1
|
Tsopela V, Korakidis E, Lagou D, Kalliampakou KI, Milona RS, Kyriakopoulou E, Mpekoulis G, Gemenetzi I, Stylianaki EA, Sideris CD, Sioli A, Kefallinos D, Sideris DC, Aidinis V, Eliopoulos AG, Kambas K, Vassilacopoulou D, Vassilaki N. L-Dopa decarboxylase modulates autophagy in hepatocytes and is implicated in dengue virus-caused inhibition of autophagy completion. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119602. [PMID: 37778471 DOI: 10.1016/j.bbamcr.2023.119602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion. As dopamine affects autophagy in neuronal cells, we investigated the possible association of DDC with autophagy in human hepatocytes and examined whether DDC mediates the relationship between DENV infection and autophagy. We performed DDC silencing/overexpression and evaluated autophagic markers upon induction of autophagy, or suppression of autophagosome-lysosome fusion. Our results showed that DDC favored the autophagic process, at least in part, through its biosynthetic function, while knockdown of DDC or inhibition of DDC enzymatic activity prevented autophagy completion. In turn, autophagy induction upregulated DDC, while autophagy reduction by chemical or genetic (ATG14L knockout) ways caused the opposite effect. This study also implicated DDC with the cellular energetic status, as DDC silencing reduced the oxidative phosphorylation activity of the cell. We also report that upon DDC silencing, the repressive effect of DENV on the completion of autophagy was enhanced, and the inhibition of autolysosome formation did not exert an additive effect on viral proliferation. These data unravel a novel role of DDC in the autophagic process and suggest that DENV downregulates DDC expression to inhibit the completion of autophagy, reinforcing the importance of this protein in viral infections.
Collapse
Affiliation(s)
- Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Evangelos Korakidis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Despoina Lagou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | | | - Raphaela S Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Eirini Kyriakopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Ioanna Gemenetzi
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Elli-Anna Stylianaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | | | - Aggelina Sioli
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dionysis Kefallinos
- School of Electrical Engineering and Computer Science, National Technical University of Athens, 157 73 Athens, Greece
| | - Diamantis C Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, NKUA, 115 27 Athens, Greece; Center of Basic Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
2
|
The effects of proteasome on baseline and methamphetamine-dependent dopamine transmission. Neurosci Biobehav Rev 2019; 102:308-317. [DOI: 10.1016/j.neubiorev.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
|
3
|
Effects of co-administration of ketamine and ethanol on the dopamine system via the cortex-striatum circuitry. Life Sci 2017; 179:1-8. [DOI: 10.1016/j.lfs.2017.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/23/2022]
|
4
|
Noor A, Zahid S. A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. Int J Neurosci 2016; 127:805-811. [DOI: 10.1080/00207454.2016.1248240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aneeqa Noor
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
5
|
Xiong Y, Zhang Y, Iqbal J, Ke M, Wang Y, Li Y, Qing H, Deng Y. Differential expression of synaptic proteins in unilateral 6-OHDA lesioned rat model-A comparative proteomics approach. Proteomics 2014; 14:1808-19. [PMID: 24841483 DOI: 10.1002/pmic.201400069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is characterized as a movement disorder due to lesions in the basal ganglia. As the major input region of the basal ganglia, striatum plays a vital role in coordinating movements. It receives afferents from the cerebral cortex and projects afferents to the internal segment of the globus pallidus and substantia nigra pars reticulate. Additionally, accumulating evidences support a role for synaptic dysfunction in PD. Therefore, the present study explores the changes in protein abundance involved in synaptic disorders in unilateral lesioned 6-OHDA rat model. Based on (18) O/(16) O-labeling technique, striatal proteins were separated using online 2D-LC, and identified by nano-ESI-quadrupole-TOF. A total of 370 proteins were identified, including 76 significantly differentially expressed proteins. Twenty-two downregulated proteins were found in composition of vesicle, ten of which were involved in neuronal transmission and recycling across synapses. These include N-ethylmaleimide-sensitive fusion protein attachment receptor proteins (SNAP-25, syntaxin-1A, syntaxin-1B, VAMP2), synapsin-1, septin-5, clathrin heavy chain 1, AP-2 complex subunit beta, dynamin-1, and endophilin-A1. Moreover, MS result for syntaxin-1A was confirmed by Western blot analysis. Overall, these synaptic changes induced by neurotoxin may serve as a reference for understanding the functional mechanism of striatum in PD.
