1
|
Qian R, Zhao X, Lyu D, Xu Q, Yuan K, Luo X, Wang W, Wang Y, Liu Y, Cheng Y, Tan Y, Mou F, Yuan C, Yu S. Identification of Causal Genes and Potential Drug Targets for Restless Legs Syndrome: A Comprehensive Mendelian Randomization Study. Pharmaceuticals (Basel) 2024; 17:1626. [PMID: 39770468 PMCID: PMC11728827 DOI: 10.3390/ph17121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Restless legs syndrome (RLS) is a common sensorimotor sleep disorder that affects sleep quality of life. Much effort has been made to make progress in RLS pharmacotherapy; however, patients with RLS still report poor long-term symptom control. Methods: Comprehensive Mendelian randomization (MR) was performed to search for potential causal genes and drug targets using the cis-pQTL and RLS GWAS data. Robustness was validated using the summary-based Mendelian randomization (SMR) method and co-localization analysis. Further evidence of pleiotropy of the target genes and their potential side effects was provided by phenome-wide MR analysis (MR-PheWAS). Finally, molecular docking simulations were conducted on drug candidates corresponding to these targets, which revealed promising binding affinities and interaction patterns and underscored the druggable potential of the target gene. All of the analyses above were conducted in the context of Homo sapiens. Results:MAN1A2 showed a statistically significant result in the MR analysis, which was validated through SMR and co-localization analysis. The MR-PheWAS showed a low probability of pleiotropy and prospective side effects. Molecular docking was used to visualize the binding structure and fine affinity for MAN1A2 and the drugs predicted by DSigDB. Conclusions: Our study provides comprehensive evidence supporting MAN1A2 as a promising causal gene and therapeutic target for RLS, offering insights into the underlying molecular mechanisms and paving the way for future drug development efforts.
Collapse
Affiliation(s)
- Ruiyi Qian
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Xue Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Dongbin Lyu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Qingqing Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Kai Yuan
- State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Institute of Digestive Disease, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR 999077, China;
| | - Xin Luo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Wanying Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Yang Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Yutong Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Yu Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Yingting Tan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Fan Mou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Chengmei Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| | - Shunying Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (R.Q.); (X.Z.); (D.L.); (Q.X.); (X.L.); (W.W.); (Y.W.); (Y.L.); (Y.C.); (Y.T.); (F.M.)
| |
Collapse
|
2
|
Abstract
Glycosylation has a profound influence on protein activity and cell biology through a variety of mechanisms, such as protein stability, receptor interactions and signal transduction. In many rheumatic diseases, a shift in protein glycosylation occurs, and is associated with inflammatory processes and disease progression. For example, the Fc-glycan composition on (auto)antibodies is associated with disease activity, and the presence of additional glycans in the antigen-binding domains of some autoreactive B cell receptors can affect B cell activation. In addition, changes in synovial fibroblast cell-surface glycosylation can alter the synovial microenvironment and are associated with an altered inflammatory state and disease activity in rheumatoid arthritis. The development of our understanding of the role of glycosylation of plasma proteins (particularly (auto)antibodies), cells and tissues in rheumatic pathological conditions suggests that glycosylation-based interventions could be used in the treatment of these diseases.
Collapse
Affiliation(s)
- Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
3
|
Huang S, Thomsson KA, Jin C, Ryberg H, Das N, Struglics A, Rolfson O, Björkman LI, Eisler T, Schmidt TA, Jay GD, Krawetz R, Karlsson NG. Truncated lubricin glycans in osteoarthritis stimulate the synoviocyte secretion of VEGFA, IL-8, and MIP-1 α: Interplay between O-linked glycosylation and inflammatory cytokines. Front Mol Biosci 2022; 9:942406. [PMID: 36213120 PMCID: PMC9532613 DOI: 10.3389/fmolb.2022.942406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
The primary aim of the study was to identify inflammatory markers relevant for osteoarthritis (OA)-related systemic (plasma) and local (synovial fluid, SF) inflammation. From this, we looked for inflammatory markers that coincided with the increased amount of O-linked Tn antigen (GalNAcα1-Ser/Thr) glycan on SF lubricin. Inflammatory markers in plasma and SF in OA patients and controls were measured using a 44-multiplex immunoassay. We found consistently 29 markers detected in both plasma and SF. The difference in their concentration and the low correlation when comparing SF and plasma suggests an independent inflammatory environment in the two biofluids. Only plasma MCP-4 and TARC increased in our patient cohort compared to control plasma. To address the second task, we concluded that plasma markers were irrelevant for a direct connection with SF glycosylation. Hence, we correlated the SF-inflammatory marker concentrations with the level of altered glycosylation of SF-lubricin. We found that the level of SF-IL-8 and SF-MIP-1α and SF-VEGFA in OA patients displayed a positive correlation with the altered lubricin glycosylation. Furthermore, when exposing fibroblast-like synoviocytes from both controls and OA patients to glycovariants of recombinant lubricin, the secretion of IL-8 and MIP-1α and VEGFA were elevated using lubricin with Tn antigens, while lubricin with sialylated and nonsialylated T antigens had less or no measurable effect. These data suggest that truncated glycans of lubricin, as found in OA, promote synovial proinflammatory cytokine production and exacerbate local synovial inflammation.
