1
|
Jónsdóttir GÓ, von Elm LM, Ingimarsson F, Tersigni S, Snorrason SS, Pálsson A, Steele SE. Diversity in the internal functional feeding elements of sympatric morphs of Arctic charr (Salvelinus alpinus). PLoS One 2024; 19:e0300359. [PMID: 38771821 PMCID: PMC11108142 DOI: 10.1371/journal.pone.0300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
The diversity of functional feeding anatomy is particularly impressive in fishes and correlates with various interspecific ecological specializations. Intraspecific polymorphism can manifest in divergent feeding morphology and ecology, often along a benthic-pelagic axis. Arctic charr (Salvelinus alpinus) is a freshwater salmonid known for morphological variation and sympatric polymorphism and in Lake Þingvallavatn, Iceland, four morphs of charr coexist that differ in preferred prey, behaviour, habitat use, and external feeding morphology. We studied variation in six upper and lower jaw bones in adults of these four morphs using geometric morphometrics and univariate statistics. We tested for allometric differences in bone size and shape among morphs, morph effects on bone size and shape, and divergence along the benthic-pelagic axis. We also examined the degree of integration between bone pairs. We found differences in bone size between pelagic and benthic morphs for two bones (dentary and premaxilla). There was clear bone shape divergence along a benthic-pelagic axis in four bones (dentary, articular-angular, premaxilla and maxilla), as well as allometric shape differences between morphs in the dentary. Notably for the dentary, morph explained more shape variation than bone size. Comparatively, benthic morphs possess a compact and taller dentary, with shorter dentary palate, consistent with visible (but less prominent) differences in external morphology. As these morphs emerged in the last 10,000 years, these results indicate rapid functional evolution of specific feeding structures in arctic charr. This sets the stage for studies of the genetics and development of rapid and parallel craniofacial evolution.
Collapse
Affiliation(s)
| | - Laura-Marie von Elm
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | | | - Samuel Tersigni
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | | | - Arnar Pálsson
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
| | - Sarah Elizabeth Steele
- Institute of Life- and Environmental Science, University of Iceland, Reykjavik, Iceland
- Canadian Museum of Nature, Ottawa, Canada
| |
Collapse
|
2
|
Viozzi MF, Cabrera JM, Giri F, de Azevedo Carvalho D, Williner V. Ontogenetic shifts in natural diet, chelae, and mandibles of the omnivorous freshwater crab Aegla uruguayana: linking morphology and function. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We analyze whether ontogenetic diet change in Aegla uruguayana Schmitt, 1942 is related to the morphological changes in chelae and mandibles. We use a combination of scanning electron microscope (SEM) observation, dietary composition analysis (stomach observation, trophic niche amplitude, trophic overlap, and feeding strategy), and geometric morphometric tools (discriminant analysis and two-block partial least squares analysis). The two structures analyzed by SEM show differences between juvenile and adult specimens, both in their cuticle and morphology specializations. In juveniles, the absence of the lobular tooth is the notable feature. However, in adult sizes, it is marked development. Both groups have simple setae with infracuticular articulation and denticles with different arrangements between groups. In the incisive mandible process, the teeth and spines present sharper points in juveniles and considerable wear in adults. Aegla uruguayana presented two trophic strategies: a profile of more predatory traits when younger and mostly detritivorous when adults. The analysis of geometric morphometry substantiates the patterns observed in SEM and stomach contents analysis. The morphology of smaller specimens is associated with the consumption of animal items (ephemeropteran larvae and cladocerans), while the morphology of larger specimens is related to the consumption of plant remains.
