1
|
Pierantoni L, Vecchio F, Miraglia F, Pecchioli C, Iodice F, Carrarini C, Pinardi M, Pino GD, Micera S, Rossini PM. Effects of cervical transcutaneous spinal direct current stimulation on spinal excitability. Clin Neurophysiol 2024; 168:95-103. [PMID: 39481135 DOI: 10.1016/j.clinph.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
OBJECTIVE To investigate the effects of transcutaneous spinal direct current stimulation (tsDCS) on spinal cord excitability using neurophysiological methods. METHODS Spinal cord motoneuron excitability was assessed using various neurophysiological techniques in a sham-controlled randomized experiment, which involved delivering 2 mA tsDCS and testing four different montages. Transcranial magnetic stimulation (TMS), F-waves to supramaximal ulnar nerve stimulation and somatosensory evoked potentials to upper limb nerves stimulation were measured in the participants with the electrode configuration that yielded the greatest effect, for a total of about 18 min. 18 young volunteers were recruited. RESULTS Among the tested ones, the most promising tsDCS montage was the one with the anode placed on the 7th cervical spinous process and the cathode on the glottis. With this configuration, a significant enhancement of motor responses in the hand muscles to TMS of the contralateral hand motor area was observed during tsDCS (p<0.00001), reaching a plateau after 6 min. This facilitation rapidly declined within a few minutes after the tsDCS was stopped. CONCLUSION Results of the different techniques suggest a possible contribution to facilitatory neuromodulation of the motoneurons at the cervical spine level. SIGNIFICANCE The occurrence of enhanced excitability after tsDCS suggests potential application in individuals with partial corticospinal fiber impairment affecting hand motor function.
Collapse
Affiliation(s)
- Luca Pierantoni
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele, Rome, Italy; The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Cristiano Pecchioli
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
| | - Francesco Iodice
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
| | - Claudia Carrarini
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
| | - Mattia Pinardi
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - Giovanni Di Pino
- NEXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy; Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele, Rome, Italy.
| |
Collapse
|
2
|
Gustafsson T, Ulfhake B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int J Mol Sci 2024; 25:10932. [PMID: 39456714 PMCID: PMC11507513 DOI: 10.3390/ijms252010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
As we age, we lose muscle strength and power, a condition commonly referred to as sarcopenia (ICD-10-CM code (M62.84)). The prevalence of sarcopenia is about 5-10% of the elderly population, resulting in varying degrees of disability. In this review we emphasise that sarcopenia does not occur suddenly. It is an aging-induced deterioration that occurs over time and is only recognised as a disease when it manifests clinically in the 6th-7th decade of life. Evidence from animal studies, elite athletes and longitudinal population studies all confirms that the underlying process has been ongoing for decades once sarcopenia has manifested. We present hypotheses about the mechanism(s) underlying this process and their supporting evidence. We briefly review various proposals to impede sarcopenia, including cell therapy, reducing senescent cells and their secretome, utilising targets revealed by the skeletal muscle secretome, and muscle innervation. We conclude that although there are potential candidates and ongoing preclinical and clinical trials with drug treatments, the only evidence-based intervention today for humans is exercise. We present different exercise programmes and discuss to what extent the interindividual susceptibility to developing sarcopenia is due to our genetic predisposition or lifestyle factors.
Collapse
Affiliation(s)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
3
|
Xu J, Mawase F, Schieber MH. Evolution, biomechanics, and neurobiology converge to explain selective finger motor control. Physiol Rev 2024; 104:983-1020. [PMID: 38385888 PMCID: PMC11380997 DOI: 10.1152/physrev.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.
Collapse
Affiliation(s)
- Jing Xu
- Department of Kinesiology, University of Georgia, Athens, Georgia, United States
| | - Firas Mawase
- Department of Biomedical Engineering, Israel Institute of Technology, Haifa, Israel
| | - Marc H Schieber
- Departments of Neurology and Neuroscience, University of Rochester, Rochester, New York, United States
| |
Collapse
|
4
|
Klein CS, Liu H, Xiong Y. Estimation of the number of motor units in the human extensor digitorum brevis using MScanFit. PLoS One 2024; 19:e0302214. [PMID: 38669263 PMCID: PMC11051589 DOI: 10.1371/journal.pone.0302214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE Our aim was to determine the number and size parameters of EDB motor units in healthy young adults using MScanFit, a novel approach to motor unit number estimation (MUNE). Since variability in MUNE is related to compound muscle action potential (CMAP) size, we employed a procedure to document the optimal EDB electromyographic (EMG) electrode position prior to recording MUNE, a neglected practice in MUNE. METHODS Subjects were 21 adults 21-44 y. Maximum CMAPs were recorded from 9 sites in a 4 cm2 region centered over the EDB and the site with the largest amplitude was used in the MUNE experiment. For MUNE, the peroneal nerve was stimulated at the fibular head to produce a detailed EDB stimulus-response curve or "MScan". Motor unit number and size parameters underlying the MScan were simulated using the MScanFit mathematical model. RESULTS In 19 persons, the optimal recording site was superior, superior and proximal, or superior and distal to the EDB mid-belly, whereas in 3 persons it was proximal to the mid-belly. Ranges of key MScanFit parameters were as follows: maximum CMAP amplitude (3.1-8.5 mV), mean SMUP amplitude (34.4-106.7 μV), mean normalized SMUP amplitude (%CMAP max, 0.95-2.3%), largest SMUP amplitude (82.7-348 μV), and MUNE (43-103). MUNE was not related to maximum CMAP amplitude (R2 = 0.09), but was related to mean SMUP amplitude (R2 = -0.19, P = 0.05). CONCLUSION The EDB CMAP was highly sensitive to electrode position, and the optimal position differed between subjects. Individual differences in EDB MUNE were not related to CMAP amplitude. Inter-subject variability of EDB MUNE (coefficient of variation) was much less than previously reported, possibly explained by better optimization of the EMG electrode and the unique approach of MScanFit MUNE.