Collapse
Affiliation(s)
- Shan Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A. Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Ryberg
- Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nabangshu Das
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - André Struglics
- Department of Clinical Sciences Lund, Orthopaedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ola Rolfson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena I. Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Eisler
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Tannin A. Schmidt
- Biomedical Engineering Department, University of Connecticut Health Centre, Farmington, CT, United States
| | - Gregory D. Jay
- Department of Emergency Medicine, Warren Alpert Medical School and Division of Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Roman Krawetz
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
4
|
Distinct Longitudinal Changes in Immunoglobulin G N-Glycosylation Associate with Therapy Response in Chronic Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms23158473. [PMID: 35955616 PMCID: PMC9368836 DOI: 10.3390/ijms23158473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Immunosuppressants and biologicals are widely used therapeutics for various chronic inflammatory diseases (CID). To gain more detailed insight into their downstream effects, we examined their impact on serum immunoglobulin G (IgG) glycosylation. We analyzed IgG subclass-specific fragment crystallizable (Fc) N-glycosylation in patients suffering from various CID using the LC-MS approach. Firstly, we compared IgG Fc N-glycosylation between 128 CID patients and 204 healthy controls. Our results replicated previously observed CID-related decrease in IgG Fc galactosylation (adjusted p-value range 1.70 × 10−2–5.95 × 10−22) and sialylation (adjusted p-value range 1.85 × 10−2–1.71 × 10−18). Secondly, to assess changes in IgG Fc N-glycosylation associated with therapy and remission status, we compared 139 CID patients receiving either azathioprine, infliximab, or vedolizumab therapy. We observed an increase in IgG Fc galactosylation (adjusted p-value range 1.98 × 10−2–1.30 × 10−15) and sialylation (adjusted p-value range 3.28 × 10−6–4.34 × 10−18) during the treatment. Furthermore, patients who reached remission displayed increased Fc galactosylation levels (p-value range 2.25 × 10−2–5.44 × 10−3) in comparison to patients with active disease. In conclusion, the alterations in IgG Fc glycosylation and the fact these changes are even more pronounced in patients who achieved remission, suggest modulation of IgG inflammatory potential associated with CID therapy.
Collapse
|
5
|
Wang Y, Khan A, Antonopoulos A, Bouché L, Buckley CD, Filer A, Raza K, Li KP, Tolusso B, Gremese E, Kurowska-Stolarska M, Alivernini S, Dell A, Haslam SM, Pineda MA. Loss of α2-6 sialylation promotes the transformation of synovial fibroblasts into a pro-inflammatory phenotype in arthritis. Nat Commun 2021; 12:2343. [PMID: 33879788 PMCID: PMC8058094 DOI: 10.1038/s41467-021-22365-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/26/2021] [Indexed: 02/02/2023] Open
Abstract
In healthy joints, synovial fibroblasts (SFs) provide the microenvironment required to mediate homeostasis, but these cells adopt a pathological function in rheumatoid arthritis (RA). Carbohydrates (glycans) on cell surfaces are fundamental regulators of the interactions between stromal and immune cells, but little is known about the role of the SF glycome in joint inflammation. Here we study stromal guided pathophysiology by mapping SFs glycosylation pathways. Combining transcriptomic and glycomic analysis, we show that transformation of fibroblasts into pro-inflammatory cells is associated with glycan remodeling, a process that involves TNF-dependent inhibition of the glycosyltransferase ST6Gal1 and α2-6 sialylation. SF sialylation correlates with distinct functional subsets in murine experimental arthritis and remission stages in human RA. We propose that pro-inflammatory cytokines remodel the SF-glycome, converting the synovium into an under-sialylated and highly pro-inflammatory microenvironment. These results highlight the importance of glycosylation in stromal immunology and joint inflammation.
Collapse
Affiliation(s)
- Yilin Wang
- grid.8756.c0000 0001 2193 314XInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Aneesah Khan
- grid.8756.c0000 0001 2193 314XInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Laura Bouché
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Christopher D. Buckley
- grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK ,grid.4991.50000 0004 1936 8948The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK ,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK
| | - Andrew Filer
- grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK ,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK
| | - Karim Raza
- grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK ,grid.412919.6Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Kun-Ping Li
- grid.411847.f0000 0004 1804 4300Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Barbara Tolusso
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK ,grid.414603.4Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisa Gremese
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK ,grid.414603.4Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mariola Kurowska-Stolarska
- grid.8756.c0000 0001 2193 314XInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK ,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK
| | - Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK ,grid.414603.4Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anne Dell
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M. Haslam
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, UK
| | - Miguel A. Pineda
- grid.8756.c0000 0001 2193 314XInstitute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK ,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, Birmingham, Newcastle Oxford, UK
| |
Collapse
|
6
|
The Cosmc-mediated effects of neutrophil elastase on T antigen expression in BEAS-2B cells. Respir Physiol Neurobiol 2020; 281:103496. [PMID: 32683071 DOI: 10.1016/j.resp.2020.103496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Mucin 5AC (MUC5AC) is a highly O-glycosylated mucin secreted by human bronchial epithelial cells during pulmonary inflammatory diseases. T antigen, a component of the MUC5AC glycans, is the product of the O-glycosylation transferase T-synthase and its chaperone Cosmc. Since the expression of Cosmc is mediated by signaling pathways and inflammatory factors affecting mucin O-glycosylation, we analyzed the impact of neutrophil elastase (NE)-mediated Cosmc and T antigen expression in BEAS-2B cells derived from human bronchial epithelial cells. The expression of Cosmc and T antigen in human lung tissue was analyzed by immunohistochemistry. Cellular immunohistochemistry and western blot analysis demonstrated elevated expression of T antigen in BEAS-2B cells after NE stimulation. Altered Cosmc expression in BEAS-2B cells after NE stimulation was analyzed by confocal microscopy, western blot analysis and quantitative RT-PCR. To assess the biological implications of Cosmc function for T-synthase activity and T antigen synthesis after NE stimulation, BEAS-2B cells were transfected with shRNA to silence the expression of Cosmc. The changes in signaling pathways were analyzed by western blotting. The expression of Cosmc and T antigen increased in lung tissue exposed to chronic inflammation. The expression of Cosmc and T antigen increased in NE-stimulated BEAS-2B cells. NE induced increases in T antigen expression and T-synthase transferase activity in BEAS-2B cells expressing Cosmc, highlighting the importance of Cosmc in the relationship between NE and T antigen. Cosmc and phosphatidylinositol-3-kinase (PI3K) played important roles in the signaling pathway that stimulated hyperexpression of T antigen.
