1
|
Borkens Y. The Pathology of the Brain Eating Amoeba Naegleria fowleri. Indian J Microbiol 2024; 64:1384-1394. [PMID: 39282207 PMCID: PMC11399382 DOI: 10.1007/s12088-024-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/02/2024] [Indexed: 09/18/2024] Open
Abstract
The genus Naegleria is a taxonomic subfamily consisting of 47 free-living amoebae. The genus can be found in warm aqueous or soil habitats worldwide. The species Naegleria fowleri is probably the best-known species of this genus. As a facultative parasite, the protist is not dependent on hosts to complete its life cycle. However, it can infect humans by entering the nose during water contact, such as swimming, and travel along the olfactory nerve to the brain. There it causes a purulent meningitis (primary amoebic meningoencephalitis or PAME). Symptoms are severe and death usually occurs within the first week. PAME is a frightening infectious disease for which there is neither a proven cure nor a vaccine. In order to contain the disease and give patients any chance to survival, action must be taken quickly. A rapid diagnosis is therefore crucial. PAME is diagnosed by the detection of amoebae in the liquor and later in the cerebrospinal fluid. For this purpose, CSF samples are cultured and stained and finally examined microscopically. Molecular techniques such as PCR or ELISA support the microscopic analysis and secure the diagnosis.
Collapse
Affiliation(s)
- Yannick Borkens
- Institut für Pathologie, Charité Campus Mitte, Virchowweg 15, Charité, 10117 Berlin, Germany
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
| |
Collapse
|
2
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
3
|
Affiliation(s)
- E. Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
4
|
Betanzos A, Bañuelos C, Orozco E. Host Invasion by Pathogenic Amoebae: Epithelial Disruption by Parasite Proteins. Genes (Basel) 2019; 10:E618. [PMID: 31416298 PMCID: PMC6723116 DOI: 10.3390/genes10080618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The epithelium represents the first and most extensive line of defence against pathogens, toxins and pollutant agents in humans. In general, pathogens have developed strategies to overcome this barrier and use it as an entrance to the organism. Entamoeba histolytica, Naegleriafowleri and Acanthamoeba spp. are amoebae mainly responsible for intestinal dysentery, meningoencephalitis and keratitis, respectively. These amoebae cause significant morbidity and mortality rates. Thus, the identification, characterization and validation of molecules participating in host-parasite interactions can provide attractive targets to timely intervene disease progress. In this work, we present a compendium of the parasite adhesins, lectins, proteases, hydrolases, kinases, and others, that participate in key pathogenic events. Special focus is made for the analysis of assorted molecules and mechanisms involved in the interaction of the parasites with epithelial surface receptors, changes in epithelial junctional markers, implications on the barrier function, among others. This review allows the assessment of initial host-pathogen interaction, to correlate it to the potential of parasite invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City 07360, Mexico.
| |
Collapse
|
5
|
Sohn HJ, Song KJ, Kang H, Ham AJ, Lee JH, Chwae YJ, Kim K, Park S, Kim JH, Shin HJ. Cellular characterization of actin gene concerned with contact-dependent mechanisms in Naegleria fowleri. Parasite Immunol 2019; 41:e12631. [PMID: 31077592 DOI: 10.1111/pim.12631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
Abstract
Free-living amoeba, Naegleria fowleri, destroys target cells through contact-dependent mechanisms, such as phagocytosis and/or trogocytosis. A previous experiment showed that the nf-actin gene consisted of 1.2 kbp, produced a 50.1 kDa recombinant protein (Nf-actin), and was localized on the cytoskeleton, pseudopodia and amoebastome. In this study, cellular characterization of the nf-actin gene concerned with contact-dependent mechanisms in N fowleri was performed. The nf-actin gene was amplified from a gene-cloned vector, pEXQP5-T7/NT TOPO. The nf-actin gene was introduced into the Ubi-pEGFP-C2 vector, and Ubi-pEGFP-C2/nf-actin was transfected into N fowleri trophozoites. Strong GFP fluorescence was detected in N fowleri trophozoites transfected with Ubi-pEGFP-C2/nf-actin. Expression of EGFP-Nf-actin protein was detected by Western blot analysis. The nf-actin-overexpressing N fowleri showed significantly increased adhesion activity against extracellular matrix components, fibronectin, collagen I and fibrinogen, compared with wild-type N fowleri. Moreover, nf-actin-overexpressing N fowleri showed increased phagocytic activity and cytotoxicity in comparison with wild-type N fowleri. In summary, the overexpressed nf-actin gene has an important function in ability to increase cell adhesion, cytotoxicity and phagocytosis by N fowleri.
