1
|
Dalamitros AA, Tzivanis D, Martín-Rodríguez A, Semaltianou E, Mavridis G, Manou V. The effects of six sprint interval training sessions on muscle oxygenation and swimming performance in untrained swimmers. Front Sports Act Living 2024; 6:1451738. [PMID: 39545180 PMCID: PMC11560444 DOI: 10.3389/fspor.2024.1451738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The current study examined the changes in muscle oxygenation values and swimming performance after six sessions of sprint interval training during a three-week period in untrained swimmers. Twelve swimmers of both genders (age: 23.5 ± 5.6yrs) executed the twice-weekly experimental training protocol (EXP, n = 12), consisting of a 4 × 50 m front-crawl swimming (repeated sprint training-RST) with maximal intensity, and 2 min of passive recovery in between, after a short in-water warm-up. The control group (CON, n = 9) performed a continuous swimming set (200 m) at 120 b pm-1, with the same weekly frequency. Performance times in two maximum swim trials (400 m: T400 and 50 m: T50), muscle oxygenation of the deltoid muscle (SmO2) immediately after T400 and T50, 1-min heart rate recovery (HRR1) after T400, T50, and swim strokes during both swim trials (S/T400, S/T50) were assessed. For the EXP group, T400 improved by 2.4 (p = 0.011). In contrast, T50 presented no significant improvement (1%, p > 0.05). SmO2 decreased at T400 (5.5%, p = 0.017) and increased at T50 (3.7%, p = 0.030). HRR1 improved after T400 (7.9%, p = 0.002), T50 (4.6%, p = 0.005) and RST (9.6%, p = 0.002). S/T400 and S/T50 remained relatively unchanged (p > 0.05). The CON group presented no significant changes in any of the variables examined. In conclusion, six sprint interval training sessions can improve aerobic capacity over a 3-week training period, as indicated by the enhanced T400 performance and the reduced HRR1 values, in previously trained swimmers. Finally, the sensitivity of the near-infrared spectroscopy method to detect short-term training-induced changes is highlighted.
Collapse
Affiliation(s)
- Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Tzivanis
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
- Faculty of Applied Social Sciences and Communications, UNIE, Madrid, Spain
| | - Eleni Semaltianou
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Mavridis
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Manou
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Usher A, Babraj J. Impact of sprint interval training on post-fatigue mitochondrial rate in professional boxers. Eur J Appl Physiol 2024:10.1007/s00421-024-05594-0. [PMID: 39227429 DOI: 10.1007/s00421-024-05594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Professional boxing is a sport that requires a high aerobic capacity to prevent fatigue and allow athletes to perform over 4-12 rounds. Typically, athletes will go into a heavy training period in a pre-bout camp lasting 6 to 9 weeks. This study investigates the impact of 3 weeks of repeated Wingate sprint interval training, performed on standard gym ergometer bikes, on skeletal muscle endurance and mitochondrial function. METHODS Ten male professional boxers (age: 26 ± 4 years, height: 175 ± 5 cm, weight: 70 ± 5 kg) participated in the study. Baseline testing involved a NIRS monitor attached to the rectus femoris muscle prior to an incremental time to exhaustion test on a treadmill. After the treadmill test participants underwent a series of arterial occlusions to determine mitochondrial function post-volitional exhaustion. Participants then continued their own training for 3 weeks and then repeated baseline testing. After the second testing session, participants undertook three weekly sprint sessions consisting of 3 × 30 s maximal sprints with 60 s recovery. Testing was repeated 3 weeks later. RESULTS The time to exhaustion increased by > 6% after 3 weeks of sprint interval training as compared to baseline and control (p < 0.05). Skeletal muscle oxygen saturation (SmO2) at exhaustion was increased by 5.5% after 3 weeks of sprint interval training as compared to baseline and control (p = 0.008). Skeletal muscle mitochondrial rate post exhaustion was increased by 160% after 3 weeks of sprint interval training as compared to baseline and control (p < 0.001). CONCLUSION The study demonstrated that SIT led to increased incremental time to exhaustion, higher SmO2 levels at volitional exhaustion and increased mitochondrial rates in professional boxers. These findings suggest that SIT should be an integral part of a boxe's conditioning regimen to improve performance and safety within the ring.
Collapse
Affiliation(s)
- Andrew Usher
- Dept of Sport and Exercise Science, Abertay University, Bell St, Dundee, DD1 1HG, Scotland.
| | - John Babraj
- Dept of Sport and Exercise Science, Abertay University, Bell St, Dundee, DD1 1HG, Scotland
| |
Collapse
|
3
|
Lloria-Varella J, Koral J, Ravel A, Murias JM, Féasson L, Busso T. Cardiorespiratory and Neuromuscular Improvements Plateau after 2 wk of Sprint Interval Training in Sedentary Individuals. Med Sci Sports Exerc 2024; 56:876-884. [PMID: 38109197 DOI: 10.1249/mss.0000000000003357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Previous studies ranging from 2 to 12 wk of sprint interval training (SIT) have reported improvements in maximal oxygen uptake (V̇O 2max ) and neuromuscular function in sedentary populations. However, whether the time course of the changes in these variables correlates with greater training volumes is unclear. METHODS Thirteen sedentary participants performed three all-out training weekly sessions involving 15-s sprints interspersed with 2 min of recovery on a cycle ergometer. The 6-wk training program was composed of three identical blocks of 2 wk in which training volume was increased from 10 to 14 repetitions over the first four sessions and reduced to 8 in the last session. The power output and the heart rate (HR) were monitored during the sessions. The V̇O 2max , the power-force-velocity profile, and the isometric force were assessed every 2 wk from baseline. RESULTS A significant increase in V̇O 2max was observed from the second week plateauing thereafter despite four additional weeks of training. The dynamic force production increased from the second week, and the speed production decreased by the end of the protocol. The isometric force and the maximal power output from the power-force-velocity profile did not change. Importantly, the time spent at high percentages of the maximal HR during the training sessions was lower in the second and third training block compared with the first. CONCLUSIONS SIT resulted in an effective approach for rapidly increasing V̇O 2max , and no change in the isometric force was found; cycling-specific neuromuscular adaptations were observed from the second week of training. SIT may be useful in the short term, but further improvement of overall physical fitness might need other training modalities like endurance and/or resistance training.
Collapse
Affiliation(s)
- Jaume Lloria-Varella
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, FRANCE
| | - Jérôme Koral
- Laboratory Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris, FRANCE
| | - Antoine Ravel
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, FRANCE
| | - Juan Manuel Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, QATAR
| | | | - Thierry Busso
- Université Jean Monnet Saint-Étienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, FRANCE
| |
Collapse
|
4
|
Hall AJ, Aspe RR, Craig TP, Kavaliauskas M, Babraj J, Swinton PA. The Effects of Sprint Interval Training on Physical Performance: A Systematic Review and Meta-Analysis. J Strength Cond Res 2023; 37:457-481. [PMID: 36165995 DOI: 10.1519/jsc.0000000000004257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ABSTRACT Hall, AJ, Aspe, RR, Craig, TP, Kavaliauskas, M, Babraj, J, and Swinton, PA. The effects of sprint interval training on physical performance: a systematic review and meta-analysis. J Strength Cond Res 37(2): 457-481, 2023-The present study aimed to synthesize findings from published research and through meta-analysis quantify the effect of sprint interval training (SIT) and potential moderators on physical performance outcomes (categorized as aerobic, anaerobic, mixed aerobic-anaerobic, or muscular force) with healthy adults, in addition to assessing the methodological quality of included studies and the existence of small study effects. Fifty-five studies were included (50% moderate methodological quality, 42% low methodological quality), with 58% comprising an intervention duration of ≤4 weeks and an array of different training protocols. Bayesian's meta-analysis of standardized mean differences (SMD) identified a medium effect of improved physical performance with SIT (ES 0.5 = 0.52; 95% credible intervals [CrI]: 0.42-0.62). Moderator analyses identified overlap between outcome types with the largest effects estimated for anaerobic outcomes (ES 0.5 = 0.61; 95% CrI: 0.48-0.75). Moderator effects were identified for intervention duration, sprint length, and number of sprints performed per session, with larger effects obtained for greater values of each moderator. A substantive number of very large effect sizes (41 SMDs > 2) were identified with additional evidence of extensive small study effects. This meta-analysis demonstrates that short-term SIT interventions are effective for developing moderate improvements in physical performance outcomes. However, extensive small study effects, likely influenced by researchers analyzing many outcomes, suggest potential overestimation of reported effects. Future research should analyze fewer a priori selected outcomes and investigate models to progress SIT interventions for longer-term performance improvements.
