1
|
Ovesna J, Chrpova J, Kolarikova L, Svoboda P, Hanzalova A, Palicova J, Holubec V. Exploring Wild Hordeum spontaneum and Hordeum marinum Accessions as Genetic Resources for Fungal Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3258. [PMID: 37765425 PMCID: PMC10534467 DOI: 10.3390/plants12183258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Crop Wild Relatives (CWRs), as potential sources of new genetic variants, are being extensively studied to identify genotypes that will be able to confer resistance to biotic stresses. In this study, a collection of barley wild relatives was assessed in the field, and their phenotypic variability was evaluated using a Barley Description List, reflecting the identified ecosites. Overall, the CWRs showed significant field resistance to various fungal diseases. To further investigate their resistance, greenhouse tests were performed, revealing that several CWRs exhibited resistance against Fusarium culmorum, Pyrenophora teres, and Puccinia hordei G.H. Otth. Additionally, to characterize the genetic diversity within the collection, DNA polymorphisms at 21 loci were examined. We successfully employed barley-specific SSR markers, confirming their suitability for identifying H. spontaneum and even H. marinum, i.e., perennial species. The SSR markers efficiently clustered the investigated collection according to species and ecotypes, similarly to the phenotypic assessment. Moreover, SSR markers associated with disease resistance revealed different alleles in comparison to those found in resistant barley cultivars. Overall, our findings highlight that this evaluated collection of CWRs represents a valuable reservoir of genetic variability and resistance genes that can be effectively utilized in breeding programs.
Collapse
Affiliation(s)
- Jaroslava Ovesna
- Crop Research Institute, 161 06 Prague, Czech Republic; (L.K.); (P.S.); (A.H.)
| | - Jana Chrpova
- Crop Research Institute, 161 06 Prague, Czech Republic; (L.K.); (P.S.); (A.H.)
| | | | | | | | | | - Vojtech Holubec
- Crop Research Institute, 161 06 Prague, Czech Republic; (L.K.); (P.S.); (A.H.)
| |
Collapse
|
2
|
Alqudah AM, Sallam A, Stephen Baenziger P, Börner A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley - A review. J Adv Res 2020; 22:119-135. [PMID: 31956447 PMCID: PMC6961222 DOI: 10.1016/j.jare.2019.10.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022] Open
Abstract
Understanding the genetic complexity of traits is an important objective of small grain temperate cereals yield and adaptation improvements. Bi-parental quantitative trait loci (QTL) linkage mapping is a powerful method to identify genetic regions that co-segregate in the trait of interest within the research population. However, recently, association or linkage disequilibrium (LD) mapping using a genome-wide association study (GWAS) became an approach for unraveling the molecular genetic basis underlying the natural phenotypic variation. Many causative allele(s)/loci have been identified using the power of this approach which had not been detected in QTL mapping populations. In barley (Hordeum vulgare L.), GWAS has been successfully applied to define the causative allele(s)/loci which can be used in the breeding crop for adaptation and yield improvement. This promising approach represents a tremendous step forward in genetic analysis and undoubtedly proved it is a valuable tool in the identification of candidate genes. In this review, we describe the recently used approach for genetic analyses (linkage mapping or association mapping), and then provide the basic genetic and statistical concepts of GWAS, and subsequently highlight the genetic discoveries using GWAS. The review explained how the candidate gene(s) can be detected using state-of-art bioinformatic tools.
Collapse
Affiliation(s)
- Ahmad M. Alqudah
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, 71526- Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 68583-Lincoln, NE, USA
| | - Andreas Börner
- Resources Genetics and Reproduction, Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| |
Collapse
|
3
|
Wang W, He J, Chen S, Peng P, Zhong W, Wang X, Zhang T, Li Y. Construction of a high-density genetic map and fine mapping of a candidate gene locus for a novel branched-spike mutant in barley. PLoS One 2020; 15:e0227617. [PMID: 31914168 PMCID: PMC6948822 DOI: 10.1371/journal.pone.0227617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022] Open
Abstract
A Yunnan branched-spike (Ynbs) barley mutant is useful for study of the genetic mechanisms underlying variation in barley spike architecture. In the current study, a mutant (Ynbs-1), a recombinant inbred line (RIL-1), and a cultivar (BDM-8) were used as parents to develop populations. Ynbs-1 exhibits typical branched spike, whereas the others exhibit six-row spike. Genetic analysis on their F1, F2 and F3 populations showed that one recessive gene is responsible for the branched spike trait. SLAF marker generated from specific locus amplified fragment sequencing (SLAF-seq) was used to genotype the populations. A high-density genetic map of barley was constructed using 14,348 SLAF markers, which covered all 7 chromosomes at 1,347.44 cM in length with an average marker density of 0.09 cM between adjacent markers. Linkage analysis of the branched-spike trait using the genetic map indicated that branched spike trait in the Ynbs-1 is controlled by single locus on chromosome 2H at the interval between 65.00 and 65.47 cM that is flanked by Marker310119 and Marker2679451. Several candidate genes that may be responsible for barley multiple-spikelet degeneration, single-floret spikelet increase and seed set rate decrease were identified in the region. The high-density genetic map and the gene locus revealed in this study provide valuable information for elucidating the genetic mechanism of spike branching in barley.
Collapse
Affiliation(s)
- Weibin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junyu He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shengwei Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- * E-mail:
| | - Peng Peng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei Zhong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xintian Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tingting Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Mapping dynamic QTL dissects the genetic architecture of grain size and grain filling rate at different grain-filling stages in barley. Sci Rep 2019; 9:18823. [PMID: 31827117 PMCID: PMC6906516 DOI: 10.1038/s41598-019-53620-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Grain filling is an important growth process in formation of yield and quality for barley final yield determination. To explore the grain development behavior during grain filling period in barley, a high-density genetic map with 1962 markers deriving from a doubled haploid (DH) population of 122 lines was used to identify dynamic quantitative trait locus (QTL) for grain filling rate (GFR) and five grain size traits: grain area (GA), grain perimeter (GP), grain length (GL), grain width (GW) and grain diameter (GD). Unconditional QTL mapping is to detect the cumulative effect of genetic factors on a phenotype from development to a certain stage. Conditional QTL mapping is to detect a net effect of genetic factors on the phenotype at adjacent time intervals. Using unconditional, conditional and covariate QTL mapping methods, we successfully detected 34 major consensus QTLs. Moreover, certain candidate genes related to grain size, plant height, yield, and starch synthesis were identified in six QTL clusters, and individual gene was specifically expressed in different grain filling stages. These findings provide useful information for understanding the genetic basis of the grain filling dynamic process and will be useful for molecular marker-assisted selection in barley breeding.