Collapse
Affiliation(s)
- Yan Xiong
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Barakauskas VE, Beasley CL, Barr AM, Ypsilanti AR, Li HY, Thornton AE, Wong H, Rosokilja G, Mann JJ, Mancevski B, Jakovski Z, Davceva N, Ilievski B, Dwork AJ, Falkai P, Honer WG. A novel mechanism and treatment target for presynaptic abnormalities in specific striatal regions in schizophrenia. Neuropsychopharmacology 2010; 35:1226-38. [PMID: 20072114 PMCID: PMC3055413 DOI: 10.1038/npp.2009.228] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/06/2009] [Accepted: 11/20/2009] [Indexed: 02/01/2023]
Abstract
Abnormalities of amount and function of presynaptic terminals may have an important role in the mechanism of illness in schizophrenia. The SNARE proteins (SNAP-25, syntaxin, and VAMP) are enriched in presynaptic terminals, where they interact to form a functional complex to facilitate vesicle fusion. SNARE protein amounts are altered in the cortical regions in schizophrenia, but studies of protein-protein interactions are limited. We extended these investigations to the striatal regions (such as the nucleus accumbens, ventromedial caudate (VMC), and dorsal caudate) relevant to disease symptoms. In addition to measuring SNARE protein levels, we studied SNARE protein-protein interactions using a novel ELISA method. The possible effect of antipsychotic treatment was investigated in parallel in the striatum of rodents that were administered haloperidol and clozapine. In schizophrenia samples, compared with controls, SNAP-25 was 32% lower (P=0.015) and syntaxin was 26% lower (P=0.006) in the VMC. In contrast, in the same region, SNARE protein-protein interactions were higher in schizophrenia (P=0.008). Confocal microscopy of schizophrenia and control VMC showed qualitatively similar SNARE protein immunostaining. Haloperidol treatment of rats increased levels of SNAP-25 (mean 24%, P=0.003), syntaxin (mean 18%, P=0.010), and VAMP (mean 16%, P=0.001), whereas clozapine increased only the VAMP level (mean 13%, P=0.004). Neither drug altered SNARE protein-protein interactions. These results indicate abnormalities of amount and interactions of proteins directly related to presynaptic function in the VMC in schizophrenia. SNARE proteins and their interactions may be a novel target for the development of therapeutics.
Collapse
Affiliation(s)
- Vilte E Barakauskas
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Athena R Ypsilanti
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Hong-Ying Li
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Allen E Thornton
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Hubert Wong
- Department of Health Care and Epidemiology, University of British Columbia, Vancouver, BC, Canada
| | - Gorazd Rosokilja
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Surgeons of Columbia University, New York, NY, USA
- Macedonian Academy of Sciences and Arts, University ‘SS. Cyril and Methodius' Skopje, Macedonia
| | - J John Mann
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Surgeons of Columbia University, New York, NY, USA
| | - Branislav Mancevski
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Surgeons of Columbia University, New York, NY, USA
| | - Zlatko Jakovski
- Institute for Forensic Medicine, University ‘SS. Cyril and Methodius,' Skopje, Macedonia
| | - Natasha Davceva
- Institute for Forensic Medicine, University ‘SS. Cyril and Methodius,' Skopje, Macedonia
| | - Boro Ilievski
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Institute for Pathology, University ‘SS. Cyril and Methodius,', Skopje, Macedonia
| | - Andrew J Dwork
- Department of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Surgeons of Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, College of Physicians, Surgeons of Columbia University, New York, NY, USA
| | - Peter Falkai
- Department of Psychiatry, Göttingen University, Göttingen, Germany
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Kline DD. Plasticity in glutamatergic NTS neurotransmission. Respir Physiol Neurobiol 2008; 164:105-11. [PMID: 18524694 PMCID: PMC2666915 DOI: 10.1016/j.resp.2008.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 01/10/2023]
Abstract
Changes in the physiological state of an animal or human can result in alterations in the cardiovascular and respiratory system in order to maintain homeostasis. Accordingly, the cardiovascular and respiratory systems are not static but readily adapt under a variety of circumstances. The same can be said for the brainstem circuits that control these systems. The nucleus tractus solitarius (NTS) is the central integration site of baroreceptor and chemoreceptor sensory afferent fibers. This central nucleus, and in particular the synapse between the sensory afferent and second-order NTS cell, possesses a remarkable degree of plasticity in response to a variety of stimuli, both acute and chronic. This brief review is intended to describe the plasticity observed in the NTS as well as the locus and mechanisms as they are currently understood. The functional consequence of NTS plasticity is also discussed.