Collapse
Affiliation(s)
- Cliff S. Klein
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China
| | - Hui Liu
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China
| | - Yuan Xiong
- Guangdong Work Injury Rehabilitation Center, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Hegdahl Gundersen A, Nygaard Falch H, Bao Fredriksen A, van den Tillaar R. The Effect of Sex and Different Repetition Maximums on Kinematics and Surface Electromyography in the Last Repetition of the Barbell Back Squat. J Funct Morphol Kinesiol 2024; 9:75. [PMID: 38651433 PMCID: PMC11036245 DOI: 10.3390/jfmk9020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
During the ascent phase of a maximal barbell back squat after an initial acceleration, a deceleration region occurs as the result of different biomechanical factors. This is known as the sticking region. However, whether this region is similar in the last repetition of different repetition maximums and if sex has an impact on biomechanics of this region are not known. Therefore, this study investigated the effect of sex (men/women) and repetition maximum (1-, 3-, 6-, and 10RM) on kinematics and surface electromyography around the sticking region. Twenty-six resistance-trained individuals comprising 13 men (body mass: 82.2 ± 8.7; age: 23.6 ± 1.9; height: 181.1 ± 6.5) and 13 women (body mass: 63.6 ± 6.6; age: 23.9 ± 4.5; height: 166.0 ± 4.5) participated in the study. The main findings were that women, in comparison to men, displayed larger trunk lean and lower hip extension angles in the sticking region, possibly due to different hip/knee extensor strength ratios. Moreover, an inverse relationship was discovered between repetition range and timing from V0 to Vmax2, in which lower repetition ranges (1- and 3RM) were shorter in Vmax2 compared to higher ranges (6- and 10RM). It was concluded that this occurrence is due to more moments of inertia in lower repetition ranges. Our findings suggest that both sex and repetition range might induce different requirements during the squat ascent.
Collapse
Affiliation(s)
| | | | | | - Roland van den Tillaar
- Department of Sports Sciences, Nord University, 7600 Levanger, Norway; (A.H.G.); (H.N.F.); (A.B.F.)
| |
Collapse
|
6
|
Morton-Jones ME, Gladden LB, Kavazis AN, Sandage MJ. A Tutorial on Skeletal Muscle Metabolism and the Role of Blood Lactate: Implications for Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:369-383. [PMID: 38157288 DOI: 10.1044/2023_jslhr-23-00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE The purpose of this tutorial is threefold: (a) present relevant exercise science literature on skeletal muscle metabolism and synthesize the limited available research on metabolism of the adult human speech musculature in an effort to elucidate the role of metabolism in speech production; (b) introduce a well-studied metabolic serum biomarker in exercise science, lactate, and the potential usefulness of investigating this metabolite, through a well-established exercise science methodology, to better understand metabolism of the musculature involved in voice production; and (c) discuss exercise physiology considerations for future voice science research that seeks to investigate blood lactate and metabolism in voice physiology in an ecologically valid manner. METHOD This tutorial begins with relevant exercise science literature on the basic cellular processes of muscle contraction that require energy and the metabolic mechanisms that regenerate the energy required for task execution. The tutorial next synthesizes the available research investigating metabolism of the adult human speech musculature. This is followed by the authors proposing a hypothesis of speech metabolism based on the voice science literature and the application of well-studied exercise science principles of muscle physiology. The tutorial concludes with a discussion and the potential usefulness of lactate in investigations to better understand the metabolism of the musculature involved in vocal demand tasks. CONCLUSION The role of metabolism during speech (respiratory, laryngeal, and articulatory) is an understudied yet critical aspect of speech physiology that warrants further study to better understand the metabolic systems that are used to meet vocal demands.
Collapse
Affiliation(s)
| | | | | | - Mary J Sandage
- Department of Speech, Language, and Hearing Sciences, Auburn University, AL
| |
Collapse
|
7
|
Turhan SA, Karlsson P, Ozun Y, Gunes H, Surucu S, Toker E, Isak B. Identification of corneal and intra-epidermal axonal swellings in amyotrophic lateral sclerosis. Muscle Nerve 2024; 69:78-86. [PMID: 37983951 DOI: 10.1002/mus.27995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/22/2023]
Abstract
INTRODUCTION/AIMS In patients with amyotrophic lateral sclerosis (ALS), axonal spheroids in motor axons have been identified in post-mortem studies. In this study, axonal spheroids and swellings on C-fibers of ALS patients were investigated using corneal confocal microscopy (CCM) and skin biopsy, respectively. METHODS Thirty-one ALS patients and 20 healthy subjects were evaluated with CCM to assess corneal nerve-fiber length (CNFL), -fiber density (CNFD), -branch density (CNBD), dendritic cell (DC) density, and axonal spheroids originating from C-fibers (>100 μm2 ). In addition, intraepidermal nerve fiber density (IENFD) and axonal swellings (>1.5 μm) were assessed in skin biopsies obtained from the arms and legs of 22 patients and 17 controls. RESULTS In ALS patients, IENFD, CNFD, CNFL, and CNBD were not different from controls. The density of DCs and the number of patients with increased DC density were higher in ALS patients than controls (p = .0005 and p = .008). The number of patients with axonal spheroids was higher than controls (p = .03). DISCUSSION Evaluation of DCs and axonal bulbs in C-fibers of ALS patients could provide insights into pathophysiology or potentially serve as biomarkers in ALS.
Collapse
Affiliation(s)
| | - Pall Karlsson
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yuksel Ozun
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey
| | - Hande Gunes
- Department of Pathology, Kartal Research and Education Hospital, University of Medical Sciences, Istanbul, Turkey
| | - Selcuk Surucu
- Department of Anatomy, Faculty of Medicine, Koç University, Istanbul, Turkey
| | - Ebru Toker
- Department of Ophthalmology and Visual Sciences, West Virginia University Eye Institute, Morgantown, West Virginia, USA
| | - Baris Isak
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Ghahremani Arekhloo N, Parvizi H, Zuo S, Wang H, Nazarpour K, Marquetand J, Heidari H. Alignment of magnetic sensing and clinical magnetomyography. Front Neurosci 2023; 17:1154572. [PMID: 37274205 PMCID: PMC10232862 DOI: 10.3389/fnins.2023.1154572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Neuromuscular diseases are a prevalent cause of prolonged and severe suffering for patients, and with the global population aging, it is increasingly becoming a pressing concern. To assess muscle activity in NMDs, clinicians and researchers typically use electromyography (EMG), which can be either non-invasive using surface EMG, or invasive through needle EMG. Surface EMG signals have a low spatial resolution, and while the needle EMG provides a higher resolution, it can be painful for the patients, with an additional risk of infection. The pain associated with the needle EMG can pose a risk for certain patient groups, such as children. For example, children with spinal muscular atrophy (type of NMD) require regular monitoring of treatment efficacy through needle EMG; however, due to the pain caused by the procedure, clinicians often rely on a clinical assessment rather than needle EMG. Magnetomyography (MMG), the magnetic counterpart of the EMG, measures muscle activity non-invasively using magnetic signals. With super-resolution capabilities, MMG has the potential to improve spatial resolution and, in the meantime, address the limitations of EMG. This article discusses the challenges in developing magnetic sensors for MMG, including sensor design and technology advancements that allow for more specific recordings, targeting of individual motor units, and reduction of magnetic noise. In addition, we cover the motor unit behavior and activation pattern, an overview of magnetic sensing technologies, and evaluations of wearable, non-invasive magnetic sensors for MMG.
