1
|
Tan WH, Rücklin M, Larionova D, Ngoc TB, Joan van Heuven B, Marone F, Matsudaira P, Winkler C. A Collagen10a1 mutation disrupts cell polarity in a medaka model for metaphyseal chondrodysplasia type Schmid. iScience 2024; 27:109405. [PMID: 38510140 PMCID: PMC10952040 DOI: 10.1016/j.isci.2024.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Heterozygous mutations in COL10A1 lead to metaphyseal chondrodysplasia type Schmid (MCDS), a skeletal disorder characterized by epiphyseal abnormalities. Prior analysis revealed impaired trimerization and intracellular retention of mutant collagen type X alpha 1 chains as cause for elevated endoplasmic reticulum (ER) stress. However, how ER stress translates into structural defects remained unclear. We generated a medaka (Oryzias latipes) MCDS model harboring a 5 base pair deletion in col10a1, which led to a frameshift and disruption of 11 amino acids in the conserved trimerization domain. col10a1Δ633a heterozygotes recapitulated key features of MCDS and revealed early cell polarity defects as cause for dysregulated matrix secretion and deformed skeletal structures. Carbamazepine, an ER stress-reducing drug, rescued this polarity impairment and alleviated skeletal defects in col10a1Δ633a heterozygotes. Our data imply cell polarity dysregulation as a potential contributor to MCDS and suggest the col10a1Δ633a medaka mutant as an attractive MCDS animal model for drug screening.
Collapse
Affiliation(s)
- Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, the Netherlands
| | - Daria Larionova
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Tran Bich Ngoc
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Paul Matsudaira
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
2
|
Currie J, Manda V, Robinson SK, Lai C, Agnihotri V, Hidalgo V, Ludwig RW, Zhang K, Pavelka J, Wang ZV, Rhee JW, Lam MPY, Lau E. Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions. Nat Commun 2024; 15:2207. [PMID: 38467653 PMCID: PMC10928085 DOI: 10.1038/s41467-024-46600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The spatial and temporal distributions of proteins are critical to protein function, but cannot be directly assessed by measuring protein bundance. Here we describe a mass spectrometry-based proteomics strategy, Simultaneous Proteome Localization and Turnover (SPLAT), to measure concurrently protein turnover rates and subcellular localization in the same experiment. Applying the method, we find that unfolded protein response (UPR) has different effects on protein turnover dependent on their subcellular location in human AC16 cells, with proteome-wide slowdown but acceleration among stress response proteins in the ER and Golgi. In parallel, UPR triggers broad differential localization of proteins including RNA-binding proteins and amino acid transporters. Moreover, we observe newly synthesized proteins including EGFR that show a differential localization under stress than the existing protein pools, reminiscent of protein trafficking disruptions. We next applied SPLAT to an induced pluripotent stem cell derived cardiomyocyte (iPSC-CM) model of cancer drug cardiotoxicity upon treatment with the proteasome inhibitor carfilzomib. Paradoxically, carfilzomib has little effect on global average protein half-life, but may instead selectively disrupt sarcomere protein homeostasis. This study provides a view into the interactions of protein spatial and temporal dynamics and demonstrates a method to examine protein homeostasis regulations in stress and drug response.