Collapse
|
7
|
Kronimus Y, Dodel R, Galuska SP, Neumann S. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target? J Autoimmun 2019; 96:14-23. [DOI: 10.1016/j.jaut.2018.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022]
|
8
|
Woodward AM, Lehoux S, Mantelli F, Di Zazzo A, Brockhausen I, Bonini S, Argüeso P. Inflammatory Stress Causes N-Glycan Processing Deficiency in Ocular Autoimmune Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:283-294. [PMID: 30448401 DOI: 10.1016/j.ajpath.2018.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022]
Abstract
High levels of proinflammatory cytokines have been associated with a loss of tissue function in ocular autoimmune diseases, but the basis for this relationship remains poorly understood. Here we investigate a new role for tumor necrosis factor α in promoting N-glycan-processing deficiency at the surface of the eye through inhibition of N-acetylglucosaminyltransferase expression in the Golgi. Using mass spectrometry, complex-type biantennary oligosaccharides were identified as major N-glycan structures in differentiated human corneal epithelial cells. Remarkably, significant differences were detected between the efficacies of cytokines in regulating the expression of glycogenes involved in the biosynthesis of N-glycans. Tumor necrosis factor α but not IL-1β had a profound effect in suppressing the expression of enzymes involved in the Golgi branching pathway, including N-acetylglucosaminyltransferases 1 and 2, which are required for the formation of biantennary structures. This decrease in gene expression was correlated with a reduction in enzymatic activity and impaired N-glycan branching. Moreover, patients with ocular mucous membrane pemphigoid were characterized by marginal N-acetylglucosaminyltransferase expression and decreased N-glycan branching in the conjunctiva. Together, these data indicate that proinflammatory cytokines differentially influence the expression of N-glycan-processing enzymes in the Golgi and set the stage for future studies to explore the pathophysiology of ocular autoimmune diseases.
Collapse
Affiliation(s)
- Ashley M Woodward
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sylvain Lehoux
- Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - Antonio Di Zazzo
- Ophthalmology Complex Unit, Campus Bio-Medico University of Rome, Rome, Italy
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stefano Bonini
- Ophthalmology Complex Unit, Campus Bio-Medico University of Rome, Rome, Italy
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Brockhausen I, Elimova E, Woodward AM, Argüeso P. Glycosylation pathways of human corneal and conjunctival epithelial cell mucins. Carbohydr Res 2018; 470:50-56. [PMID: 30392563 DOI: 10.1016/j.carres.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Mucin glycoproteins on the ocular surface are rich in O-glycans and have important roles in the protection from physical, chemical and microbial impact. In this work, we have cultured human corneal and conjunctival epithelial cells to examine the glycosyltransferase activities that synthesize the O-glycans of mucins. The results indicate that ocular surface epithelial cells have active enzymes that synthesize O-glycans with sialylated core 1, Galβ1-3GalNAcα, and core 2, GlcNAcβ1-6(Galβ1-3)GalNAcα structures which corresponds to previous structural studies. Eye cells also have enzymes that synthesize complex N-glycans that are found on mucins. Results from treatment of eye cells with TNFα suggest that epithelial O-glycosylation changes in a dynamic fashion during inflammatory stimuli of the eye surface.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Elena Elimova
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Ashley M Woodward
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 2017; 19:110. [PMID: 28569176 PMCID: PMC5452638 DOI: 10.1186/s13075-017-1303-3] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An increasing number of studies show how changes in intracellular metabolic pathways alter tumor and immune cell function. However, little information about metabolic changes in other cell types, including synovial fibroblasts, is available. In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) are the most common cell type at the pannus–cartilage junction and contribute to joint destruction through their production of cytokines, chemokines, and matrix-degrading molecules and by migrating and invading joint cartilage. In this review, we show that these cells differ from healthy synovial fibroblasts, not only in their marker expression, proto-oncogene expression, or their epigenetic changes, but also in their intracellular metabolism. These metabolic changes must occur due to the stressful microenvironment of inflamed tissues, where concentrations of crucial nutrients such as glucose, glutamine, and oxygen are spatially and temporally heterogeneous. In addition, these metabolic changes will increase metabolite exchange between fibroblast and other synovial cells, which can potentially be activated. Glucose and phospholipid metabolism as well as bioactive lipids, including sphingosine-1-phosphate and lysophosphatidic acid, among others, are involved in FLS activation. These metabolic changes likely contribute to FLS involvement in aspects of immune response initiation or abnormal immune responses and strongly contribute to joint destruction.
Collapse
Affiliation(s)
- Marta F Bustamante
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Ricard Garcia-Carbonell
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Katrijn D Whisenant
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Monica Guma
- Department of Medicine, School of Medicine, UCSD, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA.
| |
Collapse
|
11
|
Effects of simvastatin, ezetimibe, and their combination on histopathologic alterations caused by adjuvant-induced arthritis. Inflammation 2015; 37:1035-43. [PMID: 24493323 DOI: 10.1007/s10753-014-9826-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The objective of the present study was to investigate the effects of monotherapy with simvastatin or ezetimibe compared with those of an ezetimibe + simvastatin combination on the histopathologic aspects of arthritis induced by Complete Freund's Adjuvant in rats. The characteristics of diarthrosis were analyzed 7 and 28 days after arthritis induction with regard to the regularity and integrity of articular cartilage, the presence of leukocytes in blood vessels at the inflammation site, and the cytokine levels in articular tissue. Monotherapy with simvastatin or ezetimibe and the ezetimibe + simvastatin combination effectively reduced the cytokine levels (interleukin-6 and tumor necrosis factor) and articular lesions that are characteristic of this experimental disease. Although the results did not reveal significant differences between the monotherapy and the combined therapy, they suggest that these drugs have considerable antiinflammatory properties, as reflected by an attenuation of articular cartilage lesions mediated by a reduction in the levels of proinflammatory cytokines.