Collapse
Affiliation(s)
- Negin Ghahremani Arekhloo
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Hossein Parvizi
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
| | - Siming Zuo
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Huxi Wang
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| | - Kianoush Nazarpour
- Neuranics Ltd., Glasgow, United Kingdom
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Justus Marquetand
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- MEG Centre, University of Tübingen, Tübingen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hadi Heidari
- Microelectronics Lab, James Watt School of Engineering, The University of Glasgow, Glasgow, United Kingdom
- Neuranics Ltd., Glasgow, United Kingdom
| |
Collapse
|
9
|
Fogarty MJ, Sieck GC. Aging affects the number and morphological heterogeneity of rat phrenic motor neurons and phrenic motor axons. Physiol Rep 2023; 11:e15587. [PMID: 36695744 PMCID: PMC9875821 DOI: 10.14814/phy2.15587] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/26/2023] Open
Abstract
Diaphragm muscle (DIAm) motor units comprise a phrenic motor neuron (PhMN), the phrenic nerve and the muscle fibers innervated, with the size of PhMNs and axons characteristic of motor unit type. Smaller PhMNs and their axons comprise slow (type S) and fatigue-resistant (type FR) DIAm motor units, while larger PhMNs and their axons comprise more fatigable (type FF) motor units. With aging, we have shown a loss of larger PhMNs, consistent with selective atrophy of type IIx/IIb DIAm fibers and reduced maximum DIAm force. In the present study, we hypothesized that with aging there is a loss of larger myelinated phrenic α motor axons. Female and male young (6 months) and old (24 months) Fischer 344 rats were studied. PhMNs were retrogradely labeled by intrapleural injection of 488-conjugated CTB. The phrenic nerves were excised ~1 cm from the DIAm insertion and mounted in resin, and phrenic α motor axons were delineated based on size (i.e., >4 μm diameters). In older rats, the number of larger PhMNs and larger phrenic α motor axons were reduced. There were no differences in non-α axons. In addition, there was evidence of demyelination of larger phrenic α motor axons in older rats. Together, these findings are consistent with the selective age-related vulnerability of larger PhMNs and denervation of type FF motor units, which may underlie DIAm sarcopenia.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Gary C. Sieck
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
10
|
Ozturk R, Karlsson P, Hu X, Akdeniz E, Surucu S, Isak B. Stereological and electrophysiological evaluation of autonomic involvement in amyotrophic lateral sclerosis. Neurophysiol Clin 2022; 52:446-458. [PMID: 36155704 DOI: 10.1016/j.neucli.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Previous studies have identified autonomic dysfunction in amyotrophic lateral sclerosis (ALS) using mostly neurophysiological techniques. In this study, stereological evaluation of autonomic fibers and sweat glands has been performed to identify structural evidence of autonomic denervation in patients with ALS. METHODS In this study, 29 ALS patients were compared to 29 controls using COMPASS-31 questionnaire, sympathetic skin response (SSR), and heart rate variability (HRV) at rest. From the same cohorts, 20 ALS patients and 15 controls were further evaluated using staining of autonomic nerve fibers and sweat glands in skin biopsies. SSR and resting HRV were repeated in the ALS patient cohort one year later. RESULTS COMPASS-31 total score, gastrointestinal- and urinary-sub scores were higher in ALS patients than controls (P = 0.004, P = 0.005, and P = 0.049, respectively). In the ALS patient cohort, SSR amplitudes in hands and feet were lower than in controls (P<0.0001 and P = 0.0009, respectively), but there was no difference in resting HRV (P>0.05). While there was no change in nerve fibers innervating sweat glands, their density was lower in ALS patients than controls, and semi-quantitative analysis also showed structural damage (P = 0.02 and P = 0.001, respectively). SSR and resting HRV of ALS patients remained stable during the one-year follow-up period (P>0.05). DISCUSSION Supporting abnormal neurophysiological tests, stereological analysis revealed direct evidence of autonomic denervation in ALS patients. However, the degenerative process in autonomic nerve fibers is relatively slow, compared to the rate of motor neuron degeneration in this condition.
Collapse
Affiliation(s)
- Rustem Ozturk
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey.
| | - Pall Karlsson
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Xiaoli Hu
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esra Akdeniz
- Department of Medical Education, School of Medicine, Marmara University Hospital, Istanbul, Turkey
| | - Selcuk Surucu
- Department of Anatomy, Faculty of Medicine, Koç University, Istanbul, Turkey
| | - Baris Isak
- Department of Neurology, Marmara University Hospital, Istanbul, Turkey
| |
Collapse
|
11
|
Chandra S, Suresh NL, Afsharipour B, Rymer WZ, Holobar A. Anomalies of motor unit amplitude and territory after botulinum toxin injection. J Neural Eng 2022; 19. [PMID: 35671714 DOI: 10.1088/1741-2552/ac7666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/07/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Botulinum toxin (BT) induced cholinergic denervation of hyperactive motor units is a clinically accepted and extensively practiced way of managing focal spasticity after stroke. The denervation potentially initiates a temporary reorganization of the motor unit (MU) structure by inducing the emergence of a large number of newly innervated muscle fibers. In this study, we quantify the effect of the BT on motor unit action potential (MUAP) amplitudes and on the motor unit territory areas (MUTA) as seen on the surface of the skin over the biceps brachii (BB) muscle. APPROACH We have used a 128 channel high-density electromyography (HDsEMG) grid on the spastic and contralateral BB muscle and recorded the myoelectric activity along with the contraction force during isometric contraction of elbow muscles. We have decomposed the recorded EMG signal into individual MU potentials and estimated the MUAP amplitudes and territory areas before and two weeks after a BT injection. MAIN RESULT We found that there were significantly larger median (47±9%) MUAP amplitudes as well as reduction of MUTA (20±2%) two weeks after the injection compared to the respective pre-injection recording. SIGNIFICANCE The observed covariation of the amplitude and the territory area indicates that the large amplitude MUs that appeared after the BT injection have a relatively smaller territory area. We discuss the potential contributing factors to these changes subsequent to the injection in the context of the investigated subject cohort.