Collapse
Affiliation(s)
- Jordan Currie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Vyshnavi Manda
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sean K Robinson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Celine Lai
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Vertica Agnihotri
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, CA, 91010, Duarte, USA
| | - Veronica Hidalgo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - R W Ludwig
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kai Zhang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jay Pavelka
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Zhao V Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - June-Wha Rhee
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, CA, 91010, Duarte, USA
| | - Maggie P Y Lam
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Edward Lau
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Currie J, Manda V, Robinson SK, Lai C, Agnihotri V, Hidalgo V, Ludwig RW, Zhang K, Pavelka J, Wang ZV, Rhee JW, Lam MPY, Lau E. Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.04.521821. [PMID: 36711879 PMCID: PMC9881985 DOI: 10.1101/2023.01.04.521821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The functions of proteins depend on their spatial and temporal distributions, which are not directly measured by static protein abundance. Under endoplasmic reticulum (ER) stress, the unfolded protein response (UPR) pathway remediates proteostasis in part by altering the turnover kinetics and spatial distribution of proteins. A global view of these spatiotemporal changes has yet to emerge and it is unknown how they affect different cellular compartments and pathways. Here we describe a mass spectrometry-based proteomics strategy and data analysis pipeline, termed Simultaneous Proteome Localization and Turnover (SPLAT), to measure concurrently the changes in protein turnover and subcellular distribution in the same experiment. Investigating two common UPR models of thapsigargin and tunicamycin challenge in human AC16 cells, we find that the changes in protein turnover kinetics during UPR varies across subcellular localizations, with overall slowdown but an acceleration in endoplasmic reticulum and Golgi proteins involved in stress response. In parallel, the spatial proteomics component of the experiment revealed an externalization of amino acid transporters and ion channels under UPR, as well as the migration of RNA-binding proteins toward an endosome co-sedimenting compartment. The SPLAT experimental design classifies heavy and light SILAC labeled proteins separately, allowing the observation of differential localization of new and old protein pools and capturing a partition of newly synthesized EGFR and ITGAV to the ER under stress that suggests protein trafficking disruptions. Finally, application of SPLAT toward human induced pluripotent stem cell derived cardiomyocytes (iPSC-CM) exposed to the cancer drug carfilzomib, identified a selective disruption of proteostasis in sarcomeric proteins as a potential mechanism of carfilzomib-mediated cardiotoxicity. Taken together, this study provides a global view into the spatiotemporal dynamics of human cardiac cells and demonstrates a method for inferring the coordinations between spatial and temporal proteome regulations in stress and drug response.
Collapse
Affiliation(s)
- Jordan Currie
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vyshnavi Manda
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sean K. Robinson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Celine Lai
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Vertica Agnihotri
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, Durante, CA 91010, USA
| | - Veronica Hidalgo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - R. W. Ludwig
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kai Zhang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jay Pavelka
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zhao V. Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - June-Wha Rhee
- Department of Medicine, Division of Cardiology, City of Hope Comprehensive Cancer Center, Durante, CA 91010, USA
| | - Maggie P. Y. Lam
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward Lau
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Tai M, Chen J, Chen J, Shen X, Ni J. Endoplasmic reticulum stress in skin aging induced by UVB. Exp Dermatol 2024; 33:e14956. [PMID: 37846942 DOI: 10.1111/exd.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Aging is a normal and complex biological process. Skin is located in the most superficial layer of the body, and its degree of aging directly reflects the aging level of the body. Endoplasmic reticulum stress refers to the aggregation of unfolded or misfolded proteins in the endoplasmic reticulum and the disruption of the calcium ion balance when cells are stimulated by external stimuli. Mild endoplasmic reticulum stress can cause a series of protective mechanisms, including the unfolded protein response, while sustained high intensity stimulation leads to endoplasmic reticulum stress and eventually apoptosis. Photoaging caused by ultraviolet radiation is an important stimulus in skin aging. Many studies have focused on oxidative stress, but increasing evidence shows that endoplasmic reticulum stress plays an important role in photoaging. This paper reviews the development and mechanism of endoplasmic reticulum stress (ERS) in skin photoaging, and provides research directions for targeting the ERS pathway to slow aging.