Collapse
Affiliation(s)
- David D Kline
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA.
| |
Collapse
|
8
|
|
9
|
Greber-Platzer S, Fleischmann C, Nussbaumer C, Cairns N, Lubec G. Increased RNA levels of the 25 kDa synaptosomal associated protein in brain samples of adult patients with Down Syndrome. Neurosci Lett 2003; 336:77-80. [PMID: 12499044 DOI: 10.1016/s0304-3940(02)01150-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synaptosomal associated protein of 25kDa (SNAP-25) is widely distributed in the brain and reduced in neurodegenerative diseases. In a previous paper we have shown reduced amounts of SNAP-25 protein in adult Down Syndrome (DS) brain. Neuronal cell death and downregulation at the transcriptional level may be responsible for the decrease. Therefore SNAP-25 mRNA levels were determined in frontal cortex and cerebellum of adult DS by a competitive reverse transcription-polymerase chain reaction. We found significantly increased mRNA levels in DS either related to 10 ng total RNA (P < 0.05 level in cerebellum: DS 2622 +/- 1081 attogr mean +/- SEM and controls 154 +/- 37 attogr. mean +/- SEM) or normalized versus the house keeping gene beta-actin (P < 0.05 level in frontal cortex: DS 1324 +/- 504 attogr. mean +/- SEM and control 131 +/- 32 attogr. mean +/- SEM; P<0.01 in cerebellum: DS 632 +/- 189 attogr. mean +/- SEM and control 21 +/- 2 attogr. mean +/- SEM). The main finding of this study shows elevated mRNA levels of SNAP-25 in adult DS brain whereas histological and protein-chemical evidence for decreased synaptosomal structures including SNAP-25 in a comparable cohort has been reported. We suggest compensatory mechanisms for the upregulation at the transcriptional level. We propose that SNAP-25 as many other brain proteins are regulated by protein stability rather than at the mRNA level.
Collapse
Affiliation(s)
- Susanne Greber-Platzer
- Department of Pediatrics, University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
10
|
Kline DD, Takacs KN, Ficker E, Kunze DL. Dopamine modulates synaptic transmission in the nucleus of the solitary tract. J Neurophysiol 2002; 88:2736-44. [PMID: 12424308 DOI: 10.1152/jn.00224.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
10.1152/jn.00224.2002. Dopamine (DA) modulates the cardiorespiratory reflex by peripheral and central mechanisms. The aim of this study was to examine the role of DA in synaptic transmission of the nucleus tractus solitarius (NTS), the major integration site for cardiopulmonary reflexes. To examine DA's role, we used whole cell, voltage-clamp recordings in a rat horizontal brain stem slice. Solitary tract stimulation evoked excitatory postsynaptic currents (EPSCs) that were reduced to 70 +/- 5% of control by DA (100 microM). The reduction in EPSCs by DA was accompanied by a decrease in the paired pulse depression ratio with little or no change in input resistance or EPSC decay, suggesting a presynaptic mechanism. The D1-like agonist SKF 38393 Br (30 microM) did not alter EPSC amplitude, whereas the D2-like agonist, quinpirole HCl (30 microM), depressed EPSCs to 73 +/- 4% of control. The D2-like receptor antagonist, sulpiride (20 microM), abolished DA modulation of EPSCs. Most importantly, sulpiride alone increased EPSCs to 131 +/- 10% of control, suggesting a tonic D2-like modulation of synaptic transmission in the NTS. Examination of spontaneous EPSCs revealed DA reversibly decreased the frequency of events from 9.4 +/- 2.2 to 6.2 +/- 1.4 Hz. Sulpiride, however, did not alter spontaneous events. Immunohistochemistry of NTS slices demonstrated that D2 receptors colocalized with synaptophysin and substance P, confirming a presynaptic distribution. D2 receptors also localized to cultured petrosal neurons, the soma of presynaptic afferent fibers. In the petrosal neurons, D2 was found in cells that were TH-immunopositive, suggesting they were chemoreceptor afferent fibers. These results demonstrate that DA tonically modulates synaptic activity between afferent sensory fibers and secondary relay neurons in the NTS via a presynaptic D2-like mechanism.