Collapse
Affiliation(s)
- Hae-Jin Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, Korea
| | | | - Heekyoung Kang
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, Korea
| | - A-Jeong Ham
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, Korea
| | - Jae-Ho Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, Korea
| | - Yong-Joon Chwae
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, Korea
| | - Kyongmin Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, Korea
| | - Sun Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, Korea
| | - Jong-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Graduate School of Ajou University, Suwon, Korea
| |
Collapse
|
6
|
Martínez-Castillo M, Cárdenas-Guerra RE, Arroyo R, Debnath A, Rodríguez MA, Sabanero M, Flores-Sánchez F, Navarro-Garcia F, Serrano-Luna J, Shibayama M. Nf-GH, a glycosidase secreted by Naegleria fowleri, causes mucin degradation: an in vitro and in vivo study. Future Microbiol 2017; 12:781-799. [PMID: 28608712 DOI: 10.2217/fmb-2016-0230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM The aim of this work was to identify, characterize and evaluate the pathogenic role of mucinolytic activity released by Naegleria fowleri. MATERIALS & METHODS Zymograms, protease inhibitors, anion exchange chromatography, MALDI-TOF-MS, enzymatic assays, Western blot, and confocal microscopy were used to identify and characterize a secreted mucinase; inhibition assays using antibodies, dot-blots and mouse survival tests were used to evaluate the mucinase as a virulence factor. RESULTS A 94-kDa protein with mucinolytic activity was inducible and abolished by p-hydroxymercuribenzoate. MALDI-TOF-MS identified a glycoside hydrolase. Specific antibodies against N. fowleri-glycoside hydrolase inhibit cellular damage and MUC5AC degradation, and delay mouse mortality. CONCLUSION Our findings suggest that secretory products from N. fowleri play an important role in mucus degradation during the invasion process.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Rosa Elena Cárdenas-Guerra
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Rossana Arroyo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Anjan Debnath
- Center for Discovery & Innovation in Parasitic Diseases, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Mario Alberto Rodríguez
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Myrna Sabanero
- Department of Biology, University of Guanajuato, Noria Alta S/N, Noria Alta, Guanajuato 36050, Mexico
| | - Fernando Flores-Sánchez
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
7
|
Siddiqui R, Ali IKM, Cope JR, Khan NA. Biology and pathogenesis of Naegleria fowleri. Acta Trop 2016; 164:375-394. [PMID: 27616699 DOI: 10.1016/j.actatropica.2016.09.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
Abstract
Naegleria fowleri is a protist pathogen that can cause lethal brain infection. Despite decades of research, the mortality rate related with primary amoebic meningoencephalitis owing to N. fowleri remains more than 90%. The amoebae pass through the nose to enter the central nervous system killing the host within days, making it one of the deadliest opportunistic parasites. Accordingly, we present an up to date review of the biology and pathogenesis of N. fowleri and discuss needs for future research against this fatal infection.