Collapse
Affiliation(s)
- Meiling Tai
- Infinitus (China) Company Ltd, Guangzhou, China
| | - Jieli Chen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawen Chen
- Infinitus (China) Company Ltd, Guangzhou, China
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Dou J, Cánovas A, Brito LF, Yu Y, Schenkel FS, Wang Y. Comprehensive RNA-Seq Profiling Reveals Temporal and Tissue-Specific Changes in Gene Expression in Sprague-Dawley Rats as Response to Heat Stress Challenges. Front Genet 2021; 12:651979. [PMID: 33897767 PMCID: PMC8063118 DOI: 10.3389/fgene.2021.651979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding heat stress physiology and identifying reliable biomarkers are paramount for developing effective management and mitigation strategies. However, little is known about the molecular mechanisms underlying thermal tolerance in animals. In an experimental model of Sprague–Dawley rats subjected to temperatures of 22 ± 1°C (control group; CT) and 42°C for 30 min (H30), 60 min (H60), and 120 min (H120), RNA-sequencing (RNA-Seq) assays were performed for blood (CT and H120), liver (CT, H30, H60, and H120), and adrenal glands (CT, H30, H60, and H120). A total of 53, 1,310, and 1,501 differentially expressed genes (DEGs) were significantly identified in the blood (P < 0.05 and |fold change (FC)| >2), liver (P < 0.01, false discovery rate (FDR)–adjusted P = 0.05 and |FC| >2) and adrenal glands (P < 0.01, FDR-adjusted P = 0.05 and |FC| >2), respectively. Of these, four DEGs, namely Junb, P4ha1, Chordc1, and RT1-Bb, were shared among the three tissues in CT vs. H120 comparison. Functional enrichment analyses of the DEGs identified in the blood (CT vs. H120) revealed 12 biological processes (BPs) and 25 metabolic pathways significantly enriched (FDR = 0.05). In the liver, 133 BPs and three metabolic pathways were significantly detected by comparing CT vs. H30, H60, and H120. Furthermore, 237 BPs were significantly (FDR = 0.05) enriched in the adrenal glands, and no shared metabolic pathways were detected among the different heat-stressed groups of rats. Five and four expression patterns (P < 0.05) were uncovered by 73 and 91 shared DEGs in the liver and adrenal glands, respectively, over the different comparisons. Among these, 69 and 73 genes, respectively, were proposed as candidates for regulating heat stress response in rats. Finally, together with genome-wide association study (GWAS) results in cattle and phenome-wide association studies (PheWAS) analysis in humans, five genes (Slco1b2, Clu, Arntl, Fads1, and Npas2) were considered as being associated with heat stress response across mammal species. The datasets and findings of this study will contribute to a better understanding of heat stress response in mammals and to the development of effective approaches to mitigate heat stress response in livestock through breeding.
Collapse
Affiliation(s)
- Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Angela Cánovas
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Molecular and Cellular Effects of Chemical Chaperone-TUDCA on ER-Stressed NHAC-kn Human Articular Chondrocytes Cultured in Normoxic and Hypoxic Conditions. Molecules 2021; 26:molecules26040878. [PMID: 33562298 PMCID: PMC7915106 DOI: 10.3390/molecules26040878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is considered one of the most common arthritic diseases characterized by progressive degradation and abnormal remodeling of articular cartilage. Potential therapeutics for OA aim at restoring proper chondrocyte functioning and inhibiting apoptosis. Previous studies have demonstrated that tauroursodeoxycholic acid (TUDCA) showed anti-inflammatory and anti-apoptotic activity in many models of various diseases, acting mainly via alleviation of endoplasmic reticulum (ER) stress. However, little is known about cytoprotective effects of TUDCA on chondrocyte cells. The present study was designed to evaluate potential effects of TUDCA on interleukin-1β (IL-1β) and tunicamycin (TNC)-stimulated NHAC-kn chondrocytes cultured in normoxic and hypoxic conditions. Our results showed that TUDCA alleviated ER stress in TNC-treated chondrocytes, as demonstrated by reduced CHOP expression; however, it was not effective enough to prevent apoptosis of NHAC-kn cells in either normoxia nor hypoxia. However, co-treatment with TUDCA alleviated inflammatory response induced by IL-1β, as shown by down regulation of Il-1β, Il-6, Il-8 and Cox2, and increased the expression of antioxidant enzyme Sod2. Additionally, TUDCA enhanced Col IIα expression in IL-1β- and TNC-stimulated cells, but only in normoxic conditions. Altogether, these results suggest that although TUDCA may display chondoprotective potential in ER-stressed cells, further analyses are still necessary to fully confirm its possible recommendation as potential candidate in OA therapy.