Collapse
Affiliation(s)
- David D Kline
- Rammelkamp Center for Education and Research, MetroHealth Medical System, Cleveland, Ohio 44109-1998, USA.
| | | | | | | |
Collapse
|
11
|
Jones MD, Williams ME, Hess EJ. Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 96:114-21. [PMID: 11731016 DOI: 10.1016/s0169-328x(01)00281-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The SNAP-25 deficient mouse mutant coloboma (Cm/+) is an animal model for investigating the biochemical basis of locomotor hyperactivity. The spontaneous hyperactivity exhibited by coloboma is three times greater than control mice and is a direct result of the SNAP-25 deletion. SNAP-25 is a presynaptic protein that regulates exocytotic neurotransmitter release; coloboma mice express only 50% of normal protein concentrations. Previous research has determined that there is an increase in the concentration of norepinephrine but a decrease in dopamine utilization in the striatum and nucleus accumbens of coloboma mice. In situ hybridization analysis revealed that there were corresponding increases in tyrosine hydroxylase (TH) mRNA expression in noradrenergic cell bodies of the locus coeruleus of Cm/+ mice. In contrast, TH mRNA expression in substantia nigra appeared normal in the mutant mouse. alpha(2)-Adrenergic receptors are important modulators of central noradrenergic function and dopamine release. In situ hybridization data revealed that alpha(2A)-adrenergic receptor mRNA expression is upregulated in Cm/+ mice. These results suggest an underlying abnormality in noradrenergic regulation in this hyperactive mouse mutant.
Collapse
Affiliation(s)
- M D Jones
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
12
|
Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J. Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 2001; 12:3257-62. [PMID: 11711867 DOI: 10.1097/00001756-200110290-00023] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
SNAP-25 levels were measured in ventral hippocampus in subjects with unipolar depression (n = 12), bipolar disorder (n = 13), schizophrenia (n = 15) and controls (n = 15) using quantitative immunocytochemistry. SNAP-25 levels were reduced significantly in stratum oriens of bipolar patients compared with controls (p < 0.05); they were also reduced significantly in st. oriens (p < 0.01 vs schizophrenia), in alveous (p < 0.01 vs schizophrenia) and in presubiculum (p < 0.05 vs depressed). SNAP-25 levels were also reduced in several layers of schizophrenics, only significantly so in st. granulosum (p < 0.05 vs controls). In contrast, depressed SNAP-25 levels increased in st. moleculare (p < 0.01 vs schizophrenics) and presubiculum (p < 0.05 vs controls and bipolars; p < 0.01 vs schizophrenics). SNAP-25 values were not affected by age, sex, race, post-mortem interval, brain pH, side of brain, age of onset of disease, family history of psychiatric disease, drug or alcohol use, antipsychotic drug treatment, or mode of death. The reported changes in SNAP-25 levels appear to be disease specific, separating synaptic pathology in unipolar depression from that observed in schizophrenia and bipolar disorders.
Collapse
Affiliation(s)
- S H Fatemi
- Department of Psychiatry, University of Minnesota Medical School, Box 392, Mayo Building, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|