1
|
Nadal-Molero F, Rosselli R, Garcia-Juan S, Campos-Lopez A, Martin-Cuadrado AB. Unveiling host-parasite relationships through conserved MITEs in prokaryote and viral genomes. Nucleic Acids Res 2024; 52:13094-13109. [PMID: 39470691 PMCID: PMC11602168 DOI: 10.1093/nar/gkae906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Transposable elements (TEs) play a pivotal role in the evolution of genomes across all life domains. 'Miniature Inverted-repeat Transposable-Elements' (MITEs) are non-autonomous TEs mainly located in intergenic regions, relying on external transposases for mobilization. The extent of MITEs' mobilome was explored across nearly 1700 prokaryotic genera, 183 232 genomes, revealing a broad distribution. MITEs were identified in 56.5% of genomes, totaling over 1.4 million cMITEs (cellular MITEs). Cluster analysis revealed that 97.4% of cMITEs were specific within genera boundaries, with up to 23% being species-specific. Subsequently, this genus-specificity was evaluated as a method to link microbial host to their viruses. A total of 51 655 cMITEs had counterparts in viral sequences, termed vMITEs (viral MITEs), resulting in the identification of 2500 viral sequences with them. Among these, 1501 sequences were positively assigned to a previously known host (41.8% were isolated viruses and 12.3% were assigned through CRISPR data), while 379 new host-virus associations were predicted. Deeper analysis in Neisseria and Bacteroidota groups allowed the association of 242 and 530 new viral sequences, respectively. MITEs are proposed as a novel approach to establishing valid virus-host relationships.
Collapse
Affiliation(s)
- Francisco Nadal-Molero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Riccardo Rosselli
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Silvia Garcia-Juan
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Alicia Campos-Lopez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
2
|
Provatas K, Chantzi N, Patsakis M, Nayak A, Mouratidis I, Pavlopoulos GA, Georgakopoulos-Soares I. invertiaDB: A Database of Inverted Repeats Across Organismal Genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622808. [PMID: 39605716 PMCID: PMC11601276 DOI: 10.1101/2024.11.11.622808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Inverted repeats are repetitive elements that can form hairpin and cruciform structures. They are linked to genomic instability, however they also have various biological functions. Their distribution differs markedly across taxonomic groups in the tree of life, and they exhibit high polymorphism due to their inherent genomic instability. Advances in sequencing technologies and declined costs have enabled the generation of an ever-growing number of complete genomes for organisms across taxonomic groups in the tree of life. However, a comprehensive database encompassing inverted repeats across diverse organismal genomes has been lacking. We present InvertiaDB, the first comprehensive database of inverted repeats spanning multiple taxa, featuring repeats identified in the genomes of 118,070 organisms across all major taxonomic groups. The database currently hosts 30,067,666 inverted repeat sequences, serving as a centralized, user-friendly repository to perform searches, interactive visualization, and download existing inverted repeat data for independent analysis. invertiaDB is implemented as a web portal for browsing, analyzing and downloading inverted repeat data. invertiaDB is publicly available at https://invertiadb.netlify.app/homepage.html.
Collapse
Affiliation(s)
- Kimonas Provatas
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Michail Patsakis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Akshatha Nayak
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Martelossi J, Iannello M, Ghiselli F, Luchetti A. Widespread HCD-tRNA derived SINEs in bivalves rely on multiple LINE partners and accumulate in genic regions. Mob DNA 2024; 15:22. [PMID: 39415259 PMCID: PMC11481361 DOI: 10.1186/s13100-024-00332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retrotransposons widespread across eukaryotes. They exist both as lineage-specific, fast-evolving elements and as ubiquitous superfamilies characterized by highly conserved domains (HCD). Several of these superfamilies have been described in bivalves, however their overall distribution and impact on host genome evolution are still unknown due to the extreme scarcity of transposon libraries for the clade. In this study, we examined more than 40 bivalve genomes to uncover the distribution of HCD-tRNA-related SINEs, discover novel SINE-LINE partnerships, and understand their possible role in shaping bivalve genome evolution. RESULTS We found that bivalve HCD SINEs have an ancient origin, and they can rely on at least four different LINE clades. According to a "mosaic" evolutionary scenario, multiple LINE partner can promote the amplification of the same HCD SINE superfamilies while homologues LINE-derived tails are present between different superfamilies. Multiple SINEs were found to be highly similar between phylogenetically related species but separated by extremely long evolutionary timescales, up to ~ 400 million years. Studying their genomic distribution in a subset of five species, we observed different patterns of SINE enrichment in various genomic compartments as well as differences in the tendency of SINEs to form tandem-like and palindromic structures also within intronic sequences. Despite these differences, we observed that SINEs, especially older ones, tend to accumulate preferentially within genes, or in their close proximity, consistently with a model of survival bias for less harmful, short non-coding transposons in euchromatic genomic regions. CONCLUSION Here we conducted a wide characterization of tRNA-related SINEs in bivalves revealing their taxonomic distribution and LINE partnerships across the clade. Moreover, through the study of their genomic distribution in five species, we highlighted commonalities and differences with other previously studied eukaryotes, thus extending our understanding of SINE evolution across the tree of life.
Collapse
Affiliation(s)
- Jacopo Martelossi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
de Oliveira FS, Azambuja M, Schemberger MO, Nascimento VD, Oliveira JIN, Wolf IR, Nogaroto V, Martins C, Vicari MR. Characterization of hAT DNA transposon superfamily in the genome of Neotropical fish Apareiodon sp. Mol Genet Genomics 2024; 299:96. [PMID: 39382723 DOI: 10.1007/s00438-024-02190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
DNA transposons are diverse in fish genomes and have been described to generate genomic evolutionary novelties. hAT transposable element data are scarce in Teleostei genomes, making it challenging to conduct comparative genomic studies to understand their neutrality or function. This study aimed to perform a genomic and molecular characterization of hAT copies to assess the diversity of these elements and associate changes in these sequences to genomic and karyotypic novelties in Apareiodon sp. The data revealed that hAT TEs are highly abundant in the Apareiodon sp. genome, with few possibly autonomous copies. Highly conserved sequences with likely functional transposases were observed in nine hAT elements. A great diversity of hAT subgroups was observed, especially from Ac, Charlie, Blackjack, Tip100, hAT6, and hAT5, and a similar wave of hAT genomic invasion was identified in the genome for these six groups of hAT sequences. The data also revealed a distinct number of microsatellites within degenerated hAT copies. hAT sites were demonstrated to be dispersed in the Apareiodon sp. chromosomes and not involved in W chromosome-specific region differentiation. In conclusion, the genomic analysis revealed a great diversity of hAT elements, possible autonomous copies, and differentiation of degenerated transposable elements into tandem sequences.
Collapse
Affiliation(s)
- Fernanda Souza de Oliveira
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Michelle Orane Schemberger
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Viviane Demetrio Nascimento
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil
| | - Jordana Inácio Nascimento Oliveira
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Ivan Rodrigo Wolf
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, S/N, Botucatu, São Paulo, 18618-689, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. Dos Santos, 100, Curitiba, Paraná, 81531-990, Brazil.
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil.
| |
Collapse
|
5
|
Mikina W, Hałakuc P, Milanowski R. Transposon-derived introns as an element shaping the structure of eukaryotic genomes. Mob DNA 2024; 15:15. [PMID: 39068498 PMCID: PMC11282704 DOI: 10.1186/s13100-024-00325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
The widely accepted hypothesis postulates that the first spliceosomal introns originated from group II self-splicing introns. However, it is evident that not all spliceosomal introns in the nuclear genes of modern eukaryotes are inherited through vertical transfer of intronic sequences. Several phenomena contribute to the formation of new introns but their most common origin seems to be the insertion of transposable elements. Recent analyses have highlighted instances of mass gains of new introns from transposable elements. These events often coincide with an increase or change in the spliceosome's tolerance to splicing signals, including the acceptance of noncanonical borders. Widespread acquisitions of transposon-derived introns occur across diverse evolutionary lineages, indicating convergent processes. These events, though independent, likely require a similar set of conditions. These conditions include the presence of transposon elements with features enabling their removal at the RNA level as introns and/or the existence of a splicing mechanism capable of excising unusual sequences that would otherwise not be recognized as introns by standard splicing machinery. Herein we summarize those mechanisms across different eukaryotic lineages.
Collapse
Affiliation(s)
- Weronika Mikina
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland.
| |
Collapse
|
6
|
Hatanaka R, Tamagawa K, Haruta N, Sugimoto A. The impact of differential transposition activities of autonomous and nonautonomous hAT transposable elements on genome architecture and gene expression in Caenorhabditis inopinata. Genetics 2024; 227:iyae052. [PMID: 38577765 PMCID: PMC11492494 DOI: 10.1093/genetics/iyae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/08/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Transposable elements are DNA sequences capable of moving within genomes and significantly influence genomic evolution. The nematode Caenorhabditis inopinata exhibits a much higher transposable element copy number than its sister species, Caenorhabditis elegans. In this study, we identified a novel autonomous transposable element belonging to the hAT superfamily from a spontaneous transposable element-insertion mutant in C. inopinata and named this transposon Ci-hAT1. Further bioinformatic analyses uncovered 3 additional autonomous hAT elements-Ci-hAT2, Ci-hAT3, and Ci-hAT4-along with over 1,000 copies of 2 nonautonomous miniature inverted-repeat transposable elements, mCi-hAT1 and mCi-hAT4, likely derived from Ci-hAT1 and Ci-hAT4 through internal deletion. We tracked at least 3 sequential transpositions of Ci-hAT1 over several years. However, the transposition rates of the other 3 autonomous hAT elements were lower, suggesting varying activity levels. Notably, the distribution patterns of the 2 miniature inverted-repeat transposable element families differed significantly: mCi-hAT1 was primarily located in the chromosome arms, a pattern observed in the transposable elements of other Caenorhabditis species, whereas mCi-hAT4 was more evenly distributed across chromosomes. Additionally, interspecific transcriptome analysis indicated that C. inopinata genes with upstream or intronic these miniature inverted-repeat transposable element insertions tend to be more highly expressed than their orthologous genes in C. elegans. These findings highlight the significant role of de-silenced transposable elements in driving the evolution of genomes and transcriptomes, leading to species-specific genetic diversity.