Collapse
Affiliation(s)
- M. Florencia Viozzi
- Laboratorio de Macrocrustáceos, Instituto Nacional de Limnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Juan M. Cabrera
- Laboratorio de Macrocrustáceos, Instituto Nacional de Limnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Paraje El Pozo, 3000 Santa Fe, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde, CP 3100 Entre Ríos, Argentina
| | - Federico Giri
- Laboratorio de Macrocrustáceos, Instituto Nacional de Limnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Paraje El Pozo, 3000 Santa Fe, Argentina
- Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Débora de Azevedo Carvalho
- Laboratorio de Macrocrustáceos, Instituto Nacional de Limnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Verónica Williner
- Laboratorio de Macrocrustáceos, Instituto Nacional de Limnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Paraje El Pozo, 3000 Santa Fe, Argentina
- Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Paraje El Pozo, 3000 Santa Fe, Argentina
| |
Collapse
|
3
|
Brachmann MK, Parsons K, Skúlason S, Ferguson MM. The interaction of resource use and gene flow on the phenotypic divergence of benthic and pelagic morphs of Icelandic Arctic charr ( Salvelinus alpinus). Ecol Evol 2021; 11:7315-7334. [PMID: 34188815 PMCID: PMC8216915 DOI: 10.1002/ece3.7563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Conceptual models of adaptive divergence and ecological speciation in sympatry predict differential resource use, phenotype-environment correlations, and reduced gene flow among diverging phenotypes. While these predictions have been assessed in past studies, connections among them have rarely been assessed collectively. We examined relationships among phenotypic, ecological, and genetic variation in Arctic charr (Salvelinus alpinus) from six Icelandic localities that have undergone varying degrees of divergence into sympatric benthic and pelagic morphs. We characterized morphological variation with geometric morphometrics, tested for differential resource use between morphs using stable isotopes, and inferred the amount of gene flow from single nucleotide polymorphisms. Analysis of stable isotopic signatures indicated that sympatric morphs showed similar difference in resource use across populations, likely arising from the common utilization of niche space within each population. Carbon isotopic signature was also a significant predictor of individual variation in body shape and size, suggesting that variation in benthic and pelagic resource use is associated with phenotypic variation. The estimated percentage of hybrids between sympatric morphs varied across populations (from 0% to 15.6%) but the majority of fish had genotypes (ancestry coefficients) characteristic of pure morphs. Despite evidence of reduced gene flow between sympatric morphs, we did not detect the expected negative relationship between divergence in resource use and gene flow. Three lakes showed the expected pattern, but morphs in the fourth showed no detectable hybridization and had relatively low differences in resource use between them. This coupled with the finding that resource use and genetic differentiation had differential effects on body shape variation across populations suggests that reproductive isolation maintains phenotypic divergence between benthic and pelagic morphs when the effects of resource use are relatively low. Our ability to assess relationships between phenotype, ecology, and genetics deepens our understanding of the processes underlying adaptive divergence in sympatry.
Collapse
Affiliation(s)
| | - Kevin Parsons
- Institute of Biodiversity, Animal Health and Comparative MedicineSchool of Life ScienceUniversity of GlasgowGlasgowUK
| | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySaudárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | | |
Collapse
|
4
|
Hull EA, Barajas M, Burkart KA, Fung SR, Jackson BP, Barrett PM, Neumann RB, Olden JD, Gawel JE. Human health risk from consumption of aquatic species in arsenic-contaminated shallow urban lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145318. [PMID: 33736365 PMCID: PMC8032223 DOI: 10.1016/j.scitotenv.2021.145318] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Arsenic (As) causes cancer and non-cancer health effects in humans. Previous research revealed As concentrations over 200 μg g-1 in lake sediments in the south-central Puget Sound region affected by the former ASARCO copper smelter in Ruston, WA, and significant bioaccumulation of As in plankton in shallow lakes. Enhanced uptake occurs during summertime stratification and near-bottom anoxia when As is mobilized from sediments. Periodic mixing events in shallow lakes allow dissolved As to mix into oxygenated waters and littoral zones where biota reside. We quantify As concentrations and associated health risks in human-consumed tissues of sunfish [pumpkinseed (Lepomis gibbosus) and bluegill (Lepomis macrochirus)], crayfish [signal (Pacifastacus leniusculus) and red swamp (Procambarus clarkii)], and snails [Chinese mystery (Bellamya chinensis)] from lakes representing a gradient of As contamination and differing mixing regimes. In three shallow lakes with a range of arsenic in profundal sediments (20 to 206 μg As g-1), mean arsenic concentrations ranged from 2.9 to 46.4 μg g-1 in snails, 2.6 to 13.9 μg g-1 in crayfish, and 0.07 to 0.61 μg g-1 in sunfish. Comparatively, organisms in the deep, contaminated lake (208 μg g-1 in profundal sediments) averaged 11.8 μg g-1 in snails and 0.06 μg g-1 in sunfish. Using inorganic As concentrations, we calculated that consuming aquatic species from the most As-contaminated shallow lake resulted in 4-10 times greater health risks compared to the deep lake with the same arsenic concentrations in profundal sediments. We show that dynamics in shallow, polymictic lakes can result in greater As bioavailability compared to deeper, seasonally stratified lakes. Arsenic in oxygenated waters and littoral sediments was more indicative of exposure to aquatic species than profundal sediments, and therefore we recommend that sampling methods focus on these shallow zones to better indicate the potential for uptake into organisms and human health risk.
