1
|
Tang T, Li J, Zhang B, Wen L, Lu Y, Hu Q, Yu XQ, Zhang J. Loss of function in Drosophila transcription factor Dif delays brain development in larvae resulting in aging adult brain. Int J Biol Macromol 2024; 281:136491. [PMID: 39393722 DOI: 10.1016/j.ijbiomac.2024.136491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Drosophila NF-κB transcription factor Dif has been well known for its function in innate immunity, and recent study also reveals its role in neuronal cells. However, the underlying mechanisms of Dif in the brain remain elusive. In this study, we aim to investigate the function of Dif in Drosophila brain development and how Dif regulates structure and plasticity of the brain to affect aging and behaviors. Based on the analysis of differentially expressed genes, we identified key genes associated with cell division, development and aging in the brain of Dif1 loss of function mutant. In Dif1 larvae, we found that the metamorphosis and brain development were delayed, and cell division was decreased. In Dif1 adults, the number of neuron cells was reduced in the brain, the lifespan and locomotor activity were decreased, protein markers associated with aging-related neurodegenerative diseases in the brain were altered in abundance or activity. Our results indicated that Dif plays a crucial role in brain plasticity and neurogenesis, dysfunction of Dif delays larval brain development and impacts proliferation of neuronal cells, resulting in aging adult brain by regulating expression of key genes in multiple signaling pathways involved in cell division, neurogenesis and aging.
Collapse
Affiliation(s)
- Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bangwen Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihao Hu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Suzuki M, Sango K, Nagai Y. Roles of α-Synuclein and Disease-Associated Factors in Drosophila Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23031519. [PMID: 35163450 PMCID: PMC8835920 DOI: 10.3390/ijms23031519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
α-Synuclein (αSyn) plays a major role in the pathogenesis of Parkinson’s disease (PD), which is the second most common neurodegenerative disease after Alzheimer’s disease. The accumulation of αSyn is a pathological hallmark of PD, and mutations in the SNCA gene encoding αSyn cause familial forms of PD. Moreover, the ectopic expression of αSyn has been demonstrated to mimic several key aspects of PD in experimental model systems. Among the various model systems, Drosophila melanogaster has several advantages for modeling human neurodegenerative diseases. Drosophila has a well-defined nervous system, and numerous tools have been established for its genetic analyses. The rapid generation cycle and short lifespan of Drosophila renders them suitable for high-throughput analyses. PD model flies expressing αSyn have contributed to our understanding of the roles of various disease-associated factors, including genetic and nongenetic factors, in the pathogenesis of PD. In this review, we summarize the molecular pathomechanisms revealed to date using αSyn-expressing Drosophila models of PD, and discuss the possibilities of using these models to demonstrate the biological significance of disease-associated factors.
Collapse
Affiliation(s)
- Mari Suzuki
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan;
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Correspondence: (M.S.); (Y.N.); Tel.: +81-5316-3100 (M.S.); +81-72-366-0221 (Y.N.)
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan;
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- Department of Neurology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Japan
- Correspondence: (M.S.); (Y.N.); Tel.: +81-5316-3100 (M.S.); +81-72-366-0221 (Y.N.)
| |
Collapse
|
3
|
Marino G, Calabresi P, Ghiglieri V. Alpha-synuclein and cortico-striatal plasticity in animal models of Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:153-166. [PMID: 35034731 DOI: 10.1016/b978-0-12-819410-2.00008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Alpha-synuclein (α-synuclein) is a small, acidic protein containing 140 amino acids, highly expressed in the brain and primarily localized in the presynaptic terminals. It is found in high concentrations in Lewy Bodies, proteinaceous aggregates that constitute a typical histopathologic hallmark of Parkinson's disease. Altered environmental conditions, genetic mutations and post-translational changes can trigger abnormal aggregation processes with the increased frequency of oligomers, protofibrils, and fibrils formation that perturbs the neuronal homeostasis leading to cell death. Relevant to neuronal activity, a function of α-synuclein that has been extensively detailed is its regulatory actions in the trafficking of synaptic vesicles, including the processes of exocytosis, endocytosis and neurotransmitter release. Most recently, increasing attention has been paid to the possible role that α-synuclein plays at a postsynaptic level by interacting with selective subunits of the glutamate N-methyl-d-aspartate receptor, altering the corticostriatal plasticity of distinct neuronal populations.
