1
|
Mota C, Webster M, Saidi M, Kapp U, Zubieta C, Giachin G, Manso JA, de Sanctis D. Metal ion activation and DNA recognition by the Deinococcus radiodurans manganese sensor DR2539. FEBS J 2024; 291:3384-3402. [PMID: 38652591 DOI: 10.1111/febs.17140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The accumulation of manganese ions is crucial for scavenging reactive oxygen species and protecting the proteome of Deinococcus radiodurans (Dr). However, metal homeostasis still needs to be tightly regulated to avoid toxicity. DR2539, a dimeric transcription regulator, plays a key role in Dr manganese homeostasis. Despite comprising three well-conserved domains - a DNA-binding domain, a dimerisation domain, and an ancillary domain - the mechanisms underlying both, metal ion activation and DNA recognition remain elusive. In this study, we present biophysical analyses and the structure of the dimerisation and DNA-binding domains of DR2539 in its holo-form and in complex with the 21 base pair pseudo-palindromic repeat of the dr1709 promoter region, shedding light on these activation and recognition mechanisms. The dimer presents eight manganese binding sites that induce structural conformations essential for DNA binding. The analysis of the protein-DNA interfaces elucidates the significance of Tyr59 and helix α3 sequence in the interaction with the DNA. Finally, the structure in solution as determined by small-angle X-ray scattering experiments and supported by AlphaFold modeling provides a model illustrating the conformational changes induced upon metal binding.
Collapse
Affiliation(s)
- Cristiano Mota
- ESRF - The European Synchrotron, Grenoble, France
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | | | | | - Ulrike Kapp
- ESRF - The European Synchrotron, Grenoble, France
| | | | | | - José Antonio Manso
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | | |
Collapse
|
2
|
Liu J, Bao X, Qiu G, Li H, Wang Y, Chen X, Fu Q, Guo B. Genome-Wide Identification and Expression Analysis of SlNRAMP Genes in Tomato under Nutrient Deficiency and Cadmium Stress during Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2024; 25:8269. [PMID: 39125839 PMCID: PMC11311520 DOI: 10.3390/ijms25158269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are well known for enhancing phosphorus uptake in plants; however, their regulating roles in cation transporting gene family, such as natural resistance-associated macrophage protein (NRAMP), are still limited. Here, we performed bioinformatics analysis and quantitative expression assays of tomato SlNRAMP 1 to 5 genes under nutrient deficiency and cadmium (Cd) stress in response to AM symbiosis. These five SlNRAMP members are mainly located in the plasma or vacuolar membrane and can be divided into two subfamilies. Cis-element analysis revealed several motifs involved in phytohormonal and abiotic regulation in their promoters. SlNRAMP2 was downregulated by iron deficiency, while SlNRAMP1, SlNRAMP3, SlNRAMP4, and SlNRAMP5 responded positively to copper-, zinc-, and manganese-deficient conditions. AM colonization reduced Cd accumulation and expression of SlNRAMP3 but enhanced SlNRAMP1, SlNRAMP2, and SlNRMAP4 in plants under Cd stress. These findings provide valuable genetic information for improving tomato resilience to nutrient deficiency and heavy metal stress by developing AM symbiosis.
Collapse
Affiliation(s)
- Junli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaoqi Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gaoyang Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Hua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Yuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaodong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Qinglin Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Bin Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| |
Collapse
|
3
|
Huang T, Chen S, Ding K, Zheng B, Lv W, Wang X, Zhong Y, Huang H, Zhang X, Ma S, Yang B, Wang X, Rong Z. SLC35E1 promotes keratinocyte proliferation in psoriasis by regulating zinc homeostasis. Cell Death Dis 2023; 14:354. [PMID: 37296095 PMCID: PMC10256760 DOI: 10.1038/s41419-023-05874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Keratinocyte hyperproliferation is a key pathogenic factor in psoriasis. However, the mechanisms that regulate keratinocyte hyperproliferation in this condition remain unclear. Here, we found that SLC35E1 was highly expressed in keratinocytes of patients with psoriasis and that Slc35e1-/- mice displayed a less severe imiquimod (IMQ)-induced psoriasis-like phenotype than their wild-type siblings. In addition, SLC35E1 deficiency inhibited keratinocyte proliferation in both mice and cultured cells. On a molecular level, SLC35E1 was found to regulate zinc ion concentrations and subcellular localization, while zinc ion chelation reversed the IMQ-induced psoriatic phenotype in Slc35e1-/- mice. Meanwhile, epidermal zinc ion levels were decreased in patients with psoriasis and zinc ion supplementation alleviated the psoriatic phenotype in an IMQ-induced mouse model of psoriasis. Our results indicated that SLC35E1 can promote keratinocyte proliferation by regulating zinc ion homeostasis and zinc ion supplementation has potential as a therapy for psoriasis.
Collapse
Affiliation(s)
- Tao Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Shijun Chen
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Ke Ding
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Baoqing Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Weiqi Lv
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Xiaobo Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yadan Zhong
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Affiliated Dongguan Hospital, Southern Medical University, (Dongguan People's Hospital), Dongguan, 523058, China
| | - Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| | - Xiaohua Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China.
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| |
Collapse
|
4
|
Xie W, Liu S, Gao H, Wu J, Liu D, Kinoshita T, Huang CF. PP2C.D phosphatase SAL1 positively regulates aluminum resistance via restriction of aluminum uptake in rice. PLANT PHYSIOLOGY 2023; 192:1498-1516. [PMID: 36823690 PMCID: PMC10231357 DOI: 10.1093/plphys/kiad122] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Aluminum (Al) toxicity represents a primary constraint for crop production in acidic soils. Rice (Oryza sativa) is a highly Al-resistant species; however, the molecular mechanisms underlying its high Al resistance are still not fully understood. Here, we identified SAL1 (SENSITIVE TO ALUMINUM 1), which encodes a plasma membrane (PM)-localized PP2C.D phosphatase, as a crucial regulator of Al resistance using a forward genetic screen. SAL1 was found to interact with and inhibit the activity of PM H+-ATPases, and mutation of SAL1 increased PM H+-ATPase activity and Al uptake, causing hypersensitivity to internal Al toxicity. Furthermore, knockout of NRAT1 (NRAMP ALUMINUM TRANSPORTER 1) encoding an Al uptake transporter in a sal1 background rescued the Al-sensitive phenotype of sal1, revealing that coordination of Al accumulation in the cell, wall and symplasm is critical for Al resistance in rice. By contrast, we found that mutations of PP2C.D phosphatase-encoding genes in Arabidopsis (Arabidopsis thaliana) enhanced Al resistance, which was attributed to increased malate secretion. Our results reveal the importance of PP2C.D phosphatases in Al resistance and the different strategies used by rice and Arabidopsis to defend against Al toxicity.
Collapse
Affiliation(s)
- Wenxiang Xie
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiling Gao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Dilin Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang Y, Wang Z, Liu Y, Zhang T, Liu J, You Z, Huang P, Zhang Z, Wang C. Plasma membrane-associated calcium signaling modulates cadmium transport. THE NEW PHYTOLOGIST 2023; 238:313-331. [PMID: 36567524 DOI: 10.1111/nph.18698] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is a toxic heavy element for plant growth and development, and plants have evolved many strategies to cope with Cd stress. However, the mechanisms how plants sense Cd stress and regulate the function of transporters remain very rudimentary. Here, we found that Cd stress induces obvious Ca2+ signals in Arabidopsis roots. Furthermore, we identified the calcium-dependent protein kinases CPK21 and CPK23 that interacted with the Cd transporter NRAMP6 through a variety of protein interaction techniques. Then, we confirmed that the cpk21 23 double mutants significantly enhanced the sensitive phenotype of cpk23 single mutant under Cd stress, while the overexpression and continuous activation of CPK21 and CPK23 enhanced plants tolerance to Cd stress. Multiple biochemical and physiological analyses in yeast and plants demonstrated that CPK21/23 phosphorylate NRAMP6 primarily at Ser489 and Thr505 to inhibit the Cd transport activity of NRAMP6, thereby improving the Cd tolerance of plants. Taken together, we found a plasma membrane-associated calcium signaling that modulates Cd tolerance. These results provide new insights into the molecular breeding of crop tolerance to Cd stress.