Collapse
Affiliation(s)
- Erin A Hull
- Environmental Sciences, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, United States.
| | - Marco Barajas
- Environmental Sciences, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, United States
| | - Kenneth A Burkart
- Environmental Sciences, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, United States
| | - Samantha R Fung
- Department of Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, United States
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, 6105 Fairchild Hall, Hanover, NH 03755, United States
| | - Pamela M Barrett
- Department of Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, United States
| | - Rebecca B Neumann
- Department of Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, United States
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA 98195, United States
| | - James E Gawel
- Environmental Sciences, School of Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce Street, Tacoma, WA 98402, United States
| |
Collapse
|
5
|
Keeley ER, Loxterman JL, Matsaw SL, Njoroge ZM, Seiler MB, Seiler SM. Morphological and genetic concordance of cutthroat trout ( Oncorhynchus clarkii) diversification from western North America. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cutthroat trout (Oncorhynchus clarkii (Richardson, 1836)) is one of the most widely distributed species of freshwater fish in western North America. Occupying a diverse range of habitats, they exhibit significant phenotypic variability that is often recognized by intraspecific taxonomy. Recent molecular phylogenies have described phylogenetic diversification across cutthroat trout populations, but no study has provided a range-wide morphological comparison of taxonomic divisions. In this study, we used linear- and geometric-based morphometrics to determine if phylogenetic and subspecies divisions correspond to morphological variation in cutthroat trout, using replicate populations from throughout the geographic range of the species. Our data indicate significant morphological divergence of intraspecific categories in some, but not all, cutthroat trout subspecies. We also compare morphological distance measures with distance measures of mtDNA sequence divergence. DNA sequence divergence was positively correlated with morphological distance measures, indicating that morphologically more similar subspecies have lower sequence divergence in comparison to morphologically distant subspecies. Given these results, integrating both approaches to describing intraspecific variation may be necessary for developing a comprehensive conservation plan in wide-ranging species.
Collapse
Affiliation(s)
- Ernest R. Keeley
- Department of Biological Sciences, Mail Stop 8007, Idaho State University, Pocatello, ID 83209, USA
| | - Janet L. Loxterman
- Department of Biological Sciences, Mail Stop 8007, Idaho State University, Pocatello, ID 83209, USA
| | - Sammy L. Matsaw
- Department of Biological Sciences, Mail Stop 8007, Idaho State University, Pocatello, ID 83209, USA
| | - Zacharia M. Njoroge
- Department of Biological Sciences, Mail Stop 8007, Idaho State University, Pocatello, ID 83209, USA
| | | | - Steven M. Seiler
- Department of Biology, Lock Haven University, Lock Haven, PA 17745, USA
| |
Collapse
|
6
|
Kenthao A, Jearranaiprepame P. Ecomorphological diversification of some barbs and carps (Cyprininae, Cyprinidae) in the Lower Mekong Basin of Thailand. ZOOLOGY 2020; 143:125830. [PMID: 32916444 DOI: 10.1016/j.zool.2020.125830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022]
Abstract
Morphological variation is fundamentally related to various aspects of fish ecology, including foraging, locomotion, and habitat utilisation. Twenty-six species of closely related cyprinid fish (n = 502) were analysed for patterns of morphological variations by using geometric morphometric methods. Ecological data of feeding and habitat preferences were determined by the observations in fields and laboratory together with the gathering of bibliographic information. The findings of major variation displayed in all parts of the fish body and correlated with ecological parameters. Variations of head shape especially form and position of mouthpart involved with feeding behaviours, whereas the variations of body depth and length which affected swimming patterns reflected responsiveness of water currents and habitat uses. Adaptation of head shape and body elongation was remarkably related to the feeding regime, swimming manoeuvrability and habitat utilisation of the species. Some convergent variation was observed between the tribes Smiliogastrini and Poropuntiini. Therefore, we propose that the morphological diversity of cyprinine fish is mainly affected by ecological gradients, while phylogenetic effects on morphology are minor.