Collapse
Affiliation(s)
- Ryuhei Hatanaka
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Katsunori Tamagawa
- Laboratory of Evolutionary Genomics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nami Haruta
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Antoniolli HR, Pita S, Deprá M, Valente VL. Horizontal transfer and the widespread presence of Galileo transposons in Drosophilidae (Insecta: Diptera). Genet Mol Biol 2024; 46:e20230143. [PMID: 38569056 PMCID: PMC10990002 DOI: 10.1590/1678-4685-gmb-2023-0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/30/2024] [Indexed: 04/05/2024] Open
Abstract
Galileo is a transposon notoriously involved with inversions in Drosophila buzzatii by ectopic recombination. Although widespread in Drosophila, little is known about this transposon in other lineages of Drosophilidae. Here, the abundance of the canonical Galileo and its evolutionary history in Drosophilidae genomes was estimated and reconstructed across genera within its two subfamilies. Sequences of this transposon were masked in these genomes and their transposase sequences were recovered using BLASTn. Phylogenetic analyses were employed to reconstruct their evolutionary history and compare it to that of host genomes. Galileo was found in nearly all 163 species, however, only 37 harbored nearly complete transposase sequences. In the remaining, Galileo was found highly fragmented. Copies from related species were clustered, however horizontal transfer events were detected between the melanogaster and montium groups of Drosophila, and between the latter and the Lordiphosa genus. The similarity of sequences found in the virilis and willistoni groups of Drosophila was found to be a consequence of lineage sorting. Therefore, the evolution of Galileo is primarily marked by vertical transmission and long-term inactivation, mainly through the deletion of open reading frames. The latter has the potential to lead copies of this transposon to become miniature inverted-repeat transposable elements.
Collapse
Affiliation(s)
- Henrique R.M. Antoniolli
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de
Drosophila, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto
Alegre, RS, Brazil
| | - Sebastián Pita
- Universidad de la República (UdelaR), Facultad de Ciencias, Sección
Genética Evolutiva, Montevideo, Uruguay
| | - Maríndia Deprá
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de
Drosophila, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto
Alegre, RS, Brazil
| | - Vera L.S. Valente
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de
Drosophila, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto
Alegre, RS, Brazil
| |
Collapse
|
8
|
Gultyaev AP, Koster C, van Batenburg DC, Sistermans T, van Belle N, Vijfvinkel D, Roussis A. Conserved structured domains in plant non-coding RNA enod40, their evolution and recruitment of sequences from transposable elements. NAR Genom Bioinform 2023; 5:lqad091. [PMID: 37850034 PMCID: PMC10578108 DOI: 10.1093/nargab/lqad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Plant long noncoding RNA enod40 is involved in the regulation of symbiotic associations with bacteria, in particular, in nitrogen-fixing root nodules of legumes, and with fungi in phosphate-acquiring arbuscular mycorrhizae formed by various plants. The presence of enod40 genes in plants that do not form such symbioses indicates its other roles in cell physiology. The molecular mechanisms of enod40 RNA function are poorly understood. Enod40 RNAs form several structured domains, conserved to different extents. Due to relatively low sequence similarity, identification of enod40 sequences in plant genomes is not straightforward, and many enod40 genes remain unannotated even in complete genomes. Here, we used comparative structure analysis and sequence similarity searches in order to locate enod40 genes and determine enod40 RNA structures in nitrogen-fixing clade plants and in grasses. The structures combine conserved features with considerable diversity of structural elements, including insertions of structured domain modules originating from transposable elements. Remarkably, these insertions contain sequences similar to tandem repeats and several stem-loops are homologous to microRNA precursors.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Celine Koster
- Life Science & Technology Honours College, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Amsterdam University Medical Center, Department of Human Genetics, section Ophthalmogenetics, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | - Diederik Cames van Batenburg
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- CareRate, Unit E1.165, Stationsplein 45, 3013 AK Rotterdam, The Netherlands
| | - Tom Sistermans
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Niels van Belle
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Daan Vijfvinkel
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Andreas Roussis
- National & Kapodistrian University of Athens, Faculty of Biology, Section of Botany, Group Molecular Plant Physiology, Panepistimiopolis - Zografou - Athens, 15784, Greece
| |
Collapse
|
9
|
Gorbenko IV, Petrushin IS, Shcherban AB, Orlov YL, Konstantinov YM. Short Interrupted Repeat Cassette (SIRC)-Novel Type of Repetitive DNA Element Found in Arabidopsis thaliana. Int J Mol Sci 2023; 24:11116. [PMID: 37446293 DOI: 10.3390/ijms241311116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Short interrupted repeat cassette (SIRC)-a novel DNA element found throughout the A. thaliana nuclear genome. SIRCs are represented by short direct repeats interrupted by diverse DNA sequences. The maxima of SIRC's distribution are located within pericentromeric regions. We suggest that originally SIRC was a special case of the complex internal structure of the miniature inverted repeat transposable element (MITE), and further MITE amplification, transposition, and loss of terminal inverted repeats gave rise to SIRC as an independent DNA element. SIRC sites were significantly enriched with several histone modifications associated with constitutive heterochromatin and mobile genetic elements. The majority of DNA-binding proteins, strongly associated with SIRC, are related to histone modifications for transcription repression. A part of SIRC was found to overlap highly inducible protein-coding genes, suggesting a possible regulatory role for these elements, yet their definitive functions need further investigation.
Collapse
Affiliation(s)
- Igor V Gorbenko
- Cell Biology and Bioengineering, Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk 664033, Russia
| | - Ivan S Petrushin
- Cell Biology and Bioengineering, Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk 664033, Russia
- Department of Business Communications and Informatics, Irkutsk State University, Irkutsk 664033, Russia
| | - Andrey B Shcherban
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Kurchatov Genomic Center ICG SB RAS, Novosibirsk 630090, Russia
| | - Yuriy L Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, Moscow 117198, Russia
| | - Yuri M Konstantinov
- Cell Biology and Bioengineering, Siberian Institute of Plant Physiology and Biochemistry SB RAS, Irkutsk 664033, Russia
- Biosoil Department, Irkutsk State University, Irkutsk 664003, Russia
| |
Collapse
|
10
|
Pegler JL, Oultram JMJ, Mann CWG, Carroll BJ, Grof CPL, Eamens AL. Miniature Inverted-Repeat Transposable Elements: Small DNA Transposons That Have Contributed to Plant MICRORNA Gene Evolution. PLANTS (BASEL, SWITZERLAND) 2023; 12:1101. [PMID: 36903960 PMCID: PMC10004981 DOI: 10.3390/plants12051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Angiosperms form the largest phylum within the Plantae kingdom and show remarkable genetic variation due to the considerable difference in the nuclear genome size of each species. Transposable elements (TEs), mobile DNA sequences that can amplify and change their chromosome position, account for much of the difference in nuclear genome size between individual angiosperm species. Considering the dramatic consequences of TE movement, including the complete loss of gene function, it is unsurprising that the angiosperms have developed elegant molecular strategies to control TE amplification and movement. Specifically, the RNA-directed DNA methylation (RdDM) pathway, directed by the repeat-associated small-interfering RNA (rasiRNA) class of small regulatory RNA, forms the primary line of defense to control TE activity in the angiosperms. However, the miniature inverted-repeat transposable element (MITE) species of TE has at times avoided the repressive effects imposed by the rasiRNA-directed RdDM pathway. MITE proliferation in angiosperm nuclear genomes is due to their preference to transpose within gene-rich regions, a pattern of transposition that has enabled MITEs to gain further transcriptional activity. The sequence-based properties of a MITE results in the synthesis of a noncoding RNA (ncRNA), which, after transcription, folds to form a structure that closely resembles those of the precursor transcripts of the microRNA (miRNA) class of small regulatory RNA. This shared folding structure results in a MITE-derived miRNA being processed from the MITE-transcribed ncRNA, and post-maturation, the MITE-derived miRNA can be used by the core protein machinery of the miRNA pathway to regulate the expression of protein-coding genes that harbor homologous MITE insertions. Here, we outline the considerable contribution that the MITE species of TE have made to expanding the miRNA repertoire of the angiosperms.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
11
|
Arce AL, Mencia R, Cambiagno DA, Lang PL, Liu C, Burbano HA, Weigel D, Manavella PA. Polymorphic inverted repeats near coding genes impact chromatin topology and phenotypic traits in Arabidopsis thaliana. Cell Rep 2023; 42:112029. [PMID: 36689329 DOI: 10.1016/j.celrep.2023.112029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 01/23/2023] Open
Abstract
Transposons are mobile elements that are commonly silenced to protect eukaryotic genome integrity. In plants, transposable element (TE)-derived inverted repeats (IRs) are commonly found near genes, where they affect host gene expression. However, the molecular mechanisms of such regulation are unclear in most cases. Expression of these IRs is associated with production of 24-nt small RNAs, methylation of the IRs, and drastic changes in local 3D chromatin organization. Notably, many of these IRs differ between Arabidopsis thaliana accessions, causing variation in short-range chromatin interactions and gene expression. CRISPR-Cas9-mediated disruption of two IRs leads to a switch in genome topology and gene expression with phenotypic consequences. Our data show that insertion of an IR near a gene provides an anchor point for chromatin interactions that profoundly impact the activity of neighboring loci. This turns IRs into powerful evolutionary agents that can contribute to rapid adaptation.