Collapse
Affiliation(s)
- Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhangqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yisong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhang You
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenqian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Akyüz E, Saleem QH, Sari Ç, Auzmendi J, Lazarowski A. Enlightening the mechanism of ferroptosis in epileptic heart. Curr Med Chem 2023; 31:CMC-EPUB-129729. [PMID: 36815654 DOI: 10.2174/0929867330666230223103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 02/24/2023]
Abstract
Epilepsy is a chronic neurological degenerative disease with a high incidence, affecting all age groups. Refractory Epilepsy (RE) occurs in approximately 30-40% of cases with a higher risk of sudden unexpected death in epilepsy (SUDEP). Recent studies have shown that spontaneous seizures developed in epilepsy can be related to an increase in oxidative stress and reactive oxygen derivatives (ROS) production. Increasing ROS concentration causes lipid peroxidation, protein oxidation, destruction of nuclear genetic material, enzyme inhibition, and cell death by a mechanism known as "ferroptosis" (Fts). Inactivation of glutathione peroxidase 4 (GPX4) induces Fts, while oxidative stress is linked with increased intracellular free iron (Fe+2) concentration. Fts is also a non-apoptotic programmed cell death mechanism, where a hypoxia-inducible factor 1 alpha (HIF-141) dependent hypoxic stress-like condition appears to occur with accumulation of iron and cytotoxic ROS in affected cells. Assuming convulsive crises as hypoxic stress, repetitive convulsive/hypoxic stress can be an effective inducer of the "epileptic heart" (EH), which is characterized by altered autonomic function and a high risk of malignant or fatal bradycardia. We previously reported that experimental recurrent seizures induce cardiomyocyte Fts associated with SUDEP. Furthermore, several genes related to Fts and hypoxia have recently been identified in acute myocardial infarction. An emerging theme from recent studies indicates that inhibition of GPX4 through modulating expression or activities of the xCT antiporter system (SLC7A11) governs cell sensitivity to oxidative stress from ferroptosis. Furthermore, during hypoxia, an increased expression of stress transcriptional factor ATF3 can promote Fts induced by erastin in a HIF-141-dependent manner. We propose that inhibition of Fts with ROS scavengers, iron chelators, antioxidants, and transaminase inhibitors could provide a therapeutic effect in epilepsy and improve the prognosis of SUDEP risk by protecting the heart from ferroptosis.
Collapse
Affiliation(s)
- Enes Akyüz
- University of Health Sciences, Faculty of International Medicine, Department of Biophysics, Istanbul, Turkey
| | - Qamar Hakeem Saleem
- University of Health Sciences, Faculty of International Medicine, Istanbul, Turkey
| | - Çiğdem Sari
- Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Jerónimo Auzmendi
- National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Institute for Research in Physiopathology and Clinical Biochemistry (INFIBIOC), Clinical Biochemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
The Role of Transmembrane Proteins in Plant Growth, Development, and Stress Responses. Int J Mol Sci 2022; 23:ijms232113627. [PMID: 36362412 PMCID: PMC9655316 DOI: 10.3390/ijms232113627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Transmembrane proteins participate in various physiological activities in plants, including signal transduction, substance transport, and energy conversion. Although more than 20% of gene products are predicted to be transmembrane proteins in the genome era, due to the complexity of transmembrane domains they are difficult to reliably identify in the predicted protein, and they may have different overall three-dimensional structures. Therefore, it is challenging to study their biological function. In this review, we describe the typical structures of transmembrane proteins and their roles in plant growth, development, and stress responses. We propose a model illustrating the roles of transmembrane proteins during plant growth and response to various stresses, which will provide important references for crop breeding.
Collapse
|
8
|
Cellier MFM. Nramp: Deprive and conquer? Front Cell Dev Biol 2022; 10:988866. [PMID: 36313567 PMCID: PMC9606685 DOI: 10.3389/fcell.2022.988866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Solute carriers 11 (Slc11) evolved from bacterial permease (MntH) to eukaryotic antibacterial defense (Nramp) while continuously mediating proton (H+)-dependent manganese (Mn2+) import. Also, Nramp horizontal gene transfer (HGT) toward bacteria led to mntH polyphyly. Prior demonstration that evolutionary rate-shifts distinguishing Slc11 from outgroup carriers dictate catalytic specificity suggested that resolving Slc11 family tree may provide a function-aware phylogenetic framework. Hence, MntH C (MC) subgroups resulted from HGTs of prototype Nramp (pNs) parologs while archetype Nramp (aNs) correlated with phagocytosis. PHI-Blast based taxonomic profiling confirmed MntH B phylogroup is confined to anaerobic bacteria vs. MntH A (MA)’s broad distribution; suggested niche-related spread of MC subgroups; established that MA-variant MH, which carries ‘eukaryotic signature’ marks, predominates in archaea. Slc11 phylogeny shows MH is sister to Nramp. Site-specific analysis of Slc11 charge network known to interact with the protonmotive force demonstrates sequential rate-shifts that recapitulate Slc11 evolution. 3D mapping of similarly coevolved sites across Slc11 hydrophobic core revealed successive targeting of discrete areas. The data imply that pN HGT could advantage recipient bacteria for H+-dependent Mn2+ acquisition and Alphafold 3D models suggest conformational divergence among MC subgroups. It is proposed that Slc11 originated as a bacterial stress resistance function allowing Mn2+-dependent persistence in conditions adverse for growth, and that archaeal MH could contribute to eukaryogenesis as a Mn2+ sequestering defense perhaps favoring intracellular growth-competent bacteria.
Collapse
|
9
|
Harini K, Girigoswami K, Anand AV, Pallavi P, Gowtham P, Elboughdiri N, Girigoswami A. Nano-mediated Strategies for Metal Ion–Induced Neurodegenerative Disorders: Focus on Alzheimer’s and Parkinson’s Diseases. CURRENT PHARMACOLOGY REPORTS 2022; 8:450-463. [DOI: 10.1007/s40495-022-00307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/29/2023]
|
10
|
ZmNRAMP4 Enhances the Tolerance to Aluminum Stress in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23158162. [PMID: 35897738 PMCID: PMC9331102 DOI: 10.3390/ijms23158162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Aluminum (Al) toxicity causes severe reduction in crop yields in acidic soil. The natural resistance-associated macrophage proteins (NRAMPs) play an important role in the transport of mineral elements in plants. Recently, OsNrat1 and SbNrat1 were reported specifically to transport trivalent Al ions. In this study, we functionally characterized ZmNRAMP4, a gene previously identified from RNA-Seq data from Al-treated maize roots, in response to Al exposure in maize. ZmNRAMP4 was predominantly expressed in root tips and was specifically induced by Al stress. Yeast cells expressing ZmNRAMP4 were hypersensitive to Al, which was associated with Al accumulation in yeast. Furthermore, overexpression of ZmNRAMP4 in Arabidopsis conferred transgenic plants with a significant increase in Al tolerance. However, expression of ZmNRAMP4, either in yeast or in Arabidopsis, had no effect on the response to cadmium stress. Taken together, these results underlined an internal tolerance mechanism involving ZmNRAMP4 to enhance Al tolerance via cytoplasmic sequestration of Al in maize.
Collapse
|
11
|
Yu W, Deng S, Chen X, Cheng Y, Li Z, Wu J, Zhu D, Zhou J, Cao Y, Fayyaz P, Shi W, Luo Z. PcNRAMP1 Enhances Cadmium Uptake and Accumulation in Populus × canescens. Int J Mol Sci 2022; 23:ijms23147593. [PMID: 35886940 PMCID: PMC9316961 DOI: 10.3390/ijms23147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Poplars are proposed for the phytoremediation of heavy metal (HM) polluted soil. Characterization of genes involved in HM uptake and accumulation in poplars is crucial for improving the phytoremediation efficiency. Here, Natural Resistance-Associated Macrophage Protein 1 (NRAMP1) encoding a transporter involved in cadmium (Cd) uptake and transport was functionally characterized in Populus × canescens. Eight putative PcNRAMPs were identified in the poplar genome and most of them were primarily expressed in the roots. The expression of PcNRAMP1 was induced in Cd-exposed roots and it encoded a plasma membrane-localized protein. PcNRAMP1 showed transport activity for Cd2+ when expressed in yeast. The PcNRAMP1-overexpressed poplars enhanced net Cd2+ influxes by 39–52% in the roots and Cd accumulation by 25–29% in aerial parts compared to the wildtype (WT). However, Cd-induced biomass decreases were similar between the transgenics and WT. Further analysis displayed that the two amino acid residues of PcNRAMP1, i.e., M236 and P405, play pivotal roles in regulating its transport activity for Cd2+. These results suggest that PcNRAMP1 is a plasma membrane-localized transporter involved in Cd uptake and transporting Cd from the roots to aerial tissues, and that the conserved residues in PcNRAMP1 are essential for its Cd transport activity in poplars.
Collapse
Affiliation(s)
- Wenjian Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Xin Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Zhuorong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jiangting Wu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Dongyue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
| | - Payam Fayyaz
- Forest, Range and Watershed Management Department, Agriculture and Natural Resources Faculty, Yasouj University, Yasuj 75919-63179, Iran;
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| | - Zhibin Luo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (W.Y.); (S.D.); (X.C.); (Y.C.); (Z.L.); (J.W.); (D.Z.); (J.Z.); (Y.C.)