Collapse
|
12
|
Brockhausen I, Anastassiades TP. Inflammation and arthritis: perspectives of the glycobiologist. Expert Rev Clin Immunol 2014; 4:173-91. [DOI: 10.1586/1744666x.4.2.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Collins ES, Galligan MC, Saldova R, Adamczyk B, Abrahams JL, Campbell MP, Ng CT, Veale DJ, Murphy TB, Rudd PM, Fitzgerald O. Glycosylation status of serum in inflammatory arthritis in response to anti-TNF treatment. Rheumatology (Oxford) 2013; 52:1572-82. [PMID: 23681398 DOI: 10.1093/rheumatology/ket189] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Glycosylation is the most common post-translational modification and is altered in disease. The typical glycosylation change in patients with inflammatory arthritis (IA) is a decrease in galactosylation levels on IgG. The aim of this study is to evaluate the effect of anti-TNF therapy on whole serum glycosylation from IA patients and determine whether these alterations in the glycome change upon treatment of the disease. METHODS Serum samples were collected from 54 IA patients before treatment and at 1 and 12 months after commencing anti-TNF therapy. N-linked glycans from whole serum samples were analysed using a high-throughput hydrophilic interaction liquid chromatography-based method. RESULTS Glycosylation on the serum proteins of IA patients changed significantly with anti-TNF treatment. We observed an increase in galactosylated glycans from IgG, also an increase in core-fucosylated biantennary galactosylated glycans and a decrease in sialylated triantennary glycans with and without outer arm fucose. This increase in galactosylated IgG glycans suggests a reversing of the N-glycome towards normal healthy profiles. These changes are strongly correlated with decreasing CRP, suggesting a link between glycosylation changes and decreases in inflammatory processes. CONCLUSION Glycosylation changes in the serum of IA patients on anti-TNF therapy are strongly associated with a decrease in inflammatory processes and reflect the effect of anti-TNF on the immune system.
Collapse
Affiliation(s)
- Emily S Collins
- Department of Rheumatology, Dublin Academic Medical Centre, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Scott DW, Chen J, Chacko BK, Traylor JG, Orr AW, Patel RP. Role of endothelial N-glycan mannose residues in monocyte recruitment during atherogenesis. Arterioscler Thromb Vasc Biol 2012; 32:e51-9. [PMID: 22723438 DOI: 10.1161/atvbaha.112.253203] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Upregulated expression of endothelial adhesion molecules and subsequent binding to cognate monocytic receptors are established paradigms in atherosclerosis. However, these proteins are the scaffolds, with their posttranslational modification with sugars providing the actual ligands. We recently showed that tumor necrosis factor-α increased hypoglycosylated (mannose-rich) N-glycans on the endothelial surface. In the present study, our aim was to determine whether (1) hypoglycosylated N-glycans are upregulated by proatherogenic stimuli (oscillatory flow) in vitro and in vivo, and (2) mannose residues on hypoglycosylated endothelial N-glycans mediate monocyte rolling and adhesion. METHODS AND RESULTS Staining with the mannose-specific lectins concanavalin A and lens culinaris agglutinin was increased in human aortic endothelial cells exposed to oscillatory shear or tumor necrosis factor-α and at sites of plaque development and progression in both mice and human vessels. Increasing surface N-linked mannose by inhibiting N-glycan processing potentiated monocyte adhesion under flow during tumor necrosis factor-α stimulation. Conversely, enzymatic removal of high-mannose N-glycans, or masking mannose residues with lectins, significantly decreased monocyte adhesion under flow. These effects occurred without altering induced expression of adhesion molecule proteins. CONCLUSIONS Hypoglycosylated (high mannose) N-glycans are present on the endothelial cell surface at sites of early human lesion development and are novel effectors of monocyte adhesion during atherogenesis.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, University of Alabama at Birmingham, 901 19th St S, BMRII 532, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
15
|
Castro I, Aguilera S, Brockhausen I, Alliende C, Quest AFG, Molina C, Urzúa U, Mandel U, Bahamondes V, Barrera MJ, Sánchez M, González S, Hermoso M, Leyton C, González MJ. Decreased salivary sulphotransferase activity correlated with inflammation and autoimmunity parameters in Sjogren's syndrome patients. Rheumatology (Oxford) 2011; 51:482-90. [PMID: 22101162 DOI: 10.1093/rheumatology/ker351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES To determine the expression and enzymatic activities of sulphotransferases involved in mucin hyposulphation in labial salivary glands (LSGs) from SS patients and to correlate sulphotransferase activity with clinical parameters such as secretion, inflammation and serology. METHODS LSG from 31 SS patients and 31 control subjects were studied. Relative mRNA and protein levels of Gal3-O-sulphotransferases (Gal3STs) and β1,3-galactosyltransferase-5 (β3GalT5) were determined by quantitative RT-PCR and western blotting, respectively. Enzymatic activities were quantified using radioactively labelled donor substrates and specific acceptor substrates. Products were purified by chromatography. Spearman's correlation analysis was used to compare data. RESULTS The levels of Gal3ST activity were significantly decreased in SS patients, without changes in mRNA and protein levels, while the enzymatic activities of glycosyltransferases involved in mucin glycosylation were similar in both groups. An inverse correlation was observed between Gal3ST activity and glandular function measured by scintigraphy, but not with unstimulated salivary flow. Gal3ST activity was inversely correlated with focus score, TNF-α levels and presence of the autoantibodies Ro/SS-A and La/SS-B. CONCLUSION The decrease in sulphotransferase activity provides an explanation for mucin hyposulphation observed in the LSGs from SS patients. The decrease in Gal3STs activity was not a consequence of reduced gene expression, but probably due to alterations in the enzyme activity regulation. Interestingly, the levels of sulphotransferase activity detected correlated well with secretory function, inflammation and serology. Finally, we postulate that pro-inflammatory cytokines induced by autoantibodies, such as Ro/SS-A and La/SS-B in SS patients, may modulate Gal3ST activity, thereby altering mucin quality and leading to mouth dryness.
