1
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
2
|
Quijada-Rodriguez AR, Fehsenfeld S, Marini AM, Wilson JM, Nash MT, Sachs M, Towle DW, Weihrauch D. Branchial CO 2 and ammonia excretion in crustaceans: Involvement of an apical Rhesus-like glycoprotein. Acta Physiol (Oxf) 2024; 240:e14078. [PMID: 38205922 DOI: 10.1111/apha.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
AIM To determine whether the crustacean Rh1 protein functions as a dual CO2 /ammonia transporter and investigate its role in branchial ammonia excretion and acid-base regulation. METHODS Sequence analysis of decapod Rh1 proteins was used to determine the conservation of amino acid residues putatively involved in ammonia transport and CO2 binding in human and bacterial Rh proteins. Using the Carcinus maenas Rh1 protein (CmRh1) as a representative of decapod Rh1 proteins, we test the ammonia and CO2 transport capabilities of CmRh1 through heterologous expression in yeast and Xenopus oocytes coupled with site-directed mutagenesis. Quantitative PCR was used to assess the distribution of CmRh1 mRNA in various tissues. Western blotting was used to assess CmRh1 protein expression changes in response to high environmental ammonia and CO2 . Further, immunohistochemistry was used to assess sub-cellular localization of CmRh1 and a membrane-bound carbonic anhydrase (CmCAg). RESULTS Sequence analysis of decapod Rh proteins revealed high conservation of several amino acid residues putatively involved in conducting ammonia transport and CO2 binding. Expression of CmRh1 in Xenopus oocytes enhanced both ammonia and CO2 transport which was nullified in CmRh1 D180N mutant oocytes. Transport of the ammonia analog methylamine by CmRh1 is dependent on both ionized and un-ionized ammonia/methylamine species. CmRh1 was co-localized with CmCAg to the apical membrane of the crustacean gill and only experienced decreased protein expression in the anterior gills when exposed to high environmental ammonia. CONCLUSION CmRh1 is the first identified apical transporter-mediated route for ammonia and CO2 excretion in the crustacean gill. Our findings shed further light on the potential universality of dual ammonia and CO2 transport capacity of Rhesus glycoproteins in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Alex R Quijada-Rodriguez
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sandra Fehsenfeld
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Anna-Maria Marini
- Biology of Membrane Transport Laboratory, Molecular Biology Department, Université Libre de Bruxelles, Bruxelles, Belgium
- WELBIO, Wavre, Belgium
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Mikyla T Nash
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Sachs
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David W Towle
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Li X, Wang S, Zhang M, Yu Y, Li M. Glutamine synthetase (GS) deficiency can affect ammonia tolerance of yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2022; 126:104-112. [PMID: 35613668 DOI: 10.1016/j.fsi.2022.05.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Glutamine synthetase (GS) plays a crucial role in the regulation of glutamine synthesis in fish which is a very effective ammonia detoxification strategy. In this study, the full-length GS was cloned from the liver of yellow catfish. The full-length cDNA sequence of GS was 1928 bp in length and encoded 371 amino acids. The amino acid sequence of GS showed high homology (99%) with that of channel catfish. The highest mRNA expression of GS was found in the brain of yellow catfish. Acute ammonia stress (96 h LC50) significantly increased ammonia levels in plasma, liver, and brain, and GS gene expression was significantly up-regulated in the liver and brain. RNA interference inhibited the GS mRNA expression level in primary cultured hepatocytes after acute ammonia stress and reduced hepatocyte survival rate. It is suggested that GS plays a key role in ammonia detoxification in yellow catfish by regulating glutamine synthesis.