Collapse
|
5
|
Herzig P, Backhaus A, Seiffert U, von Wirén N, Pillen K, Maurer A. Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:151-164. [PMID: 31203880 DOI: 10.1016/j.plantsci.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 05/05/2023]
Abstract
Enhancing the accumulation of essential mineral elements in cereal grains is of prime importance for combating human malnutrition. Biofortification by breeding holds great potential for improving nutrient accumulation in grains. However, conventional breeding approaches require element analysis of many grain samples, which causes high costs. Here we applied hyperspectral imaging to estimate the concentration of 15 grain elements (C, B, Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, N, Na, P, S, Zn) in high-throughput in the wild barley nested association mapping (NAM) population HEB-25, comprising 1,420 BC1S3 lines derived from crossing 25 wild barley accessions with the cultivar 'Barke'. Nutrient concentrations varied largely with a multitude of lines having higher micronutrient concentration than 'Barke'. In a genome-wide association study (GWAS), we located 75 quantitative trait locus (QTL) hotspots, whereof many could be explained by major genes such as NO APICAL MERISTEM-1 (NAM-1) and PHOTOPERIOD 1 (Ppd-H1). The GWAS approach revealed exotic alleles that were able to increase grain element concentrations. Remarkably, a QTL linked to GIBBERELLIN 20 OXIDASE 2 (HvGA20ox2) significantly increased several grain elements without yield loss. We conclude that introgressing promising exotic alleles into elite breeding material can assist in improving the nutritional value of barley grains.
Collapse
Affiliation(s)
- Paul Herzig
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106 Magdeburg, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
6
|
Wang Q, Sun G, Ren X, Du B, Cheng Y, Wang Y, Li C, Sun D. Dissecting the Genetic Basis of Grain Size and Weight in Barley ( Hordeum vulgare L.) by QTL and Comparative Genetic Analyses. FRONTIERS IN PLANT SCIENCE 2019; 10:469. [PMID: 31105718 PMCID: PMC6491919 DOI: 10.3389/fpls.2019.00469] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/28/2019] [Indexed: 05/23/2023]
Abstract
Grain size and weight are crucial components of barley yield and quality and are the target characteristics of domestication and modern breeding. Despite this, little is known about the genetic and molecular mechanisms of grain size and weight in barley. Here, we evaluated nine traits determining grain size and weight, including thousand grain weight (Tgw), grain length (Gl), grain width (Gw), grain length-width ratio (Lwr), grain area (Ga), grain perimeter (Gp), grain diameter (Gd), grain roundness (Gr), and factor form density (Ffd), in a double haploid (DH) population for three consecutive years. Using five mapping methods, we successfully identified 60 reliable QTLs and 27 hotspot regions that distributed on all chromosomes except 6H which controls the nine traits of grain size and weight. Moreover, we also identified 164 barley orthologs of 112 grain size/weight genes from rice, maize, wheat and 38 barley genes that affect grain yield. A total of 45 barley genes or orthologs were identified as potential candidate genes for barley grain size and weight, including 12, 20, 9, and 4 genes or orthologs for barley, rice, maize, and wheat, respectively. Importantly, 20 of them were located in the 14 QTL hotspot regions on chromosome 1H, 2H, 3H, 5H, and 7H, which controls barley grain size and weight. These results indicated that grain size/weight genes of other cereal species might have the same or similar functions in barley. Our findings provide new insights into the understanding of the genetic basis of grain size and weight in barley, and new information to facilitate high-yield breeding in barley. The function of these potential candidate genes identified in this study are worth exploring and studying in detail.
Collapse
Affiliation(s)
- Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Genlou Sun
- Department of Biology, Saint Mary’s University, Halifax, NS, Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yun Cheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yixiang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengdao Li
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Du B, Liu L, Wang Q, Sun G, Ren X, Li C, Sun D. Identification of QTL underlying the leaf length and area of different leaves in barley. Sci Rep 2019. [PMID: 30872632 DOI: 10.1038/s41598-019-40703-40706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Leaf is the main organ of photosynthesis, which significantly impacts crop yield. A high-density linkage map containing 1894 single nucleotide polymorphism (SNP) and 68 simple sequence repeats (SSR) markers was used to identify quantitative trait locus (QTL) for flag leaf length (FLL), second leaf length (SLL), third leaf length (TLL), fourth leaf length (FOLL), flag leaf area (FLA), second leaf area (SLA), third leaf area (TLA) and fourth leaf area (FOLA). In total, 57 QTLs underlying the top four leaf length and area traits were identified and mapped on chromosome 2H, 3H, 4H and 7H. Individual QTL accounted for 5.17% to 37.11% of the phenotypic variation in 2015 and 2016. A major stable QTL qFLL2-2 close to the marker 2HL_25536047 was identified on the long arm of chromosome 2H. The most important QTL clustered region at M_256210_824 - 2HL_23335246 on chromosome 2H was associated with FLL, SLL, FLA and SLA and explained high phenotypic variation. These findings provide genetic basis for improving the leaf morphology of barley. In addition, our results suggested that the top four leaves were significantly positively correlated with plant height and some yield-related traits.
Collapse
Affiliation(s)
- Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lipan Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengdao Li
- Department of Agriculture & Food/Agricultural Research Western Australia, 3 Baron-Hay Court, South Perth, WA, 6155, Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
8
|
Identification of QTL underlying the leaf length and area of different leaves in barley. Sci Rep 2019; 9:4431. [PMID: 30872632 PMCID: PMC6418291 DOI: 10.1038/s41598-019-40703-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/11/2019] [Indexed: 11/09/2022] Open
Abstract
Leaf is the main organ of photosynthesis, which significantly impacts crop yield. A high-density linkage map containing 1894 single nucleotide polymorphism (SNP) and 68 simple sequence repeats (SSR) markers was used to identify quantitative trait locus (QTL) for flag leaf length (FLL), second leaf length (SLL), third leaf length (TLL), fourth leaf length (FOLL), flag leaf area (FLA), second leaf area (SLA), third leaf area (TLA) and fourth leaf area (FOLA). In total, 57 QTLs underlying the top four leaf length and area traits were identified and mapped on chromosome 2H, 3H, 4H and 7H. Individual QTL accounted for 5.17% to 37.11% of the phenotypic variation in 2015 and 2016. A major stable QTL qFLL2-2 close to the marker 2HL_25536047 was identified on the long arm of chromosome 2H. The most important QTL clustered region at M_256210_824 - 2HL_23335246 on chromosome 2H was associated with FLL, SLL, FLA and SLA and explained high phenotypic variation. These findings provide genetic basis for improving the leaf morphology of barley. In addition, our results suggested that the top four leaves were significantly positively correlated with plant height and some yield-related traits.