Collapse
Affiliation(s)
- Agustín L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Damian A Cambiagno
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Patricia L Lang
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Chang Liu
- Department of Epigenetics, Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Hernán A Burbano
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany; Centre for Life's Origins and Evolution, University College London, London, UK
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina.
| |
Collapse
|
12
|
Halter T, Hendrickx F, Horn M, Manzano-Marín A. A Novel Widespread MITE Element in the Repeat-Rich Genome of the Cardinium Endosymbiont of the Spider Oedothorax gibbosus. Microbiol Spectr 2022; 10:e0262722. [PMID: 36301108 PMCID: PMC9769881 DOI: 10.1128/spectrum.02627-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023] Open
Abstract
Free-living bacteria have evolved multiple times to become host-restricted endosymbionts. The transition from a free-living to a host-restricted lifestyle comes with a number of different genomic changes, including a massive loss of genes. In host-restricted endosymbionts, gene inactivation and genome reduction are facilitated by mobile genetic elements, mainly insertion sequences (ISs). ISs are small autonomous mobile elements, and one of, if not the most, abundant transposable elements in bacteria. Proliferation of ISs is common in some facultative endosymbionts, and is likely driven by the transmission bottlenecks, which increase the level of genetic drift. In this study, we present a manually curated genome annotation for a Cardinium endosymbiont of the dwarf spider Oedothorax gibbosus. Cardinium species are host-restricted endosymbionts that, similarly to ColbachiaWolbachia spp., include strains capable of manipulating host reproduction. Through the focus on mobile elements, the annotation revealed a rampant spread of ISs, extending earlier observations in other Cardinium genomes. We found that a large proportion of IS elements are pseudogenized, with many displaying evidence of recent inactivation. Most notably, we describe the lineage-specific emergence and spread of a novel IS-derived Miniature Inverted repeat Transposable Element (MITE), likely being actively maintained by intact copies of its parental IS982-family element. This study highlights the relevance of manual curation of these repeat-rich endosymbiont genomes for the discovery of novel MITEs, as well as the possible role these understudied elements might play in genome streamlining. IMPORTANCE Cardinium bacteria, a widespread symbiont lineage found across insects and nematodes, have been linked to reproductive manipulation of their hosts. However, the study of Cardinium has been hampered by the lack of comprehensive genomic resources. The high content of mobile genetic elements, namely, insertion sequences (ISs), has long complicated the analyses and proper annotations of these genomes. In this study, we present a manually curated annotation of the Cardinium symbiont of the spider Oedothorax gibbosus. Most notably, we describe a novel IS-like element found exclusively in this strain. We show that this mobile element likely evolved from a defective copy of its parental IS and then spread throughout the genome, contributing to the pseudogenization of several other mobile elements. We propose this element is likely being maintained by the intact copies of its parental IS element and that other similar elements in the genome could potentially follow this route.
Collapse
Affiliation(s)
- Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Frederik Hendrickx
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Guo Z, Kuang Z, Deng Y, Li L, Yang X. Identification of Species-Specific MicroRNAs Provides Insights into Dynamic Evolution of MicroRNAs in Plants. Int J Mol Sci 2022; 23:ijms232214273. [PMID: 36430750 PMCID: PMC9698635 DOI: 10.3390/ijms232214273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are an important class of regulatory small RNAs that program gene expression, mainly at the post-transcriptional level. Although sporadic examples of species-specific miRNAs (termed SS-miRNAs) have been reported, a genome-scale study across a variety of distant species has not been assessed. Here, by comprehensively analyzing miRNAs in 81 plant species phylogenetically ranging from chlorophytes to angiosperms, we identified 8048 species-specific miRNAs from 5499 families, representing over 61.2% of the miRNA families in the examined species. An analysis of the conservation from different taxonomic levels supported the high turnover rate of SS-miRNAs, even over short evolutionary distances. A comparison of the intrinsic features between SS-miRNAs and NSS-miRNAs (non-species-specific miRNAs) indicated that the AU content of mature miRNAs was the most striking difference. Our data further illustrated a significant bias of the genomic coordinates towards SS-miRNAs lying close to or within genes. By analyzing the 125,267 putative target genes for the 7966 miRNAs, we found the preferentially regulated functions of SS-miRNAs related to diverse metabolic processes. Collectively, these findings underscore the dynamic evolution of miRNAs in the species-specific lineages.
Collapse
Affiliation(s)
- Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zheng Kuang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yang Deng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Correspondence: (L.L.); (X.Y.)
| | - Xiaozeng Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (L.L.); (X.Y.)
| |
Collapse
|
14
|
Ubi BE, Gorafi YSA, Yaakov B, Monden Y, Kashkush K, Tsujimoto H. Exploiting the miniature inverted-repeat transposable elements insertion polymorphisms as an efficient DNA marker system for genome analysis and evolutionary studies in wheat and related species. FRONTIERS IN PLANT SCIENCE 2022; 13:995586. [PMID: 36119578 PMCID: PMC9479669 DOI: 10.3389/fpls.2022.995586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) constitute ~80% of the complex bread wheat genome and contribute significantly to wheat evolution and environmental adaptation. We studied 52 TE insertion polymorphism markers to ascertain their efficiency as a robust DNA marker system for genetic studies in wheat and related species. Significant variation was found in miniature inverted-repeat transposable element (MITE) insertions in relation to ploidy with the highest number of "full site" insertions occurring in the hexaploids (32.6 ± 3.8), while the tetraploid and diploid progenitors had 22.3 ± 0.6 and 15.0 ± 3.5 "full sites," respectively, which suggested a recent rapid activation of these transposons after the formation of wheat. Constructed phylogenetic trees were consistent with the evolutionary history of these species which clustered mainly according to ploidy and genome types (SS, AA, DD, AABB, and AABBDD). The synthetic hexaploids sub-clustered near the tetraploid species from which they were re-synthesized. Preliminary genotyping in 104 recombinant inbred lines (RILs) showed predominantly 1:1 segregation for simplex markers, with four of these markers already integrated into our current DArT-and SNP-based linkage map. The MITE insertions also showed stability with no single excision observed. The MITE insertion site polymorphisms uncovered in this study are very promising as high-potential evolutionary markers for genomic studies in wheat.
Collapse
Affiliation(s)
- Benjamin Ewa Ubi
- Molecular Breeding Laboratory, Arid Land Research Center, Tottori University, Tottori, Japan
- Department of Biotechnology, Ebonyi State University, Abakaliki, Abakaliki, Ebonyi, Nigeria
| | - Yasir Serag Alnor Gorafi
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
- Agricultural Research Corporation, Wad Medani, Sudan
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuki Monden
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Hisashi Tsujimoto
- Molecular Breeding Laboratory, Arid Land Research Center, Tottori University, Tottori, Japan
| |
Collapse
|
15
|
Jeon YJ, Shin YH, Cheon SJ, Park YD. Identification and Characterization of PTE-2, a Stowaway-like MITE Activated in Transgenic Chinese Cabbage Lines. Genes (Basel) 2022; 13:genes13071222. [PMID: 35886005 PMCID: PMC9319602 DOI: 10.3390/genes13071222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Transposable elements (TEs) are DNA fragments that can be replicated or transposed within a genome. TEs make up a high proportion of the plant genome and contribute to genetic diversity and evolution, affecting genome structure or gene activity. Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II DNA transposable elements. MITEs have specific sequences, target site duplications(TSDs), and terminal inverted repeats(TIRs), which are characteristics of the classification of MITE families. In this study, a Stowaway-like MITE, PTE-2, was activated in transgenic Chinese cabbage lines. PTE-2 was revealed by in silico analysis as the putative activated element in transgenic Chinese cabbage lines. To verify the in silico analysis data, MITE insertion polymorphism (MIP) PCR was conducted and PTE-2 was confirmed to be activated in transgenic Chinese cabbage lines. The activation tendency of the copy elements of PTE-2 at different loci was also analyzed and only one more element was activated in the transgenic Chinese cabbage lines. Analyzing the sequence of MIP PCR products, the TSD sequence and TIR motif of PTE-2 were identified and matched to the characteristics of the Stowaway-like MITE family. In addition, the flanking region of PTE-2 was modified when PTE-2 was activated.
Collapse
Affiliation(s)
| | | | | | - Young-Doo Park
- Correspondence: ; Tel.: +82-10-3338-9344; Fax: +82-31-202-8395
| |
Collapse
|
16
|
Gu X, Su Y, Wang T. 转座元件对植物基因组进化、表观遗传和适应性的作用. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Miniature Inverted-Repeat Transposable Elements (MITEs) in the Two Lepidopteran Genomes of Helicoverpa armigera and Helicoverpa zea. INSECTS 2022; 13:insects13040313. [PMID: 35447755 PMCID: PMC9033116 DOI: 10.3390/insects13040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Miniature inverted-repeat transposable elements (MITEs) are non-autonomous transposable elements that play important roles in genome organization and evolution. Helicoverpa armigera and Helicoverpa zea shows a high number of reported cases of insecticide resistance worldwide, having evolved resistance against pyrethroids, organophosphates, carbamates, organochlorines, and recently to macrocyclic lactone spinosad and several Bacillus thuringiensis toxins. In the present study, we conducted a genome screening of MITEs in the H. armigera and H. zea genomes using bioinformatics approaches, and the results revealed a total of 3570 and 7405 MITE sequences in the H. armigera and H. zea genomes, respectively. Among these MITEs, we highlighted eleven MITE insertions in the H. armigera defensome genes and only one MITE insertion in those of H. zea. Abstract Miniature inverted-repeat transposable elements MITEs are ubiquitous, non-autonomous class II transposable elements. The moths, Helicoverpa armigera and Helicoverpa zea, are recognized as the two most serious pest species within the genus. Moreover, these pests have the ability to develop insecticide resistance. In the present study, we conducted a genome-wide analysis of MITEs present in H. armigera and H. zea genomes using the bioinformatics tool, MITE tracker. Overall, 3570 and 7405 MITE sequences were identified in H. armigera and H. zea genomes, respectively. Comparative analysis of identified MITE sequences in the two genomes led to the identification of 18 families, comprising 140 MITE members in H. armigera and 161 MITE members in H. zea. Based on target site duplication (TSD) sequences, the identified families were classified into three superfamilies (PIF/harbinger, Tc1/mariner and CACTA). Copy numbers varied from 6 to 469 for each MITE family. Finally, the analysis of MITE insertion sites in defensome genes showed intronic insertions of 11 MITEs in the cytochrome P450, ATP-binding cassette transporter (ABC) and esterase genes in H. armigera whereas for H. zea, only one MITE was retrieved in the ABC-C2 gene. These insertions could thus be involved in the insecticide resistance observed in these pests.
Collapse
|
18
|
Bertocchi NÁ, Oliveira TDD, Deprá M, Goñi B, Valente VLS. Interpopulation variation of transposable elements of the hAT superfamily in Drosophila willistoni (Diptera: Drosophilidae): in-situ approach. Genet Mol Biol 2022; 45:e20210287. [PMID: 35297941 PMCID: PMC8961557 DOI: 10.1590/1678-4685-gmb-2021-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Transposable elements are abundant and dynamic part of the genome, influencing organisms in different ways through their presence or mobilization, or by acting directly on pre- and post-transcriptional regulatory regions. We compared and evaluated the presence, structure, and copy number of three hAT superfamily transposons (hobo, BuT2, and mar) in five strains of Drosophila willistoni species. These D. willistoni strains are of different geographical origins, sampled across the north-south occurrence of this species. We used sequenced clones of the hAT elements in fluorescence in-situ hybridizations in the polytene chromosomes of three strains of D. willistoni. We also analyzed the structural characteristics and number of copies of these hAT elements in the 10 currently available sequenced genomes of the willistoni group. We found that hobo, BuT2, and mar were widely distributed in D. willistoni polytene chromosomes and sequenced genomes of the willistoni group, except for mar, which is restricted to the subgroup willistoni. Furthermore, the elements hobo, BuT2, and mar have different evolutionary histories. The transposon differences among D. willistoni strains, such as variation in the number, structure, and chromosomal distribution of hAT transposons, could reflect the genomic and chromosomal plasticity of D. willistoni species in adapting to highly variable environments.