Collapse
Affiliation(s)
- Gioia Marino
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Medicina, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy; UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
4
|
Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells 2021; 10:cells10020283. [PMID: 33572534 PMCID: PMC7911026 DOI: 10.3390/cells10020283] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.
Collapse
|
5
|
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat 2020; 104:101752. [PMID: 31996329 DOI: 10.1016/j.jchemneu.2020.101752] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Since the discovery of L-dopa in the middle of the 20th century (1960s), there is not any neuroprotective therapy available although significant development has been made in the treatment of symptomatic Parkinson's disease (PD). Neurological disorders like PD can be modelled in animals so as to recapitulates most of the symptoms seen in PD patients. In aging population, PD is the second most common neurodegenerative disease after Alzheimer's disease, even though significant outcomes have been achieved in PD research yet it still is a mystery to solve the treatments for PD. In the last two decades, PD models have provided enhanced precision into the understanding of the process of PD disease, its etiology, pathology, and molecular mechanisms behind it. Furthermore, at the same time as cellular models have helped to recognize specific events, animal models, both toxic and genetic, have replicated almost all of the hallmarks of PD and are very helpful for testing and finding new strategies for neuroprotection. Recently, in both classical and newer models, major advances have been done in the modelling of supplementary PD features have come into the light. In this review, we have try to provide an updated summary of the characteristics of these models related to in vitro and in vivo models, animal models for PD, stem cell model for PD, newer 3D model as well as the strengths and limitations of these most popular PD models.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidhyalaya, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
6
|
Brain transcriptome changes in the aging Drosophila melanogaster accompany olfactory memory performance deficits. PLoS One 2018; 13:e0209405. [PMID: 30576353 PMCID: PMC6303037 DOI: 10.1371/journal.pone.0209405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
Cognitive decline is a common occurrence of the natural aging process in animals and studying age-related changes in gene expression in the brain might shed light on disrupted molecular pathways that play a role in this decline. The fruit fly is a useful neurobiological model for studying aging due to its short generational time and relatively small brain size. We investigated age-dependent changes in the Drosophila melanogaster whole-brain transcriptome by comparing 5-, 20-, 30- and 40-day-old flies of both sexes. We used RNA-Sequencing of dissected brain samples followed by differential expression, temporal clustering, co-expression network and gene ontology enrichment analyses. We found an overall decline in expression of genes from the mitochondrial oxidative phosphorylation pathway that occurred as part of aging. We also detected, in females, a pattern of continuously declining expression for many neuronal function genes, which was unexpectedly reversed later in life. This group of genes was highly enriched in memory-impairing genes previously identified through an RNAi screen. We also identified deficits in short-term olfactory memory performance in older flies of both sexes, some of which matched the timing of certain changes in the brain transcriptome. Our study provides the first transcriptome profile of aging brains from fruit flies of both sexes, and it will serve as an important resource for those who study aging and cognitive decline in this model.