Collapse
|
9
|
De la Fuente Cantó C, Russell J, Hackett CA, Booth A, Dancey S, George TS, Waugh R. Genetic dissection of quantitative and qualitative traits using a minimum set of barley Recombinant Chromosome Substitution Lines. BMC PLANT BIOLOGY 2018; 18:340. [PMID: 30526499 PMCID: PMC6286510 DOI: 10.1186/s12870-018-1527-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Exploring the natural occurring genetic variation of the wild barley genepool has become a major target of barley crop breeding programmes aiming to increase crop productivity and sustainability in global climate change scenarios. However this diversity remains unexploited and effective approaches are required to investigate the benefits that unadapted genomes could bring to crop improved resilience. In the present study, a set of Recombinant Chromosome Substitution Lines (RCSLs) derived from an elite barley cultivar 'Harrington' as the recurrent parent, and a wild barley accession from the Fertile Crescent 'Caesarea 26-24', as the donor parent (Matus et al. Genome 46:1010-23, 2003) have been utilised in field and controlled conditions to examine the contribution of wild barley genome as a source of novel allelic variation for the cultivated barley genepool. METHODS Twenty-eight RCSLs which were selected to represent the entire genome of the wild barley accession, were genotyped using the 9 K iSelect SNP markers (Comadran et al. Nat Genet 44:1388-92, 2012) and phenotyped for a range of morphological, developmental and agronomic traits in 2 years using a rain-out shelter with four replicates and three water treatments. Data were analysed for marker traits associations using a mixed model approach. RESULTS We identified lines that differ significantly from the elite parent for both qualitative and quantitative traits across growing seasons and water regimes. The detailed genotypic characterisation of the lines for over 1800 polymorphic SNP markers and the design of a mixed model analysis identified chromosomal regions associated with yield related traits where the wild barley allele had a positive response increasing grain weight and size. In addition, variation for qualitative characters, such as the presence of cuticle waxes on the developing spikes, was associated with the wild barley introgressions. Despite the coarse location of the QTLs, interesting candidate genes for the major marker-trait associations were identified using the recently released barley genome assembly. CONCLUSION This study has highlighted the role of exotic germplasm to contribute novel allelic variation by using an optimised experimental approach focused on an exotic genetic library. The results obtained constitute a step forward to the development of more tolerant and resilient varieties.
Collapse
Affiliation(s)
| | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | | | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - Siobhan Dancey
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | | | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| |
Collapse
|
10
|
Kochevenko A, Jiang Y, Seiler C, Surdonja K, Kollers S, Reif JC, Korzun V, Graner A. Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress. BMC PLANT BIOLOGY 2018; 18:106. [PMID: 29866039 PMCID: PMC5987402 DOI: 10.1186/s12870-018-1323-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare) is an important crop cultivated across the world. Drought is a major abiotic factor compromising barley yield worldwide, therefore in modern spring barley cultivars superior seed and malting quality characteristics should be combined with reasonable level of drought tolerance. Previously we have identified a number of barley lines demonstrating the superior yield performance under drought conditions. The aim of this work was to perform a QTL analysis of malting quality traits in a doubled haploid (DH) mapping population of two elite barley lines that differ in their reaction pattern to drought stress. RESULTS A population of DH lines was developed by crossing two drought-tolerant elite breeding lines, Victoriana and Sofiara, exploiting distinct mechanism of drought tolerance, sustaining assimilation vs remobilization. The mapping population was assayed under field conditions at four distinct locations that differed in precipitation rate. DH lines were genotyped with the Illumina 9 K iSelect assay, and linkage map including 1782 polymorphic markers and covering a total map length of 1140 cM was constructed. The result of quantitative trait loci (QTL) analysis showed that majority of the traits were affected by several main effect QTL and/or QTL x environment (QE) interactions. In total, 57, 41, and 5 QTL were associated with yield-related traits, malting quality traits and seed quality traits, respectively. 11 and 29 of mapped QTL explained more than 10 and 5% of phenotypic variation, respectively. In several chromosomal regions co-localization between QTL for various traits were observed. The largest clusters were detected on chromosomes 3H and 4H. CONCLUSIONS Our QTL mapping results revealed several novel consistent genomic regions controlling malting quality which could be exploited in marker assisted selection. In this context, the complex QTL region on chromosome 3H seems of particular interest, as it harbors several large effect QTL.
Collapse
Affiliation(s)
- Andriy Kochevenko
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Yong Jiang
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Christiane Seiler
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Korana Surdonja
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Sonja Kollers
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany
| | - Jochen Christoph Reif
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Viktor Korzun
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany
| | - Andreas Graner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
11
|
Magwanga RO, Lu P, Kirungu JN, Diouf L, Dong Q, Hu Y, Cai X, Xu Y, Hou Y, Zhou Z, Wang X, Wang K, Liu F. GBS Mapping and Analysis of Genes Conserved between Gossypium tomentosum and Gossypium hirsutum Cotton Cultivars that Respond to Drought Stress at the Seedling Stage of the BC₂F₂ Generation. Int J Mol Sci 2018; 19:E1614. [PMID: 29848989 PMCID: PMC6032168 DOI: 10.3390/ijms19061614] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
Cotton production is on the decline due to ever-changing environmental conditions. Drought and salinity stress contribute to over 30% of total loss in cotton production, the situation has worsened more due to the narrow genetic base of the cultivated upland cotton. The genetic diversity of upland cotton has been eroded over the years due to intense selection and inbreeding. To break the bottleneck, the wild cotton progenitors offer unique traits which can be introgressed into the cultivated cotton, thereby improving their performance. In this research, we developed a BC₂F₂ population between wild male parent, G. tomentosum as the donor, known for its high tolerance to drought and the elite female parent, G. hirsutum as the recurrent parent, which is high yielding but sensitive to drought stress. The population was genotyped through the genotyping by sequencing (GBS) method, in which 10,888 single-nucleotide polymorphism (SNP) s were generated and used to construct a genetic map. The map spanned 4191.3 cM, with average marker distance of 0.3849 cM. The map size of the two sub genomes had a narrow range, 2149 cM and 2042.3 cM for At and Dt_sub genomes respectively. A total of 66,434 genes were mined, with 32,032 (48.2%) and 34,402 (51.8%) genes being obtained within the At and Dt_sub genomes respectively. Pkinase (PF00069) was found to be the dominant domain, with 1069 genes. Analysis of the main sub family, serine threonine protein kinases through gene ontology (GO), cis element and miRNA targets analysis revealed that most of the genes were involved in various functions aimed at enhancing abiotic stress tolerance. Further analysis of the RNA sequence data and qRT-PCR validation revealed 16 putative genes, which were highly up regulated under drought stress condition, and were found to be targeted by ghr-miR169a and ghr-miR164, previously associated with NAC(NAM, ATAF1/2 and CUC2) and myeloblastosis (MYB), the top rank drought stress tolerance genes. These genes can be exploited further to aid in development of more drought tolerant cotton genotypes.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
- School of Biological and Physical Sciences (SBPS), Main Campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Main Campus, P.O. Box 210-40601 Bondo, Kenya.
| | - Pu Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Latyr Diouf
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Qi Dong
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yangguang Hu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
12
|
Xu Y, Wu Y, Wu J. Capturing pair-wise epistatic effects associated with three agronomic traits in barley. Genetica 2018; 146:161-170. [PMID: 29349538 DOI: 10.1007/s10709-018-0008-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/11/2018] [Indexed: 11/25/2022]
Abstract
Genetic association mapping has been widely applied to determine genetic markers favorably associated with a trait of interest and provide information for marker-assisted selection. Many association mapping studies commonly focus on main effects due to intolerable computing intensity. This study aims to select several sets of DNA markers with potential epistasis to maximize genetic variations of some key agronomic traits in barley. By doing so, we integrated a MDR (multifactor dimensionality reduction) method with a forward variable selection approach. This integrated approach was used to determine single nucleotide polymorphism pairs with epistasis effects associated with three agronomic traits: heading date, plant height, and grain yield in barley from the barley Coordinated Agricultural Project. Our results showed that four, seven, and five SNP pairs accounted for 51.06, 45.66 and 40.42% for heading date, plant height, and grain yield, respectively with epistasis being considered, while corresponding contributions to these three traits were 45.32, 31.39, 31.31%, respectively without epistasis being included. The results suggested that epistasis model was more effective than non-epistasis model in this study and can be more preferred for other applications.