Collapse
|
8
|
Martínez-Castillo M, Cárdenas-Zúñiga R, Coronado-Velázquez D, Debnath A, Serrano-Luna J, Shibayama M. Naegleria fowleri after 50 years: is it a neglected pathogen? J Med Microbiol 2016; 65:885-896. [PMID: 27381464 DOI: 10.1099/jmm.0.000303] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been 50 years since the first case of primary amoebic meningoencephalitis (PAM), an acute and rapidly fatal disease of the central nervous system (CNS), was reported in Australia. It is now known that the aetiological agent of PAM is Naegleria fowleri, an amoeba that is commonly known as 'the brain-eating amoeba'. N. fowleri infects humans of different ages who are in contact with water contaminated with this micro-organism. N. fowleri is distributed worldwide and is found growing in bodies of freshwater in tropical and subtropical environments. The number of PAM cases has recently increased, and the rate of recovery from PAM has been estimated at only 5 %. Amphotericin B has been used to treat patients with PAM. However, it is important to note that there is no specific treatment for PAM. Moreover, this amoeba is considered a neglected micro-organism. Researchers have exerted great effort to design effective drugs to treat PAM and to understand the pathogenesis of PAM over the past 50 years, such as its pathology, molecular and cellular biology, diagnosis and prevention, and its biological implications, including its pathogenic genotypes, its distribution and its ecology. Given the rapid progression of PAM and its high mortality rate, it is important that investigations continue and that researchers collaborate to gain better understanding of the pathogenesis of this disease and, consequently, to improve the diagnosis and treatment of this devastating infection of the CNS.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Roberto Cárdenas-Zúñiga
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Daniel Coronado-Velázquez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
9
|
Contis-Montes de Oca A, Carrasco-Yépez M, Campos-Rodríguez R, Pacheco-Yépez J, Bonilla-Lemus P, Pérez-López J, Rojas-Hernández S. Neutrophils extracellular traps damage Naegleria fowleri trophozoites opsonized with human IgG. Parasite Immunol 2016; 38:481-95. [PMID: 27189133 DOI: 10.1111/pim.12337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/11/2016] [Indexed: 01/15/2023]
Abstract
Naegleria fowleri infects humans through the nasal mucosa causing a disease in the central nervous system known as primary amoebic meningoencephalitis (PAM). Polymorphonuclear cells (PMNs) play a critical role in the early phase of N. fowleri infection. Recently, a new biological defence mechanism called neutrophil extracellular traps (NETs) has been attracting attention. NETs are composed of nuclear DNA combined with histones and antibacterial proteins, and these structures are released from the cell to direct its antimicrobial attack. In this work, we evaluate the capacity of N. fowleri to induce the liberation of NETs by human PMN cells. Neutrophils were cocultured with unopsonized or IgG-opsonized N. fowleri trophozoites. DNA, histone, myeloperoxidase (MPO) and neutrophil elastase (NE) were stained, and the formation of NETs was evaluated by confocal microscopy and by quantifying the levels of extracellular DNA. Our results showed N. fowleri induce the liberation of NETs including release of MPO and NE by human PMN cells as exposure interaction time is increased, but N. fowleri trophozoites evaded killing. However, when trophozoites were opsonized, they were susceptible to the neutrophils activity. Therefore, our study suggests that antibody-mediated PMNs activation through NET formation may be crucial for antimicrobial responses against N. fowleri.
Collapse
Affiliation(s)
- A Contis-Montes de Oca
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, D.F., Mexico
| | - M Carrasco-Yépez
- Proyecto CyMA, UIICSE, UNAM FES Iztacala, Los Reyes Iztacala, Tlalnepantla, Mexico
| | - R Campos-Rodríguez
- Laboratorio de Bioquímica, Departamento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, D.F., Mexico
| | - J Pacheco-Yépez
- Laboratorio de Bioquímica, Departamento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, D.F., Mexico
| | - P Bonilla-Lemus
- Proyecto CyMA, UIICSE, UNAM FES Iztacala, Los Reyes Iztacala, Tlalnepantla, Mexico
| | - J Pérez-López
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, D.F., Mexico
| | - S Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, D.F., Mexico
| |
Collapse
|
10
|
Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri. BIOMED RESEARCH INTERNATIONAL 2015; 2015:416712. [PMID: 26090408 PMCID: PMC4450812 DOI: 10.1155/2015/416712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023]
Abstract
Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.