Collapse
Affiliation(s)
- Natasha Ávila Bertocchi
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Thays Duarte de Oliveira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil
| | - Beatriz Goñi
- Universidad de la República, Facultad de Ciencias, Montevideo, Uruguay
| | - Vera Lúcia S Valente
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Wicker T, Stritt C, Sotiropoulos AG, Poretti M, Pozniak C, Walkowiak S, Gundlach H, Stein N. Transposable Element Populations Shed Light on the Evolutionary History of Wheat and the Complex Co-Evolution of Autonomous and Non-Autonomous Retrotransposons. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100022. [PMID: 36619351 PMCID: PMC9744471 DOI: 10.1002/ggn2.202100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Wheat has one of the largest and most repetitive genomes among major crop plants, containing over 85% transposable elements (TEs). TEs populate genomes much in the way that individuals populate ecosystems, diversifying into different lineages, sub-families and sub-populations. The recent availability of high-quality, chromosome-scale genome sequences from ten wheat lines enables a detailed analysis how TEs evolved in allohexaploid wheat, its diploids progenitors, and in various chromosomal haplotype segments. LTR retrotransposon families evolved into distinct sub-populations and sub-families that were active in waves lasting several hundred thousand years. Furthermore, It is shown that different retrotransposon sub-families were active in the three wheat sub-genomes, making them useful markers to study and date polyploidization events and chromosomal rearrangements. Additionally, haplotype-specific TE sub-families are used to characterize chromosomal introgressions in different wheat lines. Additionally, populations of non-autonomous TEs co-evolved over millions of years with their autonomous partners, leading to complex systems with multiple types of autonomous, semi-autonomous and non-autonomous elements. Phylogenetic and TE population analyses revealed the relationships between non-autonomous elements and their mobilizing autonomous partners. TE population analysis provided insights into genome evolution of allohexaploid wheat and genetic diversity of species, and may have implication for future crop breeding.
Collapse
Affiliation(s)
- Thomas Wicker
- Department of Plant and Microbial BiologyUniversity of ZurichZurich8008Switzerland
| | - Christoph Stritt
- Department of Plant and Microbial BiologyUniversity of ZurichZurich8008Switzerland
- Present address:
Department of Medical Parasitology and Infection BiologySwiss Tropical and Public Health InstituteBasel4123Switzerland
- Present address:
University of BaselBasel4001Switzerland
| | | | - Manuel Poretti
- Department of Plant and Microbial BiologyUniversity of ZurichZurich8008Switzerland
| | - Curtis Pozniak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSaskatchewanSK S7N 5A8Canada
| | - Sean Walkowiak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSaskatchewanSK S7N 5A8Canada
- Grain Research LaboratoryCanadian Grain CommissionWinnipegManitobaR3C 3G8Canada
| | - Heidrun Gundlach
- PGSB Plant Genome and Systems BiologyHelmholtz Center MunichGerman Research Center for Environmental HealthNeuherberg85764Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland06466Germany
- Center of Integrated Breeding Research (CiBreed)Department of Crop SciencesGeorg‐August‐UniversityGöttingen37075Germany
| |
Collapse
|
20
|
Zidi M, Denis F, Klai K, Chénais B, Caruso A, Djebbi S, Mezghani M, Casse N. Genome-wide characterization of Mariner-like transposons and their derived MITEs in the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). G3 (BETHESDA, MD.) 2021; 11:jkab287. [PMID: 34849769 PMCID: PMC8664452 DOI: 10.1093/g3journal/jkab287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022]
Abstract
The whitefly, Bemisia tabaci is a hemipteran pest of vegetable crops vectoring a broad category of viruses. Currently, this insect pest showed a high adaptability and resistance to almost all the chemical compounds commonly used for its control. In many cases, transposable elements (TEs) contributed to the evolution of host genomic plasticity. This study focuses on the annotation of Mariner-like elements (MLEs) and their derived Miniature Inverted repeat Transposable Elements (MITEs) in the genome of B. tabaci. Two full-length MLEs belonging to mauritiana and irritans subfamilies were detected and named Btmar1.1 and Btmar2.1, respectively. Additionally, 548 defective MLE sequences clustering mainly into 19 different Mariner lineages of mauritiana and irritans subfamilies were identified. Each subfamily showed a significant variation in MLE copy number and size. Furthermore, 71 MITEs were identified as MLEs derivatives that could be mobilized via the potentially active transposases encoded by Btmar 1.1 and Btmar2.1. The vast majority of sequences detected in the whitefly genome present unusual terminal inverted repeats (TIRs) of up to 400 bp in length. However, some exceptions are sequences without TIRs. This feature of the MLEs and their derived MITEs in B. tabaci genome that distinguishes them from all the other MLEs so far described in insects, which have TIRs size ranging from 20 to 40 bp. Overall, our study provides an overview of MLEs, especially those with large TIRs, and their related MITEs, as well as diversity of their families, which will provide a better understanding of the evolution and adaptation of the whitefly genome.
Collapse
Affiliation(s)
- Marwa Zidi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Françoise Denis
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
- Laboratoire BOREA MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, 75231 Paris, France
| | - Khouloud Klai
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Benoît Chénais
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Aurore Caruso
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Maha Mezghani
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Nathalie Casse
- Biologie des Organismes, Stress, Santé, Environnement, Le Mans Université, F-72085 Le Mans, France
| |
Collapse
|
21
|
Root-Bernstein R, Churchill B. Co-Evolution of Opioid and Adrenergic Ligands and Receptors: Shared, Complementary Modules Explain Evolution of Functional Interactions and Suggest Novel Engineering Possibilities. Life (Basel) 2021; 11:life11111217. [PMID: 34833093 PMCID: PMC8623292 DOI: 10.3390/life11111217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cross-talk between opioid and adrenergic receptors is well-characterized and involves second messenger systems, the formation of receptor heterodimers, and the presence of extracellular allosteric binding regions for the complementary ligand; however, the evolutionary origins of these interactions have not been investigated. We propose that opioid and adrenergic ligands and receptors co-evolved from a common set of modular precursors so that they share binding functions. We demonstrate the plausibility of this hypothesis through a review of experimental evidence for molecularly complementary modules and report unexpected homologies between the two receptor types. Briefly, opioids form homodimers also bind adrenergic compounds; opioids bind to conserved extracellular regions of adrenergic receptors while adrenergic compounds bind to conserved extracellular regions of opioid receptors; opioid-like modules appear in both sets of receptors within key ligand-binding regions. Transmembrane regions associated with homodimerization of each class of receptors are also highly conserved across receptor types and implicated in heterodimerization. This conservation of multiple functional modules suggests opioid–adrenergic ligand and receptor co-evolution and provides mechanisms for explaining the evolution of their crosstalk. These modules also suggest the structure of a primordial receptor, providing clues for engineering receptor functions.
Collapse
|
22
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
23
|
Ben Amara W, Quesneville H, Khemakhem MM. A Genomic Survey of Mayetiola destructor Mobilome Provides New Insights into the Evolutionary History of Transposable Elements in the Cecidomyiid Midges. PLoS One 2021; 16:e0257996. [PMID: 34634072 PMCID: PMC8504770 DOI: 10.1371/journal.pone.0257996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
The availability of the Whole-Genome Sequence of the wheat pest Mayetiola destructor offers the opportunity to investigate the Transposable Elements (TEs) content and their relationship with the genes involved in the insect virulence. In this study, de novo annotation carried out using REPET pipeline showed that TEs occupy approximately 16% of the genome and are represented by 1038 lineages. Class II elements were the most frequent and most TEs were inactive due to the deletions they have accumulated. The analyses of TEs ages revealed a first burst at 20% of divergence from present that mobilized many TE families including mostly Tc1/mariner and Gypsy superfamilies and a second burst at 2% of divergence, which involved mainly the class II elements suggesting new TEs invasions. Additionally, 86 TEs insertions involving recently transposed elements were identified. Among them, several MITEs and Gypsy retrotransposons were inserted in the vicinity of SSGP and chemosensory genes. The findings represent a valuable resource for more in-depth investigation of the TE impact onto M. destructor genome and their possible influence on the expression of the virulence and chemosensory genes and consequently the behavior of this pest towards its host plants.
Collapse
Affiliation(s)
- Wiem Ben Amara
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hadi Quesneville
- INRAE, URGI, Université Paris-Saclay, Versailles, France
- INRAE, BioinfOmics, Plant Bioinformatics Facility, Université Paris-Saclay, Versailles, France
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
24
|
Rooda I, Kaselt B, Liivrand M, Smolander OP, Salumets A, Velthut-Meikas A. Hsa-mir-548 family expression in human reproductive tissues. BMC Genom Data 2021; 22:40. [PMID: 34625017 PMCID: PMC8501715 DOI: 10.1186/s12863-021-00997-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hsa-miR-548ba expressed in ovarian granulosa cells targets PTEN and LIFR, which are essential for ovarian follicle activation and growth. The expression pattern of hsa-miR-548ba correlates with its host gene follicle-stimulating hormone receptor (FSHR), and FSH has a positive influence on hsa-miR-548ba expression. However, hsa-miR-548ba is a member of a large hsa-mir-548 family with potentially overlapping targets. The current study aims to investigate the co-expression of hsa-mir-548 family members in FSHR-positive reproductive tissues and to explore the potential co-regulation of pathways. RESULTS For the above-described analysis, small RNA sequencing data from public data repositories were used. Sequencing results revealed that hsa-miR-548ba was expressed at the highest level in the ovarian granulosa cells and uterine myometrial samples together with another twelve and one hsa-miR-548 family members, respectively. Pathway enrichment analysis of microRNA targets in the ovarian samples revealed the hsa-miR-548ba and hsa-miR-548b-5p co-regulation of RAB geranylgeranylation in mural granulosa cells. Moreover, other hsa-mir-548 family members co-regulate pathways essential for ovarian functions (PIP3 activates AKT signalling and signalling by ERBB4). In addition to hsa-miR-548ba, hsa-miR-548o-3p is expressed in the myometrium, which separately targets the peroxisome proliferator-activated receptor alpha (PPARA) pathway. CONCLUSION This study reveals that hsa-mir-548 family members are expressed in variable combinations in the reproductive tract, where they potentially fulfil different regulatory roles. The results provide a reference for further studies of the hsa-mir-548 family role in the reproductive tract.