Collapse
Affiliation(s)
- Isabel Castro
- Institute of Biomedical Sciences, University of Chile, Casilla, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chacko BK, Scott DW, Chandler RT, Patel RP. Endothelial surface N-glycans mediate monocyte adhesion and are targets for anti-inflammatory effects of peroxisome proliferator-activated receptor γ ligands. J Biol Chem 2011; 286:38738-38747. [PMID: 21911496 PMCID: PMC3207389 DOI: 10.1074/jbc.m111.247981] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/24/2011] [Indexed: 01/13/2023] Open
Abstract
Endothelial-monocyte interactions are regulated by adhesion molecules and key in the development of vascular inflammatory disease. Peroxisome proliferator-activated receptor (PPAR) γ activation in endothelial cells is recognized to mediate anti-inflammatory effects that inhibit monocyte rolling and adhesion. Herein, evidence is provided for a novel mechanism for the anti-inflammatory effects of PPARγ ligand action that involves inhibition of proinflammatory cytokine-dependent up-regulation of endothelial N-glycans. TNFα treatment of human umbilical vein endothelial cells increased surface expression of high mannose/hybrid N-glycans. A role for these sugars in mediating THP-1 or primary human monocyte rolling and adhesion was indicated by competition studies in which addition of α-methylmannose, but not α-methylglucose, inhibited monocyte rolling and adhesion during flow, but not under static conditions. This result supports the notion that adhesion molecules provide scaffolds for sugar epitopes to mediate adhesion with cognate receptors. A panel of structurally distinct PPARγ agonists all decreased TNFα-dependent expression of endothelial high mannose/hybrid N-glycans. Using rosiglitazone as a model PPARγ agonist, which decreased TNFα-induced high mannose N-glycan expression, we demonstrate a role for these carbohydrate residues in THP-1 rolling and adhesion that is independent of endothelial surface adhesion molecule expression (ICAM-1 and E-selectin). Data from N-glycan processing gene arrays identified α-mannosidases (MAN1A2 and MAN1C1) as targets for down-regulation by TNFα, which was reversed by rosiglitazone, a result consistent with altered high mannose/hybrid N-glycan epitopes. Taken together we propose a novel anti-inflammatory mechanism of endothelial PPARγ activation that involves targeting protein post-translational modification of adhesion molecules, specifically N-glycosylation.
Collapse
Affiliation(s)
- Balu K Chacko
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - David W Scott
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Robert T Chandler
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Rakesh P Patel
- Department of Pathology, University of Alabama, Birmingham, Alabama 35294.
| |
Collapse
|
17
|
Urita A, Matsuhashi T, Onodera T, Nakagawa H, Hato M, Amano M, Seito N, Minami A, Nishimura SI, Iwasaki N. Alterations of high-mannose type N-glycosylation in human and mouse osteoarthritis cartilage. ACTA ACUST UNITED AC 2011; 63:3428-38. [DOI: 10.1002/art.30584] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Gao Y, Lazar C, Szarek WA, Brockhausen I. Specificity of β1,4-galactosyltransferase inhibition by 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-D-glucopyranoside. Glycoconj J 2010; 27:673-84. [PMID: 20976621 DOI: 10.1007/s10719-010-9312-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 01/27/2023]
Abstract
Inhibitors of Galactosyltransferase (GalT) have the potential of reducing the amounts of adhesive carbohydrates on secreted and cell surface-bound glycoproteins. We recently found a potent inhibitor of β4GalT, 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-D-glucopyranoside (compound 612). In this work, we have tested compound 612 for the specificity of its inhibition and examined its effect on GalT, and on GlcNAc- and GalNAc-transferases in homogenates of different cell lines, as well as on recombinant glycosyltransferases. Compound 612 was found to be a specific inhibitor of β4GalT. The specificity of recombinant human β3GalT5 that also acts on GlcNAc-R substrates, revealed similarities to bovine milk β4GalT. However, 612 was a poor substrate and not an inhibitor for β3GalT5. To further determine the specific structures responsible for the inhibitory property of 612, we synthesized (2-naphthyl)-2-butanamido-2-deoxy-β-D-glucopyranosylamine (compound 629) containing nitrogen in the glycosidic linkage, and compared it to other naphthyl and quinolinyl derivatives of GlcNAc as substrates and inhibitors. Compound 629 was a substrate for both β4GalT and β3GalT5. This suggests that properties of 612 other than the presence of the naphthyl ring alone were responsible for its inhibitory action. The results suggest a usefulness of 612 in specifically blocking the synthesis of type 2 chains and thus epitopes attached to type 2 chains. In addition, 612 potently inhibits β4GalT in cell homogenates and thus allows assaying β3GalT activity in the presence of β4GalT.