Collapse
Affiliation(s)
- Andy J Hall
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Rodrigo R Aspe
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Thomas P Craig
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Mykolas Kavaliauskas
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom ; and
| | - John Babraj
- Division of Sport and Exercise Science, Abertay University, Dundee, United Kingdom
| | - Paul A Swinton
- Department of Sport and Exercise, School of Health Sciences, Robert Gordon University, Aberdeen, United Kingdom
| |
Collapse
|
5
|
LEE M, WADDELL M, BELFRY G. A four-week 30 s weight training intervention improves 2000 m rowing ergometer performance of provincial to national collegiate female rowers during their competitive season. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.21.04734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Prokic VZ, Rankovic MR, Draginic ND, Andjic MM, Sretenovic JZ, Zivkovic VI, Jeremic JN, Milinkovic MV, Bolevich S, Jakovljevic VLJ, Pantovic SB. Guanidinoacetic acid provides superior cardioprotection to its combined use with betaine and (or) creatine in HIIT-trained rats. Can J Physiol Pharmacol 2022; 100:772-786. [PMID: 35894232 DOI: 10.1139/cjpp-2021-0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to determine how guanidinoacetic acid (GAA) or its combined administration with betaine (B) or creatine (C) influences the cardiac function, morphometric parameters, and redox status of rats subjected to high-intensity interval training (HIIT). This research was conducted on male Wistar albino rats exposed to HIIT for 4 weeks. The animals were randomly divided into five groups: HIIT, HIIT + GAA, HIIT + GAA + C, HIIT + GAA + B, and HIIT + GAA + C + B. After completing the training protocol, GAA (300 mg/kg), C (280 mg/kg), and B (300 mg/kg) were applied daily per os for 4 weeks. GAA supplementation in combination with HIIT significantly decreased the level of both systemic and cardiac prooxidants ( O 2 - , H2O2, NO 2 - , and thiobarbituric acid reactive substances) compared with nontreated HIIT (p < 0.05). Also, GAA treatment led to an increase in glutathione and superoxide dismutase levels. None of the treatment regimens altered cardiac function. A larger degree of cardiomyocyte hypertrophy was observed in the HIIT + GAA group, which was reflected through an increase of the cross-sectional area of 27% (p < 0.05) and that of the left ventricle wall thickness of 27% (p < 0.05). Since we showed that GAA in combination with HIIT may ameliorate oxidative stress and does not alter cardiac function, the present study is a basis for future research exploring the mechanisms of cardioprotection induced by this supplement in an HIIT scenario.
Collapse
Affiliation(s)
- Veljko Z Prokic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina R Rankovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena D Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marijana M Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jasmina Z Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir I Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana N Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milica V Milinkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir L J Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Suzana B Pantovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
7
|
Bogdanis GC, Nevill ME, Aphamis G, Stavrinou PS, Jenkins DG, Giannaki CD, Lakomy HKA, Williams C. Effects of Oral Creatine Supplementation on Power Output during Repeated Treadmill Sprinting. Nutrients 2022; 14:nu14061140. [PMID: 35334797 PMCID: PMC8950892 DOI: 10.3390/nu14061140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to examine the effects of creatine (Cr) supplementation on power output during repeated sprints on a non-motorized treadmill. Sixteen recreationally active males volunteered for this study (age 25.5 ± 4.8 y, height 179 ± 5 cm, body mass 74.8 ± 6.8 kg). All participants received placebo supplementation (75 mg of glucose·kg-1·day-1) for 5 days and then performed a baseline repeated sprints test (6 × 10 s sprints on a non-motorised treadmill). Thereafter, they were randomly assigned into a Cr (75 mg of Cr monohydrate·kg-1·day-1) or placebo supplementation, as above, and the repeated sprints test was repeated. After Cr supplementation, body mass was increased by 0.99 ± 0.83 kg (p = 0.007), peak power output and peak running speed remained unchanged throughout the test in both groups, while the mean power output and mean running speed during the last 5 s of the sprints increased by 4.5% (p = 0.005) and 4.2% to 7.0%, respectively, during the last three sprints (p = 0.005 to 0.001). The reduction in speed within each sprint was also blunted by 16.2% (p = 0.003) following Cr supplementation. Plasma ammonia decreased by 20.1% (p = 0.037) after Cr supplementation, despite the increase in performance. VO2 and blood lactate during the repeated sprints test remained unchanged after supplementation, suggesting no alteration of aerobic or glycolytic contribution to adenosine triphosphate production. In conclusion, Cr supplementation improved the mean power and speed in the second half of a repeated sprint running protocol, despite the increased body mass. This improvement was due to the higher power output and running speed in the last 5 s of each 10 s sprint.
Collapse
Affiliation(s)
- Gregory C. Bogdanis
- School of P.E. and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
- Correspondence: ; Tel.: +30-2107276115
| | - Mary E. Nevill
- Sport, Health and Performance Enhancement (SHAPE) Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - George Aphamis
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (G.A.); (P.S.S.); (C.D.G.)
| | - Pinelopi S. Stavrinou
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (G.A.); (P.S.S.); (C.D.G.)
| | - David G. Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Christoforos D. Giannaki
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (G.A.); (P.S.S.); (C.D.G.)
| | - Henryk K. A. Lakomy
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leics LE11 3TU, UK; (H.K.A.L.); (C.W.)
| | - Clyde Williams
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leics LE11 3TU, UK; (H.K.A.L.); (C.W.)
| |
Collapse
|
8
|
Marley A, Grant M, Babraj J. Vitamin D3 supplementation combined with sprint interval training improves aerobic and anaerobic exercise performance over sprint interval training alone in recreational combat sport athletes. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Effects of a Self-Regulated Training Program on the Repeated Power in Female College Handball Players: An Intervention Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312662. [PMID: 34886387 PMCID: PMC8656603 DOI: 10.3390/ijerph182312662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Several resistance training programs using conventional methodologies have been implemented with the purpose of improving the ability to perform power actions in handball, especially during the competitive season. In contrast, methodologies based on a contemporary perspective, which considers the human being as a self-regulating biological entity, and designed specifically for female college players, are scarce. The aim of this research was to investigate the effects of an eight-week resistance training program, in which the athletes were able to control the loads according to their self-perceived effort and rest on their repeated shuttle sprint and jump ability. The sample was composed of 16 female players of a handball team from the faculty of physics and mathematics sciences of a Chilean university. The RSSJA test was used to evaluate players' conditions pre- and post-training program, and the self-perceived effort scale called OMNI-RES was used for the prediction and control of loads. Results indicated that, after the application of an eight-week resistance training program, significant improvements p ≤ 0.05 on the jump height (pre: 1836.4 W; average post: 2088.9 W) and running speed (average pre: 3.2 m/s; average post: 4.0 m/s) were obtained, as well as a significant reduction in the loss of power and speed between each set of the applied test.
Collapse
|
10
|
Slade JM, Abela GS, Rozman M, McClowry RJ, Hurley D, Forbes SC, Meyer RA. The impact of statin therapy and aerobic exercise training on skeletal muscle and whole-body aerobic capacity. ACTA ACUST UNITED AC 2021; 5. [PMID: 34590057 PMCID: PMC8477381 DOI: 10.1016/j.ahjo.2021.100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Statin use is widely recognized for improving cardiovascular health, but questions remain on how statin use influences skeletal muscle, particularly mitochondrial function. Study objective design and participants The influence of statin therapy and exercise (EX) on aerobic capacity was determined. In Study1, skeletal muscle aerobic capacity was measured before and after 80 mg atorvastatin therapy. In Study2, aerobic capacity (skeletal muscle and whole body) was measured before and after a 12-week exercise randomized control trial in older adults (age = 67 ± 5 yrs.), a subset of which were on chronic low-moderate intensity statin therapy. Main outcome measures Muscle oxidative capacity was determined from the phosphocreatine recovery rate constant (kPCr) using 31P Magnetic Resonance Spectroscopy. Whole body peak oxygen uptake (VO2 peak) was measured during a graded exercise test with indirect calorimetry. Results High dose statin therapy resulted in a 12% reduction in muscle oxidative capacity (pre = 1.34 ± 0.34 min-1, post = 1.17 ± 0.25 min-1, p = 0.004). Similarly, chronic low-moderate dose statin therapy was associated with lower muscle oxidative capacity at baseline (1.50 ± 0.35 min-1) compared to non-statin users (1.88 ± 0.047 min-1, p = 0.019). Following EX, muscle oxidative capacity increased by 35-40% (statin: Pre: 1.39 ± 0.44 vs. Post: 1.88 ± 0.47 min-1, no statin Pre: 1.86 ± 0.58 vs. Post: 2.58 ± 0.85 min-1) compared to control groups (Pre: 1.74 ± 0.27 vs Post: 1.75 ± 0.49 min-1, p = 0.001). VO2 peak increased by 11% for EX groups (Pre: 18.8 ± 2.8 vs. Post: 20.8 ± 3.0 ml·kg-1·min-1) following training compared to a small decline in controls (Pre: 21.8 ± 3.7 vs. Post: 20.8 ± 3.04 ml·kg-1·min-1, p = 0.001). Conclusions Statin therapy resulted in reduced muscle oxidative capacity. Aerobic exercise improved skeletal muscle oxidative capacity and whole-body aerobic capacity during statin therapy.