- Correspondence: (W.S.); (Z.L.)
| |
Collapse
|
12
|
Xie L, Li H, Zhong Z, Guo J, Hu G, Gao Y, Tong Z, Liu M, Hu S, Tong H, Zhang P. Metabolome Analysis under Aluminum Toxicity between Aluminum-Tolerant and -Sensitive Rice (Oryza sativa L.). PLANTS 2022; 11:plants11131717. [PMID: 35807670 PMCID: PMC9269133 DOI: 10.3390/plants11131717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/05/2022]
Abstract
Aluminum (Al) solubilizes into trivalent ions (Al3+) on acidic soils, inhibiting root growth. Since about 13% of global rice cultivation is grown on acidic soils, improving Al tolerance in rice may significantly increase yields. In the present study, metabolome analysis under Al toxicity between the Al-tolerant variety Nipponbare and the Al-sensitive variety H570 were performed. There were 45 and 83 differential metabolites which were specifically detected in Nipponbare and H570 under Al toxicity, respectively. Furthermore, the results showed that 16 lipids out of 45 total metabolites were down-regulated, and 7 phenolic acids as well as 4 alkaloids of 45 metabolites were up-regulated in Nipponbare, while 12 amino acids and their derivatives were specifically detected in H570, of which 11 amino acids increased, including L-homoserine and L-methionine, which are involved in cysteine synthesis, L-ornithine and L-proline, which are associated with putrescine synthesis, and 1-aminocyclopropane-1-carboxylate, which is associated with ethylene synthesis. The contents of cysteine and s-(methyl) glutathione, which were reported to be related to Al detoxification in rice, decreased significantly. Meanwhile, putrescine was accumulated in H570, while there was no significant change in Nipponbare, so we speculated that it might be an intermediate product of Al detoxification in rice. The differential metabolites detected between Al-tolerant and -sensitive rice variants in the present study might play important roles in Al tolerance. These results provide new insights in the mechanisms of Al tolerance in rice.
Collapse
Affiliation(s)
- Lihua Xie
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huijuan Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Junjie Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Guocheng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Yu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Zhihua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Meilan Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
| | - Songping Hu
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: author: (S.H.); (H.T.); (P.Z.)
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
- Correspondence: author: (S.H.); (H.T.); (P.Z.)
| | - Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.X.); (H.L.); (Z.Z.); (J.G.); (G.H.); (Y.G.); (Z.T.); (M.L.)
- Correspondence: author: (S.H.); (H.T.); (P.Z.)
| |
Collapse
|
13
|
Grechnikova M, Arbon D, Ženíšková K, Malych R, Mach J, Krejbichová L, Šimáčková A, Sutak R. Elucidation of iron homeostasis in Acanthamoeba castellanii. Int J Parasitol 2022; 52:497-508. [PMID: 35533729 DOI: 10.1016/j.ijpara.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/25/2022]
Abstract
Acanthamoeba castellanii is a ubiquitously distributed amoeba that can be found in soil, dust, natural and tap water, air conditioners, hospitals, contact lenses and other environments. It is an amphizoic organism that can cause granulomatous amoebic encephalitis, an infrequent fatal disease of the central nervous system, and amoebic keratitis, a severe corneal infection that can lead to blindness. These diseases are extremely hard to treat; therefore, a more comprehensive understanding of this pathogen's metabolism is essential for revealing potential therapeutic targets. To propagate successfully in human tissues, the parasites must resist the iron depletion caused by nutritional immunity. The aim of our study is to elucidate the mechanisms underlying iron homeostasis in A. castellanii. Using a comparative whole-cell proteomic analysis of cells grown under different degrees of iron availability, we identified the primary proteins involved in Acanthamoeba iron acquisition. Our results suggest a two-step reductive mechanism of iron acquisition by a ferric reductase from the STEAP family and a divalent metal transporter from the NRAMP family. Both proteins are localized to the membranes of acidified digestive vacuoles where endocytosed medium and bacteria are trafficked. The expression levels of these proteins are significantly higher under iron-limited conditions, which allows Acanthamoeba to increase the efficiency of iron uptake despite the observed reduced pinocytosis rate. We propose that excessive iron gained while grown under iron-rich conditions is removed from the cytosol into the vacuoles by an iron transporter homologous to VIT/Ccc1 proteins. Additionally, we identified a novel protein that may participate in iron uptake regulation, the overexpression of which leads to increased iron acquisition.
Collapse
Affiliation(s)
- Maria Grechnikova
- Department of Parasitology, Charles University, Faculty of Science, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Dominik Arbon
- Department of Parasitology, Charles University, Faculty of Science, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Charles University, Faculty of Science, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Ronald Malych
- Department of Parasitology, Charles University, Faculty of Science, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Charles University, Faculty of Science, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Lucie Krejbichová
- Department of Parasitology, Charles University, Faculty of Science, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Aneta Šimáčková
- Department of Parasitology, Charles University, Faculty of Science, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Charles University, Faculty of Science, BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
14
|
Peracino B, Monica V, Primo L, Bracco E, Bozzaro S. Iron metabolism in the social amoeba Dictyostelium discoideum: a role for Ferric Chelate Reductases. Eur J Cell Biol 2022; 101:151230. [DOI: 10.1016/j.ejcb.2022.151230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
|
15
|
Ramanadane K, Straub MS, Dutzler R, Manatschal C. Structural and functional properties of a magnesium transporter of the SLC11/NRAMP family. eLife 2022; 11:74589. [PMID: 35001872 PMCID: PMC8806188 DOI: 10.7554/elife.74589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Members of the ubiquitous SLC11/NRAMP family catalyze the uptake of divalent transition metal ions into cells. They have evolved to efficiently select these trace elements from a large pool of Ca2+ and Mg2+, which are both orders of magnitude more abundant, and to concentrate them in the cytoplasm aided by the cotransport of H+ serving as energy source. In the present study, we have characterized a member of a distant clade of the family found in prokaryotes, termed NRMTs, that were proposed to function as transporters of Mg2+. The protein transports Mg2+ and Mn2+ but not Ca2+ by a mechanism that is not coupled to H+. Structures determined by cryo-EM and X-ray crystallography revealed a generally similar protein architecture compared to classical NRAMPs, with a restructured ion binding site whose increased volume provides suitable interactions with ions that likely have retained much of their hydration shell.
Collapse
Affiliation(s)
| | - Monique S Straub
- Department of Biochemistry, University of Zurich, Zürich, Switzerland
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
16
|
Identification and characterization of Nramp transporter AoNramp1 in Aspergillus oryzae. 3 Biotech 2021; 11:452. [PMID: 34631353 DOI: 10.1007/s13205-021-02998-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/17/2021] [Indexed: 01/27/2023] Open
Abstract
The Nramp (natural resistance-associated macrophage protein) family of genes has been identified and characterized widely in many species. However, the Nramp genes and their characterizations have not been reported for Aspergillus oryzae. Here, only one Nramp gene AoNramp1 in A. oryzae genome was identified. Phylogenetic analysis revealed that AoNramp1 is not clustered with Nramps from yeast genus. Expression analysis showed that the transcript level of AoNramp1 was strongly induced under both Zn/Mn-replete and -deplete conditions. The GUS-staining assay indicated that the expression of AoNramp1 was strongly induced by Zn/Mn. Moreover, the AoNramp1 deletion and overexpression strains were constructed by the CRISPR/Cas9 system and A. oryzae amyB promoter, respectively. Phenotypic analysis showed that overexpression and deletion of AoNramp1 caused growth defects under Zn/Mn-deplete and -replete conditions, including mycelium growth and conidia formation. Together, these findings provide valuable information for further study on the biological roles of AoNramp1 in A. oryzae. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02998-z.