Collapse
|
7
|
Endoplasmic Reticulum Stress Regulates Scleral Remodeling in a Guinea Pig Model of Form-Deprivation Myopia. J Ophthalmol 2020; 2020:3264525. [PMID: 32587758 PMCID: PMC7303736 DOI: 10.1155/2020/3264525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aimed to investigate the role of endoplasmic reticulum (ER) stress in scleral remodeling in a guinea pig model of form-deprivation myopia (FDM). Methods Guinea pigs were form deprived to induce myopia. ER ultrastructural changes in the sclera were examined by transmission electron microscopy (TEM). The protein levels of ER stress chaperones, including GRP78, CHOP, and calreticulin (CRT), were analyzed by western blotting at 24 hours, 1 week, and 4 weeks of FD. Scleral fibroblasts from guinea pigs were cultured and exposed to the ER stress inducer tunicamycin (TM) or the ER stress inhibitor 4-phenylbutyric acid (4-PBA). CRT was knocked down by lentivirus-mediated CRT shRNA transfection. The expression levels of GRP78, CHOP, TGF-β1, and COL1A1 were analyzed by qRT-PCR or western blotting. Results The sclera of FDM eyes exhibited swollen and distended ER at 4 weeks, as well as significantly increased protein expression of GRP78 and CRT at 1 week and 4 weeks, compared to the sclera of the control eyes. In vitro, TM induced ER stress in scleral fibroblasts, which was suppressed by 4-PBA. The mRNA expression of TGF-β1 and COL1A1 was upregulated after TM stimulation for 24 hours, but downregulated for 48 hours. Additionally, change of TGF-β1 and COL1A1 transcription induced by TM was suppressed by CRT knockdown. Conclusions ER stress was an important modulator which could influence the expression of the scleral collagen. CRT might be a new target for the intervention of the FDM scleral remodeling process.
Collapse
|
8
|
Heat Stress Impairs the Physiological Responses and Regulates Genes Coding for Extracellular Exosomal Proteins in Rat. Genes (Basel) 2020; 11:genes11030306. [PMID: 32183190 PMCID: PMC7140893 DOI: 10.3390/genes11030306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/04/2023] Open
Abstract
Heat stress (HS) is challenging in humans and animals as it is a complicated regulatory mechanism. This prompted us to characterize the physiological and molecular responses of a HS-animal model. In this study, a rat model system was developed by using three temperature treatments (40 ℃, 42 ℃, and 43 ℃) and sixteen biochemical indicators in blood at 42 ℃ for 30 min (H30), 60 min (H60), and 120 min (H120). In addition, transcriptomic profiling was carried out in H120-rats’ blood, liver, and adrenal gland samples for detection of the genes of interest. Our findings demonstrated that the adrenocorticotropic hormone, catalase, prolactin, growth hormone, and lactic acid have significant spatiotemporal variation in the H120-rats as compared with the control. Furthermore, through transcriptomic screening, we documented a high ratio of differentially expressed genes (DEGs) in adrenal glands, liver, and blood, respectively. Among them, Nup153, Plxnb2, Stx7, Hspa9, Chordc1, Pde4d, Gm2α, and Rnf125 were associated with the regulation of HS and immune response processes. Notably, 36 and 314 of DEGs in blood and adrenal glands were detected in the composition of the extracellular exosome, respectively. Furthermore, the correlation analysis between gene transcripts and biochemical indicator levels identified the Lgals3, S1006, Fn1,F2, and Kng1l1 as key candidate genes for HS encoding extracellular exosomal proteins. On the basis of our results, it was concluded that the current rat model provides a molecular basis for future research in HS resistance in humans and livestock.