Collapse
Affiliation(s)
- Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - George S Abela
- Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Mitchell Rozman
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Robert J McClowry
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - David Hurley
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Ronald A Meyer
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Gamboa JL, Roshanravan B, Towse T, Keller CA, Falck AM, Yu C, Frontera WR, Brown NJ, Ikizler TA. Skeletal Muscle Mitochondrial Dysfunction Is Present in Patients with CKD before Initiation of Maintenance Hemodialysis. Clin J Am Soc Nephrol 2020; 15:926-936. [PMID: 32591419 PMCID: PMC7341789 DOI: 10.2215/cjn.10320819] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Patients with CKD suffer from frailty and sarcopenia, which is associated with higher morbidity and mortality. Skeletal muscle mitochondria are important for physical function and could be a target to prevent frailty and sarcopenia. In this study, we tested the hypothesis that mitochondrial dysfunction is associated with the severity of CKD. We also evaluated the interaction between mitochondrial function and coexisting comorbidities, such as impaired physical performance, intermuscular adipose tissue infiltration, inflammation, and oxidative stress. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Sixty-three participants were studied, including controls (n=21), patients with CKD not on maintenance hemodialysis (CKD 3-5; n=20), and patients on maintenance hemodialysis (n=22). We evaluated in vivo knee extensors mitochondrial function using 31P magnetic resonance spectroscopy to obtain the phosphocreatine recovery time constant, a measure of mitochondrial function. We measured physical performance using the 6-minute walk test, intermuscular adipose tissue infiltration with magnetic resonance imaging, and markers of inflammation and oxidative stress in plasma. In skeletal muscle biopsies from a select number of patients on maintenance hemodialysis, we also measured markers of mitochondrial dynamics (fusion and fission). RESULTS We found a prolonged phosphocreatine recovery constant in patients on maintenance hemodialysis (53.3 [43.4-70.1] seconds, median [interquartile range]) and patients with CKD not on maintenance hemodialysis (41.5 [35.4-49.1] seconds) compared with controls (38.9 [32.5-46.0] seconds; P=0.001 among groups). Mitochondrial dysfunction was associated with poor physical performance (r=0.62; P=0.001), greater intermuscular adipose tissue (r=0.44; P=0.001), and increased markers of inflammation and oxidative stress (r=0.60; P=0.001). We found mitochondrial fragmentation and increased content of dynamin-related protein 1, a marker of mitochondrial fission, in skeletal muscles from patients on maintenance hemodialysis (0.86 [0.48-1.35] arbitrary units (A.U.), median [interquartile range]) compared with controls (0.60 [0.24-0.75] A.U.). CONCLUSIONS Mitochondrial dysfunction is due to multifactorial etiologies and presents prior to the initiation of maintenance hemodialysis, including in patients with CKD stages 3-5.
Collapse
Affiliation(s)
- Jorge L Gamboa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Baback Roshanravan
- Division of Nephrology, Department of Medicine, University of California, Davis, California
| | - Theodore Towse
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan
| | - Chad A Keller
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Aaron M Falck
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chang Yu
- Department of Biostatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Walter R Frontera
- Department of Physical Medicine, Rehabilitation, and Sports Medicine, University of Puerto Rico, San Juan, Puerto Rico.,Department of Physiology and Biophysics, University of Puerto Rico, San Juan, Puerto Rico
| | - Nancy J Brown
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - T Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
12
|
Supplements and Nutritional Interventions to Augment High-Intensity Interval Training Physiological and Performance Adaptations-A Narrative Review. Nutrients 2020; 12:nu12020390. [PMID: 32024038 PMCID: PMC7071320 DOI: 10.3390/nu12020390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
High-intensity interval training (HIIT) involves short bursts of intense activity interspersed by periods of low-intensity exercise or rest. HIIT is a viable alternative to traditional continuous moderate-intensity endurance training to enhance maximal oxygen uptake and endurance performance. Combining nutritional strategies with HIIT may result in more favorable outcomes. The purpose of this narrative review is to highlight key dietary interventions that may augment adaptations to HIIT, including creatine monohydrate, caffeine, nitrate, sodium bicarbonate, beta-alanine, protein, and essential amino acids, as well as manipulating carbohydrate availability. Nutrient timing and potential sex differences are also discussed. Overall, sodium bicarbonate and nitrates show promise for enhancing HIIT adaptations and performance. Beta-alanine has the potential to increase training volume and intensity and improve HIIT adaptations. Caffeine and creatine have potential benefits, however, longer-term studies are lacking. Presently, there is a lack of evidence supporting high protein diets to augment HIIT. Low carbohydrate training enhances the upregulation of mitochondrial enzymes, however, there does not seem to be a performance advantage, and a periodized approach may be warranted. Lastly, potential sex differences suggest the need for future research to examine sex-specific nutritional strategies in response to HIIT.
Collapse
|
13
|
The Effects of Conditioning Training on Body Build, Aerobic and Anaerobic Performance in Elite Mixed Martial Arts Athletes. J Hum Kinet 2020; 70:223-231. [PMID: 31915492 PMCID: PMC6942465 DOI: 10.2478/hukin-2019-0033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was: 1. to evaluate the effects of conditioning training on body build and physical fitness in elite mixed martial athletes, 2. to investigate the training load structure and assess body build as well as the physiological profile of mixed martial arts athletes. Fifteen MMA male athletes (body mass: 79.8 ± 3.9 kg; body height: 178.7 ± 7.9 cm; body fat: 13.4 ± 1.6%) were involved in the study. The average training experience of athletes equalled 11 ± 1.1 years. Body composition, upper limb peak anaerobic power and aerobic performance were assessed before and after the preparatory phase. During each evaluation, athletes underwent two stress tests: the Wingate test for the upper limbs (upper limb anaerobic peak power measurement) and the graded exercise test until volitional exhaustion (maximal oxygen uptake measurement and second ventilatory threshold determination). Training means were investigated for the workload type, intensity and exercise metabolism. In the follow-up, body fat mass decreased, while anaerobic peak power and aerobic performance improved. Improvement in the time to obtain and maintain peak power in the upper limbs was noted. Training periodization resulted in advantageous body composition changes and improved physical fitness of the MMA athletes.
Collapse
|
14
|
Charles-Edwards G, Amaral N, Sleigh A, Ayis S, Catibog N, McDonagh T, Monaghan M, Amin-Youssef G, Kemp GJ, Shah AM, Okonko DO. Effect of Iron Isomaltoside on Skeletal Muscle Energetics in Patients With Chronic Heart Failure and Iron Deficiency. Circulation 2019; 139:2386-2398. [DOI: 10.1161/circulationaha.118.038516] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Nelson Amaral
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, James Black Centre, UK (N.A., N.C., T.M., M.M., A.M.S., D.O.O.)
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, London, UK (N.A., N.C., T.M., M.M., G.A.-Y., A.M.S., D.O.O.)
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, University of Cambridge School of Clinical Medicine, UK (A.S.)
- Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK (A.S.)
- NIHR/Wellcome Trust Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, UK (A.S.)
| | - Salma Ayis
- School of Population Health and Environmental Sciences, Kings College London, UK (S.A.)
| | - Norman Catibog
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, James Black Centre, UK (N.A., N.C., T.M., M.M., A.M.S., D.O.O.)
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, London, UK (N.A., N.C., T.M., M.M., G.A.-Y., A.M.S., D.O.O.)
| | - Theresa McDonagh
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, James Black Centre, UK (N.A., N.C., T.M., M.M., A.M.S., D.O.O.)
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, London, UK (N.A., N.C., T.M., M.M., G.A.-Y., A.M.S., D.O.O.)
| | - Mark Monaghan
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, James Black Centre, UK (N.A., N.C., T.M., M.M., A.M.S., D.O.O.)
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, London, UK (N.A., N.C., T.M., M.M., G.A.-Y., A.M.S., D.O.O.)
| | - George Amin-Youssef
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, London, UK (N.A., N.C., T.M., M.M., G.A.-Y., A.M.S., D.O.O.)
| | - Graham J. Kemp
- Department of Musculoskeletal Biology, University of Liverpool and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool (G.J.K.)
| | - Ajay M. Shah
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, James Black Centre, UK (N.A., N.C., T.M., M.M., A.M.S., D.O.O.)