Collapse
|
17
|
Qi H, Wang X, Su L, Wang S, Wang Y. Study on peptide-peptide interactions between transmembrane domains of Slc11a1 in model membranes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119594. [PMID: 33662699 DOI: 10.1016/j.saa.2021.119594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
In this study, we determined the interaction between TM4 and TM2/TM3 domain of Solute carrier family 11 member 1 (Slc11a1) by circular dichroism (CD) and fluorescence spectrum. The results indicated that, the cation transport process was likely to be accomplished by the collaboration of multiple TM domains rather than by TM4 domain alone. Therefore, this finding suggested possible transportation theory and be helpful to elucidate the mechanism of Slc11a1 in cation transport process.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China; Heilongjiang Industrial Hemp Processing Technology Innovation Center, PR China.
| | - Xiuwen Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China
| | - Liqiang Su
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China
| | - Shu Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China
| |
Collapse
|
18
|
Chauhan DK, Yadav V, Vaculík M, Gassmann W, Pike S, Arif N, Singh VP, Deshmukh R, Sahi S, Tripathi DK. Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit Rev Biotechnol 2021; 41:715-730. [PMID: 33866893 DOI: 10.1080/07388551.2021.1874282] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aluminum (Al) precipitates in acidic soils having a pH < 5.5, in the form of conjugated organic and inorganic ions. Al-containing minerals solubilized in the soil solution cause several negative impacts in plants when taken up along with other nutrients. Moreover, a micromolar concentration of Al present in the soil is enough to induce several irreversible toxicity symptoms such as the rapid and transient over-generation of reactive oxygen species (ROS) such as superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), resulting in oxidative bursts. In addition, significant reductions in water and nutrient uptake occur which imposes severe stress in the plants. However, some plants have developed Al-tolerance by stimulating the secretion of organic acids like citrate, malate, and oxalate, from plant roots. Genes responsible for encoding such organic acids, play a critical role in Al tolerance. Several transporters involved in Al resistance mechanisms are members of the Aluminum-activated Malate Transporter (ALMT), Multidrug and Toxic compound Extrusion (MATE), ATP-Binding Cassette (ABC), Natural resistance-associated macrophage protein (Nramp), and aquaporin gene families. Therefore, in the present review, the discussion of the global extension and probable cause of Al in the environment and mechanisms of Al toxicity in plants are followed by detailed emphasis on tolerance mechanisms. We have also identified and categorized the important transporters that secrete organic acids and outlined their role in Al stress tolerance mechanisms in crop plants. The information provided here will be helpful for efficient exploration of the available knowledge to develop Al tolerant crop varieties.
Collapse
Affiliation(s)
- Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Vaishali Yadav
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.,Institute of Botany, Plant Science and Biodiversity Centre of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Walter Gassmann
- Division of Plant Sciences, Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Sharon Pike
- Division of Plant Sciences, Bond Life Sciences Center, and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Namira Arif
- D D Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Allahabad, India
| | - Vijay Pratap Singh
- C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, India
| | | | - Shivendra Sahi
- University of the Sciences in Philadelphia (USP), Philadelphia, PA, USA
| | | |
Collapse
|
19
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
20
|
Cinquetti R, Imperiali FG, Bozzaro S, Zanella D, Vacca F, Roseti C, Peracino B, Castagna M, Bossi E. Characterization of Transport Activity of SLC11 Transporters in Xenopus laevis Oocytes by Fluorophore Quenching. SLAS DISCOVERY 2021; 26:798-810. [PMID: 33825579 DOI: 10.1177/24725552211004123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Membrane proteins are involved in different physiological functions and are the target of pharmaceutical and abuse drugs. Xenopus laevis oocytes provide a powerful heterologous expression system for functional studies of these proteins. Typical experiments investigate transport using electrophysiology and radiolabeled uptake. A two-electrode voltage clamp is suitable only for electrogenic proteins, and uptake measurements require the existence of radiolabeled substrates and adequate laboratory facilities.Recently, Dictyostelium discoideum Nramp1 and NrampB were characterized using multidisciplinary approaches. NrampB showed no measurable electrogenic activity, and it was investigated in Xenopus oocytes by acquiring confocal images of the quenching of injected fluorophore calcein.This method is adequate to measure the variation in emitted fluorescence, and thus transporter activity indirectly, but requires long experimental procedures to collect statistically consistent data. Considering that optimal expression of heterologous proteins lasts for 48-72 h, a slow acquiring process requires the use of more than one batch of oocytes to complete the experiments. Here, a novel approach to measure substrate uptake is reported. Upon injection of a fluorophore, oocytes were incubated with the substrate and the transport activity measured, evaluating fluorescence quenching in a microplate reader. The technique permits the testing of tens of oocytes in different experimental conditions simultaneously, and thus the collection of significant statistical data for each batch, saving time and animals.The method was tested with different metal transporters (SLC11), DMT1, DdNramp1, and DdNrampB, and verified with the peptide transporter PepT1 (SLC15). Comparison with traditional methods (uptake, two-electrode voltage clamp) and with quenching images acquired by fluorescence microscopy confirmed its efficacy.
Collapse
Affiliation(s)
| | | | | | - Daniele Zanella
- University of Insubria, Varese, Lombardia, Italy.,The University of Alabama, Birmingham, AL, USA
| | - Francesca Vacca
- University of Insubria, Varese, Lombardia, Italy.,Italian Institute of Technology (IIT), Genova, Italy
| | | | | | | | - Elena Bossi
- University of Insubria, Varese, Lombardia, Italy
| |
Collapse
|
21
|
Cytotoxicity of Oleandrin Is Mediated by Calcium Influx and by Increased Manganese Uptake in Saccharomyces cerevisiae Cells. Molecules 2020; 25:molecules25184259. [PMID: 32957533 PMCID: PMC7570853 DOI: 10.3390/molecules25184259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022] Open
Abstract
Oleandrin, the main component of Nerium oleander L. extracts, is a cardiotoxic glycoside with multiple pharmacological implications, having potential anti-tumoral and antiviral characteristics. Although it is accepted that the main mechanism of oleandrin action is the inhibition of Na+/K+-ATPases and subsequent increase in cell calcium, many aspects which determine oleandrin cytotoxicity remain elusive. In this study, we used the model Saccharomyces cerevisiae to unravel new elements accounting for oleandrin toxicity. Using cells expressing the Ca2+-sensitive photoprotein aequorin, we found that oleandrin exposure resulted in Ca2+ influx into the cytosol and that failing to pump Ca2+ from the cytosol to the vacuole increased oleandrin toxicity. We also found that oleandrin exposure induced Mn2+ accumulation by yeast cells via the plasma membrane Smf1 and that mutants with defects in Mn2+ homeostasis are oleandrin-hypersensitive. Our data suggest that combining oleandrin with agents which alter Ca2+ or Mn2+ uptake may be a way of controlling oleandrin toxicity.
Collapse
|
22
|
Singh R, Ranaivoarisoa TO, Gupta D, Bai W, Bose A. Genetic Redundancy in Iron and Manganese Transport in the Metabolically Versatile Bacterium Rhodopseudomonas palustris TIE-1. Appl Environ Microbiol 2020; 86:e01057-20. [PMID: 32503905 PMCID: PMC7414945 DOI: 10.1128/aem.01057-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/31/2020] [Indexed: 12/24/2022] Open
Abstract
The purple nonsulfur bacterium Rhodopseudomonas palustris TIE-1 can produce useful biochemicals such as bioplastics and biobutanol. Production of such biochemicals requires intracellular electron availability, which is governed by the availability and the transport of essential metals such as iron (Fe). Because of the distinct chemical properties of ferrous [Fe(II)] and ferric iron [Fe(III)], different systems are required for their transport and storage in bacteria. Although Fe(III) transport systems are well characterized, we know much less about Fe(II) transport systems except for the FeoAB system. Iron transporters can also import manganese (Mn). We studied Fe and Mn transport by five putative Fe transporters in TIE-1 under metal-replete, metal-depleted, oxic, and anoxic conditions. We observed that by overexpressing feoAB, efeU, and nramp1AB, the intracellular concentrations of Fe and Mn can be enhanced in TIE-1 under oxic and anoxic conditions, respectively. The deletion of a single gene/operon does not attenuate Fe or Mn uptake in TIE-1 regardless of the growth conditions used. This indicates that genetically dissimilar yet functionally redundant Fe transporters in TIE-1 can complement each other. Relative gene expression analysis shows that feoAB and efeU are expressed during Fe and Mn depletion under both oxic and anoxic conditions. The promoters of these transporter genes contain a combination of Fur and Fnr boxes, suggesting that their expression is regulated by both Fe and oxygen availability. The findings from this study will help us modulate intracellular Fe and Mn concentrations, ultimately improving TIE-1's ability to produce desirable biomolecules.IMPORTANCERhodopseudomonas palustris TIE-1 is a metabolically versatile bacterium that can use various electron donors, including Fe(II) and poised electrodes, for photoautotrophic growth. TIE-1 can produce useful biomolecules, such as biofuels and bioplastics, under various growth conditions. Production of such reduced biomolecules is controlled by intracellular electron availability, which, in turn, is mediated by various iron-containing proteins in the cell. Several putative Fe transporters exist in TIE-1's genome. Some of these transporters can also transport Mn, part of several important cellular enzymes. Therefore, understanding the ability to transport and respond to various levels of Fe and Mn under different conditions is important to improve TIE-1's ability to produce useful biomolecules. Our data suggest that by overexpressing Fe transporter genes via plasmid-based expression, we can increase the import of Fe and Mn in TIE-1. Future work will leverage these data to improve TIE-1 as an attractive microbial chassis and future biotechnological workhorse.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Dinesh Gupta
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wei Bai
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Bioinformatics and Transcriptional Study of the Nramp Gene in the Extreme Acidophile Acidithiobacillus ferrooxidans Strain DC. MINERALS 2020. [DOI: 10.3390/min10060544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The family of Nramp (natural resistance-associated macrophage protein) metal ion transporter functions in diverse organisms from bacteria to humans. Acidithiobacillus ferrooxidans (At. ferrooxidans) is a Gram-negative bacterium that lives at pH 2 in high concentrations of soluble ferrous ion (600 mM). The AFE_2126 protein of At. ferrooxidans of the Dachang Copper Mine (DC) was analyzed by bioinformatics software or online tools, showing that it was highly homologous to the Nramp family, and its subcellular localization was predicted to locate in the cytoplasmic membrane. Transcriptional study revealed that AFE_2126 was expressed by Fe2+-limiting conditions in At. ferrooxidans DC. It can be concluded that the AFE_2126 protein may function in ferrous ion transport into the cells. Based on the ΔpH of the cytoplasmic membrane between the periplasm (pH 3.5) and the cytoplasm (pH 6.5), it can be concluded that Fe2+ is transported in the direction identical to that of the H+ gradient. This study indirectly confirmed that the function of Nramp in At. ferrooxidans DC can transport divalent iron ions.