Collapse
Affiliation(s)
- Sourav Chandra
- Shirley Ryan Ability Lab, Arms and Hands Laboratory, Northwestern University, 355 East Erie street,, Chicago, Illinois, 60611, UNITED STATES
| | - Nina L Suresh
- Shirley Ryan Ability Lab, Northwestern University, 355 East Erie street, Arms and Hands Laboratory, Chicago, Illinois, 60611, UNITED STATES
| | - Babak Afsharipour
- University of Alberta, 116 St & 85 Ave,, Edmonton, Alberta, T6G 2R3, CANADA
| | - William Zev Rymer
- Shirley Ryan Ability Lab, Northwestern University Medical School, 355 East Erie street, Arms and Hands Laboratory, Chicago, IL 60611, USA, Chicago, Illinois, 60611, UNITED STATES
| | - Ales Holobar
- Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, Maribor, 2000, SLOVENIA
| |
Collapse
|
12
|
Masud AA, Shen CL, Luk HY, Chyu MC. Impact of Local Vibration Training on Neuromuscular Activity, Muscle Cell, and Muscle Strength: A Review. Crit Rev Biomed Eng 2022; 50:1-17. [PMID: 35997107 DOI: 10.1615/critrevbiomedeng.2022041625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents a review of studies on the effects of local vibration training (LVT) on muscle strength along with the associated changes in neuromuscular and cell dynamic responses. Application of local/direct vibration can significantly change the structural properties of muscle cell and can improve muscle strength. The improvement is largely dependent on vibration parameters such as amplitude and frequency. The results of 20 clinical studies reveal that electromyography (EMG) and maximal voluntary contraction (MVC) vary depending on vibration frequency, and studies using frequencies of 28-30 Hz reported greater increases in muscle activity in terms of EMG (rms) value and MVC data than the studies using higher frequencies. A greater muscle activity can be related to the recruitment of large motor units due to the application of local vibration. A greater increase in EMG (rms) values for biceps and triceps during extension than flexion under LVT suggests that types of muscles and their functions play an important role. Although a number of clinical trials and animal studies have demonstrated positive effects of vibration on muscle, an optimum training protocol has not been established. An attempt is made in this study to investigate the optimal LVT conditions on different muscles through review and analysis of published results in the literature pertaining to the changes in the neuromuscular activity. Directions for future research are discussed with regard to identifying optimal conditions for LVT and better understanding of the mechanisms associated with effects of vibration on muscles.
Collapse
Affiliation(s)
- Abdullah Al Masud
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Chwan-Li Shen
- Department of Pathology, School of Medicine, Texas Tech University, Lubbock, TX, USA
| | - Hui-Ying Luk
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Ming-Chien Chyu
- Department of Pathology, School of Medicine, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
13
|
Tanganelli F, Meinke P, Hofmeister F, Jarmusch S, Baber L, Mehaffey S, Hintze S, Ferrari U, Neuerburg C, Kammerlander C, Schoser B, Drey M. Type-2 muscle fiber atrophy is associated with sarcopenia in elderly men with hip fracture. Exp Gerontol 2020; 144:111171. [PMID: 33248151 DOI: 10.1016/j.exger.2020.111171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a common geriatric syndrome and can lead to falls and fragility fractures. It is associated with a decline of muscle fiber numbers and size. Muscle biopsies of the vastus lateralis muscle were taken from thirty-two patients with hip fracture (18 women and 14 men; mean age: 82.2 ± 6.2 years). Serial cross sections of skeletal muscle were labeled with myosin heavy chain slow (fiber type-1) and fast (fiber type-2) antibodies in order to measure the size, ratio and percentage of mixed fiber types. The presence of sarcopenia was defined according to the EWGSOP2 criteria by using BIA and handgrip strength measurement. Sarcopenia was identified in 5 patients (3 women and 2 men), probable-sarcopenia in 11 patients (4 women and 7 men). Significant differences in fiber diameter were found for fiber type-2 in men but not in women. Only 1-3% mixed fiber types were found in sarcopenic patients, indicating a final stage where reinnervation is not possible to occur anymore. Muscle fiber type-2 atrophy seems to be a histological marker for sarcopenia in men.
Collapse
Affiliation(s)
- Fabiana Tanganelli
- Department of Medicine IV, Geriatrics, University Hospital, LMU Munich, Germany.