Collapse
Affiliation(s)
- Yi Xu
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Box 2140C, Brookings, SD, 57007, USA
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Jixiang Wu
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Box 2140C, Brookings, SD, 57007, USA.
| |
Collapse
|
13
|
Wang Q, Sun G, Ren X, Wang J, Du B, Li C, Sun D. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition. BMC Genet 2017; 18:94. [PMID: 29115942 PMCID: PMC5678765 DOI: 10.1186/s12863-017-0562-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Seedling characteristics play significant roles in the growth and development of barley (Hordeum vulgare L.), including stable stand establishment, water and nutrients uptake, biotic resistance and abiotic stresses, and can influence yield and quality. However, the genetic mechanisms underlying seedling characteristics in barley are largely unknown and little research has been done. In the present work, 21 seedling-related characteristics are assessed in a barley double haploid (DH) population, grown under hydroponic conditions. Of them, leaf age (LAG), shoot height (SH), maximum root length (MRL), main root number (MRN) and seedling fresh weight (SFW) were investigated at the 13th, 20th, 27th, and 34th day after germination. The objectives were to identify quantitative trait loci (QTLs) underlying these seedling characteristics using a high-density linkage map and to reveal the QTL expression pattern by comparing the QTLs among four different seedling growth stages. RESULTS A total of 70 QTLs were distributed over all chromosomes except 4H, and, individually, accounted for 5.01%-77.78% of phenotypic variation. Out of the 70 detected QTLs, 23 showed a major effect on 14 seedling-related characteristics. Ten co-localized chromosomal regions on 2H (five regions), 3H (two regions) and 7H (three regions) involved 39 QTLs (55.71%), each simultaneously influenced more than one trait. Meanwhile, 9 co-localized genomic regions involving 22 QTLs for five seedling characteristics (LAG, SH, MRL, MRN and SFW) at the 13th, 20th, 27th and 34th day-old seedling were common for two or more growth stages of seedling. QTL in the vicinity of Vrs1 locus on chromosome 2H with the favorable alleles from Huadamai 6 was found to have the largest main effects on multiple seedling-related traits. CONCLUSIONS Six QTL cluster regions associated with 16 seedling-related characteristics were observed on chromosome 2H, 3H and 7H. The majority of the 29 regions identified for five seedling characteristics were selectively expressed at different developmental stages. The genetic effects of 9 consecutive expression regions displayed different developmental influences at different developmental stages. These findings enhanced our understanding of a genetic basis underlying seedling characteristics in barley. Some QTLs detected here could be used for marker-assisted selection (MAS) in barley breeding.
Collapse
Affiliation(s)
- Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Genlou Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Biology Department, Saint Mary’s University, 923 Robie Street, Halifax, NS B3H 3C3 Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jibin Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chengdao Li
- Department of Agriculture & Food/Agricultural Research Western Australia, 3 Baron-Hay Court, South Perth, WA 6155 Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, Hubei 434025 China
| |
Collapse
|
14
|
Alqudah AM, Schnurbusch T. Heading Date Is Not Flowering Time in Spring Barley. FRONTIERS IN PLANT SCIENCE 2017; 8:896. [PMID: 28611811 PMCID: PMC5447769 DOI: 10.3389/fpls.2017.00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/12/2017] [Indexed: 05/02/2023]
Affiliation(s)
- Ahmad M. Alqudah
- HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (LG)Seeland, Germany
| | | |
Collapse
|
15
|
Mikołajczak K, Kuczyńska A, Krajewski P, Sawikowska A, Surma M, Ogrodowicz P, Adamski T, Krystkowiak K, Górny AG, Kempa M, Szarejko I, Guzy-Wróbelska J, Gudyś K. Quantitative trait loci for plant height in Maresi × CamB barley population and their associations with yield-related traits under different water regimes. J Appl Genet 2016; 58:23-35. [PMID: 27447461 PMCID: PMC5243891 DOI: 10.1007/s13353-016-0358-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022]
Abstract
High-yielding capacity of the modern barley varieties is mostly dependent on the sources of semi-dwarfness associated with the sdw1/denso locus. The objective of the study was to identify quantitative trait loci (QTLs) associated with the plant height and yield potential of barley recombinant inbred lines (RILs) grown under various soil moisture regimes. The plant material was developed from a hybrid between the Maresi (European cv.) and CamB (Syrian cv.). A total of 103 QTLs affecting analysed traits were detected and 36 of them showed stable effects over environments. In total, ten QTLs were found to be significant only under water shortage conditions. Nine QTLs affecting the length of main stem were detected on 2H-6H chromosomes. In four of the detected QTLs, alleles contributed by Maresi had negative effects on that trait, the most significant being the QLSt-3H.1-1 in the 3H.1 linkage group. The close linkage between QTLs identified around the sdw1/denso locus, with positive alleles contributed by Maresi, indicates that the semi-dwarf cv. Maresi could serve as a donor of favourable traits resulting in grain yield improvement, also under water scarcity. Molecular analyses revealed that the Syrian cv. also contributed alleles which increased the yield potential. Available barley resources of genomic annotations were employed to the biological interpretation of detected QTLs. This approach revealed 26 over-represented Gene Ontology terms. In the projected support intervals of QGWSl-5H.3-2 and QLSt-5H.3 on the chromosome 5H, four genes annotated to 'response to stress' were found. It suggests that these QTL-regions may be involved in a response of plant to a wide range of environmental disturbances.
