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+). Both copper complexes containing selenium (2a) and sulfur (2b) presented in vitro antioxidant activity. The (1a - 1b and 2a - 2b) compounds did not show cytotoxicity in V79 cells at low concentrations. Furthermore, the antiproliferative activity of free ligands (1a - 1b) and their complexes (2a - 2b) were tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and HepG2 (hepatocarcinoma). Also, 2a was tested against U2OS (osteosarcoma). Our results demonstrated that 1a and 1b show little or no growth inhibition activities on human cell lines.The 2a compound exhibited good cytotoxic activity toward human tumor cell lines. However, 2a showed no selectivity, with a selectivity index of 1.12-1.40. Complex 2b was selective for the MCF-7 human tumor cell lines with IC50 of 59 ± 2 μM. This study demonstrates that the Cu(II) complexes 2a and 2b represent promising antitumoral compounds, and further studies are necessary to understand the molecular mechanisms of these effects.
Collapse
|
5
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
6
|
Carraro Junior LR, Alves AG, Rech TDST, Campos Júnior JC, Siqueira GM, Cunico W, Brüning CA, Bortolatto CF. Three -(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-one as a novel inhibitor of cerebral MAO-B activity with antioxidant properties and low toxicity potential. J Biochem Mol Toxicol 2021; 35:e22833. [PMID: 34047428 DOI: 10.1002/jbt.22833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Some brain diseases are associated with oxidative stress and altered monoamine oxidase (MAO) activity. The objective of this study was to evaluate the antioxidant and neuroprotective actions through MAO inhibition of 3-(pyridin-2-yl)-2-(pyridine-2-ylimino) thiazolidin-4-one (PPIT, a synthetic molecule containing a thiazolidinone nucleus), as well as its effects on toxicity parameters in Swiss female mice. Five in vitro assays were carried out to verify the PPIT antioxidant capacity: protein carbonylation (PC), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picryl-hydrazil (DPPH), ferric ion (Fe3+ ) reducing antioxidant power (FRAP), and superoxide dismutase (SOD)-like activity. The results showed that PPIT reduced the level of PC in the homogenate of the brain. This compound did not demonstrate SOD mimetic activity, but it acted as a free radical scavenger (ABTS and DPPH) and exhibited reducing activity in the FRAP assay. In addition, the effects of PPIT on cerebral MAO activity (MAO-A and B isoforms) were investigated in vitro. Our data revealed inhibition of the MAO-B activity by PPIT with no effects on MAO-A. Lastly, an acute oral toxicity test was conducted in mice. No changes in food intake, body weight, and biochemical markers of kidney and liver damage were detected in mice treated with a high dose of PPIT (300 mg/kg). In conclusion, the present study demonstrated that PPIT exhibits antioxidant activity and selectively inhibits the MAO-B isoform without causing apparent toxicity. These findings suggest PPIT as a potential therapeutic candidate to be tested in preclinical models of brain diseases involving perturbations of MAO-B activity and redox status.
Collapse
Affiliation(s)
- Luiz Roberto Carraro Junior
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Taís da Silva Teixeira Rech
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - José Coan Campos Júnior
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Geonir Machado Siqueira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| |
Collapse
|
7
|
Sacramento M, Costa GP, Barcellos AM, Perin G, Lenardão EJ, Alves D. Transition-metal-free C-S, C-Se, and C-Te Bond Formation from Organoboron Compounds. CHEM REC 2021; 21:2855-2879. [PMID: 33735500 DOI: 10.1002/tcr.202100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
The present review describes the successful application of organoboron compounds in transition-metal-free C-S, C-Se, and C-Te bond formations. We presented studies regarding these C-Chalcogen bond formations using organoboron reagents, such as boronic acids, boronic esters, borate anions, and several sources of chalcogen atoms/moieties. Moreover, a broad range of transition-metal-free approaches to synthesize sulfides, selenides, and tellurides were described using conventional heating methods, which are sometimes green since they use green solvents, safe reagents, among others. Furthermore, protocols using alternative energy sources, including ultrasound, microwave irradiation, photocatalysis, and electrolytic processes, were also shown to be suitable. These protocols were applied to prepare a broad scope of functionalized chalcogenides with high molecular diversity. These studies and their proposed mechanisms were also reported herein in addition to the reuse of reaction promoters.
Collapse
Affiliation(s)
- Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gabriel P Costa
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|