Collapse
|
24
|
Bozzi AT, Bane LB, Zimanyi CM, Gaudet R. Unique structural features in an Nramp metal transporter impart substrate-specific proton cotransport and a kinetic bias to favor import. J Gen Physiol 2019; 151:1413-1429. [PMID: 31619456 PMCID: PMC6888756 DOI: 10.1085/jgp.201912428] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
Natural resistance-associated macrophage protein (Nramp) transporters enable uptake of essential transition metal micronutrients in numerous biological contexts. These proteins are believed to function as secondary transporters that harness the electrochemical energy of proton gradients by "coupling" proton and metal transport. Here we use the Deinococcus radiodurans (Dra) Nramp homologue, for which we have determined crystal structures in multiple conformations, to investigate mechanistic details of metal and proton transport. We untangle the proton-metal coupling behavior of DraNramp into two distinct phenomena: ΔpH stimulation of metal transport rates and metal stimulation of proton transport. Surprisingly, metal type influences substrate stoichiometry, leading to manganese-proton cotransport but cadmium uniport, while proton uniport also occurs. Additionally, a physiological negative membrane potential is required for high-affinity metal uptake. To begin to understand how Nramp's structure imparts these properties, we target a conserved salt-bridge network that forms a proton-transport pathway from the metal-binding site to the cytosol. Mutations to this network diminish voltage and ΔpH dependence of metal transport rates, alter substrate selectivity, perturb or eliminate metal-stimulated proton transport, and erode the directional bias favoring outward-to-inward metal transport under physiological-like conditions. Thus, this unique salt-bridge network may help Nramp-family transporters maximize metal uptake and reduce deleterious back-transport of acquired metals. We provide a new mechanistic model for Nramp proton-metal cotransport and propose that functional advantages may arise from deviations from the traditional model of symport.
Collapse
Affiliation(s)
- Aaron T Bozzi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Lukas B Bane
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Christina M Zimanyi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA
| |
Collapse
|
25
|
Designing yeast as plant-like hyperaccumulators for heavy metals. Nat Commun 2019; 10:5080. [PMID: 31704944 PMCID: PMC6841955 DOI: 10.1038/s41467-019-13093-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/14/2019] [Indexed: 02/01/2023] Open
Abstract
Hyperaccumulators typically refer to plants that absorb and tolerate elevated amounts of heavy metals. Due to their unique metal trafficking abilities, hyperaccumulators are promising candidates for bioremediation applications. However, compared to bacteria-based bioremediation systems, plant life cycle is long and growing conditions are difficult to maintain hindering their adoption. Herein, we combine the robust growth and engineerability of bacteria with the unique waste management mechanisms of plants by using a more tractable platform-the common baker’s yeast-to create plant-like hyperaccumulators. Through overexpression of metal transporters and engineering metal trafficking pathways, engineered yeast strains are able to sequester metals at concentrations 10–100 times more than established hyperaccumulator thresholds for chromium, arsenic, and cadmium. Strains are further engineered to be selective for either cadmium or strontium removal, specifically for radioactive Sr90. Overall, this work presents a systematic approach for transforming yeast into metal hyperaccumulators that are as effective as their plant counterparts. Existing heavy metal bioremediation systems are mainly based on plants, which require long growing time in specific conditions. Here, the authors mimic the characteristics of plant hyperaccumulators to engineer more tractable baker’s yeast and achieve 10–100-fold higher accumulation of chromium, arsenic, or cadmium.
Collapse
|
26
|
Yeast as a Tool for Deeper Understanding of Human Manganese-Related Diseases. Genes (Basel) 2019; 10:genes10070545. [PMID: 31319631 PMCID: PMC6678438 DOI: 10.3390/genes10070545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022] Open
Abstract
The biological importance of manganese lies in its function as a key cofactor for numerous metalloenzymes and as non-enzymatic antioxidant. Due to these two essential roles, it appears evident that disturbed manganese homeostasis may trigger the development of pathologies in humans. In this context, yeast has been extensively used over the last decades to gain insight into how cells regulate intra-organellar manganese concentrations and how human pathologies may be related to disturbed cellular manganese homeostasis. This review first summarizes how manganese homeostasis is controlled in yeast cells and how this knowledge can be extrapolated to human cells. Several manganese-related pathologies whose molecular mechanisms have been studied in yeast are then presented in the light of the function of this cation as a non-enzymatic antioxidant or as a key cofactor of metalloenzymes. In this line, we first describe the Transmembrane protein 165-Congenital Disorder of Glycosylation (TMEM165-CDG) and Friedreich ataxia pathologies. Then, due to the established connection between manganese cations and neurodegeneration, the Kufor–Rakeb syndrome and prion-related diseases are finally presented.
Collapse
|
27
|
Bozzi AT, Zimanyi CM, Nicoludis JM, Lee BK, Zhang CH, Gaudet R. Structures in multiple conformations reveal distinct transition metal and proton pathways in an Nramp transporter. eLife 2019; 8:41124. [PMID: 30714568 PMCID: PMC6398981 DOI: 10.7554/elife.41124] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/31/2019] [Indexed: 01/03/2023] Open
Abstract
Nramp family transporters—expressed in organisms from bacteria to humans—enable uptake of essential divalent transition metals via an alternating-access mechanism that also involves proton transport. We present high-resolution structures of Deinococcus radiodurans (Dra)Nramp in multiple conformations to provide a thorough description of the Nramp transport cycle by identifying the key intramolecular rearrangements and changes to the metal coordination sphere. Strikingly, while metal transport requires cycling from outward- to inward-open states, efficient proton transport still occurs in outward-locked (but not inward-locked) DraNramp. We propose a model in which metal and proton enter the transporter via the same external pathway to the binding site, but follow separate routes to the cytoplasm, which could facilitate the co-transport of two cationic species. Our results illustrate the flexibility of the LeuT fold to support a broad range of substrate transport and conformational change mechanisms. Cells use transport proteins embedded in their membrane to acquire many of the nutrients they need to survive and grow. Different transport proteins transport different nutrients; for example, the Nramp transporters move transition metal ions across cell membranes. Nramps are found in a wide range of organisms. Bacteria use them to acquire the metals they need during the course of an infection, and humans rely on Nramps to absorb iron from food. Nramps can also transport hydrogen ions (known as protons). Understanding how the structure of an Nramp transporter changes as it transports metal ions and protons can help researchers to understand how it works. These structures can be studied using a technique called X-ray crystallography, which captures snapshots of the proteins at different stages of their task. Bozzi, Zimanyi et al. used X-ray crystallography to study the structures of an Nramp transporter from the bacterium Deinococcus radiodurans. The results reveal four of the shapes that the Nramp transporter takes on at different stages in its transport process, including the first structure to show an Nramp binding to a metal ion from the outside of the cell. Taken together, the structures suggest a new transport mechanism that has not been seen in previously studied transport proteins with similar structures. An unexpected feature of this mechanism is that Nramps transport metal ions and protons along different pathways. Studying the transport mechanisms used by Nramp transporters will help researchers to understand how cells maintain appropriate levels of metal ions, an important component of human health. The mechanisms of relatively few transport proteins are understood at a structural level, yet many share common origins and have shared characteristics. Understanding how Nramps work could therefore help us to understand how wider classes of transporters work as well.