Collapse
Affiliation(s)
- Anan Kenthao
- Department of Biology, Faculty of Science, Naresuan University, Mueang, Phitsanulok, 65000, Thailand.
| | | |
Collapse
|
7
|
Gidmark NJ, Pos K, Matheson B, Ponce E, Westneat MW. Functional Morphology and Biomechanics of Feeding in Fishes. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Axelrod CJ, Laberge F, Robinson BW. Intraspecific brain size variation between coexisting sunfish ecotypes. Proc Biol Sci 2018; 285:rspb.2018.1971. [PMID: 30404883 DOI: 10.1098/rspb.2018.1971] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
Variation in spatial complexity and foraging requirements between habitats can impose different cognitive demands on animals that may influence brain size. However, the relationship between ecologically related cognitive performance and brain size is not well established. We test whether variation in relative brain size and brain region size is associated with habitat use within a population of pumpkinseed sunfish composed of different ecotypes that inhabit either the structurally complex shoreline littoral habitat or simpler open-water pelagic habitat. Sunfish using the littoral habitat have on average 8.3% larger brains than those using the pelagic habitat. We found little difference in the proportional sizes of five brain regions between ecotypes. The results suggest that cognitive demands on sunfish may be reduced in the pelagic habitat given no habitat-specific differences in body condition. They also suggest that either a short divergence time or physiological processes may constrain changes to concerted, global modifications of brain size between sunfish ecotypes.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Beren W Robinson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
9
|
Franklin OD, Skúlason S, Morrissey MB, Ferguson MM. Natural selection for body shape in resource polymorphic Icelandic Arctic charr. J Evol Biol 2018; 31:1498-1512. [PMID: 29961959 DOI: 10.1111/jeb.13346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/15/2018] [Accepted: 06/23/2018] [Indexed: 01/22/2023]
Abstract
Resource polymorphisms exhibit remarkable intraspecific diversity and in many cases are expected to be maintained by diversifying selection. Phenotypic trade-offs can constrain morphologically intermediate individuals from effectively exploiting both alternate resources, resulting in ecological barriers to gene flow. Determining if and how phenotypic trade-offs cause fitness variation in the wild is challenging because of phenotypic and environmental correlations associated with alternative resource strategies. We investigated multiple pathways through which morphology could affect organismal performance, as measured by growth rate, and whether these effects generate diversifying selection in polymorphic Icelandic Arctic charr (Salvelinus alpinus) populations. We considered direct effects of morphology on growth and indirect effects via trophic resource use, estimated by stable isotopic signatures, and via parasitism associated with trophic resources. We sampled over 3 years in (lakes) Thingvallavatn and Vatnshlíðarvatn using the extended selection gradient path analytical approach and estimating size-dependent mortality. We found evidence for diversifying selection only in Thingvallavatn: more streamlined and terminally mouthed planktivore charr experienced greater growth, with the opposite pattern in small benthic charr. However, this effect was mediated by parasitism and nontrophic pathways, rather than trophic performance as often expected. Detection of between-morph differences in the presence (Vatnshlíðarvatn) and direction (Thingvallavatn) of size-dependent mortality, together with nontrophic effects of shape, suggests that a morphological trophic performance explanation for polymorphism is insufficient. This rare insight into selection during early diversification suggests that a complex of interacting local factors must be considered to understand how phenotype influences fitness, despite morphological variation reflecting intuitive trade-off explanations.
Collapse
Affiliation(s)
- Oliver D Franklin
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Skúli Skúlason
- Department of Aquaculture and Fish Biology, Hólar University College, Saudárkrókur, Iceland
| | - Michael B Morrissey
- Dyers Brae House, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Jarvis WMC, Comeau SM, Colborne SF, Robinson BW. Flexible mate choice may contribute to ecotype assortative mating in pumpkinseed sunfish (Lepomis gibbosus). J Evol Biol 2017; 30:1810-1820. [PMID: 28590579 DOI: 10.1111/jeb.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/01/2017] [Indexed: 11/30/2022]
Abstract
Gene flow is expected to limit adaptive divergence, but the ecological and behavioural factors that govern gene flow are still poorly understood, particularly at the earliest stages of population divergence. Reduced gene flow through mate choice (sexual isolation) can evolve even under conditions of subtle population divergence if intermediate phenotypes have reduced fitness. We indirectly tested the hypothesis that mate choice has evolved between coexisting littoral and pelagic ecotypes of polyphenic pumpkinseed sunfish (Lepomis gibbosus) that have diverged in morphology and resource use and where intermediate phenotypes have reduced performance. We assessed the ecotype of nesting males and females using stable isotope estimates of diet and a divergent male morphological trait, oral jaw width. We found positive assortative mating between ecotypes in a common spawning habitat along exposed lake shorelines, but contrary to expectations, assortative mating was variably expressed between two sampling years. Although the factors that influence variable assortative mating remain unclear, our results are consistent with mate choice being expressed by ecotypes. Despite being variably expressed, mate choice will reduce gene flow between ecotypes and could contribute to further adaptive divergence depending on its frequency and strength in the population. Our findings add to a growing body of evidence indicating mate choice behaviour can be a plastic trait, an idea that should be more explicitly considered in empirical studies of mate choice as well as conceptual frameworks of mate choice evolution and adaptive divergence.