Collapse
Affiliation(s)
- Xue Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Muzi Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yangping Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Birceanu O, Ferreira P, Neal J, Sunga J, Anthony S, Davidson S, Edwards SL, Wilson JM, Youson JH, Vijayan MM, Wilkie MP. Divergent pathways of ammonia and urea production and excretion during the life cycle of the sea lamprey. Physiol Biochem Zool 2022; 95:551-567. [DOI: 10.1086/721606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Sunga J, Wilson JM, Wilkie MP. Functional re-organization of the gills of metamorphosing sea lamprey (Petromyzon marinus): preparation for a blood diet and the freshwater to seawater transition. J Comp Physiol B 2020; 190:701-715. [PMID: 32852575 DOI: 10.1007/s00360-020-01305-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 11/28/2022]
Abstract
Sea lamprey (Petromyzon marinus) begin life as filter-feeding larvae (ammocoetes) before undergoing a complex metamorphosis into parasitic juveniles, which migrate to the sea where they feed on the blood of large-bodied fishes. The greater protein intake during this phase results in marked increases in the production of nitrogenous wastes (N-waste), which are excreted primarily via the gills. However, it is unknown how gill structure and function change during metamorphosis and how it is related to modes of ammonia excretion, nor do we have a good understanding of how the sea lamprey's transition from fresh water (FW) to sea water (SW) affects patterns and mechanisms of N-waste excretion in relation to ionoregulation. Using immunohistochemistry, we related changes in the gill structure of larval, metamorphosing, and juvenile sea lampreys to their patterns of ammonia excretion (Jamm) and urea excretion (Jurea) in FW, and following FW to artificial seawater (ASW) transfer. Rates of Jamm and Jurea were low in larval sea lamprey and increased in feeding juvenile, parasitic sea lamprey. In freshwater-dwelling ammocoetes, immunohistochemical analysis revealed that Rhesus glycoprotein C-like protein (Rhcg-like) was diffusely distributed on the lamellar epithelium, but following metamorphosis, Rhcg-like protein was restricted to SW mitochondrion-rich cells (MRCs; ionocytes) between the gill lamellae. Notably, these interlamellar Rhcg-like proteins co-localized with Na+/K+-ATPase (NKA), which increased in expression and activity by almost tenfold during metamorphosis. The distribution of V-type H+-ATPase (V-ATPase) on the lamellae decreased following metamorphosis, indicating it may have a more important role in acid-base regulation and Na+ uptake in FW, compared to SW. We conclude that the re-organization of the sea lamprey gill during metamorphosis not only plays a critical role in allowing them to cope with greater salinity following the FW-SW transition, but that it simultaneously reflects fundamental changes in methods used to excrete ammonia.
Collapse
Affiliation(s)
- Julia Sunga
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Jonathan M Wilson
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
6
|
Miramontes E, Kempisty B, Petitte J, Dasarathy S, Kulus M, Wieczorkiewicz M, Mozdziak P. Myogenic Response to Increasing Concentrations of Ammonia Differs between Mammalian, Avian, and Fish Species: Cell Differentiation and Genetic Study. Genes (Basel) 2020; 11:genes11080840. [PMID: 32722004 PMCID: PMC7464490 DOI: 10.3390/genes11080840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Ammonia is very toxic to the body and has detrimental effects on many different organ systems. Using cultured myoblast cells, we examined ammonia's effect on myostatin expression, a negative regulator of skeletal muscle growth, and myotube diameters. The objective of this study was to examine how murine, avian, and fish cells respond to increasing levels of ammonia up to 50 mM. The murine myoblast cell line (C2C12), primary chick, and primary tilapia myoblast cells were cultured and then exposed to 10, 25, and 50 mM ammonium acetate, sodium acetate, and an untreated control for 24 h. High levels of ammonia were detrimental to the C2C12 cells, causing increased Myostatin (MSTN) expression and decreased myotube diameters between 10 and 25 mM (p < 0.002). Ammonia at 10 mM continued the positive myogenic response in the chick, with lower MSTN expression than the C2C12 cells and larger myotube diameters, but the myotube diameter at 50 mM ammonium acetate was significantly smaller than those at 10 and 25 mM (p < 0.001). However, chick myotubes at 50 mM were still significantly larger than the sodium acetate-treated and untreated control (p < 0.001). The tilapia cells showed no significant difference in MSTN expression or myotube diameter in response to increasing the concentrations of ammonia. Overall, these results confirm that increasing concentrations of ammonia are detrimental to mammalian skeletal muscle, while chick cells responded positively at lower levels but began to exhibit a negative response at higher levels, as the tilapia experienced no detrimental effects. The differences in ammonia metabolism strategies between fish, avian, and mammalian species could potentially contribute to the differences between species in response to high levels of ammonia. Understanding how ammonia affects skeletal muscle is important for the treatment of muscle wasting observed in liver failure patients.
Collapse
Affiliation(s)
- Emily Miramontes
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (E.M.); (J.P.)
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland;
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, Masaryk University, Obilni trh 526/11, 602 00 Brno, Czech Republic
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Jurija Gagarina 7, 87-100 Torun, Poland;
| | - James Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (E.M.); (J.P.)
| | - Srinivasan Dasarathy
- Departments of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Jurija Gagarina 7, 87-100 Torun, Poland;
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Jurija Gagarina 7, 87-100 Torun, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (E.M.); (J.P.)