Collapse
|
9
|
Song H, Liu L, Song Z, Ren Y, Li C, Huo J. P4HA3 is Epigenetically Activated by Slug in Gastric Cancer and its Deregulation is Associated With Enhanced Metastasis and Poor Survival. Technol Cancer Res Treat 2019; 17:1533033818796485. [PMID: 30198421 PMCID: PMC6131293 DOI: 10.1177/1533033818796485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prolyl 4-hydroxylase alpha subunit is the enzymic active site of prolyl 4-hydroxylase, which is a critical enzyme to maintain the stability of newly synthesized collagens. The expression profile and functional role of P4HA3 in gastric cancer have not been explored. In the Cancer Genome Atlas-Stomach Cancer, P4HA3 RNA is significantly upregulated in gastric cancer than in normal stomach tissues. In the Human Protein Atlas, Prolyl 4-hydroxylase alpha subunit is not detectable by immunohistochemistry staining in normal stomach tissues, but it has weak staining in 7 of 12 gastric cancer tissues. Further study showed that SNAI2 (encoding Slug) is highly coexpressed with P4HA3 (Pearson r = 0.70) in Cancer Genome Atlas-Stomach Cancer. In vitro cell assay showed that Slug could efficiently bind to the P4HA3 promoter and increase its transcription. P4HA3 exon array data in Cancer Genome Atlas-Stomach Cancer revealed that 2 exons are significantly upregulated in M1 (N = 27) cases than in M0 (N = 367) cases. In MKN-45 and AGS cells, P4HA3 upregulation could enhance cell motility and invasiveness. In Cancer Genome Atlas-Stomach Cancer, high P4HA3 exon expression is associated with significantly worse 5-year and 10-year overall survival (P = .007 and .009, respectively). Data mining in Kaplan-Meier plotter also showed that high P4HA3 expression is related to unfavorable overall survival (hazard ratio: 1.54, 95% confidence interval: 1.23-1.93, P < .001) and first progression-free survival (hazard ratio: 1.64, 95% confidence interval: 1.29-2.1, P < .001). Based on findings above, we infer that P4HA3 is epigenetically activated by Slug, and its deregulation is associated with enhanced metastasis and poor survival of gastric cancer.
Collapse
Affiliation(s)
- Hu Song
- 1 Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingling Liu
- 2 Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhaoquan Song
- 3 Clinical Laboratory, Linyi Luozhuang Central Hospital, Linyi, Shandong, China
| | - Yongqiang Ren
- 4 Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, China
| | - Chao Li
- 5 Department of NMR, Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Jiege Huo
- 6 Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Krupkova O, Sadowska A, Kameda T, Hitzl W, Hausmann ON, Klasen J, Wuertz-Kozak K. p38 MAPK Facilitates Crosstalk Between Endoplasmic Reticulum Stress and IL-6 Release in the Intervertebral Disc. Front Immunol 2018; 9:1706. [PMID: 30174670 PMCID: PMC6107791 DOI: 10.3389/fimmu.2018.01706] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/10/2018] [Indexed: 11/24/2022] Open
Abstract
Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1β, and TNF-α was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1β and TNF-α. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 µM) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-α (5 and 10 ng/mL) did not activate ER stress, while IL-1β (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+]i flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD.