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Germany
| | - Fabian Hofmeister
- Department of Medicine IV, Geriatrics, University Hospital, LMU Munich, Germany
| | - Stefanie Jarmusch
- Department of Medicine IV, Geriatrics, University Hospital, LMU Munich, Germany
| | - Lisa Baber
- Department of Medicine IV, Geriatrics, University Hospital, LMU Munich, Germany
| | - Stefan Mehaffey
- Department of General-, Trauma- and Reconstructive Surgery, University Hospital, LMU Munich, Germany
| | - Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Germany
| | - Uta Ferrari
- Department of Medicine IV, Geriatrics, University Hospital, LMU Munich, Germany
| | - Carl Neuerburg
- Department of General-, Trauma- and Reconstructive Surgery, University Hospital, LMU Munich, Germany
| | - Christian Kammerlander
- Department of General-, Trauma- and Reconstructive Surgery, University Hospital, LMU Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, LMU Munich, Germany
| | - Michael Drey
- Department of Medicine IV, Geriatrics, University Hospital, LMU Munich, Germany
| |
Collapse
|
14
|
Gordon T. Peripheral Nerve Regeneration and Muscle Reinnervation. Int J Mol Sci 2020; 21:ijms21228652. [PMID: 33212795 PMCID: PMC7697710 DOI: 10.3390/ijms21228652] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Injured peripheral nerves but not central nerves have the capacity to regenerate and reinnervate their target organs. After the two most severe peripheral nerve injuries of six types, crush and transection injuries, nerve fibers distal to the injury site undergo Wallerian degeneration. The denervated Schwann cells (SCs) proliferate, elongate and line the endoneurial tubes to guide and support regenerating axons. The axons emerge from the stump of the viable nerve attached to the neuronal soma. The SCs downregulate myelin-associated genes and concurrently, upregulate growth-associated genes that include neurotrophic factors as do the injured neurons. However, the gene expression is transient and progressively fails to support axon regeneration within the SC-containing endoneurial tubes. Moreover, despite some preference of regenerating motor and sensory axons to “find” their appropriate pathways, the axons fail to enter their original endoneurial tubes and to reinnervate original target organs, obstacles to functional recovery that confront nerve surgeons. Several surgical manipulations in clinical use, including nerve and tendon transfers, the potential for brief low-frequency electrical stimulation proximal to nerve repair, and local FK506 application to accelerate axon outgrowth, are encouraging as is the continuing research to elucidate the molecular basis of nerve regeneration.
Collapse
Affiliation(s)
- Tessa Gordon
- Department of Surgery, University of Toronto, Division of Plastic Reconstructive Surgery, 06.9706 Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
15
|
Drzymała-Celichowska H, Ciechanowicz-Kowalczyk I, Kryściak K, Celichowski J. The contractile properties of motor units in the rat flexor digitorum brevis muscle have continuous distribution. J Electromyogr Kinesiol 2020; 51:102407. [PMID: 32105911 DOI: 10.1016/j.jelekin.2020.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/30/2022] Open
Abstract
The majority of motor unit studies were performed predominantly on calf muscles, where three types of units: S, FR and FF were found. These muscles are involved in postural activity, walking, running and jumping. The properties of foot muscles that perform other functions, e.g. scratching (in animals), and are purely co-active with calf muscles, are poorly known. The aim of the present study was to investigate the contractile properties of motor units in the flexor digitorum brevis. Fifty-six motor units were studied in male Wistar rats. Several methods of fast/slow motor unit categorization, presence of sag, contraction time values, and 20 Hz index, did not allow the separation of the studied motor units into discrete clusters. Therefore, motor units were divided into two groups: fatigable and resistant to fatigue, based on the fatigue index with the border value of 0.5 (although the distribution of the index was not bimodal). The fatigable motor units were stronger and faster compared to the resistant ones. In conclusion, the distribution of motor unit contractile properties in the studied foot muscle was continuous and indicated a lack of three separate physiological types of motor units that usually occurs for the majority of hindlimb muscles. This discrepancy appears to be associated with differences in the typical forms of motor unit activity in distinct muscles.
Collapse
Affiliation(s)
- H Drzymała-Celichowska
- Department of Neurobiology, Poznan University of Physical Education, Poland; Division of Biochemistry, Poznan University of Physical Education, Poland.
| | | | - K Kryściak
- Department of Neurobiology, Poznan University of Physical Education, Poland
| | - J Celichowski
- Department of Neurobiology, Poznan University of Physical Education, Poland
| |
Collapse
|
16
|
Marchand‐Pauvert V, Peyre I, Lackmy‐Vallee A, Querin G, Bede P, Lacomblez L, Debs R, Pradat P. Absence of hyperexcitability of spinal motoneurons in patients with amyotrophic lateral sclerosis. J Physiol 2019; 597:5445-5467. [DOI: 10.1113/jp278117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Iseline Peyre
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
| | | | - Giorgia Querin
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
| | - Peter Bede
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
- Computational Neuroimaging Group Trinity College Dublin Dublin Ireland
| | | | - Rabab Debs
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
| | - Pierre‐François Pradat
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
| |
Collapse
|
17
|
Nintedanib decreases muscle fibrosis and improves muscle function in a murine model of dystrophinopathy. Cell Death Dis 2018; 9:776. [PMID: 29991677 PMCID: PMC6039566 DOI: 10.1038/s41419-018-0792-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/24/2018] [Accepted: 06/14/2018] [Indexed: 01/07/2023]
Abstract
Duchenne muscle dystrophy (DMD) is a genetic disorder characterized by progressive skeletal muscle weakness. Dystrophin deficiency induces instability of the sarcolemma during muscle contraction that leads to muscle necrosis and replacement of muscle by fibro-adipose tissue. Several therapies have been developed to counteract the fibrotic process. We report the effects of nintedanib, a tyrosine kinase inhibitor, in the mdx murine model of DMD. Nintedanib reduced proliferation and migration of human fibroblasts in vitro and decreased the expression of fibrotic genes such as COL1A1, COL3A1, FN1, TGFB1, and PDGFA. We treated seven mdx mice with 60 mg/kg/day nintedanib for 1 month. Electrophysiological studies showed an increase in the amplitude of the motor action potentials and an improvement of the morphology of motor unit potentials in the animals treated. Histological studies demonstrated a significant reduction of the fibrotic areas present in the skeletal muscles. Analysis of mRNA expression from muscles of treated mice showed a reduction in Col1a1, Col3a1, Tgfb1, and Pdgfa. Western blot showed a reduction in the expression of collagen I in skeletal muscles. In conclusion, nintedanib reduced the fibrotic process in a murine model of dystrophinopathy after 1 month of treatment, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
|
18
|
Matamala JM, Howells J, Dharmadasa T, Huynh W, Park SB, Burke D, Kiernan MC. Excitability of sensory axons in amyotrophic lateral sclerosis. Clin Neurophysiol 2018; 129:1472-1478. [PMID: 29661595 DOI: 10.1016/j.clinph.2018.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/22/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the excitability of sensory axons in patients with amyotrophic lateral sclerosis (ALS). METHODS Comprehensive sensory nerve excitability studies were prospectively performed on 28 sporadic ALS patients, compared to age-matched controls. Sensory nerve action potentials were recorded from digit 2 following median nerve stimulation at the wrist. Disease severity was measured using motor unit number estimation (MUNE), the revised ALS Functional Rating Scale (ALSFRS-R) and the MRC scale. RESULTS There were no significant differences in standard and extended measures of nerve excitability between ALS patients and controls. These unchanged excitability measures included accommodation to long-lasting hyperpolarization and the threshold changes after two supramaximal stimuli during the recovery cycle. Excitability parameters did not correlate with MUNE, ALSFRS-R, APB MRC scale or disease duration. CONCLUSIONS This cross-sectional study has identified normal axonal membrane properties in myelinated sensory axons of ALS patients. Previously described sensory abnormalities could be the result of axonal fallout, possibly due to a ganglionopathy, or to involvement of central sensory pathways rostral to gracile and cuneate nuclei. SIGNIFICANCE These results demonstrate the absence of generalized dysfunction of the membrane properties of sensory axons in ALS in the face of substantial deficits in motor function.