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Andrzej G Górny
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Kempa
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
16
|
Wang J, Sun G, Ren X, Li C, Liu L, Wang Q, Du B, Sun D. QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genet 2016; 17:103. [PMID: 27388211 PMCID: PMC4936321 DOI: 10.1186/s12863-016-0409-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022] Open
Abstract
Background Increasing the yield of barley (Hordeum vulgare L.) is a main breeding goal in developing barley cultivars. A high density genetic linkage map containing 1894 SNP and 68 SSR markers covering 1375.8 cM was constructed and used for mapping quantitative traits. A late-generation double haploid population (DH) derived from the Huaai 11 × Huadamai 6 cross was used to identify QTLs and QTL × environment interactions for ten traits affecting grain yield including length of main spike (MSL), spikelet number on main spike (SMS), spikelet number per plant (SLP), grain number per plant (GP), grain weight per plant (GWP), grain number per spike (GS), thousand grain weight (TGW), grain weight per spike (GWS), spike density (SPD) and spike number per plant (SP). Results In single environment analysis using composite interval mapping (CIM), a total of 221 QTLs underlying the ten traits were detected in five consecutive years (2009–2013). The QTLs detected in each year were 50, 48, 41, 41 and 41 for the year 2009 to 2013. The QTLs associated with these traits were generally clustered on chromosome 2H, 4H and 7H. In multi-environment analysis, a total of 111 significant QTLs including 18 for MSL, 16 for SMS, 15 for SPD, 5 for SP, 4 for SLP, 14 for TGW, 5 for GP, 11 for GS, 8 for GWP, and 15 for GWS were detected in the five years. Most QTLs showed significant QTL × environment interactions (QEI), nine QTLs (qIMSL3-1, qIMSL4-1, qIMSL4-2, qIMSL6-1, qISMS7-1, qISPD2-7, qISPD7-1, qITGW3-1 and qIGWS4-3) were detected with minimal QEI effects and stable in different years. Among 111 QTLs,71 (63.40 %) QTLs were detected in both single and multiple environments. Conclusions Three main QTL cluster regions associated with the 10 agronomic traits on chromosome 2H, 4H and 7H were detected. The QTLs for SMS, SLP, GP and GWP were located in the region near Vrs1 on chromosome 2H. The QTLs underlying SMS, SPD and SLP were clustered on chromosome 4H. On the terminal of chromosome 7H, there was a QTL cluster associated with TGW, SPD, GWP and GWS. The information will be useful for marker-assisted selection (MAS) in barley breeding. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0409-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jibin Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengdao Li
- Department of Agriculture & Food/Agricultural Research Western Australia, 3 Baron-Hay Court, South Perth, WA, 6155, Australia
| | - Lipan Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qifei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
17
|
Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY, Morrell PL, Blake TK, Horsley RD, Smith KP, Muehlbauer GJ. Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley. Genetics 2016; 203:1453-67. [PMID: 27182953 PMCID: PMC4937491 DOI: 10.1534/genetics.116.190736] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 12/29/2022] Open
Abstract
The ability to access alleles from unadapted germplasm collections is a long-standing problem for geneticists and breeders. Here we developed, characterized, and demonstrated the utility of a wild barley advanced backcross-nested association mapping (AB-NAM) population. We developed this population by backcrossing 25 wild barley accessions to the six-rowed malting barley cultivar Rasmusson. The 25 wild barley parents were selected from the 318 accession Wild Barley Diversity Collection (WBDC) to maximize allelic diversity. The resulting 796 BC2F4:6 lines were genotyped with 384 SNP markers, and an additional 4022 SNPs and 263,531 sequence variants were imputed onto the population using 9K iSelect SNP genotypes and exome capture sequence of the parents, respectively. On average, 96% of each wild parent was introgressed into the Rasmusson background, and the population exhibited low population structure. While linkage disequilibrium (LD) decay (r(2) = 0.2) was lowest in the WBDC (0.36 cM), the AB-NAM (9.2 cM) exhibited more rapid LD decay than comparable advanced backcross (28.6 cM) and recombinant inbred line (32.3 cM) populations. Three qualitative traits: glossy spike, glossy sheath, and black hull color were mapped with high resolution to loci corresponding to known barley mutants for these traits. Additionally, a total of 10 QTL were identified for grain protein content. The combination of low LD, negligible population structure, and high diversity in an adapted background make the AB-NAM an important tool for high-resolution gene mapping and discovery of novel allelic variation using wild barley germplasm.
Collapse
Affiliation(s)
- Liana M Nice
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Gina L Brown-Guedira
- United States Department of Agriculture-Agricultural Research Service, North Carolina State University, Raleigh, North Carolina 27607
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Thomas J Y Kono
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Thomas K Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
18
|
Mikołajczak K, Ogrodowicz P, Gudyś K, Krystkowiak K, Sawikowska A, Frohmberg W, Górny A, Kędziora A, Jankowiak J, Józefczyk D, Karg G, Andrusiak J, Krajewski P, Szarejko I, Surma M, Adamski T, Guzy-Wróbelska J, Kuczyńska A. Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars. PLoS One 2016; 11:e0155938. [PMID: 27227880 PMCID: PMC4881963 DOI: 10.1371/journal.pone.0155938] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
In response to climatic changes, breeding programmes should be aimed at creating new cultivars with improved resistance to water scarcity. The objective of this study was to examine the yield potential of barley recombinant inbred lines (RILs) derived from three cross-combinations of European and Syrian spring cultivars, and to identify quantitative trait loci (QTLs) for yield-related traits in these populations. RILs were evaluated in field experiments over a period of three years (2011 to 2013) and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers; a genetic map for each population was constructed and then one consensus map was developed. Biological interpretation of identified QTLs was achieved by reference to Ensembl Plants barley gene space. Twelve regions in the genomes of studied RILs were distinguished after QTL analysis. Most of the QTLs were identified on the 2H chromosome, which was the hotspot region in all three populations. Syrian parental cultivars contributed alleles decreasing traits' values at majority of QTLs for grain weight, grain number, spike length and time to heading, and numerous alleles increasing stem length. The phenomic and molecular approaches distinguished the lines with an acceptable grain yield potential combining desirable features or alleles from their parents, that is, early heading from the Syrian breeding line (Cam/B1/CI08887//CI05761) and short plant stature from the European semidwarf cultivar (Maresi).
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Piotr Ogrodowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Kornelia Gudyś
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40–032 Katowice, Poland
| | - Karolina Krystkowiak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Aneta Sawikowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Wojciech Frohmberg
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Andrzej Górny
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Andrzej Kędziora
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Janusz Jankowiak
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Damian Józefczyk
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Grzegorz Karg
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Joanna Andrusiak
- Institute for Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60–809 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40–032 Katowice, Poland
| | - Maria Surma
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Tadeusz Adamski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
| | - Justyna Guzy-Wróbelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40–032 Katowice, Poland
- * E-mail: (AK); (JGW)
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60–479 Poznań, Poland
- * E-mail: (AK); (JGW)
| |
Collapse
|
19
|
Liu L, Sun G, Ren X, Li C, Sun D. Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genet 2015; 16:29. [PMID: 25887313 PMCID: PMC4373040 DOI: 10.1186/s12863-015-0187-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Physiological and morphological traits of flag leaf play important roles in determining crop grain yield and biomass. In order to understand genetic basis controlling physiological and morphological traits of flag leaf, a double haploid (DH) population derived from the cross of Huaai 11 × Huadamai 6 was used to detect quantitative trait locus (QTL) underlying 7 physiological and 3 morphological traits at the pre-filling stage in year 2012 and 2013. RESULTS Total of 38 QTLs distributed on chromosome 1H, 2H, 3H, 4H, 6H and 7H were detected, and explained 6.53% - 31.29% phenotypic variation. The QTLs flanked by marker Bmag829 and GBM1218 on chromosome 2H were associated with net photosynthetic rate (Pn), stomatal conductance (Gs), flag leaf area (LA), flag leaf length (FLL), flag leaf width (FLW), relative chlorophyll content (SPD) and leaf nitrogen concentration (LNC). CONCLUSION Two QTL cluster regions associated with physiological and morphological traits, one each on the chromosome 2H and 7H, were observed. The two markers (Bmag829 and GBM1218) may be useful for marker assisted selection (MAS) in barley breeding.