Collapse
Affiliation(s)
- Ilmatar Rooda
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
- Competence Centre on Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia.
| | - Birgitta Kaselt
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Maria Liivrand
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, L. Puusepa St. 8, 50406, Tartu, Estonia
- Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
25
|
Tiedeman Z, Signor S. The transposable elements of the Drosophila serrata reference panel. Genome Biol Evol 2021; 13:6265467. [PMID: 33950180 PMCID: PMC8434751 DOI: 10.1093/gbe/evab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are an important component of the complex genomic ecosystem. Understanding the tempo and mode of TE proliferation, that is whether it is in maintained in transposition selection balance, or is induced periodically by environmental stress or other factors, is important for understanding the evolution of organismal genomes through time. Although TEs have been characterized in individuals or limited samples, a true understanding of the population genetics of TEs, and therefore the tempo and mode of transposition, is still lacking. Here, we characterize the TE landscape in an important model Drosophila, Drosophila serrata using the D. serrata reference panel, which is comprised of 102 sequenced inbred genotypes. We annotate the families of TEs in the D. serrata genome and investigate variation in TE copy number between genotypes. We find that many TEs have low copy number in the population, but this varies by family and includes a single TE making up to 50% of the genome content of TEs. We find that some TEs proliferate in particular genotypes compared with population levels. In addition, we characterize variation in each TE family allowing copy number to vary in each genotype and find that some TEs have diversified very little between individuals suggesting recent spread. TEs are important sources of spontaneous mutations in Drosophila, making up a large fraction of the total number of mutations in particular genotypes. Understanding the dynamics of TEs within populations will be an important step toward characterizing the origin of variation within and between species.
Collapse
Affiliation(s)
- Zachery Tiedeman
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, U.S.A
| | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, U.S.A
| |
Collapse
|
26
|
Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, Maumus F, Florent I, Alberti A, Aury JM, Barbeyron T, Cai R, Da Silva C, Istace B, Labadie K, Marie D, Mercier J, Rukwavu T, Szymczak J, Tonon T, Alves-de-Souza C, Rouzé P, Van de Peer Y, Wincker P, Rombauts S, Porcel BM, Guillou L. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol 2021; 19:1. [PMID: 33407428 PMCID: PMC7789003 DOI: 10.1186/s12915-020-00927-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. RESULTS We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism. While the majority of Amoebophrya proteins (63.7% of A25 and 59.3% of A120) had no functional assignment, we found many orthologs shared with Dinophyceae. Our analyses revealed a strong tendency for genes encoded by unidirectional clusters and high levels of synteny conservation between the two genomes despite low interspecific protein sequence similarity, suggesting rapid protein evolution. Most strikingly, we identified a large portion of non-canonical introns, including repeated introns, displaying a broad variability of associated splicing motifs never observed among eukaryotes. Those introner elements appear to have the capacity to spread over their respective genomes in a manner similar to transposable elements. Finally, we confirmed the reduction of organelles observed in Amoebophrya spp., i.e., loss of the plastid, potential loss of a mitochondrial genome and functions. CONCLUSION These results expand the range of atypical genome features found in basal dinoflagellates and raise questions regarding speciation and the evolutionary mechanisms at play while parastitism was selected for in this particular unicellular lineage.
Collapse
Affiliation(s)
- Sarah Farhat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Phuong Le
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ehsan Kayal
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Estelle Bigeard
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Erwan Corre
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum national d'Histoire naturelle, CNRS, CP 52, 57 rue Cuvier, 75005, Paris, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, UMR 8227, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Ruibo Cai
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Jonathan Mercier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Tsinda Rukwavu
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jeremy Szymczak
- Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Catharina Alves-de-Souza
- Algal Resources Collection, MARBIONC, Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - Pierre Rouzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Betina M Porcel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057, Evry, France.
| | - Laure Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France.
| |
Collapse
|
27
|
Shen E, Chen T, Zhu X, Fan L, Sun J, Llewellyn DJ, Wilson I, Zhu QH. Expansion of MIR482/2118 by a class-II transposable element in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2084-2099. [PMID: 32578284 DOI: 10.1111/tpj.14885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Some plant microRNA (miRNA) families contain multiple members generating identical or highly similar mature miRNA variants. Mechanisms underlying the expansion of miRNA families remain elusive, although tandem and/or segmental duplications have been proposed. In this study of two tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, and their extant diploid progenitors, Gossypium arboreum and Gossypium raimondii, we investigated the gain and loss of members of the miR482/2118 superfamily, which modulates the expression of nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes. We found significant expansion of MIR482/2118d in G. barbadense, G. hirsutum and G. raimondii, but not in G. arboreum. Several newly expanded MIR482/2118d loci have mutated to produce different miR482/2118 variants with altered target-gene specificity. Based on detailed analysis of sequences flanking these MIR482/2118 loci, we found that this expansion of MIR482/2118d and its derivatives resulted from an initial capture of an MIR482/2118d by a class-II DNA transposable element (TE) in G. raimondii prior to the tetraploidization event, followed by transposition to new genomic locations in G. barbadense, G. hirsutum and G. raimondii. The 'GosTE' involved in the capture and proliferation of MIR482/2118d and its derivatives belongs to the PIF/Harbinger superfamily, generating a 3-bp target site duplication upon insertion at new locations. All orthologous MIR482/2118 loci in the two diploids were retained in the two tetraploids, but mutation(s) in miR482/2118 were observed across all four species as well as in different cultivars of both G. barbadense and G. hirsutum, suggesting a dynamic co-evolution of miR482/2118 and its NBS-LRR targets. Our results provide fresh insights into the mechanisms contributing to MIRNA proliferation and enrich our knowledge on TEs.
Collapse
Affiliation(s)
- Enhui Shen
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- New Rural Development Institute, Zhejiang University, Hangzhou, 310058, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xintian Zhu
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Longjiang Fan
- Institute of Crop Sciences and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Danny J Llewellyn
- Black Mountain Laboratories, CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Iain Wilson
- Black Mountain Laboratories, CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Qian-Hao Zhu
- Black Mountain Laboratories, CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
28
|
Perumal S, James B, Tang L, Kagale S, Robinson SJ, Yang TJ, Parkin IAP. Characterization of B-Genome Specific High Copy hAT MITE Families in Brassica nigra Genome. FRONTIERS IN PLANT SCIENCE 2020; 11:1104. [PMID: 32793262 PMCID: PMC7385995 DOI: 10.3389/fpls.2020.01104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Miniature inverted-repeat transposable elements (MITEs) are non-autonomous class II transposons which have been shown to influence genome evolution. Brassica nigra L. (B-genome) is one of three Brassica diploids cultivated primarily as an oil crop, which harbors novel alleles important for breeding. Two new high copy hAT MITE families (BniHAT-1 and BniHAT-2) from the B-genome were characterized and their prevalence assessed in the genomes of the related diploids, rapa L. (A) and Brassica oleracea L. (C). Both novel MITE families were present at high copy numbers in the B-genome with 434 and 331 copies of BniHAT-1 and BniHAT-2, respectively. Yet less than 20 elements were identified in the genome assemblies of the A, and C -genomes, supporting B-genome specific proliferation of these MITE families. Although apparently randomly distributed across the genome, 68 and 70% of the B-genome MITEs were present within 2 kb flanking regions of annotated genes suggesting they might influence gene expression and/or function. In addition, MITE derived microRNAs and transcription factor binding sites suggested a putative role in gene regulation. Age of insertion analysis revealed that the major proliferation of these elements occurred during 2-3 million years ago. Additionally, site-specific polymorphism analyses showed that 44% MITEs were undergoing active amplification into the B-genome. Overall, this study provides a comprehensive analysis of two high copy MITE families, which were specifically amplified in the B-genome, suggesting a potential role in shaping the Brassica B-genome.
Collapse
Affiliation(s)
| | - Brian James
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Lily Tang
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | | | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
29
|
Gao B, Sang Y, Zong W, Diaby M, Shen D, Wang S, Wang Y, Chen C, Song C. Evolution and domestication of Tc1/mariner transposons in the genome of African coelacanth ( Latimeria chalumnae). Genome 2020; 63:375-386. [PMID: 32268072 DOI: 10.1139/gen-2019-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Here, we comprehensively analysed the abundance, diversity, and activity of Tc1/mariner transposons in African coelacanth (Latimeria chalumnae). Fifteen Tc1/mariner autonomous transposons were identified and grouped into six clades: DD34E/Tc1, DD34D/mariner, DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger, belonging to three known families: DD34E/Tc1, DD34D/mariner, and DD×D/pogo (DD35D/Fot, DD31D/pogo, DD30-31D/pogo-like, and DD32-36D/Tigger). Thirty-one miniature inverted-repeat transposable element (MITE) transposons of Tc1/mariner were also identified, and 20 of them display similarity to the identified autonomous transposons. The structural organization of these full Tc1/mariner elements includes a transposase gene flanked by terminal inverted repeats (TIRs) with TA dinucleotides. The transposases contain N-terminal DNA binding domain and a C-terminal catalytic domain characterized by the presence of a conservative D(Asp)DE(Glu)/D triad that is essential for transposase activity. The Tc1/mariner superfamily in coelacanth exhibited very low genome coverage (0.3%), but it experienced an extraordinary difference of proliferation dynamics among the six clades identified; moreover, most of them exhibited a very recent and current proliferation, suggesting that some copies of these transposons are putatively active. Additionally, at least four functional genes derived from Tc1/mariner transposons were found. We provide an up-to-date overview of Tc1/mariner in coelacanth, which may be helpful in determining genome and gene evolution in this living fossil.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yatong Sang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wencheng Zong
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Mohamed Diaby
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
30
|
Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding. Mol Biol Rep 2020; 47:3155-3167. [PMID: 32162128 DOI: 10.1007/s11033-020-05365-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/29/2020] [Indexed: 12/20/2022]
Abstract
Plant molecular breeding is expected to give significant gains in cultivar development through development and utilization of suitable molecular marker systems for genetic diversity analysis, rapid DNA fingerprinting, identification of true hybrids, trait mapping and marker-assisted selection. Transposable elements (TEs) are the most abundant component in a genome and being used as genetic markers in the plant molecular breeding. Here, we review on the high copious transposable element belonging to class-II DNA TEs called "miniature inverted-repeat transposable elements" (MITEs). MITEs are ubiquitous, short and non-autonomous DNA transposable elements which have a tendency to insert into genes and genic regions have paved a way for the development of functional DNA marker systems in plant genomes. This review summarises the characteristics of MITEs, principles and methodologies for development of MITEs based DNA markers, bioinformatics tools and resources for plant MITE discovery and their utilization in crop improvement.