Collapse
Affiliation(s)
- Yin Gao
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | | | | |
Collapse
|
19
|
CD161 receptor participates in both impairing NK cell cytotoxicity and the response to glycans and vimentin in patients with rheumatoid arthritis. Clin Immunol 2010; 136:139-47. [DOI: 10.1016/j.clim.2010.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 11/21/2022]
|
20
|
Toegel S, Pabst M, Wu SQ, Grass J, Goldring MB, Chiari C, Kolb A, Altmann F, Viernstein H, Unger FM. Phenotype-related differential alpha-2,6- or alpha-2,3-sialylation of glycoprotein N-glycans in human chondrocytes. Osteoarthritis Cartilage 2010; 18:240-8. [PMID: 19800998 PMCID: PMC2818349 DOI: 10.1016/j.joca.2009.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/18/2009] [Accepted: 09/09/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sialic acids frequently occur at the terminal positions of glycoprotein N-glycans present at chondrocyte surfaces or in the cartilage matrix. Sialic acids are transferred to glycoproteins in either alpha-2,3 or alpha-2,6 linkage by specific sialyltransferases (SiaTs) and can potentially affect cell functions and cell-matrix interactions. The present study aimed to assess the relationship between the expression of the human chondrocyte phenotype and the sialylation of chondrocyte glycoprotein N-glycans. METHODS The transcription of 5 SiaT was quantified using real-time Reverse transcription polymerase chain reaction (RT-PCR) assays. N-glycan analysis was performed using LC-ESI-MS. Primary human chondrocytes were cultured in monolayer or alginate beads and compared to the chondrocyte cell lines C-28/I2 and SW1353. In addition, effects of interleukin-1beta (IL-1beta) or tumour necrosis factor-alpha (TNF-alpha) on primary cells were assessed. RESULTS Primary human chondrocytes predominantly express alpha-2,6-specific SiaTs and accordingly, alpha-2,6-linked sialic acid residues in glycoprotein N-glycans. In contrast, the preponderance of alpha-2,3-linked sialyl residues and, correspondingly, reduced levels of alpha-2,6-specific SiaTs are associated with the altered chondrocyte phenotype of C-28/I2 and SW1353 cells. Importantly, a considerable shift towards alpha-2,3-linked sialic acids and alpha-2,3-specific SiaT mRNA levels occurred in primary chondrocytes treated with IL-1beta or tumour necrosis factor-alpha (TNF-alpha). CONCLUSION The expression of the differentiated chondrocyte phenotype is linked to the ratio of alpha-2,6- to alpha-2,3-linked sialic acids in chondrocyte glycoprotein N-glycans. A shift towards altered sialylation might contribute to impaired cell-matrix interactions in disease conditions.
Collapse
Affiliation(s)
- S Toegel
- Medical University Vienna, Vienna, Austria,Laboratory for Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, USA,Corresponding author Stefan Toegel, Medical University Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria, Tel: 0043 1 4277 55461, Fax: 0043 1 4277 9554,
| | - M Pabst
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - SQ Wu
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria,Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - J Grass
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - MB Goldring
- Laboratory for Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, USA
| | - C Chiari
- Department of Orthopedics, Medical University Vienna, Vienna, Austria
| | - A Kolb
- Department of Orthopedics, Medical University Vienna, Vienna, Austria
| | - F Altmann
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - H Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - FM Unger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Wu YM, Nowack DD, Omenn GS, Haab BB. Mucin glycosylation is altered by pro-inflammatory signaling in pancreatic-cancer cells. J Proteome Res 2009; 8:1876-86. [PMID: 19714813 DOI: 10.1021/pr8008379] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Altered glycosylation on the surfaces or secreted proteins of tumor cells is common in pancreatic cancer and is thought to promote cancer progression, but the factors leading to the changes in carbohydrate structures are incompletely understood. We hypothesized that pro-inflammatory conditions can lead to alterations in cancer-associated glycans on mucins produced by pancreatic-cancer cells. With the use of a novel antibody-glycan microarray method, we measured the effects of pro-inflammatory stimuli (oxidative stress and treatment with the cytokines IFNgamma, IL-1alpha, and TNFalpha) on the expression and glycosylation of the mucins MUC1, MUC5AC, and MUC16 in multiple pancreatic cancer cell lines. Mucin glycosylation was significantly affected in specific cell lines, particularly in structures involving terminal galactose or N-acetylgalactosamine. In addition, the responses of the cell lines grouped according to the expression of cell-surface markers that are associated with tumorigenicity, as cell lines bearing minimal surface markers, showed evidence of increased O-glycan extension and decreased presentation of terminal beta1,4-linked galactose, opposite to cell lines bearing multiple markers. These results suggest mechanisms whereby inflammation might influence tumor behavior in a cell-type specific manner through modulating the presentation of cancer-associated glycans.
Collapse
Affiliation(s)
- Yi-Mi Wu
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | |
Collapse
|
22
|
Lectin binding patterns reflect the phenotypic status of in vitro chondrocyte models. In Vitro Cell Dev Biol Anim 2009; 45:351-60. [DOI: 10.1007/s11626-009-9186-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 01/29/2009] [Indexed: 11/26/2022]
|
23
|
Primary human osteoblasts and bone cancer cells as models to study glycodynamics in bone. Int J Biochem Cell Biol 2007; 40:471-83. [PMID: 17931955 DOI: 10.1016/j.biocel.2007.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/24/2007] [Accepted: 08/21/2007] [Indexed: 01/01/2023]
Abstract
Bone cells produce many glycoproteins potentially involved in the maintenance of healthy bone tissues. Two cytokines produced in inflamed joints, tumor necrosis factor (TNF)alpha and transforming growth factor (TGF)beta, have previously been shown to alter cellular glycosylation which may potentially affect the expression and function of glycoproteins. In order to evaluate models to study the glycodynamics of bone cells, we examined primary human osteoblastic cells from osteoarthritis patients, and compared these to human osteosarcoma cells MG63 and SJSA-1. We showed here for the first time that all of the human osteoblastic cells actively synthesize complex N- and O-glycan chains of bone cell glycoproteins, with quantitative differences between cell types. TNFalpha-induced apoptosis or TGFbeta-induced cell differentiation and proliferation had significant effects on both cell surface carbohydrates and glycosyltransferase activities of osteoblasts and osteosarcoma cells. The results indicate that cultured human bone-derived osteoblastic cells are good models to examine the glycodynamics of osteoblasts under conditions of cell growth and cell death. The changes induced by cytokines can result in altered cell surface functions which may be of importance in osteoarthritis, osteoporosis and other bone diseases.