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, London, UK (N.A., N.C., T.M., M.M., G.A.-Y., A.M.S., D.O.O.)
| | - Darlington O. Okonko
- King’s College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, James Black Centre, UK (N.A., N.C., T.M., M.M., A.M.S., D.O.O.)
- Department of Cardiology, King’s College Hospital NHS Foundation Trust, London, UK (N.A., N.C., T.M., M.M., G.A.-Y., A.M.S., D.O.O.)
| |
Collapse
|
15
|
Kasai N, Mizuno S, Ishimoto S, Sakamoto E, Maruta M, Kurihara T, Kurosawa Y, Goto K. Impact of Six Consecutive Days of Sprint Training in Hypoxia on Performance in Competitive Sprint Runners. J Strength Cond Res 2019; 33:36-43. [PMID: 28445224 DOI: 10.1519/jsc.0000000000001954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kasai, N, Mizuno, S, Ishimoto, S, Sakamoto, E, Maruta, M, Kurihara, T, Kurosawa, Y, and Goto, K. Impact of six consecutive days of sprint training in hypoxia on performance in competitive sprint runners. J Strength Cond Res 33(1): 36-43, 2019-The purpose of this study was to determine the effects of 6 successive days of repeated sprint (RS) training in moderate hypoxia on anaerobic capacity in 100-200-m sprint runners. Eighteen male sprint runners (age, 20.0 ± 0.3 years; height, 175.9 ± 1.1 cm; and body mass, 65.0 ± 1.2 kg) performed repeated cycling sprints for 6 consecutive days in either normoxic (NOR; fraction of inspired oxygen [FiO2], 20.9%; n = 9) or hypoxic conditions (HYPO; FiO2, 14.5%; n = 9). The RS ability (10 × 6-second sprints), 30-second maximal sprint ability, maximal oxygen uptake ((Equation is included in full-text article.)max), and 60-m running time on the track were measured before and after the training period. Intramuscular phosphocreatine (PCr) content (quadriceps femoris muscle) was measured by P-magnetic resonance spectroscopy (P-MRS) before and after the training period. Both groups showed similar improvements in RS ability after the training period (p < 0.05). Power output during the 30-second maximal sprint test and (Equation is included in full-text article.)max did not change significantly after the training period in either group. Running time for 0-10 m improved significantly after the training period in the HYPO only (before, 1.39 ± 0.01 seconds; after, 1.34 ± 0.02 seconds, p < 0.05). The HYPO also showed a significant increase in intramuscular PCr content after the training period (before, 31.5 ± 1.3 mM; after, 38.2 ± 2.8 mM, p < 0.05). These results suggest that sprint training for 6 consecutive days in hypoxia or normoxia improved RS ability in competitive sprint runners.
Collapse
Affiliation(s)
- Nobukazu Kasai
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Sahiro Mizuno
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Sayuri Ishimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Etsuko Sakamoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Misato Maruta
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toshiyuki Kurihara
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuko Kurosawa
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.,Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
16
|
Thompson C, Vanhatalo A, Kadach S, Wylie LJ, Fulford J, Ferguson SK, Blackwell JR, Bailey SJ, Jones AM. Discrete physiological effects of beetroot juice and potassium nitrate supplementation following 4-wk sprint interval training. J Appl Physiol (1985) 2018; 124:1519-1528. [DOI: 10.1152/japplphysiol.00047.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The physiological and exercise performance adaptations to sprint interval training (SIT) may be modified by dietary nitrate ([Formula: see text]) supplementation. However, it is possible that different types of [Formula: see text] supplementation evoke divergent physiological and performance adaptations to SIT. The purpose of this study was to compare the effects of 4-wk SIT with and without concurrent dietary [Formula: see text] supplementation administered as either [Formula: see text]-rich beetroot juice (BR) or potassium [Formula: see text] (KNO3). Thirty recreationally active subjects completed a battery of exercise tests before and after a 4-wk intervention in which they were allocated to one of three groups: 1) SIT undertaken without dietary [Formula: see text] supplementation (SIT); 2) SIT accompanied by concurrent BR supplementation (SIT + BR); or 3) SIT accompanied by concurrent KNO3 supplementation (SIT + KNO3). During severe-intensity exercise, V̇o2peak and time to task failure were improved to a greater extent with SIT + BR than SIT and SIT + KNO3 ( P < 0.05). There was also a greater reduction in the accumulation of muscle lactate at 3 min of severe-intensity exercise in SIT + BR compared with SIT + KNO3 ( P < 0.05). Plasma [Formula: see text] concentration fell to a greater extent during severe-intensity exercise in SIT + BR compared with SIT and SIT + KNO3 ( P < 0.05). There were no differences between groups in the reduction in the muscle phosphocreatine recovery time constant from pre- to postintervention ( P > 0.05). These findings indicate that 4-wk SIT with concurrent BR supplementation results in greater exercise capacity adaptations compared with SIT alone and SIT with concurrent KNO3 supplementation. This may be the result of greater NO-mediated signaling in SIT + BR compared with SIT + KNO3. NEW & NOTEWORTHY We compared the influence of different forms of dietary nitrate supplementation on the physiological and performance adaptations to sprint interval training (SIT). Compared with SIT alone, supplementation with nitrate-rich beetroot juice, but not potassium [Formula: see text], enhanced some physiological adaptations to training.
Collapse
Affiliation(s)
| | - Anni Vanhatalo
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Stefan Kadach
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Lee J. Wylie
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan Fulford
- University of Exeter Medical School and National Institute for Health Research, Exeter Clinical Research Facility, Exeter, United Kingdom
| | - Scott K. Ferguson
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado
| | | | - Stephen J. Bailey
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew M. Jones
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Layec G, Bringard A, Le Fur Y, Micallef JP, Vilmen C, Perrey S, Cozzone PJ, Bendahan D. Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks. Med Sci Sports Exerc 2017; 48:811-21. [PMID: 26694849 DOI: 10.1249/mss.0000000000000858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Endurance training elicits tremendous adaptations of the mitochondrial energetic capacity. Yet, the effects of training or physical fitness on mitochondrial efficiency during exercise are still unclear. Accordingly, the purpose of the present study was to examine in vivo the differences in mitochondrial efficiency and ATP cost of contraction during exercise in two groups of adults differing in their aerobic capacity. METHOD We simultaneously assessed the ATP synthesis and O2 fluxes with P-magnetic resonance spectroscopy and pulmonary gas exchange measurements in seven endurance-trained (ET, V˙O2max: 67 ± 8 mL·min⁻¹·kg⁻¹) and seven recreationally active (RA, V˙O2max: 43 ± 7 mL·min⁻¹·kg⁻¹) subjects during 6 min of dynamic moderate-intensity knee extension. RESULTS The ATP cost of dynamic contraction was not significantly different between ET and RA (P > 0.05). Similarly, end-exercise O2 consumption was not significantly different between groups (ET: 848 ± 155 mL·min⁻¹ and RA: 760 ± 131 mL·min⁻¹, P > 0.05). During the recovery period, the PCr offset time constant was significantly faster in ET compared with RA (ET: 32 ± 8 s and RA: 43 ± 10 s, P < 0.05), thus indicating an increased mitochondrial capacity for ATP synthesis in the quadriceps of ET. In contrast, the estimated mitochondrial efficiency during exercise was not significantly different (P/O, ET: 2.0 ± 1.0 and RA: 1.8 ± 0.4, P > 0.05). Consequently, the higher mitochondrial capacity for ATP synthesis in ET likely originated from an elevated mitochondrial volume density, mitochondria-specific respiratory capacity, and/or slower postexercise inactivation of oxidative phosphorylation by the parallel activation mechanism. CONCLUSION Together, these findings reveal that 1) mitochondrial and contractile efficiencies are unaltered by several years of endurance training in young adults, and 2) the training-induced improvement in mitochondrial energetic capacity appears to be independent from changes in mitochondrial coupling.