Collapse
Affiliation(s)
| | - James Howells
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Thanuja Dharmadasa
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Susanna B Park
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - David Burke
- Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
19
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic serum biomarkers for neuromuscular diseases. Expert Rev Proteomics 2018; 15:277-291. [DOI: 10.1080/14789450.2018.1429923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn, Germany
| | | | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
20
|
Gregor RJ, Maas H, Bulgakova MA, Oliver A, English AW, Prilutsky BI. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles. J Neurophysiol 2017; 119:1166-1185. [PMID: 29187556 DOI: 10.1152/jn.00661.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.
Collapse
Affiliation(s)
- Robert J Gregor
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam , The Netherlands
| | | | - Alanna Oliver
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine , Atlanta, Georgia
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
21
|
Mahlknecht P, Akram H, Georgiev D, Tripoliti E, Candelario J, Zacharia A, Zrinzo L, Hyam J, Hariz M, Foltynie T, Rothwell JC, Limousin P. Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson's disease. Mov Disord 2017; 32:1174-1182. [DOI: 10.1002/mds.27042] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 11/07/2022] Open
Affiliation(s)
- Philipp Mahlknecht
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Neurology; Innsbruck Medical University; Innsbruck Austria
| | - Harith Akram
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Dejan Georgiev
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
- Department of Neurology; University Medical Centre Ljubljana; Slovenia
| | - Elina Tripoliti
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Joseph Candelario
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Andre Zacharia
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Jonathan Hyam
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - John C. Rothwell
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology; National Hospital for Neurology and Neurosurgery; London United Kingdom
| |
Collapse
|
22
|
Quantitative sensory testing and structural assessment of sensory nerve fibres in amyotrophic lateral sclerosis. J Neurol Sci 2017; 373:329-334. [DOI: 10.1016/j.jns.2017.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/12/2016] [Accepted: 01/03/2017] [Indexed: 11/22/2022]
|
23
|
Gordon T, Borschel GH. The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Exp Neurol 2017; 287:331-347. [DOI: 10.1016/j.expneurol.2016.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 02/06/2023]
|
24
|
Gordon T, de Zepetnek JET. Motor unit and muscle fiber type grouping after peripheral nerve injury in the rat. Exp Neurol 2016; 285:24-40. [DOI: 10.1016/j.expneurol.2016.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/17/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
|
25
|
Isak B, Tankisi H, Johnsen B, Pugdahl K, Torvin MØLler A, Finnerup NB, Christensen PB, Fuglsang-Frederiksen A. Involvement of distal sensory nerves in amyotrophic lateral sclerosis. Muscle Nerve 2016; 54:1086-1092. [DOI: 10.1002/mus.25157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Baris Isak
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| | - Hatice Tankisi
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| | - Birger Johnsen
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| | - Kirsten Pugdahl
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| | | | - Nanna Brix Finnerup
- Danish Pain Research Centre, Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| | | | - Anders Fuglsang-Frederiksen
- Department of Clinical Neurophysiology; Aarhus University Hospital; Nørrebrogade 44, Building 10 DK-8000 Aarhus C Denmark
| |
Collapse
|
26
|
Isak B, Tankisi H, Johnsen B, Pugdahl K, Finnerup NB, Fuglsang-Frederiksen A. Laser and somatosensory evoked potentials in amyotrophic lateral sclerosis. Clin Neurophysiol 2016; 127:3322-8. [DOI: 10.1016/j.clinph.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/11/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|
27
|
Nicholson G, Ispoglou T, Bissas A. The impact of repetition mechanics on the adaptations resulting from strength-, hypertrophy- and cluster-type resistance training. Eur J Appl Physiol 2016; 116:1875-88. [PMID: 27473446 PMCID: PMC5020128 DOI: 10.1007/s00421-016-3439-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/21/2016] [Indexed: 01/05/2023]
Abstract
Purpose The purpose of this study was to examine the acute and chronic training responses to strength-, hypertrophy- and cluster-type resistance training. Methods Thirty-four trained males were assigned to a strength [STR: 4 × 6 repetitions, 85 % of one repetition maximum, (1RM), 900 s total rest], hypertrophy (HYP: 5 × 10 repetitions, 70 % 1RM, 360 s total rest), cluster 1 (CL-1: 4 × 6/1 repetitions, 85 % 1RM, 1400 s total rest), and cluster 2 (CL-2: 4 × 6/1 repetitions, 90 % 1RM, 1400 s total rest) regimens which were performed twice weekly for a 6-week period. Measurements were taken before, during and following the four workouts to investigate the acute training stimulus, whilst similar measurements were employed to examine the training effects before and after the intervention. Results The improvements in 1RM strength were significantly greater for the STR (12.09 ± 2.75 %; p < 0.05, d = 1.106) and CL-2 (13.20 ± 2.18 %; p < 0.001, d = 0.816) regimens than the HYP regimen (8.13 ± 2.54 %, d = 0.453). In terms of the acute responses, the STR and CL-2 workouts resulted in greater time under tension (TUT) and impulse generation in individual repetitions than the HYP workout (p < 0.05). Furthermore, the STR (+3.65 ± 2.54 mmol/L−1) and HYP (+6.02 ± 2.97 mmol/L−1) workouts resulted in significantly greater elevations in blood lactate concentration (p < 0.001) than the CL-1 and CL-2 workouts. Conclusion CL regimens produced similar strength improvements to STR regimens even when volume load was elevated (CL-2). The effectiveness of the STR and CL-2 regimens underlines the importance of high loads and impulse generation for strength development.