Collapse
Affiliation(s)
- Lipan Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Genlou Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Biology Department, Saint Mary's University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada.
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chengdao Li
- Department of Agriculture and Food/Agricultural Research Western Australia, 3 Baron-Hay Court, South Perth, WA, 6155, Australia.
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Collaborative Innovation Center for Grain Industry, Wuhan, 430070, China.
| |
Collapse
|
20
|
Naz AA, Arifuzzaman M, Muzammil S, Pillen K, Léon J. Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genet 2014; 15:107. [PMID: 25286820 PMCID: PMC4200126 DOI: 10.1186/s12863-014-0107-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/25/2014] [Indexed: 11/17/2022] Open
Abstract
Background Root is the prime organ that sucks water and nutrients from deep layer of soil. Wild barley diversity exhibits remarkable variation in root system architecture that seems crucial in its adaptation to abiotic stresses like drought. In the present study, we performed quantitative trait locus (QTL) mapping of root and related shoot traits under control and drought conditions using a population of wild barley introgression lines (ILs). This population (S42IL) comprising of genome-wide introgressions of wild barley accession ISR42-8 in the cultivar Scarlett background. Here, we aimed to detect novel QTL alleles for improved root and related shoot features and to introduce them in modern cultivars. Results The cultivar Scarlett and wild barley accession ISR42-8 revealed significant variation of root and related shoot traits. ISR42-8 showed a higher performance in root system attributes like root dry weight (RDW), root volume (RV), root length (RL) and tiller number per plant (TIL) than Scarlett. Whereas, Scarlett exhibited erect type growth habit (GH) as compared to spreading growth habit in ISR42-8. The S42IL population revealed significant and wide range of variation for the investigated traits. Strong positive correlations were found among the root related traits whereas GH revealed negative correlation with root and shoot traits. The trait-wise comparison of phenotypic data with the ILs genetic map revealed six, eight, five, five and four QTL for RL, RDW, RV, TIL and GH, respectively. These QTL were linked to one or several traits simultaneously and localized to 15 regions across all chromosomes. Among these, beneficial QTL alleles of wild origin for RL, RDW, RV, TIL and GH, have been fixed in the cultivar Scarlett background. Conclusions The present study revealed 15 chromosomal regions where the exotic QTL alleles showed improvement for root and related shoot traits. These data suggest that wild barley accession ISR42-8 bears alleles different from those of Scarlett. Hence, the utility of genome-wide wild barley introgression lines is desirable to test the performance of individual exotic alleles in the elite gene pool as well as to transfer them in the cultivated germplasm.
Collapse
Affiliation(s)
- Ali Ahmad Naz
- Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany.
| | - Md Arifuzzaman
- Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany.
| | - Shumaila Muzammil
- Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany.
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, Halle, 06120, Germany.
| | - Jens Léon
- Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, University of Bonn, Katzenburgweg 5, Bonn, 53115, Germany.
| |
Collapse
|
21
|
Kuczyńska A, Mikołajczak K, Ćwiek H. Pleiotropic effects of the sdw1 locus in barley populations representing different rounds of recombination. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
22
|
Matthies IE, Weise S, Förster J, Korzun V, Stein N, Röder MS. Nitrogen-metabolism related genes in barley - haplotype diversity, linkage mapping and associations with malting and kernel quality parameters. BMC Genet 2013; 14:77. [PMID: 24007272 PMCID: PMC3766251 DOI: 10.1186/1471-2156-14-77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 08/29/2013] [Indexed: 02/01/2023] Open
Abstract
Background Several studies report about intra-specific trait variation of nitrogen-metabolism related traits, such as N(itrogen)-use efficiency, protein content, N-storage and remobilization in barley and related grass species. The goal of this study was to assess the intra-specific genetic diversity present in primary N-metabolism genes of barley and to investigate the associations of the detected haplotype diversity with malting and kernel quality related traits. Results Partial sequences of five genes related to N-metabolism in barley (Hordeum vulgare L.) were obtained, i.e. nitrate reductase 1, glutamine synthetase 2, ferredoxin-dependent glutamate synthase, aspartate aminotransferase and asparaginase. Two to five haplotypes in each gene were discovered in a set of 190 various varieties. The development of 33 SNP markers allowed the genotyping of all these barley varieties consisting of spring and winter types. Furthermore, these markers could be mapped in several doubled haploid populations. Cluster analysis based on haplotypes revealed a more uniform pattern of the spring barleys as compared to the winter barleys. Based on linear model approaches associations to several malting and kernel quality traits including soluble N and protein were identified. Conclusions A study was conducted to investigate the presence of sequence variation of several genes related to the primary N-metabolism in barley. The detected diversity could be related to particular phenotypic traits. Specific differences between spring and winter barleys most likely reflect different breeding aims. The developed markers can be used as tool for further genetic studies and marker-assisted selection during breeding of barley.
Collapse
Affiliation(s)
- Inge E Matthies
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr, 3, 06466, Stadt Seeland, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Xia Y, Li R, Ning Z, Bai G, Siddique KHM, Yan G, Baum M, Varshney RK, Guo P. Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley. PLoS One 2013; 8:e56816. [PMID: 23418603 PMCID: PMC3572059 DOI: 10.1371/journal.pone.0056816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Small heat shock protein 17.8 (HSP17.8) is produced abundantly in plant cells under heat and other stress conditions and may play an important role in plant tolerance to stress environments. However, HSP17.8 may be differentially expressed in different accessions of a crop species exposed to identical stress conditions. The ability of different genotypes to adapt to various stress conditions resides in their genetic diversity. Allelic variations are the most common forms of genetic variation in natural populations. In this study, single nucleotide polymorphisms (SNPs) of the HSP17.8 gene were investigated across 210 barley accessions collected from 30 countries using EcoTILLING technology. Eleven SNPs including 10 from the coding region of HSP17.8 were detected, which form nine distinguishable haplotypes in the barley collection. Among the 10 SNPs in the coding region, six are missense mutations and four are synonymous nucleotide changes. Five of the six missense changes are predicted to be deleterious to HSP17.8 function. The accessions from Middle East Asia showed the higher nucleotide diversity of HSP17.8 than those from other regions and wild barley (H. spontaneum) accessions exhibited greater diversity than the cultivated barley (H. vulgare) accessions. Four SNPs in HSP17.8 were found associated with at least one of the agronomic traits evaluated except for spike length, namely number of grains per spike, thousand kernel weight, plant height, flag leaf area and leaf color. The association between SNP and these agronomic traits may provide new insight for study of the gene's potential contribution to drought tolerance of barley.