Collapse
|
31
|
Evolution of a 72-Kilobase Cointegrant, Conjugative Multiresistance Plasmid in Community-Associated Methicillin-Resistant Staphylococcus aureus Isolates from the Early 1990s. Antimicrob Agents Chemother 2019; 63:AAC.01560-19. [PMID: 31501140 DOI: 10.1128/aac.01560-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Horizontal transfer of plasmids encoding antimicrobial resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s, the first CA-MRSA strain isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline, and penicillin resistance genes on plasmid pWBG753 (∼30 kb). WA-5 and pWBG753 appeared only briefly in WA; however, fusidic acid resistance plasmids related to pWBG753 were also present in the first European CA-MRSA isolates at the time. Here, we characterize a 72-kb conjugative plasmid, pWBG731, present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a pWBG749 family conjugative plasmid. pWBG731 carried mupirocin, trimethoprim, cadmium, and penicillin resistance genes. The stepwise evolution of pWBG731 likely occurred through the combined actions of IS257, IS257-dependent miniature inverted-repeat transposable elements (MITEs), and the BinL resolution system of the β-lactamase transposon Tn552 An evolutionarily intermediate ∼42-kb nonconjugative plasmid, pWBG715, possessed the same resistance genes as pWBG731 but retained an integrated copy of the small tetracycline resistance plasmid pT181. IS257 likely facilitated the replacement of pT181 with conjugation genes on pWBG731, thus enabling autonomous transfer. Like conjugative plasmid pWBG749, pWBG731 also mobilized nonconjugative plasmids carrying oriT mimics. It seems likely that pWBG731 represents the product of multiple recombination events between the WA-5 pWBG753 plasmid and other mobile genetic elements present in indigenous community-associated methicillin-sensitive S. aureus (CA-MSSA) isolates. The molecular evolution of pWBG731 saliently illustrates how diverse mobile genetic elements can together facilitate rapid accrual and horizontal dissemination of multiresistance in S. aureus CA-MRSA.
Collapse
|
32
|
Functional Characterization of a Miniature Inverted Transposable Element at the Origin of mcr-5 Gene Acquisition in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.00559-19. [PMID: 31085513 DOI: 10.1128/aac.00559-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/06/2019] [Indexed: 01/24/2023] Open
Abstract
Plasmid-mediated colistin resistance of the mobile colistin resistance (MCR) type is a growing concern in Enterobacteriaceae since it has been described worldwide in humans and animals. Here, we identified a series of MCR-producing Escherichia coli isolates corresponding to two different clones (represented by isolates PS1 and PS8b) producing MCR-1 and MCR-5, respectively, obtained from pig fecal samples in France. Plasmid analysis showed that the plasmid carrying the mcr-1 gene (pPS1) possesses an IncHI2 backbone, whereas the mcr-5 gene was carried onto a 6,268-bp nontypeable non-self-conjugative plasmid (pPS8b). Detailed analysis of plasmid pPS8b revealed a 3,803-bp-long cassette containing the mcr-5 gene that was bracketed by two inverted-repeat (IR) sequences with 5-bp-long direct repeats at each extremity, similarly to an insertion sequence, but with the exception that no transposase gene was identified within this cassette. By performing in vitro transposition experiments, we showed that the mcr-5 cassette could be mobilized by the TnAs1 transposase provided in trans, displaying a mobilization mechanism similar to that of miniature inverted-repeat transposable elements (MITEs).
Collapse
|
33
|
MITE Aba12 , a Novel Mobile Miniature Inverted-Repeat Transposable Element Identified in Acinetobacter baumannii ATCC 17978 and Its Prevalence across the Moraxellaceae Family. mSphere 2019; 4:4/1/e00028-19. [PMID: 30787115 PMCID: PMC6382973 DOI: 10.1128/mspheredirect.00028-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation. Insertion sequences (IS) are fundamental mediators of genome plasticity with the potential to generate phenotypic variation with significant evolutionary outcomes. Here, a recently active miniature inverted-repeat transposon element (MITE) was identified in a derivative of Acinetobacter baumannii ATCC 17978 after being subjected to stress conditions. Transposition of the novel element led to the disruption of the hns gene, resulting in a characteristic hypermotile phenotype. DNA identity shared between the terminal inverted repeats of this MITE and coresident ISAba12 elements, together with the generation of 9-bp target site duplications, provides strong evidence that ISAba12 elements were responsible for mobilization of the MITE (designated MITEAba12) within this strain. A wider genome-level survey identified MITEAba12 in 30 additional Acinetobacter genomes at various frequencies and one Moraxella osloensis genome. Ninety MITEAba12 copies could be identified, of which 40% had target site duplications, indicating recent transposition events. Elements ranged between 111 and 114 bp; 90% were 113 bp in length. Using the MITEAba12 consensus sequence, putative outward-facing Escherichia coli σ70 promoter sequences in both orientations were identified. The identification of transcripts originating from the promoter in one direction supports the proposal that the element can influence neighboring host gene transcription. The location of MITEAba12 varied significantly between and within genomes, preferentially integrating into AT-rich regions. Additionally, a copy of MITEAba12 was identified in a novel 8.5-kb composite transposon, Tn6645, in the M. osloensis CCUG 350 chromosome. Overall, this study shows that MITEAba12 is the most abundant nonautonomous element currently found in Acinetobacter. IMPORTANCE One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation.
Collapse
|
34
|
Hassing B, Winter D, Becker Y, Mesarich CH, Eaton CJ, Scott B. Analysis of Epichloë festucae small secreted proteins in the interaction with Lolium perenne. PLoS One 2019; 14:e0209463. [PMID: 30759164 PMCID: PMC6374014 DOI: 10.1371/journal.pone.0209463] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022] Open
Abstract
Epichloë festucae is an endophyte of the agriculturally important perennial ryegrass. This species systemically colonises the aerial tissues of this host where its growth is tightly regulated thereby maintaining a mutualistic symbiotic interaction. Recent studies have suggested that small secreted proteins, termed effectors, play a vital role in the suppression of host defence responses. To date only a few effectors with important roles in mutualistic interactions have been described. Here we make use of the fully assembled E. festucae genome and EffectorP to generate a suite of 141 effector candidates. These were analysed with respect to their genome location and expression profiles in planta and in several symbiosis-defective mutants. We found an association between effector candidates and a class of transposable elements known as MITEs, but no correlation with other dynamic features of the E. festucae genome, such as transposable element-rich regions. Three effector candidates and a small GPI-anchored protein were chosen for functional analysis based on their high expression in planta compared to in culture and their differential regulation in symbiosis defective E. festucae mutants. All three candidate effector proteins were shown to possess a functional signal peptide and two could be detected in the extracellular medium by western blotting. Localization of the effector candidates in planta suggests that they are not translocated into the plant cell, but rather, are localized in the apoplastic space or are attached to the cell wall. Deletion and overexpression of the effector candidates, as well as the putative GPI-anchored protein, did not affect the plant growth phenotype or restrict growth of E. festucae mutants in planta. These results indicate that these proteins are either not required for the interaction at the observed life stages or that there is redundancy between effectors expressed by E. festucae.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Küehn-Institute, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Carl H. Mesarich
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Carla J. Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
35
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
36
|
Keidar-Friedman D, Bariah I, Kashkush K. Genome-wide analyses of miniature inverted-repeat transposable elements reveals new insights into the evolution of the Triticum-Aegilops group. PLoS One 2018; 13:e0204972. [PMID: 30356268 PMCID: PMC6200218 DOI: 10.1371/journal.pone.0204972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 09/08/2018] [Indexed: 11/19/2022] Open
Abstract
The sequence drafts of wild emmer and bread wheat facilitated high resolution, genome-wide analysis of transposable elements (TEs), which account for up to 90% of the wheat genome. Despite extensive studies, the role of TEs in reshaping nascent polyploid genomes remains to be fully understood. In this study, we retrieved miniature inverted-repeat transposable elements (MITEs) from the recently published genome drafts of Triticum aestivum, Triticum turgidum ssp. dicoccoides, Aegilops tauschii and the available genome draft of Triticum urartu. Overall, 239,126 MITE insertions were retrieved, including 3,874 insertions of a newly identified, wheat-unique MITE family that we named "Inbar". The Stowaway superfamily accounts for ~80% of the retrieved MITE insertions, while Thalos is the most abundant family. MITE insertions are distributed in the seven homologous chromosomes of the wild emmer and bread wheat genomes. The remarkably high level of insertions in the B sub-genome (~59% of total retrieved MITE insertions in the wild emmer genome draft, and ~41% in the bread wheat genome draft), emphasize its highly repetitive nature. Nearly 52% of all MITE insertions were found within or close (less than 100bp) to coding genes, and ~400 MITE sequences were found in the bread wheat transcriptome, indicating that MITEs might have a strong impact on wheat genome expression. In addition, ~40% of MITE insertions were found within TE sequences, and remarkably, ~90% of Inbar insertions were located in retrotransposon sequences. Our data thus shed new light on the role of MITEs in the diversification of allopolyploid wheat species.