Collapse
Affiliation(s)
- Aaron T Bozzi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Christina M Zimanyi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - John M Nicoludis
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Brandon K Lee
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Casey H Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
28
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
29
|
Zheng Y, Li Y, Long H, Zhao X, Jia K, Li J, Wang L, Wang R, Lu X, Zhang D. bifA Regulates Biofilm Development of Pseudomonas putida MnB1 as a Primary Response to H 2O 2 and Mn 2. Front Microbiol 2018; 9:1490. [PMID: 30042743 PMCID: PMC6048274 DOI: 10.3389/fmicb.2018.01490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas putida (P. putida) MnB1 is a widely used model strain in environment science and technology for determining microbial manganese oxidation. Numerous studies have demonstrated that the growth and metabolism of P. putida MnB1 are influenced by various environmental factors. In this study, we investigated the effects of hydrogen peroxide (H2O2) and manganese (Mn2+) on proliferation, Mn2+ acquisition, anti-oxidative system, and biofilm formation of P. putida MnB1. The related orthologs of 4 genes, mco, mntABC, sod, and bifA, were amplified from P. putida GB1 and their involvement were assayed, respectively. We found that P. putida MnB1 degraded H2O2, and quickly recovered for proliferation, but its intracellular oxidative stress state was maintained, with rapid biofilm formation after H2O2 depletion. The data from mco, mntABC, sod and bifA expression levels by qRT-PCR, elucidated a sensitivity toward bifA-mediated biofilm formation, in contrary to intracellular anti-oxidative system under H2O2 exposure. Meanwhile, Mn2+ ion supply inhibited biofilm formation of P. putida MnB1. The expression pattern of these genes showed that Mn2+ ion supply likely functioned to modulate biofilm formation rather than only acting as nutrient substrate for P. putida MnB1. Furthermore, blockade of BifA activity by GTP increased the formation and development of biofilms during H2O2 exposure, while converse response to Mn2+ ion supply was evident. These distinct cellular responses to H2O2 and Mn2+ provide insights on the common mechanism by which environmental microorganisms may be protected from exogenous factors. We postulate that BifA-mediated biofilm formation but not intracellular anti-oxidative system may be a primary protective strategy adopted by P. putida MnB1. These findings will highlight the understanding of microbial adaptation mechanisms to distinct environmental stresses.
Collapse
Affiliation(s)
- Yanjing Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yumei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongyan Long
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Keke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Juan Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing, China
| | - Ruiyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Dongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
A Functional Study Identifying Critical Residues Involving Metal Transport Activity and Selectivity in Natural Resistance-Associated Macrophage Protein 3 in Arabidopsis thaliana. Int J Mol Sci 2018; 19:ijms19051430. [PMID: 29748478 PMCID: PMC5983769 DOI: 10.3390/ijms19051430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 11/16/2022] Open
Abstract
Arabidopsis thaliana natural resistance-associated macrophage protein 3 (AtNRAMP3) is involved in the transport of cadmium (Cd), iron (Fe), and manganese (Mn). Here, we present a structure-function analysis of AtNRAMP3 based on site-directed mutagenesis and metal toxicity growth assays involving yeast mutants, combined with three-dimensional (3D) structure modeling based on the crystal structure of the Eremococcus coleocola NRAMP family transporter, EcoDMT. We demonstrated that two conservative sites, D72 and N75, are essential for the transport activity. The M248A mutation resulted in a decrease in Cd sensitivity, while maintaining Mn transport. The mutation involving G61 caused a significant impairment of Fe and Mn transport, thereby indicating the importance of the conserved residue for proper protein function. The mutation involving G171 disrupted Fe transport activity but not that of Mn and Cd, suggesting that G171 is essential to metal binding and selectivity. Two residues, E194 and R262, may play an important role in stabilizing outward-facing conformation, which is essential for transport activity. Deletion assays indicated that the N-terminus is necessary for the function of AtNRAMP3. The findings of the present study revealed the structure-function relationship of AtNRAMP3 and metal transport activity and selectivity, which may possibly be applied to other plant NRAMP proteins.
Collapse
|
31
|
Buracco S, Peracino B, Andreini C, Bracco E, Bozzaro S. Differential Effects of Iron, Zinc, and Copper on Dictyostelium discoideum Cell Growth and Resistance to Legionella pneumophila. Front Cell Infect Microbiol 2018; 7:536. [PMID: 29379774 PMCID: PMC5770829 DOI: 10.3389/fcimb.2017.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022] Open
Abstract
Iron, zinc, and copper play fundamental roles in eucaryotes and procaryotes, and their bioavailability regulates host-pathogen interactions. For intracellular pathogens, the source of metals is the cytoplasm of the host, which in turn manipulates intracellular metal traffic following pathogen recognition. It is established that iron is withheld from the pathogen-containing vacuole, whereas for copper and zinc the evidence is unclear. Most infection studies in mammals have concentrated on effects of metal deficiency/overloading at organismal level. Thus, zinc deficiency or supplementation correlate with high risk of respiratory tract infection or recovery from severe infection, respectively. Iron, zinc, and copper deficiency or overload affects lymphocyte proliferation/maturation, and thus the adaptive immune response. Whether they regulate innate immunity at macrophage level is open, except for iron. The early identification in a mouse mutant susceptible to mycobacterial infection of the iron transporter Nramp1 allowed dissecting Nramp1 role in phagocytes, from the social amoeba Dictyostelium to macrophages. Nramp1 regulates iron efflux from the phagosomes, thus starving pathogenic bacteria for iron. Similar studies for zinc or copper are scant, due to the large number of copper and zinc transporters. In Dictyostelium, zinc and copper transporters include 11 and 6 members, respectively. To assess the role of zinc or copper in Dictyostelium, cells were grown under conditions of metal depletion or excess and tested for resistance to Legionella pneumophila infection. Iron shortage or overload inhibited Dictyostelium cell growth within few generations. Surprisingly, zinc or copper depletion failed to affect growth. Zinc or copper overloading inhibited cell growth at, respectively, 50- or 500-fold the physiological concentration, suggesting very efficient control of their homeostasis, as confirmed by Inductively Coupled Plasma Mass Spectrometry quantification of cellular metals. Legionella infection was inhibited or enhanced in cells grown under iron shortage or overload, respectively, confirming a major role for iron in controlling resistance to pathogens. In contrast, zinc and copper depletion or excess during growth did not affect Legionella infection. Using Zinpyr-1 as fluorescent sensor, we show that zinc accumulates in endo-lysosomal vesicles, including phagosomes, and the contractile vacuole. Furthermore, we provide evidence for permeabilization of the Legionella-containing vacuole during bacterial proliferation.
Collapse
Affiliation(s)
- Simona Buracco
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
32
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Lu M, Wang Z, Fu S, Yang G, Shi M, Lu Y, Wang X, Xia J. Functional characterization of the SbNrat1 gene in sorghum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:18-23. [PMID: 28716414 DOI: 10.1016/j.plantsci.2017.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 05/08/2023]
Abstract
The Natural Resistance Associated Macrophage Protein (Nramp) members play diverse roles in metal transport in plants. Recent studies have showed that OsNrat1 (OsNramp4) encodes an Al transporter, which is required for rice Al tolerance. In this study, we functionally characterized a Nramp member in sorghum, SbNrat1, which is homologous to OsNrat1 with 88% identity. SbNrat1 was expressed in both roots and shoots, and its expression was not induced by Al treatment. When expressed in yeast, SbNrat1 transports trivalent Al ion, but not Mn and Cd. Furthermore, introduction of SbNrat1 into the rice mutant osnrat1 can rescue its sensitivity to Al. However, no correlation between Al tolerance and the expression level of SbNrat1 was found in thirteen sorghum cultivars tested. These results indicate that SbNrat1 functions as an Al transporter that is possibly involved in basic Al tolerance in sorghum.
Collapse
Affiliation(s)
- Muxue Lu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Zhigang Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Shan Fu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Guangzhe Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Mingxing Shi
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Youshe Lu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiaohu Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Jixing Xia
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
34
|
Gao G, Zhang N, Wang YQ, Wu Q, Yu P, Shi ZH, Duan XL, Zhao BL, Wu WS, Chang YZ. Mitochondrial Ferritin Protects Hydrogen Peroxide-Induced Neuronal Cell Damage. Aging Dis 2017; 8:458-470. [PMID: 28840060 PMCID: PMC5524808 DOI: 10.14336/ad.2016.1108] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and iron accumulation are tightly associated with neurodegenerative diseases. Mitochondrial ferritin (FtMt) is identified as an iron-storage protein located in the mitochondria, and its role in regulation of iron hemeostasis in neurodegenerative diseases has been reported. However, the role of FtMt in hydrogen peroxide (H2O2)-induced oxidative stress and iron accumulation in neuronal cells has not been studied. Here, we overexpressed FtMt in neuroblastoma SH-SY5Y cells and induced oxidative stress by treating with extracellular H2O2. We found that overexpression of FtMt significantly prevented cell death induced by H2O2, particularly the apoptosis-dependent cell death. The protective effects involved inhibiting the generation of cellular reactive oxygen species, sustaining mitochondrial membrane potential, maintaining the level of anti-apoptotic protein Bcl-2, and inhibiting the activation of pro-apoptotic protein caspase 3. We further explored the mechanism of these protective effects and found that FtMt expression markedly altered iron homeostasis of the H2O2 treated cells as compared to that of controls. The FtMt overexpression significantly reduced cellular labile iron pool (LIP) and protected H2O2-induced elevation on LIP. While in H2O2 treated SH-SY5Y cells, the increased iron uptake and reduced iron release, in correlation with levels of DMT1(-IRE) and ferroportin 1, resulted in heavy iron accumulation, the FtMt overexpressing cells didn’t show any significant changes in levels of iron transport proteins and in the level of LIP. These results implicate a neuroprotective role of FtMt on H2O2-induced oxidative stress, which may provide insights into the treatment of iron accumulation associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Guofen Gao
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Nan Zhang
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yue-Qi Wang
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Qiong Wu
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Peng Yu
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhen-Hua Shi
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xiang-Lin Duan
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Bao-Lu Zhao
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Wen-Shuang Wu
- 2The 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yan-Zhong Chang
- 1Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| |
Collapse
|
35
|
Abstract
Specialized adaptations for killing microbes are synonymous with phagocytic cells including macrophages, monocytes, inflammatory neutrophils, and eosinophils. Recent genome sequencing of extant species, however, reveals that analogous antimicrobial machineries exist in certain non-immune cells and also within species that ostensibly lack a well-defined immune system. Here we probe the evolutionary record for clues about the ancient and diverse phylogenetic origins of macrophage killing mechanisms and how some of their properties are shared with cells outside the traditional bounds of immunity in higher vertebrates such as mammals.