Collapse
Affiliation(s)
- Yanshi Xia
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
- College of Light Industry and Food Science, South China University of Technology, Guangzhou, China
| | - Ronghua Li
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhengxiang Ning
- College of Light Industry and Food Science, South China University of Technology, Guangzhou, China
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service, Manhattan, Kansas, United States of America
| | - Kadambot H. M. Siddique
- The Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Guijun Yan
- The Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Michael Baum
- International Center for Agricultural Research in the Dry Areas, Aleppo, Syria
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Greater Hyderabad, India
| | - Peiguo Guo
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
24
|
Jia Q, Zhang XQ, Westcott S, Broughton S, Cakir M, Yang J, Lance R, Li C. Expression level of a gibberellin 20-oxidase gene is associated with multiple agronomic and quality traits in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1451-60. [PMID: 21318371 DOI: 10.1007/s00122-011-1544-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/21/2011] [Indexed: 05/07/2023]
Abstract
The use of dwarfing genes has resulted in the most significant improvements in yield and adaptation in cereal crops. The allelic dwarfing gene sdw1/denso has been used throughout the world to develop commercial barley varieties. The sdw1 gene has never been used successfully for malting barley, but only for a large number of feed varieties. One of the gibberellin 20-oxidase genes (Hv20ox₂) was identified as the candidate gene for sdw1/denso. Semi-quantitative real-time RT-PCR revealed that Hv20ox₂ was expressed at different levels in various organs of barley. Transcriptional levels were reduced in leaf blade, sheath, stem and rachis tissue in the barley variety Baudin with the denso gene. Subsequently, the relative expression levels of Hv20ox₂ were determined by quantitative real-time RT-PCR in a doubled haploid population and mapped as a quantitative trait. A single expression quantitative trait locus (eQTL) was identified and mapped to its structural gene region on chromosome 3H. The eQTL was co-located with QTLs for yield, height, development score, hectolitre weight and grain plumpness. The expression level of Hv20ox₂ was reduced fourfold in the denso mutant, but around 60-fold in the sdw1 mutant, compared to the control variety. The reduced expression level of Hv20ox₂ enhanced grain yield by increasing the number of effective tillers, but had negative effects on grain and malting quality. The sdw1 gene can be used only in feed barley due to its severe reduction of Hv20ox₂ expression. The gene expression marker for Hv20ox₂ can be used to distinguish different alleles of sdw1/denso.
Collapse
Affiliation(s)
- Qiaojun Jia
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Worch S, Rajesh K, Harshavardhan VT, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder MS, Sreenivasulu N. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC PLANT BIOLOGY 2011; 11:1. [PMID: 21205309 PMCID: PMC3025944 DOI: 10.1186/1471-2229-11-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 01/04/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND The increasingly narrow genetic background characteristic of modern crop germplasm presents a challenge for the breeding of cultivars that require adaptation to the anticipated change in climate. Thus, high priority research aims at the identification of relevant allelic variation present both in the crop itself as well as in its progenitors. This study is based on the characterization of genetic variation in barley, with a view to enhancing its response to terminal drought stress. RESULTS The expression patterns of drought regulated genes were monitored during plant ontogeny, mapped and the location of these genes was incorporated into a comprehensive barley SNP linkage map. Haplotypes within a set of 17 starch biosynthesis/degradation genes were defined, and a particularly high level of haplotype variation was uncovered in the genes encoding sucrose synthase (types I and II) and starch synthase. The ability of a panel of 50 barley accessions to maintain grain starch content under terminal drought conditions was explored. CONCLUSION The linkage/expression map is an informative resource in the context of characterizing the response of barley to drought stress. The high level of haplotype variation among starch biosynthesis/degradation genes in the progenitors of cultivated barley shows that domestication and breeding have greatly eroded their allelic diversity in current elite cultivars. Prospective association analysis based on core drought-regulated genes may simplify the process of identifying favourable alleles, and help to understand the genetic basis of the response to terminal drought.
Collapse
Affiliation(s)
- Sebastian Worch
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Kalladan Rajesh
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Vokkaliga T Harshavardhan
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Christof Pietsch
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str.5, 29303 Bergen, Germany
| | - Viktor Korzun
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str.5, 29303 Bergen, Germany
| | - Lissy Kuntze
- Nordsaat Saatzucht GmbH, Böhnshauser Straße 1, 38895 Langenstein, Germany
| | - Andreas Börner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Ulrich Wobus
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Marion S Röder
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| | - Nese Sreenivasulu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr.3, 06466 Gatersleben, Germany
| |
Collapse
|
26
|
Zeid M, Belay G, Mulkey S, Poland J, Sorrells ME. QTL mapping for yield and lodging resistance in an enhanced SSR-based map for tef. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:77-93. [PMID: 20706706 DOI: 10.1007/s00122-010-1424-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 07/30/2010] [Indexed: 05/07/2023]
Abstract
Tef is a cereal crop of cultural and economic importance in Ethiopia. It is grown primarily for its grain though it is also an important source of fodder. Tef suffers from lodging that reduces both grain yield and quality. As a first step toward executing a marker-assisted breeding program for lodging resistance and grain yield improvement, a linkage map was constructed using 151 F(9) recombinant inbred lines obtained by single-seed-descent from a cross between Eragrostis tef and its wild relative Eragrostis pilosa. The map was primarily based on microsatellite (SSR) markers that were developed from SSR-enriched genomic libraries. The map consisted of 30 linkage groups and spanned a total length of 1,277.4 cM (78.7% of the genome) with an average distance of 5.7 cM between markers. This is the most saturated map for tef to date, and for the first time, all of the markers are PCR-based. Using agronomic data from 11 environments and marker data, it was possible to map quantitative trait loci (QTL) controlling lodging, grain yield and 15 other related traits. The positive effects of the QTL identified from the wild parent were mainly for earliness, reduced culm length and lodging resistance. In this population, it is now possible to combine lodging resistance and grain yield using a marker-assisted selection program targeting the QTL identified for both traits. The newly developed SSR markers will play a key role in germplasm organization, fingerprinting and monitoring the success of the hybridization process in intra-specific crosses lacking distinctive morphological markers.
Collapse
Affiliation(s)
- M Zeid
- Department of Plant Breeding and Genetics, Cornell University, 240 Emerson Hall, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
27
|
Xue DW, Zhou MX, Zhang XQ, Chen S, Wei K, Zeng FR, Mao Y, Wu FB, Zhang GP. Identification of QTLs for yield and yield components of barley under different growth conditions. J Zhejiang Univ Sci B 2010; 11:169-76. [PMID: 20205303 PMCID: PMC2833401 DOI: 10.1631/jzus.b0900332] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/21/2009] [Indexed: 11/11/2022]
Abstract
Waterlogging is a major abiotic stress limiting barley (Hordeum vulgare L.) yield and its stability in areas with excessive rainfall. Identification of genomic regions influencing the response of yield and its components to waterlogging stress will enhance our understanding of the genetics of waterlogging tolerance and the development of more tolerant barley cultivars. Quantitative trait loci (QTLs) for grain yield and its components were identified using 156 doubled haploid (DH) lines derived from a cross between the cultivars Yerong (waterlogging-tolerant) and Franklin (waterlogging-sensitive) grown under different conditions (waterlogged and well drained). A total of 31 QTLs were identified for the measured characters from two experiments with two growth environments. The phenotypic variation explained by individual QTLs ranged from 4.74% to 55.34%. Several major QTLs determining kernel weight (KW), grains per spike (GS), spikes per plant (SP), spike length (SL) and grain yield (GY) were detected on the same region of chromosome 2H, indicating close linkage or pleiotropy of the gene(s) controlling these traits. Some different QTLs were identified under waterlogging conditions, and thus different markers may have to be used in selecting cultivars suitable for high rainfall areas.