Collapse
|
11
|
|
12
|
Carrasco-Yepez M, Campos-Rodriguez R, Godinez-Victoria M, Rodriguez-Monroy MA, Jarillo-Luna A, Bonilla-Lemus P, De Oca ACM, Rojas-Hernandez S. Naegleria fowleri glycoconjugates with residues of α-D-mannose are involved in adherence of trophozoites to mouse nasal mucosa. Parasitol Res 2013; 112:3615-25. [PMID: 23922203 DOI: 10.1007/s00436-013-3549-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/15/2013] [Indexed: 01/15/2023]
Abstract
We analyzed the possible role of glycoconjugates containing α-D-mannose and α-D-glucose residues in adherence of trophozoites to mouse nasal epithelium. Trophozoites incubated with 20 μg of one of three different lectins which preferentially recognized these residues were inoculated intranasally in Balb/c mice. Mouse survival was 40% with Pisum sativum and Canavalia ensiformis and 20% with Galanthus nivalis amebic pretreatment, compared with 0% survival for control animals administered trophozoites without pretreatment. Possibly some of the glycoproteins found in Naegleria fowleri represent an adherence factor. Differences in the saccharide sequences of the Naegleria species, even on the same glycoconjugate structure, could explain the different results corresponding to the distinct pretreatments (C. ensiformis, G. nivalis, and P. sativum). We found a higher expression of glycoconjugates recognized by P. sativum in Naegleria lovaniensis than N. fowleri, probably due to the higher number of oligosaccharides containing an α-1,6-linked fucose moiety expressed on the former species.
Collapse
Affiliation(s)
- Maricela Carrasco-Yepez
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, México, D.F, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
13
|
A new parasiticidal compound in T. solium cysticercosis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:505240. [PMID: 23509732 PMCID: PMC3591161 DOI: 10.1155/2013/505240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/29/2012] [Accepted: 10/13/2012] [Indexed: 11/18/2022]
Abstract
The effect of 16α-bromoepiandrosterone (EpiBr), a dehydroepiandrosterone (DHEA) analogue, was tested on the cysticerci of Taenia solium, both in vitro and in vivo. In vitro treatment of T. solium cultures with EpiBr reduced scolex evagination, growth, motility, and viability in dose- and time-dependent fashions. Administration of EpiBr prior to infection with T. solium cysticerci in hamsters reduced the number and size of developed taenias in the intestine, compared with controls. These effects were associated to an increase in splenocyte proliferation in infected hamsters. These results leave open the possibility of assessing the potential of this hormonal analogue as a possible antiparasite drug, particularly in cysticercosis and taeniosis.
Collapse
|
14
|
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J Trop Med 2013; 2013:890603. [PMID: 23476670 PMCID: PMC3582061 DOI: 10.1155/2013/890603] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 02/01/2023] Open
Abstract
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.
Collapse
|
15
|
Shibayama M, Martínez-Castillo M, Silva-Olivares A, Galindo-Gómez S, Navarro-García F, Escobar-Herrera J, Sabanero M, Tsutsumi V, Serrano-Luna J. Disruption of MDCK cell tight junctions by the free-living amoeba Naegleria fowleri. MICROBIOLOGY-SGM 2012; 159:392-401. [PMID: 23258265 DOI: 10.1099/mic.0.063255-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis. This parasite invades its host by penetrating the olfactory mucosa. However, the mechanism of epithelium penetration is not well understood. In the present study, we evaluated the effect of N. fowleri trophozoites and the non-pathogenic Naegleria gruberi on Madin-Darby canine kidney (MDCK) tight junction proteins, including claudin-1, occludin and ZO-1, as well as on the actin cytoskeleton. Trophozoites from each of the free-living amoeba species were co-cultured with MDCK cells in a 1 : 1 ratio for 1, 3, 6 or 10 h. Light microscopy revealed that N. fowleri caused morphological changes as early as 3 h post-infection in an epithelial MDCK monolayer. Confocal microscopy analysis revealed that after 10 h of co-culture, N. fowleri trophozoites induced epithelial cell damage, which was characterized by changes in the actin apical ring and disruption of the ZO-1 and claudin-1 proteins but not occludin. Western blot assays revealed gradual degradation of ZO-1 and claudin-1 as early as 3 h post-infection. Likewise, there was a drop in transepithelial electrical resistance that resulted in increased epithelial permeability and facilitated the invasion of N. fowleri trophozoites by a paracellular route. In contrast, N. gruberi did not induce alterations in MDCK cells even at 10 h post-infection. Based on these results, we suggest that N. fowleri trophozoites disrupt epithelial monolayers, which could enable their penetration of the olfactory epithelium and subsequent invasion of the central nervous system.