Collapse
|
7
|
Steiner JA, Quansah E, Brundin P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res 2018; 373:161-173. [PMID: 29480459 DOI: 10.1007/s00441-018-2814-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
Parkinson's disease is characterized by the loss of nigrostriatal dopaminergic signaling and the presence of alpha-synuclein aggregates (also called Lewy bodies and neurites) throughout the brain. In 2003, Braak and colleagues created a staging system for Parkinson's disease describing the connection between the alpha-synuclein pathology and disease severity. Later, they suggested that the pathology might initially be triggered by exogenous insults targeting the gut and olfactory system. In 2008, we and other groups documented Lewy pathology in grafted neurons in people with Parkinson's disease who had been transplanted over a decade prior to autopsy. We proposed that the Lewy pathology in the grafted neurons was the result of permissive templating or prion-like spread of alpha-synuclein pathology from neurons in the host to those in the grafts. During the following ten years, several studies described the transmission of alpha-synuclein pathology between neurons, both in cell culture and in experimental animals. Recent research has also begun to identify underlying molecular mechanisms. Collectively, these experimental studies tentatively support the idea that the progression from one Braak stage to the next is the consequence of prion-like propagation of Lewy pathology. However, definitive proof that intercellular propagation of alpha-synuclein pathology occurs in Parkinson's disease cases has proven difficult to secure. In this review, we highlight several open questions that currently prevent us from concluding with certainty that prion-like transfer of alpha-synuclein contributes to the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| | - Emmanuel Quansah
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| |
Collapse
|
8
|
M'Angale PG, Staveley BE. The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BMC Neurosci 2016; 17:24. [PMID: 27192974 PMCID: PMC4872331 DOI: 10.1186/s12868-016-0261-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/11/2016] [Indexed: 01/09/2023] Open
Abstract
Background In contrast to the complexity found in mammals, only two Bcl-2 family genes have been found in Drosophila melanogaster including the pro-cell survival, human Bok-related orthologue, Buffy. The directed expression of α-synuclein, the first gene identified to contribute to inherited forms of Parkinson disease (PD), in the dopaminergic neurons (DA) of flies has provided a robust and well-studied Drosophila model of PD complete with the loss of neurons and accompanying motor defects. To more fully understand the biological basis of Bcl-2 genes in PD, we altered the expression of Buffy in the dopamine producing neurons with and without the expression of α-synuclein, and in the developing neuron-rich eye. Results To alter the expression of Buffy in the dopaminergic neurons of Drosophila, the Ddc-Gal4 transgene was used. The directed expression of Buffy in the dopamine producing neurons resulted in flies with increased climbing ability and enhanced survival, while the inhibition of Buffy in the dopaminergic neurons reduced climbing ability over time prematurely, similar to the phenotype observed in the α-synuclein-induced Drosophila model of PD. Subsequently, the expression of Buffy was altered in the α-synuclein-induced Drosophila model of PD. Analysis revealed that Buffy acted to rescue the associated loss of locomotor ability observed in the α-synuclein-induced model of PD, while Buffy RNA interference resulted in an enhanced α-synuclein-induced loss of climbing ability. In complementary experiments the overexpression of Buffy in the developing eye suppressed the mild rough eye phenotype that results from Gal4 expression and from α-synuclein expression. When Buffy is inhibited the roughened eye phenotype is enhanced. Conclusions The inhibition of Buffy in DA neurons produces a novel model of PD in Drosophila. The directed expression of Buffy in DA neurons provide protection and counteracts the α-synuclein-induced Parkinson disease-like phenotypes. Taken all together this demonstrates a role for Buffy, a Bcl-2 pro-cell survival gene, in neuroprotection.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
9
|
Van Rompuy AS, Oliveras-Salvá M, Van der Perren A, Corti O, Van den Haute C, Baekelandt V. Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration. Mol Neurodegener 2015; 10:23. [PMID: 26099628 PMCID: PMC4477319 DOI: 10.1186/s13024-015-0017-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/10/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Alpha-synuclein is a key protein in the pathogenesis of Parkinson's disease. Mutations in the parkin gene are the most common cause of early-onset autosomal recessive Parkinson's disease, probably through a loss-of-function mechanism. However, the molecular mechanism by which loss of parkin function leads to the development of the disease and the role of alpha-synuclein in parkin-associated Parkinson's disease is still not elucidated. Conflicting results were reported about the effect of the absence of parkin on alpha-synuclein-mediated neurotoxicity using a transgenic approach. In this study, we investigated the effect of loss of parkin on alpha-synuclein neuropathology and toxicity in adult rodent brain using viral vectors. Therefore, we overexpressed human wild type alpha-synuclein in the substantia nigra of parkin knockout and wild type mice using two different doses of recombinant adeno-associated viral vectors. RESULTS No difference was observed in nigral dopaminergic cell loss between the parkin knockout mice and wild type mice up to 16 weeks after viral vector injection. However, the level of alpha-synuclein phosphorylated at serine residue 129 in the substantia nigra was significantly increased in the parkin knockout mice compared to the wild type mice while the total expression level of alpha-synuclein was similar in both groups. The increased alpha-synuclein phosphorylation was confirmed in a parkin knockdown cell line. CONCLUSIONS These findings support a functional relationship between parkin and alpha-synuclein phosphorylation in rodent brain.