Collapse
|
36
|
Brenz Y, Ohnezeit D, Winther-Larsen HC, Hagedorn M. Nramp1 and NrampB Contribute to Resistance against Francisella in Dictyostelium. Front Cell Infect Microbiol 2017; 7:282. [PMID: 28680861 PMCID: PMC5478718 DOI: 10.3389/fcimb.2017.00282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
The Francisella genus comprises highly pathogenic bacteria that can cause fatal disease in their vertebrate and invertebrate hosts including humans. In general, Francisella growth depends on iron availability, hence, iron homeostasis must be tightly regulated during Francisella infection. We used the system of the professional phagocyte Dictyostelium and the fish pathogen F. noatunensis subsp. noatunensis (F.n.n.) to investigate the role of the host cell iron transporters Nramp (natural resistance associated macrophage proteins) during Francisella infection. Like its mammalian ortholog, Dictyostelium Nramp1 transports iron from the phagosome into the cytosol, whereas the paralog NrampB is located on the contractile vacuole and controls, together with Nramp1, the cellular iron homeostasis. In Dictyostelium, Nramp1 localized to the F.n.n.-phagosome but disappeared from the compartment dependent on the presence of IglC, an established Francisella virulence factor. In the absence of Nramp transporters the bacteria translocated more efficiently from the phagosome into the host cell cytosol, its replicative niche. Increased escape rates coincided with increased proteolytic activity in bead-containing phagosomes indicating a role of the Nramp transporters for phagosomal maturation. In the nramp mutants, a higher bacterial load was observed in the replicative phase compared to wild-type host cells. Upon bacterial access to the cytosol of wt cells, mRNA levels of bacterial iron uptake factors were transiently upregulated. Decreased iron levels in the nramp mutants were compensated by a prolonged upregulation of the iron scavenging system. These results show that Nramps contribute to host cell immunity against Francisella infection by influencing the translocation efficiency from the phagosome to the cytosol but not by restricting access to nutritional iron in the cytosol.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | - Denise Ohnezeit
- Institute for Medical Microbiology, Hygiene and Virology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution and Department of Pharmaceutical Biosciences, University of OsloOslo, Norway
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs UniversityBremen, Germany
| |
Collapse
|
37
|
Qi H, Tang W, Bai L, Gao L. Structure and positioning of three transmembrane segments from Slc11a1 in SDS micelles. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-6288-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter. Structure 2016; 24:2102-2114. [PMID: 27839948 DOI: 10.1016/j.str.2016.09.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 01/06/2023]
Abstract
The widely conserved natural resistance-associated macrophage protein (Nramp) family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. We determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Mapping our cysteine accessibility scanning results onto this structure, we identified the metal-permeation pathway in the alternate outward-open conformation. We investigated the functional impact of two natural anemia-causing glycine-to-arginine mutations that impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state.
Collapse
|
39
|
Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters. Proc Natl Acad Sci U S A 2016; 113:10310-5. [PMID: 27573840 DOI: 10.1073/pnas.1607734113] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur's presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it-more effectively than any other amino acid-increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.
Collapse
|
40
|
Competition for Manganese at the Host-Pathogen Interface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:1-25. [PMID: 27571690 DOI: 10.1016/bs.pmbts.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.
Collapse
|
41
|
Sade H, Meriga B, Surapu V, Gadi J, Sunita MSL, Suravajhala P, Kavi Kishor PB. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals 2016; 29:187-210. [DOI: 10.1007/s10534-016-9910-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
42
|
F. M. Cellier M. Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.2.286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
43
|
Qi H, Tang W, Bai L, Gao L. Metal ion binding of the third and fourth domains of Slc11a1 in a model membrane. RSC Adv 2016. [DOI: 10.1039/c6ra13866g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, differential scanning calorimetric (DSC) experiments have shown that the ability of third and fourth transmembrane domains of Slc11a1 to perturb DMPC model membranes is affected by metal ions.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar
- P. R. China
| | - Wanxia Tang
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar
- P. R. China
| | - Liming Bai
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar
- P. R. China
| | - Lidi Gao
- College of Chemistry and Chemical Engineering
- Qiqihar University
- Qiqihar
- P. R. China
| |
Collapse
|
44
|
Buracco S, Peracino B, Cinquetti R, Signoretto E, Vollero A, Imperiali F, Castagna M, Bossi E, Bozzaro S. Dictyostelium Nramp1, which is structurally and functionally similar to mammalian DMT1 transporter, mediates phagosomal iron efflux. J Cell Sci 2015; 128:3304-16. [PMID: 26208637 PMCID: PMC4582194 DOI: 10.1242/jcs.173153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/21/2015] [Indexed: 01/01/2023] Open
Abstract
The Nramp (Slc11) protein family is widespread in bacteria and eukaryotes, and mediates transport of divalent metals across cellular membranes. The social amoeba Dictyostelium discoideum has two Nramp proteins. Nramp1, like its mammalian ortholog (SLC11A1), is recruited to phagosomal and macropinosomal membranes, and confers resistance to pathogenic bacteria. Nramp2 is located exclusively in the contractile vacuole membrane and controls, synergistically with Nramp1, iron homeostasis. It has long been debated whether mammalian Nramp1 mediates iron import or export from phagosomes. By selectively loading the iron-chelating fluorochrome calcein in macropinosomes, we show that Dictyostelium Nramp1 mediates iron efflux from macropinosomes in vivo. To gain insight in ion selectivity and the transport mechanism, the proteins were expressed in Xenopus oocytes. Using a novel assay with calcein, and electrophysiological and radiochemical assays, we show that Nramp1, similar to rat DMT1 (also known as SLC11A2), transports Fe(2+) and manganese, not Fe(3+) or copper. Metal ion transport is electrogenic and proton dependent. By contrast, Nramp2 transports only Fe(2+) in a non-electrogenic and proton-independent way. These differences reflect evolutionary divergence of the prototypical Nramp2 protein sequence compared to the archetypical Nramp1 and DMT1 proteins.
Collapse
Affiliation(s)
- Simona Buracco
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano 10043, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano 10043, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Elena Signoretto
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, Milano 20133, Italy
| | - Alessandra Vollero
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Francesca Imperiali
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Trentacoste 2, Milano 20133, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, Varese 21100, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, AOU S. Luigi, Orbassano 10043, Italy
| |
Collapse
|
45
|
Jia YF, Jiang MM, Sun J, Shi RB, Liu DS. Studies on different iron source absorption by in situ ligated intestinal loops of broilers. Biol Trace Elem Res 2015; 163:154-61. [PMID: 25422090 DOI: 10.1007/s12011-014-0179-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate the iron source absorption in the small intestine of broiler. In situ ligated intestinal loops of 70 birds were poured into one of seven solutions, including inorganic iron (FeSO4, Fe2(SO4)3), organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)), the mixtures (FeSO4 with glycine (Fe+Gly(II)), Fe2(SO4)3 with glycine (Fe+Gly(III)), and no Fe source (control). The total volume of 3-mL solution (containing 1 mg of elemental Fe) was injected into intestinal loops, and then 120-min incubation was performed. Compared with inorganic iron groups, in which higher FeSO4 absorption than Fe2(SO4)3 was observed, supplementation with organic Fe glycine chelate significantly increased the Fe concentration in the duodenum and jejunum (P < 0.05), however, decreased DMT1 and DcytB messenger RNA (mRNA) levels (P < 0.05). Organic Fe glycine chelate (Fe-Gly(II), Fe-Gly(III)) increased serum iron concentration (SI), compared with inorganic 3 valence iron groups (Fe2(SO4)3 and Fe+Gly(III)) (P < 0.05); moreover, lower TIBC value was observed for the chelate (P < 0.05); however, mixture of inorganic iron and glycine did not have a positive role at DMT1 and DcytB mRNA levels, SI and Fe concentrations in the small intestine. Those results indicated that the absorption of organic Fe glycine chelate was more effective than that of inorganic Fe, and the orders of iron absorption in the small intestine were: Fe-Gly(II), Fe-Gly(III) > FeSO4, Fe+Gly(II) > Fe2(SO4)3, Fe+Gly(III). Additionally, the simple mixture of inorganic iron and glycine could not increase Fe absorption, and the duodenum was the main site of Fe absorption in the intestines of broilers and the ileum absorbed iron rarely.