- Correspondence:
| |
Collapse
|
7
|
Skeletal Muscle and the Effects of Ammonia Toxicity in Fish, Mammalian, and Avian Species: A Comparative Review Based on Molecular Research. Int J Mol Sci 2020; 21:ijms21134641. [PMID: 32629824 PMCID: PMC7370143 DOI: 10.3390/ijms21134641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/22/2022] Open
Abstract
Typically, mammalian and avian models have been used to examine the effects of ammonia on skeletal muscle. Hyperammonemia causes sarcopenia or muscle wasting, in mammals and has been linked to sarcopenia in liver disease patients. Avian models of skeletal muscle have responded positively to hyperammonemia, differing from the mammalian response. Fish skeletal muscle has not been examined as extensively as mammalian and avian muscle. Fish skeletal muscle shares similarities with avian and mammalian muscle but has notable differences in growth, fiber distribution, and response to the environment. The wide array of body sizes and locomotion needs of fish also leads to greater diversity in muscle fiber distribution and growth between different fish species. The response of fish muscle to high levels of ammonia is important for aquaculture and quality food production but has not been extensively studied to date. Understanding the differences between fish, mammalian and avian species’ myogenic response to hyperammonemia could lead to new therapies for muscle wasting due to a greater understanding of the mechanisms behind skeletal muscle regulation and how ammonia effects these mechanisms. This paper provides an overview of fish skeletal muscle and ammonia excretion and toxicity in fish, as well as a comparison to avian and mammalian species.
Collapse
|
8
|
Hao M, Zuo Q, Zhang W, Feng Y, Wang L, Yu L, Zhang X, Li J, Huang Z. Toxicological Assessment of Ammonia Exposure on Carassius auratus red var. Living in Landscape Waters. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:814-821. [PMID: 31606772 DOI: 10.1007/s00128-019-02728-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
To understand the toxic mechanism of ammonia and identify effective biomarkers on the oxidative stress for the fish Carassius auratus red var., acute and chronic toxicity tests were conducted. The 96-h LC50 of total ammonia nitrogen (TAN) for C. auratus was 135.4 mg L-1, the corresponding unionized ammonia (NH3) concentration was 1.5 mg L-1. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione-peroxidase (GSH-Px) and glutathione (GSH) showed an increase with a subsequent falling, while the malondialdehyde (MDA) increased during the chronic test. The SOD, MDA, and GSH could be effective biomarkers to evaluate the TAN oxidative stress, the maximum acceptable toxicant concentration (MATC) was 11.3 mg L-1 for TAN. To our knowledge, this is the first study to propose biomarkers to evaluate potential environmental risk and establish a risk threshold for TAN in C. auratus.
Collapse
Affiliation(s)
- Minghui Hao
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Qiting Zuo
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China
- Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou, 450001, China
| | - Wei Zhang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China
- Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou, 450001, China
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, Henan, 467036, China
| | - Yakun Feng
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Li Wang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Luji Yu
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Xu Zhang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Jing Li
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Zehan Huang
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| |
Collapse
|
9
|
Birk MA, Dymowska AK, Seibel BA. Do squid breathe through their skin? ACTA ACUST UNITED AC 2018; 221:jeb.185553. [PMID: 30111556 DOI: 10.1242/jeb.185553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2018] [Indexed: 01/13/2023]
Abstract
Squid are thought to obtain a large portion of their oxygen via simple diffusion across the skin in addition to uptake at the gills. Although this hypothesis has support from indirect evidence and is widely accepted, no empirical examinations have been conducted to assess the validity of this hypothesis. In this study, we examined cutaneous respiration in two squid species, Doryteuthis pealeii and Lolliguncula brevis, using a divided chamber to physically separate the mantle cavity and gills from the outer mantle surface. We measured oxygen consumption and ammonia excretion rates in the two compartments and found that, at rest, squid only obtain enough oxygen cutaneously to meet the demand of the skin tissue locally (12% of total) and excrete little ammonia across the skin. The majority of oxygen is obtained via the traditional branchial pathway. In light of these findings, we re-examine and discuss the indirect evidence that has supported the cutaneous respiration hypothesis.
Collapse
Affiliation(s)
- Matthew A Birk
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | - Agnieszka K Dymowska
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | - Brad A Seibel
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| |
Collapse
|