Collapse
Affiliation(s)
- Olga Krupkova
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Takuya Kameda
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Fukushima Medical University, Fukushima, Japan
| | - Wolfgang Hitzl
- Biostatistics, Research Office, Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | | | | | - Karin Wuertz-Kozak
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Academic Teaching Hospital, Spine Research Institute, Paracelsus Medical University, Salzburg, Austria
- Spine Center, Schön Klinic Munich Harlaching, Munich, Germany
- Department of Health Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Bandeiras C, Completo A, Ramos A. Compression, shear and bending on tissue-engineered cartilage: a numerical study. Comput Methods Biomech Biomed Engin 2014; 17 Suppl 1:2-3. [DOI: 10.1080/10255842.2014.931047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Westra IM, Oosterhuis D, Groothuis GMM, Olinga P. Precision-cut liver slices as a model for the early onset of liver fibrosis to test antifibrotic drugs. Toxicol Appl Pharmacol 2014; 274:328-38. [PMID: 24321339 DOI: 10.1016/j.taap.2013.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 01/26/2023]
Abstract
Induction of fibrosis during prolonged culture of precision-cut liver slices (PCLS) was reported. In this study, the use of rat PCLS was investigated to further characterize the mechanism of early onset of fibrosis in this model and the effects of antifibrotic compounds. Rat PCLS were incubated for 48h, viability was assessed by ATP and gene expression of PDGF-B and TGF-β1 and the fibrosis markers Hsp47, αSma and Pcol1A1 and collagen1 protein expressions were determined. The effects of the antifibrotic drugs imatinib, sorafenib and sunitinib, PDGF-pathway inhibitors, and perindopril, valproic acid, rosmarinic acid, tetrandrine and pirfenidone, TGFβ-pathway inhibitors, were determined. After 48h of incubation, viability of the PCLS was maintained and gene expression of PDGF-B was increased while TGF-β1 was not changed. Hsp47, αSma and Pcol1A1 gene expressions were significantly elevated in PCLS after 48h, which was further increased by PDGF-BB and TGF-β1. The increased gene expression of fibrosis markers was inhibited by all three PDGF-inhibitors, while TGFβ-inhibitors showed marginal effects. The protein expression of collagen 1 was inhibited by imatinib, perindopril, tetrandrine and pirfenidone. In conclusion, the increased gene expression of PDGF-B and the down-regulation of fibrosis markers by PDGF-pathway inhibitors, together with the absence of elevated TGF-β1 gene expression and the limited effect of the TGFβ-pathway inhibitors, indicated the predominance of the PDGF pathway in the early onset of fibrosis in PCLS. PCLS appear a useful model for research of the early onset of fibrosis and for testing of antifibrotic drugs acting on the PDGF pathway.
Collapse
Affiliation(s)
- Inge M Westra
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, The Netherlands
| | - Dorenda Oosterhuis
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, The Netherlands
| | - Geny M M Groothuis
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, The Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
13
|
Paul CPL, Schoorl T, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, van Royen BJ, Helder MN, Mullender MG. Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLoS One 2013; 8:e62411. [PMID: 23638074 PMCID: PMC3640099 DOI: 10.1371/journal.pone.0062411] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/20/2013] [Indexed: 11/30/2022] Open
Abstract
Mechanical overloading of the spine is associated with low back pain and intervertebral disc (IVD) degeneration. How excessive loading elicits degenerative changes in the IVD is poorly understood. Comprehensive knowledge of the interaction between mechanical loading, cell responses and changes in the extracellular matrix of the disc is needed in order to successfully intervene in this process. The purpose of the current study was to investigate whether dynamic and static overloading affect caprine lumbar discs differently and what mechanisms lead to mechanically induced IVD degeneration. Lumbar caprine IVDs (n = 175) were cultured 7, 14 and 21 days under simulated-physiological loading (control), high dynamic or high static loading. Axial deformation and stiffness were continuously measured. Cell viability, cell density, and gene expression were assessed in the nucleus, inner- and outer annulus. The extracellular matrix (ECM) was analyzed for water, glycosaminoglycan and collagen content. IVD height loss and changes in axial deformation were gradual with dynamic and acute with static overloading. Dynamic overloading caused cell death in all IVD regions, whereas static overloading mostly affected the outer annulus. IVDs expression of catabolic and inflammation-related genes was up-regulated directly, whereas loss of water and glycosaminoglycan were significant only after 21 days. Static and dynamic overloading both induced pathological changes to caprine lumbar IVDs within 21 days. The mechanism by which they inflict biomechanical, cellular, and extracellular changes to the nucleus and annulus differed. The described cascades provide leads for the development of new pharmacological and rehabilitative therapies to halt the progression of DDD.