Collapse
Affiliation(s)
- Gwenael Layec
- 1Aix-Marseille University, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Unite Mixte de Recherche 7339, Marseille, FRANCE; 2Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT; 3Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT; 4Department of Anesthesiology, Pharmacology and Intensive Care and Department of Fundamental Neurosciences, University of Geneva, SWITZERLAND; 5Motricity Efficiency and Deficiency, EA 2991, Faculty of Sport Science, Unite de Formation et de Recherche en Sciences et Techniques des Activites Physiques et Sportives, Montpellier, FRANCE; 6INSERM ADR 08, Montpellier, FRANCE
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Schrauwen-Hinderling VB, Kooi ME, Schrauwen P. Mitochondrial Function and Diabetes: Consequences for Skeletal and Cardiac Muscle Metabolism. Antioxid Redox Signal 2016; 24:39-51. [PMID: 25808308 DOI: 10.1089/ars.2015.6291] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An early hallmark in the development of type 2 diabetes is the resistance to the effect of insulin in skeletal muscle and in the heart. Since mitochondrial function was found to be diminished in patients with type 2 diabetes, it was suggested that this defect might be involved in the etiology of insulin resistance. Although several hypotheses were suggested, yet unclear is the mechanistic link between these two phenomena. RECENT ADVANCES Herein, we review the evidence for disturbances in mitochondrial function in skeletal muscle and the heart in the diabetic state. Also the mechanisms involved in improving mitochondrial function are considered and, whenever possible, human data is cited. CRITICAL ISSUES Reported evidence shows that interventions that improve skeletal muscle mitochondrial function also improve insulin sensitivity in humans. In the heart, available data from animal studies suggests that enhancement of mitochondrial function can reverse aging-induced changes in heart function, and can be protective against cardiomyopathy and heart failure. FUTURE DIRECTIONS Mitochondria and their functions can be targeted with the aim of improving skeletal muscle insulin sensitivity and cardiac function. However, human clinical intervention studies are needed to fully substantiate the potential of mitochondria as a target to prevent cardiometabolic disease.
Collapse
Affiliation(s)
- Vera B Schrauwen-Hinderling
- 1 Department of Radiology, Maastricht University Medical Center , Maastricht, The Netherlands .,2 Department of Human Biology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Marianne Eline Kooi
- 1 Department of Radiology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands .,4 Department of CARIM School for Cardiovascular Diseases in Maastricht, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Patrick Schrauwen
- 2 Department of Human Biology, Maastricht University Medical Center , Maastricht, The Netherlands .,3 Department of NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht, The Netherlands
| |
Collapse
|
19
|
Gordon JW, Dolinsky VW, Mughal W, Gordon GRJ, McGavock J. Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth. Biochem Cell Biol 2015; 93:452-65. [PMID: 26151290 DOI: 10.1139/bcb-2015-0012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased dramatically over the past two decades, not only among adults but also among adolescents. T2D is a systemic disorder affecting every organ system and is especially damaging to the cardiovascular system, predisposing individuals to severe cardiac and vascular complications. The precise mechanisms that cause T2D are an area of active research. Most current theories suggest that the process begins with peripheral insulin resistance that precedes failure of the pancreatic β-cells to secrete sufficient insulin to maintain normoglycemia. A growing body of literature has highlighted multiple aspects of mitochondrial function, including oxidative phosphorylation, lipid homeostasis, and mitochondrial quality control in the regulation of peripheral insulin sensitivity. Whether the cellular mechanisms of insulin resistance in adults are comparable to that in adolescents remains unclear. This review will summarize both clinical and basic studies that shed light on how alterations in skeletal muscle mitochondrial function contribute to whole body insulin resistance and will discuss the evidence supporting high-intensity exercise training as a therapy to circumvent skeletal muscle mitochondrial dysfunction to restore insulin sensitivity in both adults and adolescents.
Collapse
Affiliation(s)
- Joseph W Gordon
- a Department of Human Anatomy and Cell Science, College of Nursing, Faculty of Health Sciences, University of Manitoba, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Vernon W Dolinsky
- b Department of Pharmacology and Therapeutics, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Wajihah Mughal
- c Department of Human Anatomy and Cell Science, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Grant R J Gordon
- d Hotchkiss Brain Institute, Health Research Innovation Centre, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.,e Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jonathan McGavock
- f Department of Pediatrics and Child Health, The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
20
|
Vincent G, Lamon S, Gant N, Vincent PJ, MacDonald JR, Markworth JF, Edge JA, Hickey AJR. Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training. Front Physiol 2015; 6:51. [PMID: 25759671 PMCID: PMC4338748 DOI: 10.3389/fphys.2015.00051] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/05/2015] [Indexed: 11/13/2022] Open
Abstract
PURPOSE High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. METHODS Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. RESULTS HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. CONCLUSION Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression.
Collapse
Affiliation(s)
- Grace Vincent
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Melbourne VIC, Australia ; Department of Sport and Exercise Science, The University of Auckland Auckland, New Zealand
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Melbourne VIC, Australia
| | - Nicholas Gant
- Department of Sport and Exercise Science, The University of Auckland Auckland, New Zealand
| | - Peter J Vincent
- Department of General Practice and Primary Healthcare, Auckland School of Medicine, The University of Auckland Auckland, New Zealand
| | - Julia R MacDonald
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland Auckland, New Zealand
| | | | - Johann A Edge
- Department of Sport and Exercise Science, The University of Auckland Auckland, New Zealand
| | - Anthony J R Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland Auckland, New Zealand
| |
Collapse
|
21
|
Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. Sports Med 2015; 44:1005-17. [PMID: 24743927 PMCID: PMC4072920 DOI: 10.1007/s40279-014-0180-z] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Low-volume high-intensity interval training (HIT) appears to be an efficient and practical way to develop physical fitness. Objective Our objective was to estimate meta-analysed mean effects of HIT on aerobic power (maximum oxygen consumption [VO2max] in an incremental test) and sprint fitness (peak and mean power in a 30-s Wingate test). Data Sources Five databases (PubMed, MEDLINE, Scopus, BIOSIS and Web of Science) were searched for original research articles published up to January 2014. Search terms included ‘high intensity’, ‘HIT’, ‘sprint’, ‘fitness’ and ‘VO2max’. Study Selection Inclusion criteria were fitness assessed pre- and post-training; training period ≥2 weeks; repetition duration 30–60 s; work/rest ratio <1.0; exercise intensity described as maximal or near maximal; adult subjects aged >18 years. Data Extraction The final data set consisted of 55 estimates from 32 trials for VO2max, 23 estimates from 16 trials for peak sprint power, and 19 estimates from 12 trials for mean sprint power. Effects on fitness were analysed as percentages via log transformation. Standard errors calculated from exact p values (where reported) or imputed from errors of measurement provided appropriate weightings. Fixed effects in the meta-regression model included type of study (controlled, uncontrolled), subject characteristics (sex, training status, baseline fitness) and training parameters (number of training sessions, repetition duration, work/rest ratio). Probabilistic magnitude-based inferences for meta-analysed effects were based on standardized thresholds for small, moderate and large changes (0.2, 0.6 and 1.2, respectively) derived from between-subject standard deviations (SDs) for baseline fitness. Results A mean low-volume HIT protocol (13 training sessions, 0.16 work/rest ratio) in a controlled trial produced a likely moderate improvement in the VO2max of active non-athletic males (6.2 %; 90 % confidence limits ±3.1 %), when compared with control. There were possibly moderate improvements in the VO2max of sedentary males (10.0 %; ±5.1 %) and active non-athletic females (3.6 %; ±4.3 %) and a likely small increase for sedentary females (7.3 %; ±4.8 %). The effect on the VO2max of athletic males was unclear (2.7 %; ±4.6 %). A possibly moderate additional increase was likely for subjects with a 10 mL·kg−1·min−1 lower baseline VO2max (3.8 %; ±2.5 %), whereas the modifying effects of sex and difference in exercise dose were unclear. The comparison of HIT with traditional endurance training was unclear (−1.6 %; ±4.3 %). Unexplained variation between studies was 2.0 % (SD). Meta-analysed effects of HIT on Wingate peak and mean power were unclear. Conclusions Low-volume HIT produces moderate improvements in the aerobic power of active non-athletic and sedentary subjects. More studies are needed to resolve the unclear modifying effects of sex and HIT dose on aerobic power and the unclear effects on sprint fitness.
Collapse
Affiliation(s)
- Matthew Weston
- Department of Sport and Exercise Sciences, School of Social Sciences and Law, Teesside University, Middlesbrough, UK,
| | | | | | | |
Collapse
|
22
|
Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol (Oxf) 2015; 213:107-44. [PMID: 24773619 DOI: 10.1111/apha.12307] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/30/2013] [Accepted: 04/23/2014] [Indexed: 12/16/2022]
Abstract
Magnetic resonance spectroscopy (MRS) can give information about cellular metabolism in vivo which is difficult to obtain in other ways. In skeletal muscle, non-invasive (31) P MRS measurements of the post-exercise recovery kinetics of pH, [PCr], [Pi] and [ADP] contain valuable information about muscle mitochondrial function and cellular pH homeostasis in vivo, but quantitative interpretation depends on understanding the underlying physiology. Here, by giving examples of the analysis of (31) P MRS recovery data, by some simple computational simulation, and by extensively comparing data from published studies using both (31) P MRS and invasive direct measurements of muscle O2 consumption in a common analytical framework, we consider what can be learnt quantitatively about mitochondrial metabolism in skeletal muscle using MRS-based methodology. We explore some technical and conceptual limitations of current methods, and point out some aspects of the physiology which are still incompletely understood.