Collapse
Affiliation(s)
- Anne-Sophie Van Rompuy
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium.
| | - Marusela Oliveras-Salvá
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium.
| | - Olga Corti
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France. .,UPMC Université Paris 06, UMR_S975, F-75013, Paris, France. .,CNRS, UMR 7225, F-75013, Paris, France.
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium. .,Leuven Viral Vector Core, KU Leuven, 3000, Leuven, Belgium.
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium.
| |
Collapse
|
10
|
|
11
|
Gispert S, Brehm N, Weil J, Seidel K, Rüb U, Kern B, Walter M, Roeper J, Auburger G. Potentiation of neurotoxicity in double-mutant mice with Pink1 ablation and A53T-SNCA overexpression. Hum Mol Genet 2014; 24:1061-76. [PMID: 25296918 PMCID: PMC4986551 DOI: 10.1093/hmg/ddu520] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The common age-related neurodegeneration of Parkinson's disease can result from dominant causes like increased dosage of vesicle-associated alpha-synuclein (SNCA) or recessive causes like deficiency of mitophagy factor PINK1. Interactions between these triggers and their convergence onto shared pathways are crucial, but currently conflicting evidence exists. Here, we crossed previously characterized mice with A53T-SNCA overexpression and with Pink1 deletion to generate double mutants (DMs). We studied their lifespan and behavior, histological and molecular anomalies at late and early ages. DM animals showed potentiated phenotypes in comparison with both single mutants (SMs), with reduced survival and strongly reduced spontaneous movements from the age of 3 months onwards. In contrast to SMs, a quarter of DM animals manifested progressive paralysis at ages >1 year and exhibited protein aggregates immunopositive for pSer129-SNCA, p62 and ubiquitin in spinal cord and basal brain. Brain proteome quantifications of ubiquitination sites documented altered degradation of SNCA and the DNA-damage marker H2AX at the age of 18 months. Global brain transcriptome profiles and qPCR validation experiments identified many consistent transcriptional dysregulations already at the age of 6 weeks, which were absent from SMs. The observed downregulations for Dapk1, Dcaf17, Rab42 and the novel SNCA-marker Lect1 as well as the upregulations for Dctn5, Mrpl9, Tmem181a, Xaf1 and H2afx reflect changes in ubiquitination, mitochondrial/synaptic/microtubular/cell adhesion dynamics and DNA damage. Thus, our study confirmed that SNCA-triggered neurotoxicity is exacerbated by the absence of PINK1 and identified a novel molecular signature that is detectable early in the course of this double pathology.
Collapse
Affiliation(s)
- Suzana Gispert
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Nadine Brehm
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Jonas Weil
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University Medical School, 60590 Frankfurt/Main, Germany
| | - Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University Medical School, 60590 Frankfurt/Main, Germany
| | - Beatrice Kern
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany and
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076 Tübingen, Germany
| | - Jochen Roeper
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany and
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany,
| |
Collapse
|
12
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 418] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
13
|
Mizuno H, Fujikake N, Wada K, Nagai Y. α-Synuclein Transgenic Drosophila As a Model of Parkinson's Disease and Related Synucleinopathies. PARKINSONS DISEASE 2010; 2011:212706. [PMID: 21209707 PMCID: PMC3010662 DOI: 10.4061/2011/212706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 12/02/2010] [Indexed: 12/31/2022]
Abstract
α-Synuclein (α-Syn) is a major component of protein inclusions known as Lewy bodies, which are hallmarks of synucleinopathies such as Parkinson's disease (PD). The α-Syn gene is one of the familial PD-causing genes and is also associated with an increased risk of sporadic PD. Numerous studies using α-Syn expressing transgenic animals have indicated that α-Syn plays a critical role in the common pathogenesis of synucleinopathies. Drosophila melanogaster has several advantages for modeling human neurodegenerative diseases and is widely used for studying their pathomechanisms and therapies. In fact, Drosophila models expressing α-Syn have already been established and proven to replicate several features of human PD. In this paper, we review the current research on synucleinopathies using α-Syn Drosophila models and, moreover, explore the possibilities of these models for comprehensive genetic analyses and large-scale drug screening towards elucidating the molecular pathogenesis and developing therapies for synucleinopathies.