Collapse
Affiliation(s)
- Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Moisés Martínez-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Silvia Galindo-Gómez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Fernando Navarro-García
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Jaime Escobar-Herrera
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Myrna Sabanero
- Department of Biology, University of Guanajuato, 36050 Guanajuato, Mexico
| | - Víctor Tsutsumi
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
16
|
Nava-Castro K, Hernández-Bello R, Muñiz-Hernández S, Camacho-Arroyo I, Morales-Montor J. Sex steroids, immune system, and parasitic infections: facts and hypotheses. Ann N Y Acad Sci 2012; 1262:16-26. [DOI: 10.1111/j.1749-6632.2012.06632.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res 2012; 2012:748206. [PMID: 22792442 PMCID: PMC3390111 DOI: 10.1155/2012/748206] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/07/2012] [Indexed: 12/29/2022] Open
Abstract
Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina). The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.
Collapse
|
18
|
Jamerson M, da Rocha-Azevedo B, Cabral GA, Marciano-Cabral F. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins. MICROBIOLOGY (READING, ENGLAND) 2012; 158:791-803. [PMID: 22222499 PMCID: PMC3352113 DOI: 10.1099/mic.0.055020-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/08/2011] [Accepted: 12/27/2011] [Indexed: 01/27/2023]
Abstract
Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis.
Collapse
Affiliation(s)
- Melissa Jamerson
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0678, USA
| | - Bruno da Rocha-Azevedo
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0678, USA
| | - Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0678, USA
| | - Francine Marciano-Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0678, USA
| |
Collapse
|
19
|
Sex steroids effects on the molting process of the helminth human parasite Trichinella spiralis. J Biomed Biotechnol 2011; 2011:625380. [PMID: 22162638 PMCID: PMC3228608 DOI: 10.1155/2011/625380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/18/2011] [Accepted: 08/23/2011] [Indexed: 11/17/2022] Open
Abstract
We evaluated the in vitro effects of estradiol, progesterone, and testosterone on the molting process, which is the initial and crucial step in the development of the muscular larvae (ML or L1) to adult worm. Testosterone had no significative effect on the molting rate of the parasite, however, progesterone decreased the molting rate about a 50% in a concentration- and time-independent pattern, while estradiol had a slight effect (10%). The gene expression of caveolin-1, a specific gene used as a marker of parasite development, showed that progesterone and estradiol downregulated its expression, while protein expression was unaffected. By using flow citometry, a possible protein that is recognized by a commercial antiprogesterone receptor antibody was detected. These findings may have strong implications in the host-parasite coevolution, in the sex-associated susceptibility to this infection and could point out to possibilities to use antihormones to inhibit parasite development.