Collapse
Affiliation(s)
- G. J. Kemp
- Department of Musculoskeletal Biology, and Magnetic Resonance and Image Analysis Research Centre; University of Liverpool; Liverpool UK
| | - R. E. Ahmad
- Department of Musculoskeletal Biology, and Magnetic Resonance and Image Analysis Research Centre; University of Liverpool; Liverpool UK
| | - K. Nicolay
- Biomedical NMR; Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| | - J. J. Prompers
- Biomedical NMR; Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| |
Collapse
|
23
|
The influence of aerobic fitness on the recovery of peak power output. Eur J Appl Physiol 2014; 114:2447-54. [DOI: 10.1007/s00421-014-2968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 07/26/2014] [Indexed: 10/24/2022]
|
24
|
Tevald MA, Foulis SA, Kent JA. Effect of age on in vivo oxidative capacity in two locomotory muscles of the leg. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9713. [PMID: 25227177 PMCID: PMC4165814 DOI: 10.1007/s11357-014-9713-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
To determine the effects of age and sex on in vivo mitochondrial function of distinct locomotory muscles, the tibialis anterior (TA) and medial gastrocnemius (MG), of young (Y; 24 ± 3 years) and older (O; 69 ± 4) men (M) and women (W) of similar overall physical activity (PA) was compared. In vivo mitochondrial function was measured using phosphorus magnetic resonance spectroscopy, and PA and physical function were measured in all subjects. Overall PA was similar among the groups, although O (n = 17) had fewer daily minutes of moderate-to-vigorous PA (p = 0.001), and slowed physical function (p < 0.05 for all variables), compared with Y (n = 17). In TA, oxidative capacity (V max; mM s(-1)) was higher in O than Y (p < 0.001; Y = 0.90 ± 0.12; O = 1.12 ± 0.18). There was no effect of age in MG (p = 0.5; Y = 0.91 ± 0.17; O = 0.96 ± 0.24), but women had higher oxidative capacity than men (p = 0.007; M = 0.84 ± 0.18; W = 1.03 ± 0.18). In vivo mitochondrial function was preserved in healthy O men and women, despite lower intensity PA and physical function in this group. The extent to which compensatory changes in gait may be responsible for this preservation warrants further investigation. Furthermore, women had higher oxidative capacity in the MG, but not the TA.
Collapse
Affiliation(s)
- Michael A Tevald
- Department of Rehabilitation Sciences, University of Toledo, 2801 W, Bancroft Street, MS 119, Toledo, OH, 43616, USA,
| | | | | |
Collapse
|
25
|
Ryan TE, Southern WM, Brizendine JT, McCully KK. Activity-induced changes in skeletal muscle metabolism measured with optical spectroscopy. Med Sci Sports Exerc 2014; 45:2346-52. [PMID: 23669881 DOI: 10.1249/mss.0b013e31829a726a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Previous studies have used near-infrared spectroscopy (NIRS) to measure skeletal muscle mitochondrial capacity. This study tested the hypothesis that NIRS-measured mitochondrial capacity would improve with endurance exercise training and decline with detraining. METHODS Nine young participants performed 4 wk of progressively increasing endurance exercise training of the wrist flexor muscles followed by approximately 5 wk of inactivity. The rate of recovery of muscle oxygen consumption (mV(˙)O₂) was measured with NIRS every 3-7 d, indicating mitochondrial oxidative capacity. RESULTS A linear increase in mitochondrial capacity (NIRS rate constant) was found with a group average of 64% ± 37% improvement after 4 wk of exercise training (P < 0.05). Mitochondrial capacity declined exponentially upon cessation of exercise training, with a mean half-time of approximately 7.7 d. CONCLUSIONS Both the magnitude and the time course of mitochondrial adaptations to exercise training and detraining measured with NIRS was consistent with previous studies using both in vitro and in vivo techniques. These findings show that NIRS-based measurements can detect meaningful changes in mitochondrial capacity.
Collapse
|
26
|
Ijichi T, Hasegawa Y, Morishima T, Kurihara T, Hamaoka T, Goto K. Effect of sprint training: training once daily versus twice every second day. Eur J Sport Sci 2014; 15:143-50. [PMID: 24993562 DOI: 10.1080/17461391.2014.932849] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study compared training adaptations between once daily (SINGLE) and twice every second day (REPEATED) sprint training, with same number of training sessions. Twenty physically active males (20.9 ± 1.3 yr) were assigned randomly to the SINGLE (n = 10) or REPEATED (n = 10) group. The SINGLE group trained once per day (5 days per week) for 4 weeks (20 sessions in total). The REPEATED group conducted two consecutive training sessions on the same day, separated by a rest period of 1 h (2-3 days per week) for 4 weeks (20 sessions in total). Each training session consisted of three consecutive 30-s maximal pedalling sets with a 10-min rest between sets. Before and after the training period, the power output during two bouts of 30-s maximal pedalling, exercise duration during submaximal pedalling and resting muscle phosphocreatine (PCr) levels were evaluated. Both groups showed significant increases in peak and mean power output during the two 30-s bouts of maximal pedalling after the training period (P < 0.05). The groups showed similar increases in VO2max after the training period (P < 0.05). The REPEATED group showed a significant increase in the onset of blood lactate accumulation (OBLA) after the training period (P < 0.05), whereas no change was observed in the SINGLE group. The time to exhaustion at 90% of VO2max and muscle PCr concentration at baseline did not change significantly in either group. Sprint training twice every second day improved OBLA during endurance exercise more than the same training once daily.
Collapse
Affiliation(s)
- Toshiaki Ijichi
- a Graduate School of Sport and Health Science , Ritsumeikan University , Kusatsu Shiga , Japan
| | | | | | | | | | | |
Collapse
|
27
|
Larsen RG, Maynard L, Kent JA. High-intensity interval training alters ATP pathway flux during maximal muscle contractions in humans. Acta Physiol (Oxf) 2014; 211:147-60. [PMID: 24612773 DOI: 10.1111/apha.12275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/18/2014] [Accepted: 03/05/2014] [Indexed: 12/15/2022]
Abstract
AIM High-intensity interval training (HIT) results in potent metabolic adaptations in skeletal muscle; however, little is known about the influence of these adaptations on energetics in vivo. We used magnetic resonance spectroscopy to examine the effects of HIT on ATP synthesis from net PCr breakdown (ATPCK ), oxidative phosphorylation (ATPOX ) and non-oxidative glycolysis (ATPGLY ) in vivo in vastus lateralis during a 24-s maximal voluntary contraction (MVC). METHODS Eight young men performed 6 sessions of repeated, 30-s 'all-out' sprints on a cycle ergometer; measures of muscle energetics were obtained at baseline and after the first and sixth sessions. RESULTS Training increased peak oxygen consumption (35.8 ± 1.4 to 39.3 ± 1.6 mL min(-1) kg(-1) , P = 0.01) and exercise capacity (217.0 ± 11.0 to 230.5 ± 11.7 W, P = 0.04) on the ergometer, with no effects on total ATP production or force-time integral during the MVC. While ATP production by each pathway was unchanged after the first session, 6 sessions increased the relative contribution of ATPOX (from 31 ± 2 to 39 ± 2% of total ATP turnover, P < 0.001) and lowered the relative contribution from both ATPCK (49 ± 2 to 44 ± 1%, P = 0.004) and ATPGLY (20 ± 2 to 17 ± 1%, P = 0.03). CONCLUSION These alterations to muscle ATP production in vivo indicate that brief, maximal contractions are performed with increased support of oxidative ATP synthesis and relatively less contribution from anaerobic ATP production following training. These results extend previous reports of molecular and cellular adaptations to HIT and show that 6 training sessions are sufficient to alter in vivo muscle energetics, which likely contributes to increased exercise capacity after short-term HIT.