Collapse
Affiliation(s)
- Hideya Mizuno
- School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | | | | | | |
Collapse
|
14
|
Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:504-23. [PMID: 20522007 PMCID: PMC2992341 DOI: 10.2174/187152710791556104] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/30/2010] [Indexed: 12/16/2022]
Abstract
Human neurodegenerative diseases are devastating illnesses that predominantly affect elderly people. The majority of the diseases are associated with pathogenic oligomers from misfolded proteins, eventually causing the formation of aggregates and the progressive loss of neurons in the brain and nervous system. Several of these proteinopathies are sporadic and the cause of pathogenesis remains elusive. Heritable forms are associated with genetic defects, suggesting that the affected protein is causally related to disease formation and/or progression. The limitations of human genetics, however, make it necessary to use model systems to analyse affected genes and pathways in more detail. During the last two decades, research using the genetically amenable fruitfly has established Drosophila melanogaster as a valuable model system in the study of human neurodegeneration. These studies offer reliable models for Alzheimer's, Parkinson's, and motor neuron diseases, as well as models for trinucleotide repeat expansion diseases, including ataxias and Huntington's disease. As a result of these studies, several signalling pathways including phosphatidylinositol 3-kinase (PI3K)/Akt and target of rapamycin (TOR), c-Jun N-terminal kinase (JNK) and bone morphogenetic protein (BMP) signalling, have been shown to be deregulated in models of proteinopathies, suggesting that two or more initiating events may trigger disease formation in an age-related manner. Moreover, these studies also demonstrate that the fruitfly can be used to screen chemical compounds for their potential to prevent or ameliorate the disease, which in turn can directly guide clinical research and the development of novel therapeutic strategies for the treatment of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Frank Hirth
- King's College London, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, Department of Neuroscience, London, UK.
| |
Collapse
|
15
|
Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 2010; 29:3571-89. [PMID: 20842103 DOI: 10.1038/emboj.2010.223] [Citation(s) in RCA: 377] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 08/12/2010] [Indexed: 11/09/2022] Open
Abstract
Aggregation of α-synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age-dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA-mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ-1 but not the PD-associated mutations PINK1 G309D and parkin Δ1-79 or by DJ-1 C106A.
Collapse
|
16
|
Xun Z, Kaufman TC, Clemmer DE. Stable isotope labeling and label-free proteomics of Drosophila parkin null mutants. J Proteome Res 2010; 8:4500-10. [PMID: 19705877 DOI: 10.1021/pr9006238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra and formation of intracytoplasmic Lewy bodies (LBs). Loss-of-function mutations in parkin which encodes an E3 ubiquitin protein ligase contribute to a predominant cause of a familial form of PD termed autosomal recessive juvenile Parkinsonism (AR-JP). Drosophila parkin null mutants display muscle degeneration and mitochondrial dysfunction, providing an animal model to study Parkin-associated molecular pathways in PD. To define protein alterations involved in Parkin pathogenesis, we performed quantitative proteomic analyses of Drosophila parkin null mutants and age-matched controls utilizing both global internal standard technology (GIST) and extracted ion chromatogram peak area (XICPA) label-free approaches. A total of 375 proteins were quantified with a minimum of two peptide identifications from the combination of the XICPA and GIST measurements applied to two independent biological replicates. Sixteen proteins exhibited significant alteration. Seven of the dysregulated proteins are involved in energy metabolism, of which six were down-regulated. All five proteins involved in transporter activity exhibited higher levels, of which larval serum protein 1alpha, larval serum protein 1beta, larval serum protein 1gamma, and fat body protein 1 showed >10-fold up-regulation and substantially higher level of fat body protein 1 was confirmed by Western blot analysis. These findings suggest that abnormalities in energy metabolism and protein transporter activity pathways may be associated with the pathogenesis of Parkin-associated AR-JP.