Collapse
Affiliation(s)
| | - Inbar Bariah
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
37
|
Colicchio JM, Kelly JK, Hileman LC. Parental experience modifies the Mimulus methylome. BMC Genomics 2018; 19:746. [PMID: 30314445 PMCID: PMC6186029 DOI: 10.1186/s12864-018-5087-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transgenerational plasticity occurs when the environmental experience of an organism modifies the growth and development of its progeny. Leaf damage in Mimulus guttatus exhibits transgenerational plasticity mediated through differential expression of hundreds of genes. The epigenetic mechanisms that facilitate this response have yet to be described. RESULTS We performed whole genome bisulfite sequencing in the progeny of genetically identical damaged and control plants and developed a pipeline to compare differences in the mean and variance of methylation between treatment groups. We find that parental damage increases the variability of CG and CHG methylation among progeny, but does not alter the overall mean methylation. Instead it has positive effects in some regions and negative in others. We find 3,396 CHH, 203 CG, and 54 CHG Differentially Methylated Regions (DMRs) ranging from tens to thousands of base pairs scattered across the genome. CHG and CHH DMRs tended to overlap with transposable elements. CG DMRs tended to overlap with gene coding regions, many of which were previously found to be differentially expressed. CONCLUSIONS Genome-wide increases in methylome variation suggest that parental conditions can increase epigenetic diversity in response to stress. Additionally, the potential association between CG DMRs and differentially expressed genes supports the hypothesis that differential methylation is a mechanistic component of transgenerational plasticity in M. guttatus.
Collapse
Affiliation(s)
- Jack M Colicchio
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94710 USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Lena C Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| |
Collapse
|
38
|
Seligmann H, Raoult D. Stem-Loop RNA Hairpins in Giant Viruses: Invading rRNA-Like Repeats and a Template Free RNA. Front Microbiol 2018; 9:101. [PMID: 29449833 PMCID: PMC5799277 DOI: 10.3389/fmicb.2018.00101] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
We examine the hypothesis that de novo template-free RNAs still form spontaneously, as they did at the origins of life, invade modern genomes, contribute new genetic material. Previously, analyses of RNA secondary structures suggested that some RNAs resembling ancestral (t)RNAs formed recently de novo, other parasitic sequences cluster with rRNAs. Here positive control analyses of additional RNA secondary structures confirm ancestral and de novo statuses of RNA grouped according to secondary structure. Viroids with branched stems resemble de novo RNAs, rod-shaped viroids resemble rRNA secondary structures, independently of GC contents. 5' UTR leading regions of West Nile and Dengue flavivirid viruses resemble de novo and rRNA structures, respectively. An RNA homologous with Megavirus, Dengue and West Nile genomes, copperhead snake microsatellites and levant cotton repeats, not templated by Mimivirus' genome, persists throughout Mimivirus' infection. Its secondary structure clusters with candidate de novo RNAs. The saltatory phyletic distribution and secondary structure of Mimivirus' peculiar RNA suggest occasional template-free polymerization of this sequence, rather than noncanonical transcriptions (swinger polymerization, posttranscriptional editing).
Collapse
Affiliation(s)
- Hervé Seligmann
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR MEPHI, Aix-Marseille Université, IRD, Assistance Publique-Hôpitaux de Marseille, Institut Hospitalo-Universitaire Méditerranée-Infection, Marseille, France
| |
Collapse
|
39
|
Acuña-Amador L, Primot A, Cadieu E, Roulet A, Barloy-Hubler F. Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains. BMC Genomics 2018; 19:54. [PMID: 29338683 PMCID: PMC5771137 DOI: 10.1186/s12864-017-4429-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Without knowledge of their genomic sequences, it is impossible to make functional models of the bacteria that make up human and animal microbiota. Unfortunately, the vast majority of publicly available genomes are only working drafts, an incompleteness that causes numerous problems and constitutes a major obstacle to genotypic and phenotypic interpretation. In this work, we began with an example from the class Bacteroidia in the phylum Bacteroidetes, which is preponderant among human orodigestive microbiota. We successfully identify the genetic loci responsible for assembly breaks and misassemblies and demonstrate the importance and usefulness of long-read sequencing and curated reannotation. RESULTS We showed that the fragmentation in Bacteroidia draft genomes assembled from massively parallel sequencing linearly correlates with genomic repeats of the same or greater size than the reads. We also demonstrated that some of these repeats, especially the long ones, correspond to misassembled loci in three reference Porphyromonas gingivalis genomes marked as circularized (thus complete or finished). We prove that even at modest coverage (30X), long-read resequencing together with PCR contiguity verification (rrn operons and an integrative and conjugative element or ICE) can be used to identify and correct the wrongly combined or assembled regions. Finally, although time-consuming and labor-intensive, consistent manual biocuration of three P. gingivalis strains allowed us to compare and correct the existing genomic annotations, resulting in a more accurate interpretation of the genomic differences among these strains. CONCLUSIONS In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.,Laboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Aline Primot
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Edouard Cadieu
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Alain Roulet
- GenoToul Genome & Transcriptome (GeT-PlaGe), INRA, US1426, Castanet-Tolosan, France
| | - Frédérique Barloy-Hubler
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.
| |
Collapse
|
40
|
Bertocchi NA, Torres FP, Garnero ADV, Gunski RJ, Wallau GL. Evolutionary history of the mariner element galluhop in avian genomes. Mob DNA 2017; 8:11. [PMID: 28814978 PMCID: PMC5556988 DOI: 10.1186/s13100-017-0094-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) are highly abundant genomic parasites in eukaryote genomes. Although several genomes have been screened for TEs, so far very limited information is available regarding avian TEs and their evolutionary histories. Taking advantage of the rich genomic data available for birds, we characterized the evolutionary history of the galluhop element, originally described in Gallus gallus, through the use of several bioinformatic analyses. RESULTS galluhop homologous sequences were found in 6 of 72 genomes analyzed: 5 species of Galliformes (Gallus gallus, Meleagris gallopavo, Coturnix japonica, Colinus virginianus, Lyrurus tetrix) and one Buceritiformes (Buceros rhinoceros). The copy number ranged from 5 to 10,158, in the genomes of C. japonica and G. gallus respectively. All 6 species possessed short elements, suggesting the presence of Miniature Inverted repeats Transposable Elements (MITEs), which underwent an ancient massive amplification in the G. gallus and M. gallopavo genomes. Only 4 species showed potential MITE full-length partners, although no potential coding copies were detected. Phylogenetic analysis of reconstructed coding sequences showed that galluhop homolog sequences form a new mariner subfamily, which we termed Gallus. Inter-species and intragenomic galluhop distance analyses indicated a high identity between the consensus of B. rhinoceros and the other 5 related species, and different emergence ages of the element between the Galliformes species and B. rhinocerus, suggesting that horizontal transfer took place from Galliformes to a Buceritiformes ancestor, probably through an intermediate species. CONCLUSIONS Overall, our results showed that mariner elements have amplified to high copy numbers in some avian species, and that this transposition burst probably occurred in the common ancestor of G. gallus and M. gallopavo. In addition, although no coding sequences could be found currently, they probably existed, allowing an ancient massive MITE amplification in these 2 species. The other 4 species also have MITEs, suggesting that this new mariner family is prone to give rise to such non-autonomous derivatives. Last, our results suggest that a horizontal transfer event of a galluhop element occurred between Galliformes and Buceritiformes.
Collapse
Affiliation(s)
- Natasha Avila Bertocchi
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Fabiano Pimentel Torres
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Analía del Valle Garnero
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Ricardo José Gunski
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães – FIOCRUZ-CPqAM, Recife, Pernambuco Brazil
| |
Collapse
|
41
|
Guo C, Spinelli M, Ye C, Li QQ, Liang C. Genome-Wide Comparative Analysis of Miniature Inverted Repeat Transposable Elements in 19 Arabidopsis thaliana Ecotype Accessions. Sci Rep 2017; 7:2634. [PMID: 28572566 PMCID: PMC5454002 DOI: 10.1038/s41598-017-02855-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Miniature inverted repeat transposable elements (MITEs) are prevalent in eukaryotic genomes. They are known to critically influence the process of genome evolution and play a role in gene regulation. As the first study concentrated in the transposition activities of MITEs among different ecotype accessions within a species, we conducted a genome-wide comparative analysis by characterizing and comparing MITEs in 19 Arabidopsis thaliana accessions. A total of 343485 MITE putative sequences, including canonical, diverse and partial ones, were delineated from all 19 accessions. Within the entire population of MITEs sequences, 80.7% of them were previously unclassified MITEs, demonstrating a different genomic distribution and functionality compared to the classified MITEs. The interactions between MITEs and homologous genes across 19 accessions provided a fine source for analyzing MITE transposition activities and their impacts on genome evolution. Moreover, a significant proportion of MITEs were found located in the last exon of genes besides the ordinary intron locality, thus potentially modifying the end of genes. Finally, analysis of the impact of MITEs on gene expression suggests that migrations of MITEs have no detectable effect on the expression level for host genes across accessions.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | | - Congting Ye
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China.
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA.
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
42
|
Paternal Induction of Hybrid Dysgenesis in Drosophila melanogaster Is Weakly Correlated with Both P-Element and hobo Element Dosage. G3-GENES GENOMES GENETICS 2017; 7:1487-1497. [PMID: 28315830 PMCID: PMC5427502 DOI: 10.1534/g3.117.040634] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transposable elements (TEs) are virtually ubiquitous components of genomes, yet they often impose significant fitness consequences on their hosts. In addition to producing specific deleterious mutations by insertional inactivation, TEs also impose general fitness costs by inducing DNA damage and participating in ectopic recombination. These latter fitness costs are often assumed to be dosage-dependent, with stronger effects occurring in the presence of higher TE copy numbers. We test this assumption in Drosophila melanogaster by considering the relationship between the copy number of two active DNA transposons, P-element and hobo element, and the incidence of hybrid dysgenesis, a sterility syndrome associated with transposon activity in the germline. By harnessing a subset of the Drosophila Genetic Reference Panel (DGRP), a group of fully-sequenced D. melanogaster strains, we describe quantitative and structural variation in P-elements and hobo elements among wild-derived genomes and associate these factors with hybrid dysgenesis. We find that the incidence of hybrid dysgenesis is associated with both P-element and hobo element copy number in a dosage-dependent manner. However, the relationship is weak for both TEs, suggesting that dosage alone explains only a small part of TE-associated fitness costs.