Collapse
Affiliation(s)
- G Nicholson
- Carnegie School of Sport, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Fairfax Room 107, Headingley Campus, Leeds, LS6 3QT, UK.
| | - T Ispoglou
- Carnegie School of Sport, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Fairfax Room 107, Headingley Campus, Leeds, LS6 3QT, UK
| | - A Bissas
- Carnegie School of Sport, Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Fairfax Room 107, Headingley Campus, Leeds, LS6 3QT, UK
| |
Collapse
|
28
|
Pantall A, Hodson-Tole EF, Gregor RJ, Prilutsky BI. Increased intensity and reduced frequency of EMG signals from feline self-reinnervated ankle extensors during walking do not normalize excessive lengthening. J Neurophysiol 2016; 115:2406-20. [PMID: 26912591 PMCID: PMC4922462 DOI: 10.1152/jn.00565.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Kinematics of cat level walking recover after elimination of length-dependent sensory feedback from the major ankle extensor muscles induced by self-reinnervation. Little is known, however, about changes in locomotor myoelectric activity of self-reinnervated muscles. We examined the myoelectric activity of self-reinnervated muscles and intact synergists to determine the extent to which patterns of muscle activity change as almost normal walking is restored following muscle self-reinnervation. Nerves to soleus (SO) and lateral gastrocnemius (LG) of six adult cats were surgically transected and repaired. Intramuscular myoelectric signals of SO, LG, medial gastrocnemius (MG), and plantaris (PL), muscle fascicle length of SO and MG, and hindlimb mechanics were recorded during level and slope (±27°) walking before and after (10-12 wk postsurgery) self-reinnervation of LG and SO. Mean myoelectric signal intensity and frequency were determined using wavelet analysis. Following SO and LG self-reinnervation, mean myoelectric signal intensity increased and frequency decreased in most conditions for SO and LG as well as for intact synergist MG (P < 0.05). Greater elongation of SO muscle-tendon unit during downslope and unchanged magnitudes of ankle extensor moment during the stance phase in all walking conditions suggested a functional deficiency of ankle extensors after self-reinnervation. Possible effects of morphological reorganization of motor units of ankle extensors and altered sensory and central inputs on the changes in myoelectric activity of self-reinnervated SO and LG are discussed.
Collapse
Affiliation(s)
- Annette Pantall
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia
| | - Emma F Hodson-Tole
- Cognitive Motor Function Research Group, School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom; and
| | - Robert J Gregor
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Boris I Prilutsky
- School of Applied Physiology, Center for Human Movement Studies, Georgia Institute of Technology, Atlanta, Georgia;
| |
Collapse
|
29
|
Gordon T. Nerve Regeneration: Understanding Biology and Its Influence on Return of Function After Nerve Transfers. Hand Clin 2016; 32:103-17. [PMID: 27094884 DOI: 10.1016/j.hcl.2015.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Poor functional outcomes are frequent after peripheral nerve injuries despite the regenerative support of Schwann cells. Motoneurons and, to a lesser extent, sensory neurons survive the injuries but outgrowth of axons across the injury site is slow. The neuronal regenerative capacity and the support of regenerating axons by the chronically denervated Schwann cells progressively declines with time and distance of the injury from the denervated targets. Strategies, including brief low-frequency electrical stimulation that accelerates target reinnervation and functional recovery, and the insertion of cross-bridges between a donor nerve and a recipient denervated nerve stump, are effective in promoting functional outcomes after complete and incomplete injuries.
Collapse
Affiliation(s)
- Tessa Gordon
- Division of Plastic Reconstructive Surgery, Department of Surgery, 06.9706 Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada.
| |
Collapse
|
30
|
Pan LL, Yu CH, Tsai MW, Wei SH, Chou LW. Estimating the tendency of motor unit recruitment during steady-hold and rapid contractions using surface EMG and Turns-amplitude analysis. Eur J Appl Physiol 2015. [PMID: 26202486 DOI: 10.1007/s00421-015-3223-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE The purpose of this study was to investigate changes in the interference pattern in surface electromyography (EMG), and its relationship with the tendency of motor unit (MU) recruitment during steady-hold and rapid muscle contractions. METHODS Fifteen healthy adults (eight females and seven males, 22.6 ± 1.5 years old) performed steady-hold and rapid isometric contractions of the bicep brachii, adductor pollicis, and tibialis anterior muscles at various force levels. Surface EMG recordings were analyzed using Turns-Amplitude Analysis (TAA). RESULTS During steady-hold contractions, the number of turns per second (T/s) increased exponentially with force during submaximal contractions, and plateaued after force levels of 66, 70 and 57 % MVC for the tibialis anterior, bicep brachii and adductor pollicis muscles, respectively. These force levels were proximate to the maximal recruitment threshold (MaxRT) reported previously. The slopes of the T/s-force relationships before the MaxRT were significantly greater than the slopes after the MaxRT for all three muscles tested. During rapid contraction, the slopes of the T/s-force relationships were significantly lower than the slopes of the steady-hold contraction at 20-40 % MVC in all three muscles, and for 40-60 % MVC in TA muscles. CONCLUSIONS Our results suggested that the changes in the number of turns in surface EMG with respect to muscle force can be used to estimate the force levels at which the majority of the MUs to be recruited, and completion of MU recruitment was observed at lower force levels during rapid muscle contraction.