Collapse
Affiliation(s)
- Zhiyin Xun
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
17
|
Davison EJ, Pennington K, Hung CC, Peng J, Rafiq R, Ostareck-Lederer A, Ostareck DH, Ardley HC, Banks RE, Robinson PA. Proteomic analysis of increased Parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function. Proteomics 2009; 9:4284-97. [PMID: 19725078 DOI: 10.1002/pmic.200900126] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Parkin is an ubiquitin-protein ligase (E3), mutations of which cause juvenile onset - autosomal recessive Parkinson's disease, and result in reduced enzymic activity. In contrast, increased levels are protective against mitochondrial dysfunction and neurodegeneration, the mechanism of which is largely unknown. In this study, 2-DE and MS proteomic techniques were utilised to investigate the effects of increased Parkin levels on protein expression in whole cell lysates using in an inducible Parkin expression system in HEK293 cells, and also to isolate potential interactants of Parkin using tandem affinity purification and MS. Nine proteins were significantly differentially expressed (+/-2-fold change; p<0.05) using 2-DE analysis. MS revealed the identity of these proteins to be ACAT2, HNRNPK, HSPD1, PGK1, PRDX6, VCL, VIM, TPI1, and IMPDH2. The first seven of these were reduced in expression. Western blot analysis confirmed the reduction in one of these proteins (HNRNPK), and that its levels were dependent on 26S proteasomal activity. Tandem affinity purification/MS revealed 14 potential interactants of Parkin; CKB, DBT, HSPD1, HSPA9, LRPPRC, NDUFS2, PRDX6, SLC25A5, TPI1, UCHL1, UQCRC1, VCL, YWHAZ, YWHAE. Nine of these are directly involved in mitochondrial energy metabolism and glycolysis; four were also identified in the 2-DE study (HSP60, PRDX6, TPI1, and VCL). This study provides further evidence for a role for Parkin in regulating mitochondrial activity within cells.
Collapse
Affiliation(s)
- Eleanor J Davison
- Section of Ophthalmology and Neuroscience, Leeds Institute for Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Proteasomal inhibition reduces parkin mRNA in PC12 and SH-SY5Y cells. Parkinsonism Relat Disord 2009; 15:220-5. [DOI: 10.1016/j.parkreldis.2008.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 05/10/2008] [Accepted: 05/10/2008] [Indexed: 11/22/2022]
|
19
|
Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener 2009; 4:9. [PMID: 19193223 PMCID: PMC2646729 DOI: 10.1186/1750-1326-4-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/04/2009] [Indexed: 11/16/2022] Open
Abstract
α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Building 35, Room 1A116, MSC 3707, 35 Convent Drive, Bethesda, MD 20982-3707, USA.
| |
Collapse
|
20
|
|
21
|
Hasegawa T, Treis A, Patenge N, Fiesel FC, Springer W, Kahle PJ. Parkin protects against tyrosinase-mediated dopamine neurotoxicity by suppressing stress-activated protein kinase pathways. J Neurochem 2008; 105:1700-15. [PMID: 18248610 DOI: 10.1111/j.1471-4159.2008.05277.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) motor symptoms are caused by degeneration of nigrostriatal dopaminergic (DAergic) neurons. The most common causes of hereditary PD are mutations in the PARKIN gene. The ubiquitin ligase parkin has been shown to mediate neuroprotection in cell culture and in vivo, but the molecular mechanisms are not well understood. We investigated the effects of parkin in a human SH-SY5Y neuroblastoma cell culture model of PD, in which transcriptional induction of the enzyme tyrosinase causes a neurotoxic overproduction of cellular DA and its oxidative metabolites. Tyrosinase induction caused formation of reactive oxygen species in the cytosol and mitochondria, and neurotoxicity via activation of apoptotic stress-activated protein kinases and caspase 3. Stable transfection of wild-type parkin suppressed tyrosinase-induced apoptosis, and PD-associated mutations abolished the neuroprotective effect of parkin. Expression of wild-type parkin did not affect reactive oxygen species production, but attenuated the tyrosinase-induced activation of both c-Jun N-terminal kinase and p38 mitogen-activated protein kinase as well as their cognate mitogen-activated protein kinase kinases. PD-associated mutations differentially affected the anti-apoptotic signaling of parkin. Thus, parkin contributes to DAergic neuroprotection by suppression of apoptotic stress-activated protein kinase pathways.