Collapse
|
43
|
Translational repression by a miniature inverted-repeat transposable element in the 3' untranslated region. Nat Commun 2017; 8:14651. [PMID: 28256530 PMCID: PMC5338036 DOI: 10.1038/ncomms14651] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
Transposable elements constitute a substantial portion of eukaryotic genomes and contribute to genomic variation, function, and evolution. Miniature inverted-repeat transposable elements (MITEs), as DNA transposons, are widely distributed in plant and animal genomes. Previous studies have suggested that retrotransposons act as translational regulators; however, it remains unknown how host mRNAs are influenced by DNA transposons. Here we report a translational repression mechanism mediated by a stowaway-like MITE (sMITE) embedded in the 3'-untranslated region (3'-UTR) of Ghd2, a member of the CCT (CONSTANS [CO], CO-LIKE and TIMING OF CAB1) gene family in rice. Ghd2 regulates important agronomic traits, including grain number, plant height and heading date. Interestingly, the translational repression of Ghd2 by the sMITE mainly relies on Dicer-like 3a (OsDCL3a). Furthermore, other MITEs in the 3'-UTRs of different rice genes exhibit a similar effect on translational repression, thus suggesting that MITEs may exert a general regulatory function at the translational level.
Collapse
|
44
|
Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families. Mol Genet Genomics 2017; 292:565-583. [PMID: 28204924 DOI: 10.1007/s00438-017-1291-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
The coffee berry borer (CBB) Hypothenemus hampei is the most limiting pest of coffee production worldwide. The CBB genome has been recently sequenced; however, information regarding the presence and characteristics of transposable elements (TEs) was not provided. Using systematic searching strategies based on both de novo and homology-based approaches, we present a library of TEs from the draft genome of CBB sequenced by the Colombian Coffee Growers Federation. The library consists of 880 sequences classified as 66% Class I (LTRs: 46%, non-LTRs: 20%) and 34% Class II (DNA transposons: 8%, Helitrons: 16% and MITEs: 10%) elements, including families of the three main LTR (Gypsy, Bel-Pao and Copia) and non-LTR (CR1, Daphne, I/Nimb, Jockey, Kiri, R1, R2 and R4) clades and DNA superfamilies (Tc1-mariner, hAT, Merlin, P, PIF-Harbinger, PiggyBac and Helitron). We propose the existence of novel families: Hypo, belonging to the LTR Gypsy superfamily; Hamp, belonging to non-LTRs; and rosa, belonging to Class II or DNA transposons. Although the rosa clade has been previously described, it was considered to be a basal subfamily of the mariner family. Based on our phylogenetic analysis, including Tc1, mariner, pogo, rosa and Lsra elements from other insects, we propose that rosa and Lsra elements are subfamilies of an independent family of Class II elements termed rosa. The annotations obtained indicate that a low percentage of the assembled CBB genome (approximately 8.2%) consists of TEs. Although these TEs display high diversity, most sequences are degenerate, with few full-length copies of LTR and DNA transposons and several complete and putatively active copies of non-LTR elements. MITEs constitute approximately 50% of the total TEs content, with a high proportion associated with DNA transposons in the Tc1-mariner superfamily.
Collapse
|
45
|
Abstract
Until very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome. It is the largest genome sequenced and assembled to date, and the first from the subgenus Strobus, or white pines, a group that is notable for having the largest genomes among the pines. The genome represents a unique opportunity to investigate genome "obesity" in conifers and white pines. Comparative analysis of P. lambertiana and P. taeda L. reveals new insights on the conservation, age, and diversity of the highly abundant transposable elements, the primary factor determining genome size. Like most North American white pines, the principal pathogen of P. lambertiana is white pine blister rust (Cronartium ribicola J.C. Fischer ex Raben.). Identification of candidate genes for resistance to this pathogen is of great ecological importance. The genome sequence afforded us the opportunity to make substantial progress on locating the major dominant gene for simple resistance hypersensitive response, Cr1 We describe new markers and gene annotation that are both tightly linked to Cr1 in a mapping population, and associated with Cr1 in unrelated sugar pine individuals sampled throughout the species' range, creating a solid foundation for future mapping. This genomic variation and annotated candidate genes characterized in our study of the Cr1 region are resources for future marker-assisted breeding efforts as well as for investigations of fundamental mechanisms of invasive disease and evolutionary response.
Collapse
|
46
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
47
|
Zhou M, Tao G, Pi P, Zhu Y, Bai Y, Meng X. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla). PLANTA 2016; 244:775-787. [PMID: 27160169 DOI: 10.1007/s00425-016-2544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
Moso bamboo MITEs were genome-wide identified first time, and data shows that MITEs contribute to the genomic diversity and differentiation of bamboo. Miniature inverted-repeat transposable elements (MITEs) are widespread in animals and plants. There are a large number of transposable elements in moso bamboo (Phyllostachys heterocycla var. pubescens) genome, but the genome-wide information of moso bamboo MITEs is not known yet. Here we identified 362 MITE families with a total of 489,592 MITE-related sequences, accounting for 4.74 % of the moso bamboo genome. The 362 MITE families are clustered into six known and one unknown super-families. Our analysis indicated that moso bamboo MITEs preferred to reside in or near the genes that might be involved in regulation of host gene expression. Of the seven super-families, three might undergo major expansion event twice, respectively, during 8-11 million years ago (mya) ago and 22-28 mya ago; two might experience a long expansion period from 6 to 13 mya. Almost 1/3 small RNAs might be derived from the MITE sequences. Some MITE families generate small RNAs mainly from the terminals, while others predominantly from the central region. Given the high copy number of MITEs, many siRNAs and miRNAs derived from MITE sequences and the preferential insertion of MITE into gene regions, MITEs may contribute to the genomic diversity and differentiation of bamboo.
Collapse
Affiliation(s)
- Mingbing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China.
| | - Guiyun Tao
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Peiyao Pi
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Yihang Zhu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Youhuang Bai
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| | - Xianwen Meng
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, 311300, Zhejiang Province, People's Republic of China
| |
Collapse
|
48
|
Ishchuk OP, Vojvoda Zeljko T, Schifferdecker AJ, Mebrahtu Wisén S, Hagström ÅK, Rozpędowska E, Rørdam Andersen M, Hellborg L, Ling Z, Sibirny AA, Piškur J. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2. PLoS One 2016; 11:e0161741. [PMID: 27560164 PMCID: PMC4999066 DOI: 10.1371/journal.pone.0161741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/10/2016] [Indexed: 11/19/2022] Open
Abstract
The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains’ chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2), which support both the yeast’s autonomous replication and the stable maintenance of plasmids. In the sequenced genome of the D. bruxellensis strain CBS 2499, CEN1 and CEN2 are each present in one copy. They differ from the known “point” CEN elements, and their biological activity is retained within ~900–1300 bp DNA segments. CEN1 and CEN2 have features of both “point” and “regional” centromeres: They contain conserved DNA elements, ARSs, short repeats, one tRNA gene, and transposon-like elements within less than 1 kb. Our discovery of a miniature inverted-repeat transposable element (MITE) next to CEN2 is the first report of such transposons in yeast. The transformants carrying circular plasmids with cloned CEN1 and CEN2 undergo a phenotypic switch: They form fluffy colonies and produce three times more biofilm. The introduction of extra copies of CEN1 and CEN2 promotes both genome rearrangements and ploidy shifts, with these effects mediated by homologous recombination (between circular plasmid and genome centromere copy) or by chromosome breakage when integrated. Also, the proximity of the MITE-like transposon to CEN2 could translocate CEN2 within the genome or cause chromosomal breaks, so promoting genome dynamics. With extra copies of CEN1 and CEN2, the yeast’s enhanced capacities to rearrange its genome and to change its gene expression could increase its abilities for exploiting new and demanding niches.
Collapse
Affiliation(s)
- Olena P. Ishchuk
- Department of Biology, Lund University, Lund, Sweden
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
- * E-mail:
| | - Tanja Vojvoda Zeljko
- Department of Biology, Lund University, Lund, Sweden
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | | | | | | | | | - Zhihao Ling
- Department of Biology, Lund University, Lund, Sweden
| | - Andrei A. Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
- Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow, Poland
| | - Jure Piškur
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
49
|
Abstract
Transposons of the Tn3 family form a widespread and remarkably homogeneous group of bacterial transposable elements in terms of transposition functions and an extremely versatile system for mediating gene reassortment and genomic plasticity owing to their modular organization. They have made major contributions to antimicrobial drug resistance dissemination or to endowing environmental bacteria with novel catabolic capacities. Here, we discuss the dynamic aspects inherent to the diversity and mosaic structure of Tn3-family transposons and their derivatives. We also provide an overview of current knowledge of the replicative transposition mechanism of the family, emphasizing most recent work aimed at understanding this mechanism at the biochemical level. Previous and recent data are put in perspective with those obtained for other transposable elements to build up a tentative model linking the activities of the Tn3-family transposase protein with the cellular process of DNA replication, suggesting new lines for further investigation. Finally, we summarize our current view of the DNA site-specific recombination mechanisms responsible for converting replicative transposition intermediates into final products, comparing paradigm systems using a serine recombinase with more recently characterized systems that use a tyrosine recombinase.
Collapse
|
50
|
Alptekin B, Budak H. Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genomics 2016; 17:171-187. [PMID: 27032785 DOI: 10.1007/s10142-016-0487-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/06/2016] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
MicroRNAs are critical players of post-transcriptional gene regulation with profound effects on the fundamental processes of cellular life. Their identification and characterization, together with their targets, hold great significance in exploring and exploiting their roles on a functional context, providing valuable clues into the regulation of important biological processes, such as stress tolerance or environmental adaptation. Wheat is a hardy crop, extensively harvested in temperate regions, and is a major component of the human diet. With the advent of the next generation sequencing technologies considerably decreasing sequencing costs per base-pair, genomic, and transcriptomic data from several wheat species, including the progenitors and wild relatives have become available. In this study, we performed in silico identification and comparative analysis of microRNA repertoires of bread wheat (Triticum aestivum L.) and its diploid progenitors and relatives, Aegilops sharonensis, Aegilops speltoides, Aegilops tauschii, Triticum monococcum, and Triticum urartu through the utilization of publicly available transcriptomic data. Over 200 miRNA families were identified, majority of which have not previously been reported. Ancestral relationships expanded our understanding of wheat miRNA evolution, while T. monococcum miRNAs delivered important clues on the effects of domestication on miRNA expression. Comparative analyses on wild Ae. sharonensis accessions highlighted candidate miRNAs that can be linked to stress tolerance. The miRNA repertoires of bread wheat and its diploid progenitors and relatives provide important insight into the diversification and distribution of miRNA genes, which should contribute to the elucidation of miRNA evolution of Poaceae family. A thorough understanding of the convergent and divergent expression profiles of miRNAs in different genetic backgrounds can provide unique opportunities to modulation of gene regulation for better crop performance.
Collapse
Affiliation(s)
- Burcu Alptekin
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|