Collapse
Affiliation(s)
- W M C Jarvis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - S M Comeau
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - S F Colborne
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - B W Robinson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Belanger C, Peiman K, Vera-Chang M, Moon T, Cooke S. Pumpkinseed sunfish ( Lepomis gibbosus) from littoral and limnetic habitats differ in stress responsiveness independent of environmental complexity and presence of conspecifics. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the face of a changing world, there has been increasing interest in the behavioural and physiological responses of wild animals to stressors. Many factors can influence stress responsiveness, but two that have not been extensively studied during the stress-induced phase are environmental complexity and the presence of conspecifics. Using wild pumpkinseed sunfish (Lepomis gibbosus (L., 1758)) collected from limnetic and littoral sites, we tested whether glucose and cortisol were affected by environmental complexity and the density of conspecifics during the period of maximum response following a standardized air stressor. Overall, environmental complexity and conspecific density did not have a significant effect on maximum stress. However, in the environmental complexity experiment, fish collected from the littoral site had significantly higher concentrations of maximum glucose and cortisol, and tended to have higher glucose and cortisol responsiveness, than limnetic fish. This indicates that although the collection site did not affect a fish’s baseline values, intraspecific variation in site use is associated with divergent sensitivity of the hypothalamic–pituitary–interrenal axis to stressors. The importance of capture location on maximal response from stressors represents a potential sampling bias and source of variation, and may be even more pronounced in species that are habitat specialists.
Collapse
Affiliation(s)
- C.B. Belanger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - K.S. Peiman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - M.N. Vera-Chang
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - T.W. Moon
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - S.J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
12
|
Chavarie L, Muir AM, Zimmerman MS, Baillie SM, Hansen MJ, Nate NA, Yule DL, Middel T, Bentzen P, Krueger CC. Challenge to the model of lake charr evolution: shallow- and deep-water morphs exist within a small postglacial lake. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Louise Chavarie
- Center for Systems Integration and Sustainability; Michigan State University; 115 Manly Miles Building, 1405 South Harrison Road East Lansing Michigan USA
| | - Andrew M. Muir
- Great Lakes Fishery Commission; 2100 Commonwealth Blvd. Suite 100 Ann Arbor Michigan USA
| | - Mara S. Zimmerman
- Washington Department of Fish and Wildlife; 600 Capitol Way N. Olympia Washington USA
| | - Shauna M. Baillie
- Department of Biology; Dalhousie University; 1355 Oxford St. Halifax Nova Scotia Canada
| | - Michael J. Hansen
- United States Geological Survey; Hammond Bay Biological Station; 11188 Ray Road Millersburg Michigan USA
| | - Nancy A. Nate
- Center for Systems Integration and Sustainability; Michigan State University; 115 Manly Miles Building, 1405 South Harrison Road East Lansing Michigan USA
| | - Daniel L. Yule
- United States Geological Survey; Lake Superior Biological Station; 2800 Lakeshore Drive Ashland Wisconsin USA
| | - Trevor Middel
- Harkness Laboratory of Fisheries Research; Ontario Ministry of Natural Resources and Forestry; Trent University; 2140 East Bank Drive Peterborough Ontario Canada
| | - Paul Bentzen
- Department of Biology; Dalhousie University; 1355 Oxford St. Halifax Nova Scotia Canada
| | - Charles C. Krueger
- Center for Systems Integration and Sustainability; Michigan State University; 115 Manly Miles Building, 1405 South Harrison Road East Lansing Michigan USA
| |
Collapse
|