Collapse
Affiliation(s)
- Cornelis P. L. Paul
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tom Schoorl
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Hendrik A. Zuiderbaan
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Behrouz Zandieh Doulabi
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Albert J. van der Veen
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter M. van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Theo H. Smit
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Barend J. van Royen
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marco N. Helder
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Skeletal Tissue Engineering Group Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Margriet G. Mullender
- Department of Orthopaedic Surgery, VU University Medical Center, Amsterdam, The Netherlands
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Zimmerman KA, Graham LV, Pallero MA, Murphy-Ullrich JE. Calreticulin regulates transforming growth factor-β-stimulated extracellular matrix production. J Biol Chem 2013; 288:14584-14598. [PMID: 23564462 DOI: 10.1074/jbc.m112.447243] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is an emerging factor in fibrotic disease, although precise mechanisms are not clear. Calreticulin (CRT) is an ER chaperone and regulator of Ca(2+) signaling up-regulated by ER stress and in fibrotic tissues. Previously, we showed that ER CRT regulates type I collagen transcript, trafficking, secretion, and processing into the extracellular matrix (ECM). To determine the role of CRT in ECM regulation under fibrotic conditions, we asked whether CRT modified cellular responses to the pro-fibrotic cytokine, TGF-β. These studies show that CRT-/- mouse embryonic fibroblasts (MEFs) and rat and human idiopathic pulmonary fibrosis lung fibroblasts with siRNA CRT knockdown had impaired TGF-β stimulation of type I collagen and fibronectin. In contrast, fibroblasts with increased CRT expression had enhanced responses to TGF-β. The lack of CRT does not impact canonical TGF-β signaling as TGF-β was able to stimulate Smad reporter activity in CRT-/- MEFs. CRT regulation of TGF-β-stimulated Ca(2+) signaling is important for induction of ECM. CRT-/- MEFs failed to increase intracellular Ca(2+) levels in response to TGF-β. NFAT activity is required for ECM stimulation by TGF-β. In CRT-/- MEFs, TGF-β stimulation of NFAT nuclear translocation and reporter activity is impaired. Importantly, CRT is required for TGF-β stimulation of ECM under conditions of ER stress, as tunicamycin-induced ER stress was insufficient to induce ECM production in TGF-β stimulated CRT-/- MEFs. Together, these data identify CRT-regulated Ca(2+)-dependent pathways as a critical molecular link between ER stress and TGF-β fibrotic signaling.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Lauren V Graham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Manuel A Pallero
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Joanne E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019.
| |
Collapse
|
15
|
Dunning LT, Dennis AB, Park D, Sinclair BJ, Newcomb RD, Buckley TR. Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:24-31. [DOI: 10.1016/j.cbd.2012.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 12/22/2022]
|
16
|
Tang Y, Xiang W, Terry L, Kretzschmar HA, Windl O. Transcriptional analysis implicates endoplasmic reticulum stress in bovine spongiform encephalopathy. PLoS One 2010; 5:e14207. [PMID: 21151970 PMCID: PMC2997050 DOI: 10.1371/journal.pone.0014207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/01/2010] [Indexed: 11/18/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal, transmissible, neurodegenerative disease of cattle. To date, the disease process is still poorly understood. In this study, brain tissue samples from animals naturally infected with BSE were analysed to identify differentially regulated genes using Affymetrix GeneChip Bovine Genome Arrays. A total of 230 genes were shown to be differentially regulated and many of these genes encode proteins involved in immune response, apoptosis, cell adhesion, stress response and transcription. Seventeen genes are associated with the endoplasmic reticulum (ER) and 10 of these 17 genes are involved in stress related responses including ER chaperones, Grp94 and Grp170. Western blotting analysis showed that another ER chaperone, Grp78, was up-regulated in BSE. Up-regulation of these three chaperones strongly suggests the presence of ER stress and the activation of the unfolded protein response (UPR) in BSE. The occurrence of ER stress was also supported by changes in gene expression for cytosolic proteins, such as the chaperone pair of Hsp70 and DnaJ. Many genes associated with the ubiquitin-proteasome pathway and the autophagy-lysosome system were differentially regulated, indicating that both pathways might be activated in response to ER stress. A model is presented to explain the mechanisms of prion neurotoxicity using these ER stress related responses. Clustering analysis showed that the differently regulated genes found from the naturally infected BSE cases could be used to predict the infectious status of the samples experimentally infected with BSE from the previous study and vice versa. Proof-of-principle gene expression biomarkers were found to represent BSE using 10 genes with 94% sensitivity and 87% specificity.