Collapse
|
20
|
Maldonado-Barrera CA, Campos-Esparza MDR, Muñoz-Fernández L, Victoria-Hernández JA, Campos-Rodríguez R, Talamás-Rohana P, Ventura-Juárez J. Clinical case of cerebral amebiasis caused by E. histolytica. Parasitol Res 2011; 110:1291-6. [PMID: 21870245 DOI: 10.1007/s00436-011-2617-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022]
Abstract
Although amebic brain abscess is a rare form of invasive amebiasis, when present, it is frequently lethal. This disorder always begins with the infection of the colon by Entamoeba histolytica trophozoites, which then travel to extra-intestinal tissues through the bloodstream. Amebic brain abscesses are produced when trophozoites invade the central nervous system. Computerized axial tomography scans can be used to diagnose the presence or absence of a brain abscess with a certainty of 100%. However, this diagnostic tool does not reveal the etiological agent of disease. By analyzing the clinical case of a patient that died due to untimely treatment of this malady, the present study aims to identify a diagnostic tool that can give a precise determination of the etiological agent and therefore permit adequate and opportune treatment. Currently, diagnosis of amebic brain abscess is often done by identification of the ameba in a biopsy or autopsy. By immunohistochemistry and immunofluorescence with specific antibodies, we identified the existence of E. histolytica, which presents proteins similar to Naegleria fowleri in its membrane.
Collapse
Affiliation(s)
- Cinthya A Maldonado-Barrera
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av Universidad 940, Col. Cd. Universitaria, Aguascalientes, CP. 20131, Mexico
| | | | | | | | | | | | | |
Collapse
|
21
|
Progesterone induces scolex evagination of the human parasite Taenia solium: evolutionary implications to the host-parasite relationship. J Biomed Biotechnol 2009; 2010:591079. [PMID: 20037735 PMCID: PMC2796346 DOI: 10.1155/2010/591079] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 09/14/2009] [Indexed: 11/20/2022] Open
Abstract
Taenia solium cysticercosis is a health problem in underdeveloped and developed countries. Sex hormones are involved in cysticercosis prevalence in female and male pigs. Here, we evaluated the effects of progesterone and its antagonist RU486 on scolex evagination, which is the initial step in the development of the adult worm. Interestingly, progesterone increased T. solium scolex evagination and worm growth, in a concentration-independent pattern. Progesterone effects could be mediated by a novel T. solium progesterone receptor (TsPR), since RU486 inhibits both scolex evagination and worm development induced by progesterone. Using RT-PCR and western blot, sequences related to progesterone receptor were detected in the parasite. A phylogenetic analysis reveals that TsPR is highly related to fish and amphibian progesterone receptors, whereas it has a distant relation with birds and mammals. Conclusively, progesterone directly acts upon T. solium cysticerci, possibly through its binding to a progesterone receptor synthesized by the parasite.
Collapse
|
22
|
Differential in vitro effects of insulin on Taenia crassiceps and Taenia solium cysticerci. J Helminthol 2009; 83:403-12. [PMID: 19549345 DOI: 10.1017/s0022149x09990265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hormones play a significant role in murine cysticercosis (Taenia crassiceps), and increase the frequency of porcine cysticercosis caused by Taenia solium. In the present study, we report the in vitro effect of insulin on the larval stages of T. crassiceps (ORF strain) and T. solium. In vitro exposure of T. crassiceps cysticerci to insulin was found to stimulate this parasite's reproduction twofold with respect to control values, while the same treatment had no effect on T. solium cysticerci. Moreover, normal female mice (BALB/cAnN) infected with T. crassiceps cysticerci previously exposed to insulin presented larger parasite loads than mice inoculated with vehicle-treated cysticerci. To determine the possible molecular mechanisms by which insulin affects T. crassiceps, the insulin receptor was amplified by means of reverse transcriptase-polymerase chain reaction (RT-PCR). Interestingly, both T. crassiceps and T. solium expressed the insulin receptor, although insulin had effects only on T. crassiceps. These results demonstrate that insulin has a dichotomistic effect; it acts directly only on T. crassiceps cysticerci reproduction, possibly through its binding to a specific insulin receptor synthesized by the parasite. Thus, insulin may be recognized by T. crassiceps cysticercus cells as a mitogenic factor, and contribute to parasite proliferation inside the host, as well as to the female mouse susceptibility to T.crassiceps. This phenomenon has not been reported for cysticercosis caused by T. solium, which could, in part, be related to the poor effect of insulin upon the human parasite.