Collapse
Affiliation(s)
- Takafumi Hasegawa
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Parkinson's disease is the second most common age-related neurodegenerative disorder and is characterized clinically by classical parkinsonism and pathologically by selective loss of dopaminergic neurons in the substantia nigra and Lewy bodies. Although for most classical parkinsonism the etiology is unknown, a clear genetic component has been determined in a minority. Mutations in five causative genes combined [alpha-Synuclein (SNCA), Parkin, PTEN-induced kinase 1 (PINK1), DJ-1, Leucine-rich repeat kinase 2 (LRRK2)] account for 2-3% of all cases with classical parkinsonism, often clinically indistinguishable from idiopathic Parkinson's disease. RECENT FINDINGS The functional role of PINK1 and LRRK2 as kinases has been clearly established. Further, mutations in the ATP13A2 gene have been linked to Kufor-Rakeb syndrome (PARK9), a form of atypical parkinsonism. ATP13A2 encodes a lysosomal ATPase and shows elevated expression levels in the brains of sporadic patients, suggesting a potential role in the more common idiopathic Parkinson's disease. Finally, first promising pilot studies have been performed to identify differentially expressed genes and proteins as biomarkers for parkinsonism. SUMMARY The identification of single genes and their functional characterization has enhanced our understanding of the pathogenesis of parkinsonism, has led to improvement of diagnostic tools for genetic parkinsonism, and allows for the purposeful consideration of novel therapeutic targets.
Collapse
Affiliation(s)
- Christine Klein
- Departments of Neurology and Human Genetics, Lübeck University, Lübeck, Germany.
| | | |
Collapse
|
23
|
Sutherland G, Mellick G, Sue C, Chan DKY, Rowe D, Silburn P, Halliday G. A functional polymorphism in the parkin gene promoter affects the age of onset of Parkinson's disease. Neurosci Lett 2007; 414:170-3. [PMID: 17280783 DOI: 10.1016/j.neulet.2006.12.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 11/23/2022]
Abstract
Mutations in the parkin gene are the major cause of autosomal recessive early-onset forms of Parkinson's disease (PD). As reduced parkin expression might also affect the clinical course of idiopathic PD we investigated the effect of a low expressing allele in the parkin promoter region on the age at disease onset (AAO). Patients with PD (n=175) fulfilling standard diagnostic criteria were recruited by experienced neurologists at two movement disorders clinics in Sydney and Brisbane, Australia. DNA was extracted from whole blood and the -258 T/G polymorphism genotyped using PCR/RFLP. AAO effects were analysed using univariate ANOVA, binomial logistic regression modelling and Kaplan-Meier survival analysis. Subjects with the GG genotype (n=10, mean AAO=46.2+/-11.5 (S.D.) years) had a significantly lower mean AAO compared to the common TT genotype (n=104, mean AAO=56.1+/-12.7, p=0.02). There was no difference in mean AAO between the TT and TG individuals (n=61, mean AAO=55.3+/-11.6). Stratifying the sample by median AAO (55 years) revealed that the GG genotype was over-represented in the early-onset group (n=9, OR=18.6, 95% CI=1.41-245.3, p=0.03). We speculate that reduced expression of normal parkin protein may result in an early manifestation of PD symptoms.
Collapse
Affiliation(s)
- Greg Sutherland
- Prince of Wales Medical Research Institute, University of New South Wales, and Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Olanow CW. The pathogenesis of cell death in Parkinson's disease – 2007. Mov Disord 2007; 22 Suppl 17:S335-42. [DOI: 10.1002/mds.21675] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|