Collapse
Affiliation(s)
- Y F Jia
- College of Animal Science and Technology, Northeast Agricultural University, 150030, Harbin, People's Republic of China,
| | | | | | | | | |
Collapse
|
46
|
Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat Struct Mol Biol 2014; 21:990-6. [DOI: 10.1038/nsmb.2904] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022]
|
47
|
Ding X, Zhang X, Yang Y, Ding Y, Xue W, Meng Y, Zhu W, Yin Z. Polymorphism, Expression of Natural Resistance-associated Macrophage Protein 1 Encoding Gene (NRAMP1) and Its Association with Immune Traits in Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1189-95. [PMID: 25083114 PMCID: PMC4109876 DOI: 10.5713/ajas.2014.14017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/21/2014] [Accepted: 04/14/2014] [Indexed: 11/27/2022]
Abstract
Natural resistance-associated macrophage protein 1 encoding gene (NRAMP1) plays an important role in immune response against intracellular pathogens. To evaluate the effects of NRAMP1 gene on immune capacity in pigs, tissue expression of NRAMP1 mRNA was observed by real time quantitative polymerase chain reaction (PCR), and the results revealed NRAMP1 expressed widely in nine tissues. One single nucleotide polymorphism (SNP) (ENSSSCG00000025058: g.130 C>T) in exon1 and one SNP (ENSSSCG00000025058: g.657 A>G) in intron1 region of porcine NRAMP1 gene were demonstrated by DNA sequencing and PCR-RFLP analysis. A further analysis of SNP genotypes associated with immune traits including contain of white blood cell (WBC), granulocyte, lymphocyte, monocyte (MO), rate of cytotoxin in monocyte (MC) and CD4/CD8 T lymphocyte subpopulations in blood was carried out in four pig populations including Large White and three Chinese indigenous breeds (Wannan Black, Huai pig and Wei pig). The results showed that the SNP (ENSSSCG00000025058: g.130 C>T) was significantly associated with level of WBC % (p = 0.031), MO% (p = 0.024), MC% (p = 0.013) and CD4(-)CD8(+) T lymphocyte (p = 0.023). The other SNP (ENSSSCG00000025058: g.657 A>G) was significantly associated with the level of MO% (p = 0.012), MC% (p = 0.019) and CD4(-)CD8(+) T lymphocyte (p = 0.037). These results indicate that the NRAMP1 gene can be regarded as a molecular marker for genetic selection of disease susceptibility in pig breeding.
Collapse
Affiliation(s)
- Xiaoling Ding
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | | | - Yong Yang
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Yueyun Ding
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Weiwei Xue
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Yun Meng
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Weihua Zhu
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| | - Zongjun Yin
- Anhui Antai Pig Breeding Co., LTD., Hefei 340100, China
| |
Collapse
|
48
|
German N, Doyscher D, Rensing C. Bacterial killing in macrophages and amoeba: do they all use a brass dagger? Future Microbiol 2014; 8:1257-64. [PMID: 24059917 DOI: 10.2217/fmb.13.100] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Macrophages are immune cells that are known to engulf pathogens and destroy them by employing several mechanisms, including oxidative burst, induction of Fe(II) and Mn(II) efflux, and through elevation of Cu(I) and Zn(II) concentrations in the phagosome ('brass dagger'). The importance of the latter mechanism is supported by the presence of multiple counteracting efflux systems in bacteria, responsible for the efflux of toxic metals. We hypothesize that similar bacteria-killing mechanisms are found in predatory protozoa/amoeba species. Here, we present a brief summary of soft metal-related mechanisms used by macrophages, and perhaps amoeba, to inactivate and destroy bacteria. Based on this, we think it is likely that copper resistance is also selected for by protozoan grazing in the environment.
Collapse
Affiliation(s)
- Nadezhda German
- Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
49
|
Qi H, Wang Y, Chu H, Wang W, Mao Q. Penetration of three transmembrane segments of Slc11a1 in lipid bilayers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 122:82-92. [PMID: 24299979 DOI: 10.1016/j.saa.2013.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/12/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
Slc11a1 is a divalent metal cation transporter with 12 putative transmembrane domains (TM) and plays a role in host defense. In present work, we investigated the secondary structure and topology of the peptides associated to Slc11a1-TM2, TM3 and TM4 (wildtype peptides and function-relating mutants) in the phospholipid vesicles (DMPC, DMPG and their mixtures) using circular dichroism, fluorescence spectroscopy and differential scanning calorimetry. We found that TM3 is obviously different in secondary structure and topology from TM2 to TM4 in the lipid membranes. The peptide TM3 is less structured and embedded in the lipid membranes less deeply than TM2 and TM4 at pH 5.5 and 7. The insertion position of TM3 in the lipid membranes is adjusted by pH, more deeply at more acidic pH environment, whereas the locations of TM2 and TM4 in the lipid membranes are less changed with pH. The E139A substitution of TM3 significantly impairs the pH dependence of the buried depth of TM3 and causes a pronounced increase in helicity in all DMPG-containing lipid vesicles at pH 5.5 and 7 and in DMPC at pH 4. In contrast, TM2 and TM4 are similar in topology. The G169D mutation has little effect on the topological arrangement of TM4 in membranes. The property of headgroups of the phospholipids has an effect on the secondary structure and topology of the peptides. All peptides could be structured with more helicity and embedded more deeply in DMPG-containing lipid vesicles than in DMPC membrane at pH 5.5 and 7.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China.
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China
| | - Wenhua Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China
| | - Qidong Mao
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar, PR China
| |
Collapse
|
50
|
Khalilullah SA, Harapan H, Hasan NA, Winardi W, Ichsan I, Mulyadi M. Host genome polymorphisms and tuberculosis infection: What we have to say? EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2013; 63:173-185. [PMID: 26966339 DOI: 10.1016/j.ejcdt.2013.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Several epidemiology studies suggest that host genetic factors play important roles in susceptibility, protection and progression of tuberculosis infection. Here we have reviewed the implications of some genetic polymorphisms in pathways related to tuberculosis susceptibility, severity and development. Large case-control studies examining single-nucleotide polymorphisms (SNPs) in genes have been performed in tuberculosis patients in some countries. Polymorphisms in natural resistance-associated macrophage protein 1 (NRAMP1), toll-like receptor 2 (TLR2), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin-1 receptor antagonist (IL-1RA), IL-10, vitamin D receptor (VDR), dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN), monocyte chemoattractant protein-1 (MCP-1), nucleotide oligomerization binding domain 2 (NOD2), interferon-gamma (IFN-γ), inducible nitric oxide synthase (iNOS), mannose-binding lectin (MBL) and surfactant proteins A (SP-A) have been reviewed. These genes have been variably associated with tuberculosis infection and there is strong evidence indicating that host genetic factors play critical roles in tuberculosis susceptibility, severity and development.
Collapse
Affiliation(s)
| | - Harapan Harapan
- Medical Research Unit, School of Medicine Syiah Kuala University, Banda Aceh, Indonesia; Tropical Disease Center, School of Medicine Syiah Kuala University, Banda Aceh, Indonesia
| | - Nabeeh A Hasan
- Research Affiliate, Centre for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Computational Bioscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Wira Winardi
- Medical Research Unit, School of Medicine Syiah Kuala University, Banda Aceh, Indonesia; Graduate Institute of Medical Science, Taipei Medical University, Taipei, Taiwan
| | - Ichsan Ichsan
- Medical Research Unit, School of Medicine Syiah Kuala University, Banda Aceh, Indonesia; Tropical Disease Center, School of Medicine Syiah Kuala University, Banda Aceh, Indonesia; Institute of Medical Microbiology and National Reference Center for Systemic Mycosis, University Medical Center Goettingen, Goettingen, Germany
| | - Mulyadi Mulyadi
- Pulmonology Department, School of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| |
Collapse
|