Collapse
|
23
|
Cervantes-Sandoval I, Serrano-Luna JDJ, García-Latorre E, Tsutsumi V, Shibayama M. Mucins in the host defence against Naegleria fowleri and mucinolytic activity as a possible means of evasion. MICROBIOLOGY-SGM 2009; 154:3895-3904. [PMID: 19047756 DOI: 10.1099/mic.0.2008/019380-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM). This parasite invades its host by penetrating the olfactory mucosa. During the initial stages of infection, the host response is initiated by the secretion of mucus that traps the trophozoites. Despite this response, some trophozoites are able to reach, adhere to and penetrate the epithelium. In the present work, we evaluated the effect of mucins on amoebic adherence and cytotoxicity to Madin-Darby canine kidney (MDCK) cells and the MUC5AC-inducing cell line NCI-H292. We showed that mucins inhibited the adhesion of amoebae to both cell lines; however, this inhibition was overcome in a time-dependent manner. N. fowleri re-established the capacity to adhere faster than N. gruberi. Moreover, mucins reduced the cytotoxicity to target cells and the progression of the illness in mice. In addition, we demonstrated mucinolytic activity in both Naegleria strains and identified a 37 kDa protein with mucinolytic activity. The activity of this protein was inhibited by cysteine protease inhibitors. Based on these results, we suggest that mucus, including its major mucin component, may act as an effective protective barrier that prevents most cases of PAM; however, when the number of amoebae is sufficient to overwhelm the innate immune response, the parasites may evade the mucus by degrading mucins via a proteolytic mechanism.
Collapse
Affiliation(s)
- Isaac Cervantes-Sandoval
- Department of Immunology, National School of Biological Sciences, National Polytechnic Institute, Av. Manuel M. Carpio and Plan de Ayala, Mexico City 11340, Mexico.,Department of Experimental Pathology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - José de Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Ethel García-Latorre
- Department of Immunology, National School of Biological Sciences, National Polytechnic Institute, Av. Manuel M. Carpio and Plan de Ayala, Mexico City 11340, Mexico
| | - Víctor Tsutsumi
- Department of Experimental Pathology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Experimental Pathology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
24
|
Jarillo-Luna A, Moreno-Fierros L, Campos-Rodríguez R, Rodríguez-Monroy MA, Lara-Padilla E, Rojas-Hernández S. Intranasal immunization with Naegleria fowleri lysates and Cry1Ac induces metaplasia in the olfactory epithelium and increases IgA secretion. Parasite Immunol 2008; 30:31-8. [PMID: 18086014 DOI: 10.1111/j.1365-3024.2007.00999.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
According to previous reports, intranasal administration of the Cry1Ac protein alone or with amoebic lysates increases protection against Naegleria fowleri meningoencephalitis in mice, apparently by eliciting IgA responses in the nasal mucosa. In the current study, we performed an immunohistochemical analysis of IgA in the nasal mucosa of mice immunized intranasally with Cry1Ac, and amoebic lysates or a combination of both. The animals were sacrificed 24 h after the last immunization or after an intranasal lethal challenge with N. fowleri. Our results indicate that all of the intranasal immunizations provoked an increase in areas with metaplasia in the olfactory epithelium, allowing for secretion of IgA. As a result, IgA antibodies were found interacting with trophozoites in the nasal lumen, and there was a marked increase of IgA in the metaplasic epithelium. On the other hand in nonimmunized mice trophozoites were observed invading the nasal mucosa, which was not the case for immunized mice. Our results suggest that intranasal immunization provokes cellular changes in the olfactory epithelium, leading to greater protection against N. fowleri that is probably caused by an increased secretion of IgA. The increased IgA response induced in the nasal mucosa by immunization probably impedes both amoebic adhesion and subsequent invasion of the parasite to the nasal epithelium.