Collapse
|
24
|
Brockhausen I, Benn M, Bhat S, Marone S, Riley JG, Montoya-Peleaz P, Vlahakis JZ, Paulsen H, Schutzbach JS, Szarek WA. UDP-Gal: GlcNAc-R beta1,4-galactosyltransferase--a target enzyme for drug design. Acceptor specificity and inhibition of the enzyme. Glycoconj J 2007; 23:525-41. [PMID: 17006644 DOI: 10.1007/s10719-006-7153-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/06/2006] [Accepted: 01/12/2006] [Indexed: 01/01/2023]
Abstract
Galactosyltransferases are important enzymes for the extension of the glycan chains of glycoproteins and glycolipids, and play critical roles in cell surface functions and in the immune system. In this work, the acceptor specificity and several inhibitors of bovine beta1,4-Gal-transferase T1 (beta4GalT, EC 2.4.1.90) were studied. Series of analogs of N-acetylglucosamine (GlcNAc) and GlcNAc-carrying glycopeptides were synthesized as acceptor substrates. Modifications were made at the 3-, 4- and 6-positions of the sugar ring of the acceptor, in the nature of the glycosidic linkage, in the aglycone moiety and in the 2-acetamido group. The acceptor specificity studies showed that the 4-hydroxyl group of the sugar ring was essential for beta4GalT activity, but that the 3-hydroxyl could be replaced by an electronegative group. Compounds having the anomeric beta-configuration were more active than those having the alpha-configuration, and O-, S- and C-glycosyl compounds were all active as substrates. The aglycone was a major determinant for the rate of Gal-transfer. Derivatives containing a 2-naphthyl aglycone were inactive as substrates although quinolinyl groups supported activity. Several compounds having a bicyclic structure as the aglycone were found to bind to the enzyme and inhibited the transfer of Gal to control substrates. The best small hydrophobic GlcNAc-analog inhibitor was found to be 1-thio-N-butyrylGlcNbeta-(2-naphthyl) with a K(i) of 0.01 mM. These studies help to delineate beta4GalT-substrate interactions and will aid in the development of biologically applicable inhibitors of the enzyme.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 2V7, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li Y, Yang X, Nguyen AHT, Brockhausen I. Requirement of N-glycosylation for the secretion of recombinant extracellular domain of human Fas in HeLa cells. Int J Biochem Cell Biol 2007; 39:1625-36. [PMID: 17544837 DOI: 10.1016/j.biocel.2007.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/14/2007] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Apoptosis has been shown to be associated with altered glycosylation patterns and biosynthesis of glycoproteins. A major cell surface receptor involved in the induction of apoptosis is Fas that is activated by binding Fas ligand but can also be activated by binding anti-Fas antibody. In order to determine whether the Fas receptor is glycosylated, the extracellular domain of human Fas (shFas) was expressed as a cleavable fusion protein (shFas-Fc) in HeLa cells. These cells were shown to express activities of glycosyltransferases involved in N- and O-glycan biosynthesis. The secreted shFas-Fc was shown to be a glycoprotein with heterogeneous glycan chains. MALDI mass spectrometry revealed a disperse molecular weight of shFas with an average of 23.4kDa. Western blots of shFas-Fc secreted from tunicamycin treated transfected HeLa cells showed that only N-glycosylated glycoforms were secreted, while the unglycosylated shFas-Fc remained intracellular. The results suggest that both N-glycosylation sites of the extracellular domain of Fas are occupied with large N-glycans that play a role in the expression of the glycoprotein.
Collapse
Affiliation(s)
- Yi Li
- Department of Medicine, Division of Rheumatology, Human Mobility Research Center and The Arthritis Center, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
26
|
Yang X, Yip J, Anastassiades T, Harrison M, Brockhausen I. The action of TNFα and TGFβ include specific alterations of the glycosylation of bovine and human chondrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:264-72. [PMID: 17079030 DOI: 10.1016/j.bbamcr.2006.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/05/2006] [Accepted: 09/13/2006] [Indexed: 11/27/2022]
Abstract
Joint destruction in arthritis is often associated with high levels of inflammatory cytokines. Previous work has shown that inflammatory conditions can alter the activities of glycosyltransferases that synthesize the glycan chains of glycoproteins, and that these changes in turn can influence the functions of glycoproteins. We therefore examined glycosyltransferases involved in glycoprotein biosynthesis in primary cultures of bovine articular chondrocytes and human chondrocytes isolated from knee cartilage of osteoarthritis patients. Bovine chondrocytes exhibited enzyme activities involved in the synthesis of bi-antennary complex Asn-linked N-glycans, as well as the enzymes involved in the synthesis of GalNAc-Ser/Thr-linked O-glycans with the core 1 structure. Human chondrocytes, in addition, were able to synthesize more complex O-glycans with core 2 structures. TNFalpha was found to induce apoptosis in chondrocytes, and this process was associated with significant changes in lectin binding to chondrocyte cell surface glycans. TGFbeta increased cell proliferation, and had significant effects on cell surface glycosylation in bovine but not in human cells. These cytokine-specific effects were partially correlated with changes in glycosyltransferase activities. Thus, chondrocytes have many of the enzymes necessary for the synthesis of N- and O-glycan chains of glycoproteins. The O-glycosylation pathways and the effects of TNFalpha and TGFbeta on glycosylation differed between bovine and human chondrocytes. These alterations are of potential importance for the regulation of the functions of cell surface receptors on chondrocytes, and for an understanding of the pathophysiology of arthritis.