Collapse
Affiliation(s)
- R. G. Larsen
- Department of Kinesiology; University of Massachusetts; Amherst MA USA
- Department of Health Science and Technology; Aalborg University; Aalborg Denmark
| | - L. Maynard
- Department of Kinesiology; University of Massachusetts; Amherst MA USA
| | - J. A. Kent
- Department of Kinesiology; University of Massachusetts; Amherst MA USA
| |
Collapse
|
28
|
Prompers JJ, Wessels B, Kemp GJ, Nicolay K. MITOCHONDRIA: investigation of in vivo muscle mitochondrial function by 31P magnetic resonance spectroscopy. Int J Biochem Cell Biol 2014; 50:67-72. [PMID: 24569118 DOI: 10.1016/j.biocel.2014.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/06/2014] [Accepted: 02/16/2014] [Indexed: 01/06/2023]
Abstract
The most important function of mitochondria is the production of energy in the form of ATP. The socio-economic impact of human diseases that affect skeletal muscle mitochondrial function is growing, and improving their clinical management critically depends on the development of non-invasive assays to assess mitochondrial function and monitor the effects of interventions. 31P magnetic resonance spectroscopy provides two approaches that have been used to assess in vivo ATP synthesis in skeletal muscle: measuring Pi→ATP exchange flux using saturation transfer in resting muscle, and measuring phosphocreatine recovery kinetics after exercise. However, Pi→ATP exchange does not represent net mitochondrial ATP synthesis flux and has no simple relationship with mitochondrial function. Post-exercise phosphocreatine recovery kinetics, on the other hand, yield reliable measures of muscle mitochondrial capacity in vivo, whose ability to define the site of functional defects is enhanced by combination with other non-invasive techniques.
Collapse
Affiliation(s)
- Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Bart Wessels
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Graham J Kemp
- Department of Musculoskeletal Biology and Magnetic Resonance & Image Analysis Research Centre, University of Liverpool, UK
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
29
|
Gist NH, Fedewa MV, Dishman RK, Cureton KJ. Sprint Interval Training Effects on Aerobic Capacity: A Systematic Review and Meta-Analysis. Sports Med 2013; 44:269-79. [DOI: 10.1007/s40279-013-0115-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Jacobs RA, Flück D, Bonne TC, Bürgi S, Christensen PM, Toigo M, Lundby C. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol (1985) 2013; 115:785-93. [DOI: 10.1152/japplphysiol.00445.2013] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Six sessions of high-intensity interval training (HIT) are sufficient to improve exercise capacity. The mechanisms explaining such improvements are unclear. Accordingly, the aim of this study was to perform a comprehensive evaluation of physiologically relevant adaptations occurring after six sessions of HIT to determine the mechanisms explaining improvements in exercise performance. Sixteen untrained (43 ± 6 ml·kg−1·min−1) subjects completed six sessions of repeated ( 8 – 12 ) 60 s intervals of high-intensity cycling (100% peak power output elicited during incremental maximal exercise test) intermixed with 75 s of recovery cycling at a low intensity (30 W) over a 2-wk period. Potential training-induced alterations in skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes, and peripheral fatigue resistance were all assessed prior to and again following training. Maximal measures of oxygen uptake (V̇o2peak; ∼8%; P = 0.026) and cycling time to complete a set amount of work (∼5%; P = 0.008) improved. Skeletal muscle respiratory capacities increased, most likely as a result of an expansion of skeletal muscle mitochondria (∼20%, P = 0.026), as assessed by cytochrome c oxidase activity. Skeletal muscle deoxygenation also increased while maximal cardiac output, total hemoglobin, plasma volume, total blood volume, and relative measures of peripheral fatigue resistance were all unaltered with training. These results suggest that increases in mitochondrial content following six HIT sessions may facilitate improvements in respiratory capacity and oxygen extraction, and ultimately are responsible for the improvements in maximal whole body exercise capacity and endurance performance in previously untrained individuals.
Collapse
Affiliation(s)
- Robert Acton Jacobs
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland:
| | - Daniela Flück
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas Christian Bonne
- Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark; and
| | - Simon Bürgi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Marco Toigo
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Exercise Physiology, Institute of Human Movement Sciences, ETH Zurich, Zurich, Switzerland
| | - Carsten Lundby
- Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Nachbauer W, Boesch S, Schneider R, Eigentler A, Wanschitz J, Poewe W, Schocke M. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin. PLoS One 2013; 8:e69229. [PMID: 23922695 PMCID: PMC3726701 DOI: 10.1371/journal.pone.0069229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/06/2013] [Indexed: 12/15/2022] Open
Abstract
Friedreich ataxia (FRDA) is caused by a GAA repeat expansion in the FXN gene leading to reduced expression of the mitochondrial protein frataxin. Recombinant human erythropoietin (rhuEPO) is suggested to increase frataxin levels, alter mitochondrial function and improve clinical scores in FRDA patients. Aim of the present pilot study was to investigate mitochondrial metabolism of skeletal muscle tissue in FRDA patients and examine effects of rhuEPO administration by phosphorus 31 magnetic resonance spectroscopy (31P MRS). Seven genetically confirmed FRDA patients underwent 31P MRS of the calf muscles using a rest-exercise-recovery protocol before and after receiving 3000 IU of rhuEPO for eight weeks. FRDA patients showed more rapid phosphocreatine (PCr) depletion and increased accumulation of inorganic phosphate (Pi) during incremental exercise as compared to controls. After maximal exhaustive exercise prolonged regeneration of PCR and slowed decline in Pi can be seen in FRDA. PCr regeneration as hallmark of mitochondrial ATP production revealed correlation to activity of complex II/III of the respiratory chain and to demographic values. PCr and Pi kinetics were not influenced by rhuEPO administration. Our results confirm mitochondrial dysfunction and exercise intolerance due to impaired oxidative phosphorylation in skeletal muscle tissue of FRDA patients. MRS did not show improved mitochondrial bioenergetics after eight weeks of rhuEPO exposition in skeletal muscle tissue of FRDA patients. Trial Registration EU Clinical Trials Register2008-000040-13
Collapse
Affiliation(s)
- Wolfgang Nachbauer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- * E-mail:
| | - Rainer Schneider
- Department of Biochemistry, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Andreas Eigentler
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Julia Wanschitz
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Schocke
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Holliss BA, Fulford J, Vanhatalo A, Pedlar CR, Jones AM. Influence of intermittent hypoxic training on muscle energetics and exercise tolerance. J Appl Physiol (1985) 2013; 114:611-9. [DOI: 10.1152/japplphysiol.01331.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intermittent hypoxic training (IHT) is sometimes used by athletes to enhance nonhematological physiological adaptations to simulated altitude. We investigated whether IHT would result in greater improvements in muscle energetics and exercise tolerance compared with work-matched intermittent normoxic training (INT). Nine physically active men completed 3 wk of intensive, single-leg knee-extensor exercise training. Each training session consisted of 25 min of IHT (FiO2 14.5 ± 0.1%) with the experimental leg and 25 min of INT with the alternate leg, which served as a control. Before and after the training intervention, subjects completed a test protocol consisting of a bout of submaximal constant-work-rate exercise, a 24-s high-intensity exercise bout to quantify the phosphocreatine recovery time constant ([PCr]-τ), and an incremental test to the limit of tolerance. The tests were completed in normoxia and hypoxia in both INT and IHT legs. Muscle metabolism was assessed noninvasively using 31P-magnetic resonance spectroscopy. Improvements in the time-to-exhaustion during incremental exercise were not significantly different between training conditions either in normoxia (INT, 28 ± 20% vs. IHT, 25 ± 9%; P = 0.86) or hypoxia (INT, 21 ± 10% vs. IHT, 15 ± 11%; P = 0.29). In hypoxia, [PCr]-τ was speeded slightly but significantly more post-IHT compared with post-INT (−7.3 ± 2.9 s vs. −3.7 ± 1.7 s; P < 0.01), but changes in muscle metabolite concentrations during exercise were essentially not different between IHT and INT. Under the conditions of this investigation, IHT does not appreciably alter muscle metabolic responses or incremental exercise performance compared with INT.
Collapse
Affiliation(s)
- Ben A. Holliss
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- British Swimming, University of Bath, Bath, United Kingdom
| | - Jonathan Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
| | - Anni Vanhatalo
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Charles R. Pedlar
- School of Sport, Health and Applied Science, St. Mary's University College, Twickenham, United Kingdom
| | - Andrew M. Jones
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
33
|
Larsen RG, Befroy DE, Kent-Braun JA. High-intensity interval training increases in vivo oxidative capacity with no effect on P(i)→ATP rate in resting human muscle. Am J Physiol Regul Integr Comp Physiol 2012; 304:R333-42. [PMID: 23255590 DOI: 10.1152/ajpregu.00409.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial ATP production is vital for meeting cellular energy demand at rest and during periods of high ATP turnover. We hypothesized that high-intensity interval training (HIT) would increase ATP flux in resting muscle (VPi→ATP) in response to a single bout of exercise, whereas changes in the capacity for oxidative ATP production (Vmax) would require repeated bouts. Eight untrained men (27 ± 4 yr; peak oxygen uptake = 36 ± 4 ml·kg(-1)·min(-1)) performed six sessions of HIT (4-6 × 30-s bouts of all-out cycling with 4-min recovery). After standardized meals and a 10-h fast, VPi→ATP and Vmax of the vastus lateralis muscle were measured using phosphorus magnetic resonance spectroscopy at 4 Tesla. Measurements were obtained at baseline, 15 h after the first training session, and 15 h after completion of the sixth session. VPi→ATP was determined from the unidirectional flux between Pi and ATP, using the saturation transfer technique. The rate of phosphocreatine recovery (kPCr) following a maximal contraction was used to calculate Vmax. While kPCr and Vmax were unchanged after a single session of HIT, completion of six training sessions resulted in a ∼14% increase in muscle oxidative capacity (P ≤ 0.004). In contrast, neither a single nor six training sessions altered VPi→ATP (P = 0.74). This novel analysis of resting and maximal high-energy phosphate kinetics in vivo in response to HIT provides evidence that distinct aspects of human skeletal muscle metabolism respond differently to this type of training.