Collapse
Affiliation(s)
- Da-wei Xue
- College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Mei-xue Zhou
- Tasmanian Institute of Agricultural Research, University of Tasmania, Kings Meadows, TAS 7249, Australia
| | - Xiao-qin Zhang
- College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Song Chen
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Kang Wei
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Fan-rong Zeng
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Ying Mao
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Fei-bo Wu
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Guo-ping Zhang
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
28
|
Schmalenbach I, Léon J, Pillen K. Identification and verification of QTLs for agronomic traits using wild barley introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:483-97. [PMID: 18979081 DOI: 10.1007/s00122-008-0915-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 10/09/2008] [Indexed: 05/18/2023]
Abstract
A set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs) was subjected to a QTL study to verify genetic effects for agronomic traits, previously detected in the BC2DH population S42 (von Korff et al. 2006 in Theor Appl Genet 112:1221-1231) and, in addition, to identify new QTLs and favorable wild barley alleles. Each line within the S42IL set contains a single marker-defined chromosomal introgression from wild barley (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is exclusively derived from elite spring barley (H. vulgare ssp. vulgare). Agronomic field data of the S42ILs were collected for seven traits from three different environments during the 2007 growing season. For detection of putative QTLs, a two-factorial mixed model ANOVA and, subsequently, a Dunnett test with the recurrent parent as a control were conducted. The presence of a QTL effect on a wild barley introgression was accepted, if the trait value of a particular S42IL was significantly (P<0.05) different from the control, either across all environments and/or in a particular environment. A total of 47 QTLs were localized in the S42IL set, among which 39 QTLs were significant across all tested environments. For 19 QTLs (40.4%), the wild barley introgression was associated with a favorable effect on trait performance. Von Korff et al. (2006 in Theor Appl Genet 112:1221-1231) mapped altogether 44 QTLs for six agronomic traits to genomic regions, which are represented by wild barley introgressions of the S42IL set. Here, 18 QTLs (40.9%) revealed a favorable wild barley effect on the trait performance. By means of the S42ILs, 20 out of the 44 QTLs (45.5%) and ten out of the 18 favorable effects (55.6%) were verified. Most QTL effects were confirmed for the traits days until heading and plant height. For the six corresponding traits, a total of 17 new QTLs were identified, where at six QTLs (35.3%) the exotic introgression caused an improved trait performance. In addition, eight QTLs for the newly studied trait grains per ear were detected. Here, no QTL from wild barley exhibited a favorable effect. The introgression line S42IL-107, which carries an introgression on chromosome 2H, 17-42 cM is an example for S42ILs carrying several QTL effects simultaneously. This line exhibited improved performance across all tested environments for the traits days until heading, plant height and thousand grain weight. The line can be directly used to transfer valuable Hsp alleles into modern elite cultivars, and, thus, for breeding of improved varieties.
Collapse
Affiliation(s)
- Inga Schmalenbach
- Max-Planck-Institute for Plant Breeding Research, Barley Genetics Research Group, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | | | | |
Collapse
|
29
|
Pietsch C, Sreenivasulu N, Wobus U, Röder MS. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling. BMC PLANT BIOLOGY 2009; 9:4. [PMID: 19134169 PMCID: PMC2648977 DOI: 10.1186/1471-2229-9-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 01/09/2009] [Indexed: 05/09/2023]
Abstract
BACKGROUND Barley (Hordeum vulgare L.) seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. RESULTS By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. CONCLUSION We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference expression map of regulators defined in the present study offers the possibility of further directed research of the functional role of regulators during seed development in barley.
Collapse
Affiliation(s)
- Christof Pietsch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Ulrich Wobus
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| |
Collapse
|
30
|
Xue DW, Chen MC, Zhou MX, Chen S, Mao Y, Zhang GP. QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. J Zhejiang Univ Sci B 2009; 9:938-43. [PMID: 19067461 DOI: 10.1631/jzus.b0820105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To understand genetic patterns of the morphological and physiological traits in flag leaf of barley, a double haploid (DH) population derived from the parents Yerong and Franklin was used to determine quantitative trait loci (QTL) controlling length, width, length/width, and chlorophyll content of flag leaves. A total of 9 QTLs showing significantly additive effect were detected in 8 intervals on 5 chromosomes. The variation of individual QTL ranged from 1.9% to 20.2%. For chlorophyll content expressed as SPAD value, 4 QTLs were identified on chromosomes 2H, 3H and 6H; for leaf length and width, 2 QTLs located on chromosomes 5H and 7H, and 2 QTLs located on chromosome 5H were detected; and for length/width, 1 QTL was detected on chromosome 7H. The identification of these QTLs associated with the properties of flag leaf is useful for barley improvement in breeding programs.
Collapse
Affiliation(s)
- Da-wei Xue
- Agronomy Department, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | |
Collapse
|
31
|
Li J, Båga M, Rossnagel BG, Legge WG, Chibbar RN. Identification of quantitative trait loci for β-glucan concentration in barley grain. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2008.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Gyenis L, Yun SJ, Smith KP, Steffenson BJ, Bossolini E, Sanguineti MC, Muehlbauer GJ. Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 2008; 50:714-23. [PMID: 17893731 DOI: 10.1139/g07-054] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hordeum vulgare subsp. spontaneum is the progenitor of cultivated barley (Hordeum vulgare L.). Domestication combined with plant breeding has led to the morphological and agronomic characteristics of modern barley cultivars. The objective of this study was to map the genetic factors that morphologically and agronomically differentiate wild barley from modern barley cultivars. To address this objective, we identified quantitative trait loci (QTLs) associated with plant height, flag leaf width, spike length, spike width, glume length in relation to seed length, awn length, fragility of ear rachis, endosperm width and groove depth, heading date, flag leaf length, number of tillers per plant, and kernel color in a Harrington/OUH602 advanced backcross (BC2F8) population. This population was genotyped with 113 simple sequence repeat markers. Thirty QTLs were identified, of which 16 were newly identified in this study. One to 4 QTLs were identified for each of the traits except glume length, for which no QTL was detected. The portion of phenotypic variation accounted for by individual QTLs ranged from about 9% to 54%. For traits with more than one QTL, the phenotypic variation explained ranged from 25% to 71%. Taken together, our results reveal the genetic architecture of morphological and agronomic traits that differentiate wild from cultivated barley.
Collapse
Affiliation(s)
- L Gyenis
- Department of Agronomy and Plant Genetics, 411 Borlaug Hall, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
|