Collapse
Affiliation(s)
- Yue Tang
- Department of Molecular Pathogenesis and Genetics, Veterinary Laboratories Agency, Surrey, United Kingdom
- * E-mail: (YT); (OW)
| | - Wei Xiang
- Institute of Biochemistry, Emil-Fischer-Center, University Erlangen-Nuernberg, Erlangen, Germany
| | - Linda Terry
- Department of Molecular Pathogenesis and Genetics, Veterinary Laboratories Agency, Surrey, United Kingdom
| | - Hans A. Kretzschmar
- Institute of Neuropathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Otto Windl
- Department of Molecular Pathogenesis and Genetics, Veterinary Laboratories Agency, Surrey, United Kingdom
- * E-mail: (YT); (OW)
| |
Collapse
|
17
|
Makita J, Hosoya KI, Zhang P, Kador PF. Response of rat retinal capillary pericytes and endothelial cells to glucose. J Ocul Pharmacol Ther 2010; 27:7-15. [PMID: 21091050 DOI: 10.1089/jop.2010.0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM The purpose of this study was to investigate the effects of hyperglycemia, its fluctuations, and glucose starvation on the expression of glucose-regulated protein 78/binding immunoglobulin protein (GRP78/BiP), one of the most commonly used markers of endoplasmic reticulum stress, in rat capillary pericytes and endothelial cells cultured separately and together. METHODS Conditionally immortalized rat retinal pericyte and endothelial cell lines were cultured in dishes coated with collagen type I in Dulbecco's modified Eagle's medium containing 5.5 mM glucose. For cocultures, pericytes and endothelial cells were seeded together on rat tail collagen type I-coated cell culture plates. After 24 h of initial culture, the medium was replaced with serum-free medium containing 0-100 mM glucose for periods of up to 72 h. GRP78/BiP, caspase-3, and nuclear factor-κB expression were investigated using western blots. RESULTS No significant increase in GRP78/BiP expression was observed when pericytes, endothelial cells, or cocultures were exposed to either 25, 50, or 100 mM glucose for 48 h compared with the control level of 5.5 mM glucose. Similarly, no change in expression of GRP78/BiP was observed when media glucose levels were reduced from either 5.5 or 25 to 1 mM. GRP78/BiP expression significantly increased when cells were cultured for 24 h in glucose-deprived medium. This was accompanied by a time-dependent increase in the expression of caspase-3 and nuclear factor-κB. CONCLUSION In diabetic retinopathy, hyperglycemia has been reported to induce apoptosis in retinal capillary vascular cells, but these studies suggest that the apoptosis is not linked to the expression of GRP78/BiP, one of the most commonly used markers of endoplasmic reticulum stress. However, GRP78/BiP-linked apoptosis may play a role in vascular changes associated with retinal ischemia/reperfusion.
Collapse
Affiliation(s)
- Jun Makita
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | | | |
Collapse
|