Collapse
Affiliation(s)
- Ryan G Larsen
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
34
|
Friedman RA, Navalta JW, Fedor EA, Kell HB, Lyons TS, Arnett SW, Schafer MA. Repeated high-intensity Wingate cycle bouts influence markers of lymphocyte migration but not apoptosis. Appl Physiol Nutr Metab 2012; 37:241-6. [PMID: 22380726 DOI: 10.1139/h11-156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies have shown significant changes in lymphocytes during continuous exercise, but little has been shown on the effect of repeated high intensity bouts. This study was designed to examine the effect of repeated intermittent bouts on lymphocyte subset cell count, apoptosis, and migration. A series of 6 Wingate anaerobic cycle tests were performed by participants (N = 8) with blood samples attained before, immediately following, and after a designated recovery period (excess postexercise oxygen consumption (EPOC)) to observe lymphocyte changes. Lymphocyte subsets (CD4+, CD4/CD45RA+, CD8+, CD8+/CD45RA+, CD19+) were assessed for apoptosis (annexin V+) and cellular migration (CX(3)CR1). Our results indicate that the CD8+ and CD8+/CD45RA+ subsets were significantly influenced by the repetitive Wingate cycling protocol such that cell counts increased with exercise, and then decreased at EPOC termination (p = 0.016). The observed postexercise decrease in CD8+ and CD8+/CD45RA+ cells was accompanied by a significant change in the CX(3)CR1 cell migration receptor (p = 0.019), but not apoptosis (p = 0.87). This indicates that with repetitive high-intensity cycling, the response in CD8+ cells following the bout is likely due to cell migration rather than cell death.
Collapse
Affiliation(s)
- Rachel A Friedman
- Department of Kinesiology, Western Kentucky University, Bowling Green, KY 42101-1089, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Marwood S, Roche D, Garrard M, Unnithan VB. Pulmonary oxygen uptake and muscle deoxygenation kinetics during recovery in trained and untrained male adolescents. Eur J Appl Physiol 2011; 111:2775-84. [PMID: 21409403 DOI: 10.1007/s00421-011-1901-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/01/2011] [Indexed: 11/27/2022]
Abstract
Previous studies have demonstrated faster pulmonary oxygen uptake (VO2) kinetics in the trained state during the transition to and from moderate-intensity exercise in adults. Whilst a similar effect of training status has previously been observed during the on-transition in adolescents, whether this is also observed during recovery from exercise is presently unknown. The aim of the present study was therefore to examine VO2 kinetics in trained and untrained male adolescents during recovery from moderate-intensity exercise. 15 trained (15 ± 0.8 years, VO2max 54.9 ± 6.4 mL kg(-1) min(-1)) and 8 untrained (15 ± 0.5 years, VO2max 44.0 ± 4.6 mL kg(-1) min(-1)) male adolescents performed two 6-min exercise off-transitions to 10 W from a preceding "baseline" of exercise at a workload equivalent to 80% lactate threshold; VO2 (breath-by-breath) and muscle deoxyhaemoglobin (near-infrared spectroscopy) were measured continuously. The time constant of the fundamental phase of VO2 off-kinetics was not different between trained and untrained (trained 27.8 ± 5.9 s vs. untrained 28.9 ± 7.6 s, P = 0.71). However, the time constant (trained 17.0 ± 7.5 s vs. untrained 32 ± 11 s, P < 0.01) and mean response time (trained 24.2 ± 9.2 s vs. untrained 34 ± 13 s, P = 0.05) of muscle deoxyhaemoglobin off-kinetics was faster in the trained subjects compared to the untrained subjects. VO2 kinetics was unaffected by training status; the faster muscle deoxyhaemoglobin kinetics in the trained subjects thus indicates slower blood flow kinetics during recovery from exercise compared to the untrained subjects.
Collapse
Affiliation(s)
- Simon Marwood
- Sport and Exercise Physiology Research Team, Liverpool Hope University, Liverpool, UK.
| | | | | | | |
Collapse
|
36
|
Cureton KJ, Tomporowski PD, Singhal A, Pasley JD, Bigelman KA, Lambourne K, Trilk JL, McCully KK, Arnaud MJ, Zhao Q. Dietary quercetin supplementation is not ergogenic in untrained men. J Appl Physiol (1985) 2009; 107:1095-104. [DOI: 10.1152/japplphysiol.00234.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quercetin supplementation increases muscle oxidative capacity and endurance in mice, but its ergogenic effect in humans has not been established. Our study investigates the effects of short-duration chronic quercetin supplementation on muscle oxidative capacity; metabolic, perceptual, and neuromuscular determinants of performance in prolonged exercise; and cycling performance in untrained men. Using a double-blind, pretest-posttest control group design, 30 recreationally active, but not endurance-trained, young men were randomly assigned to quercetin and placebo groups. A noninvasive measure of muscle oxidative capacity (phosphocreatine recovery rate using magnetic resonance spectroscopy), peak oxygen uptake (V̇o2peak), metabolic and perceptual responses to submaximal exercise, work performed on a 10-min maximal-effort cycling test following the submaximal cycling, and voluntary and electrically evoked strength loss following cycling were measured before and after 7–16 days of supplementation with 1 g/day of quercetin in a sports hydration beverage or a placebo beverage. Pretreatment-to-posttreatment changes in phosphocreatine recovery time constant, V̇o2peak, substrate utilization, and perception of effort during submaximal exercise, total work done during the 10-min maximal effort cycling trial, and voluntary and electrically evoked strength loss were not significantly different ( P > 0.05) in the quercetin and placebo groups. Short duration, chronic dietary quercetin supplementation in untrained men does not improve muscle oxidative capacity; metabolic, neuromuscular and perceptual determinants of performance in prolonged exercise; or cycling performance. The null findings indicate that metabolic and physical performance consequences of quercetin supplementation observed in mice should not be generalized to humans.
Collapse
Affiliation(s)
- Kirk J. Cureton
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | | | - Arpit Singhal
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | | | | | | | | | - Kevin K. McCully
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | - Maurice J. Arnaud
- Nutrition and Biochemistry, Bourg Dessous 2A, La Tour de Peilz, Switzerland
| | - Qun Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia
| |
Collapse
|
37
|
Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA. In vivo oxidative capacity varies with muscle and training status in young adults. J Appl Physiol (1985) 2009; 107:873-9. [PMID: 19556459 DOI: 10.1152/japplphysiol.00260.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well established that exercise training results in increased muscle oxidative capacity. Less is known about how oxidative capacities in distinct muscles, in the same individual, are affected by different levels of physical activity. We hypothesized that 1) trained individuals would have higher oxidative capacity than untrained individuals in both tibialis anterior (TA) and vastus lateralis (VL) and 2) oxidative capacity would be higher in TA than VL in untrained, but not in trained, individuals. Phosphorus magnetic resonance spectroscopy was used to measure the rate of phosphocreatine recovery (k(PCr)), which reflects the rate of oxidative phosphorylation, following a maximal voluntary isometric contraction of the TA and VL in healthy untrained (7 women, 7 men, 25.7 +/- 3.6 yr; mean +/- SD) and trained (5 women, 7 men, 27.5 +/- 3.4 yr) adults. Daily physical activity levels were measured using accelerometry. The trained group spent threefold more time ( approximately 90 vs. approximately 30 min/day; P < 0.001) in moderate to vigorous physical activity (MVPA). Overall, k(PCr) was higher in VL than in TA (P = 0.01) and higher in trained than in untrained participants (P < 0.001). The relationship between k(PCr) and MVPA was more robust in VL (r = 0.64, P = 0.001, n = 25) than in TA (r = 0.38, P = 0.06, n = 25). These results indicate greater oxidative capacity in vivo in trained compared with untrained individuals in two distinct muscles of the lower limb and provide novel evidence of higher oxidative capacity in VL compared with TA in young humans, irrespective of training status. The basis for this difference is not known at this time but likely reflects a difference in usage patterns between the muscles.
Collapse
Affiliation(s)
- Ryan G Larsen
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|