Collapse
Affiliation(s)
- X Yang
- Department of Medicine, Division of Rheumatology, Human Mobility Research Centre, Queen's University, Etherington Hall, Kingston, ON, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
27
|
Patchell BJ, Dorscheid DR. Repair of the injury to respiratory epithelial cells characteristic of asthma is stimulated by Allomyrina dichotoma agglutinin specific serum glycoproteins. Clin Exp Allergy 2006; 36:585-93. [PMID: 16650042 DOI: 10.1111/j.1365-2222.2006.02394.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The airway epithelium acts as a protective barrier, separating the external environment from the underlying tissue. Daily challenges result in damage to the epithelium that, in normal individuals, is quickly and effectively repaired. In respiratory diseases, such as asthma, this repair is compromised. Following injury to the epithelium, plasma leaks into the airway lumen acting as a protective protein cap. Carbohydrates are mediators of epithelial repair, however, the associated regulatory proteins remain unknown. OBJECTIVE To identify mediators of epithelial repair based on their carbohydrate moieties using an in vitro wound repair culture model of human airway epithelial cells (1HAEo(-)). METHODS Using the lectin Allomyrina dichotoma agglutinin (AlloA) as a tool, ligands essential in the repair of damaged epithelium were characterized. AlloA was subsequently used to purify and identify a glycoprotein associated with epithelial repair. RESULTS The addition of AlloA to the media of mechanically wounded monolayers inhibited repair. Fetuin, a highly glycosylated serum protein, was identified as a glycoprotein bound by AlloA. The addition of fetuin to serum starved monolayers stimulated wound closure. CONCLUSION These results indicate that following mechanical injury to the epithelium, serum glycoproteins, not only provide a protective barrier, but also are involved in the initiation of wound closure.
Collapse
Affiliation(s)
- B J Patchell
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, University of British Columbia, Department of Medicine, University of British Columbia, Vancouver BC, Canada
| | | |
Collapse
|
28
|
Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep 2006; 7:599-604. [PMID: 16741504 PMCID: PMC1479595 DOI: 10.1038/sj.embor.7400705] [Citation(s) in RCA: 399] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 04/20/2006] [Indexed: 02/07/2023] Open
Abstract
The glycoproteins of tumour cells are often abnormal, both in structure and in quantity. In particular, the mucin-type O-glycans have several cancer-associated structures, including the T and Tn antigens, and certain Lewis antigens. These structural changes can alter the function of the cell, and its antigenic and adhesive properties, as well as its potential to invade and metastasize. Cancer-associated mucin antigens can be exploited in diagnosis and prognosis, and in the development of cancer vaccines. The activities and Golgi localization of glycosyltransferases are the basis for the glycodynamics of cancer cells, and determine the ranges and amounts of specific O-glycans produced. This review focuses on the glycosyltransferases of colon and breast cancer cells that determine the pathways of mucin-type O-glycosylation, and the proposed functional and pathological consequences of altered O-glycans.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine and Biochemistry, Human Mobility Research Centre, Queen's University, Kingston General Hospital, Angada 1, Kingston, Ontario K7L 2V7, Canada.
| |
Collapse
|
29
|
Ben-Mahmud BM, Chan WH, Abdulahad RM, Datti A, Orlacchio A, Kohner EM, Chibber R. Clinical validation of a link between TNF-alpha and the glycosylation enzyme core 2 GlcNAc-T and the relationship of this link to diabetic retinopathy. Diabetologia 2006; 49:2185-91. [PMID: 16832663 DOI: 10.1007/s00125-006-0332-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS Increasing evidence suggests that chronic, subclinical inflammation plays an important role in the pathogenesis of diabetic retinopathy. We recently reported that a glycosylating enzyme, core 2 beta-1,6-N-acetylglucosaminyltransferase (core 2 GlcNAc-T), is implicated in increased leucocyte-endothelial cell adhesion in diabetic retinopathy via an upregulation mechanism controlled by TNF-alpha. SUBJECTS, MATERIALS AND METHODS We examined the functional link between circulating TNF-alpha and the activity and phosphorylation of core 2 GlcNAc-T in polymorphonuclear leucocytes of patients with type 1 and type 2 diabetes. RESULTS Plasma levels of TNF-alpha, although similar in patients with type 1 and type 2 diabetes, were significantly higher than in age-matched healthy controls, and correlated well with the severity of retinopathy. Core 2 GlcNAc-T activity followed the same trend and was associated with phosphorylation of the enzyme. Finally, the observation that TNF-alpha levels are also linked to glycaemic values suggests that in patients, as well as in vitro, the glycosylation-mediated cell adhesion process that plays a role in diabetic retinopathy may involve glucose- and TNF-alpha-induced protein kinase beta2 activation, and subsequently raise activity of core 2 GlcNAc-T through increased enzyme phosphorylation. CONCLUSIONS/INTERPRETATION Our results reveal a novel rationale towards a specific treatment of diabetic retinopathy, based on the inhibition of core 2 GlcNAc-T activity and/or the blockage of cognate glycans.
Collapse
Affiliation(s)
- B M Ben-Mahmud
- Cardiovascular Division, 2nd Floor, New Hunt's House, GKT School of Biomedical and Health Sciences, Guy's Campus, King's College London, London, SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Brockhausen I, Carran J, McEleney K, Lehotay M, Yang X, Yin L, Anastassiades T. N-Acyl derivatives of glucosamine as acceptor substrates for galactosyltransferase from bone and cartilage cells. Carbohydr Res 2005; 340:1997-2003. [PMID: 15993867 DOI: 10.1016/j.carres.2005.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 05/30/2005] [Accepted: 06/07/2005] [Indexed: 11/18/2022]
Abstract
Glucosamine is commonly used as a nutraceutical by arthritis patients. However, its mode of action is still unknown, and there is controversy about its clinical efficacy. Synthetic N-acyl glucosamines (acyl group>2 carbons) comprise a new class of drugs. We examined these derivatives for their effect in bone and cartilage cells, and for their ability to serve as acceptor substrates for galactosyltransferase. With the exception of N-benzoylglucosamine, compounds of the series were good substrates for galactosyltransferases from bone and cartilage cells, and for purified enzyme from bovine milk. When N-butyrylglucosamine (GlcNBu) was added to the cell medium of primary bovine chondrocytes and human osteoblasts, small amounts were found to enter the cells and a radiolabeled metabolite appeared in the medium. However, GlcNBu did not appear to be incorporated directly into oligosaccharides. GlcNBu at 1 and 5mM concentrations in the glucose-free cell medium of primary human osteoblasts from osteoarthritis patients did not significantly alter cell proliferation or cell differentiation.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, The Arthritis Centre, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada K7L 2V7.
| | | | | | | | | | | | | |
Collapse
|