Collapse
Affiliation(s)
- A Jarillo-Luna
- Departamento de Investigación y Postgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luís y Díaz Mirón, México, D.F., Mexico
| | | | | | | | | | | |
Collapse
|
25
|
MORALES-MONTOR J, HALL CA. The host–parasite neuroimmunoendocrine network in schistosomiasis: consequences to the host and the parasite. Parasite Immunol 2007; 29:599-608. [DOI: 10.1111/j.1365-3024.2007.00968.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Escobedo G, Roberts CW, Carrero JC, Morales-Montor J. Parasite regulation by host hormones: an old mechanism of host exploitation? Trends Parasitol 2005; 21:588-93. [PMID: 16236553 DOI: 10.1016/j.pt.2005.09.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 08/10/2005] [Accepted: 09/29/2005] [Indexed: 11/29/2022]
Abstract
Recent experimental evidence suggests that parasites can not only evade immune responses actively but also exploit the hormonal microenvironment within the host to favor their establishment, growth and reproduction. The benefit for parasites of hormonal exploitation is so great that they have evolved structures similar to the steroid and protein hormone receptors expressed in upper vertebrates that can bind to the hormonal metabolites synthesized by the host. This strategy is exemplified by two parasites that respond to adrenal steroids and sexual steroids, respectively: Schistosoma mansoni and Taenia crassiceps. Understanding how the host endocrine system can, under certain circumstances, favor the establishment of a parasite, and characterizing the parasite hormone receptors that are involved might aid the design of hormonal analogs and drugs that affect the parasite exclusively.
Collapse
Affiliation(s)
- Galileo Escobedo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México AP 70228, Mexico City 04510, México
| | | | | | | |
Collapse
|
27
|
|
28
|
Rojas-Hernández S, Rodríguez-Monroy MA, López-Revilla R, Reséndiz-Albor AA, Moreno-Fierros L. Intranasal coadministration of the Cry1Ac protoxin with amoebal lysates increases protection against Naegleria fowleri meningoencephalitis. Infect Immun 2004; 72:4368-75. [PMID: 15271892 PMCID: PMC470623 DOI: 10.1128/iai.72.8.4368-4375.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cry1Ac protoxin has potent mucosal and systemic adjuvant effects on antibody responses to proteins or polysaccharides. In this work, we examined whether Cry1Ac increased protective immunity against fatal Naegleria fowleri infection in mice, which resembles human primary amoebic meningoencephalitis. Higher immunoglobulin G (IgG) than IgA anti-N. fowleri responses were elicited in the serum and tracheopulmonary fluids of mice immunized by the intranasal or intraperitoneal route with N. fowleri lysates either alone or with Cry1Ac or cholera toxin. Superior protection against a lethal challenge with 5 x 10(4) live N. fowleri trophozoites was achieved for immunization by the intranasal route. Intranasal immunization of N. fowleri lysates coadministered with Cry1Ac increased survival to 100%; interestingly, immunization with Cry1Ac alone conferred similar protection to that achieved with amoebal lysates alone (60%). When mice intranasally immunized with Cry1Ac plus lysates were challenged with amoebae, both IgG and IgA mucosal responses were rapidly increased, but only the increased IgG response persisted until day 60 in surviving mice. The brief rise in the level of specific mucosal IgA does not exclude the role that this isotype may play in the early defense against this parasite, since higher IgA responses were detected in nasal fluids of mice intranasally immunized with lysates plus either Cry1Ac or cholera toxin, which, indeed, were the treatments that provided the major protection levels. In contrast, serum antibody responses do not seem to be related to the protection level achieved. Both acquired and innate immune systems seem to play a role in host defense against N. fowleri infection, but further studies are required to elucidate the mechanisms involved in protective effects conferred by Cry1Ac, which may be a valuable tool to improve mucosal vaccines.
Collapse
Affiliation(s)
- Saúl Rojas-Hernández
- Inmunidad en Mucosas, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, 54090 Tlalnepantla, Mexico
| | | | | | | | | |
Collapse
|