Collapse
Affiliation(s)
- Li-Ling Pan
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Taipei, 112, Taiwan
| | - Chung-Huang Yu
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Taipei, 112, Taiwan
| | - Mei-Wun Tsai
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Taipei, 112, Taiwan
| | - Shun-Hwa Wei
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Taipei, 112, Taiwan
| | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, No.155, Sec.2, Li-Nong Street, Taipei, 112, Taiwan.
| |
Collapse
|
31
|
Saboisky JP, Butler JE, Luu BL, Gandevia SC. Neurogenic Changes in the Upper Airway of Obstructive Sleep Apnoea. Curr Neurol Neurosci Rep 2015; 15:12. [DOI: 10.1007/s11910-015-0537-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Mallory GW, Grahn PJ, Hachmann JT, Lujan JL, Lee KH. Optical stimulation for restoration of motor function after spinal cord injury. Mayo Clin Proc 2015; 90:300-7. [PMID: 25659246 PMCID: PMC4339262 DOI: 10.1016/j.mayocp.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
Spinal cord injury can be defined as a loss of communication between the brain and the body due to disrupted pathways within the spinal cord. Although many promising molecular strategies have emerged to reduce secondary injury and promote axonal regrowth, there is still no effective cure, and recovery of function remains limited. Functional electrical stimulation (FES) represents a strategy developed to restore motor function without the need for regenerating severed spinal pathways. Despite its technological success, however, FES has not been widely integrated into the lives of spinal cord injury survivors. In this review, we briefly discuss the limitations of existing FES technologies. Additionally, we discuss how optogenetics, a rapidly evolving technique used primarily to investigate select neuronal populations within the brain, may eventually be used to replace FES as a form of therapy for functional restoration after spinal cord injury.
Collapse
Affiliation(s)
- Grant W Mallory
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Peter J Grahn
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Jan T Hachmann
- School of Medicine, Heidelberg University, Neuenheimer Feld, Bergheim, Germany
| | - J Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.
| |
Collapse
|
33
|
Drey M, Sieber CC, Degens H, McPhee J, Korhonen MT, Müller K, Ganse B, Rittweger J. Relation between muscle mass, motor units and type of training in master athletes. Clin Physiol Funct Imaging 2014; 36:70-6. [DOI: 10.1111/cpf.12195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Drey
- Institute for Biomedicine of Ageing; University of Erlangen-Nürnberg; Nürnberg Germany
| | - Cornel C. Sieber
- Institute for Biomedicine of Ageing; University of Erlangen-Nürnberg; Nürnberg Germany
| | - Hans Degens
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - Jamie McPhee
- School of Healthcare Science; Manchester Metropolitan University; Manchester UK
| | - Marko T. Korhonen
- Gerontology Research Center; Department of Health Sciences; University of Jyväskylä; Jyväskylä Finland
| | - Klaus Müller
- German Aerospace Center; Institute of Aerospace Medicine; Cologne Germany
| | - Bergita Ganse
- German Aerospace Center; Institute of Aerospace Medicine; Cologne Germany
| | - Jörn Rittweger
- German Aerospace Center; Institute of Aerospace Medicine; Cologne Germany
| |
Collapse
|
34
|
Bawa PNS, Jones KE, Stein RB. Assessment of size ordered recruitment. Front Hum Neurosci 2014; 8:532. [PMID: 25120446 PMCID: PMC4112781 DOI: 10.3389/fnhum.2014.00532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/30/2014] [Indexed: 11/24/2022] Open
Affiliation(s)
- Parveen N S Bawa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | - Kelvin E Jones
- Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| | - Richard B Stein
- Department of Physiology, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
35
|
Motoneuron Loss Is Associated With Sarcopenia. J Am Med Dir Assoc 2014; 15:435-9. [DOI: 10.1016/j.jamda.2014.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 12/14/2022]
|
36
|
Morissette MP, Susser SE, Stammers AN, O'Hara KA, Gardiner PF, Sheppard P, Moffatt TL, Duhamel TA. Differential regulation of the fiber type-specific gene expression of the sarcoplasmic reticulum calcium-ATPase isoforms induced by exercise training. J Appl Physiol (1985) 2014; 117:544-55. [PMID: 24876362 DOI: 10.1152/japplphysiol.00092.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The regulatory role of adenosine monophosphate-activated protein kinase (AMPK)-α2 on sarcoplasmic reticulum calcium-ATPase (SERCA) 1a and SERCA2a in different skeletal muscle fiber types has yet to be elucidated. Sedentary (Sed) or exercise-trained (Ex) wild-type (WT) and AMPKα2-kinase dead (KD) transgenic mice, which overexpress a mutated and inactivated AMPKα2 subunit, were utilized to characterize how genotype or exercise training influenced the regulation of SERCA isoforms in gastrocnemius. As expected, both Sed and Ex KD mice had >40% lower AMPK phosphorylation and 30% lower SERCA1a protein than WT mice (P < 0.05). In contrast, SERCA2a protein was not different among KD and WT mice. Exercise increased SERCA1a and SERCA2a protein content among WT and KD mice, compared with their Sed counterparts. Maximal SERCA activity was lower in KD mice, compared with WT. Total phospholamban protein was higher in KD mice than in WT and lower in Ex compared with Sed mice. Exercise training increased phospholamban Ser(16) phosphorylation in WT mice. Laser capture microdissection and quantitative PCR indicated that SERCA1a mRNA expression among type I fibers was not altered by genotype or exercise, but SERCA2a mRNA was increased 30-fold in WT+Ex, compared with WT+Sed. In contrast, the exercise-stimulated increase for SERCA2a mRNA was blunted in KD mice. Exercise upregulated SERCA1a and SERCA2a mRNA among type II fibers, but was not altered by genotype. Collectively, these data suggest that exercise differentially influences SERCA isoform expression in type I and type II fibers. Additionally, AMPKα2 influences the regulation of SERCA2a mRNA in type I skeletal muscle fibers following exercise training.
Collapse
Affiliation(s)
- Marc P Morissette
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Shanel E Susser
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada; Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Andrew N Stammers
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Kimberley A O'Hara
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Phillip F Gardiner
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Spinal Cord Research Institute, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia Sheppard
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Spinal Cord Research Institute, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teri L Moffatt
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Todd A Duhamel
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada; Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada; and
| |
Collapse
|
37
|
Mantilla CB, Seven YB, Sieck GC. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment. PROGRESS IN BRAIN RESEARCH 2014; 209:309-29. [PMID: 24746055 DOI: 10.1016/b978-0-444-63274-6.00016-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Yasin B Seven
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Gary C Sieck
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
38
|
Flix B, Suárez-Calvet X, Díaz-Manera J, Santos-Nogueira E, Mancuso R, Barquinero J, Navas M, Navarro X, Illa I, Gallardo E. Bone marrow transplantation in dysferlin-deficient mice results in a mild functional improvement. Stem Cells Dev 2013; 22:2885-94. [PMID: 23777246 DOI: 10.1089/scd.2013.0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dysferlinopathies are caused by mutations in the DYSF gene. Dysferlin is a protein mainly expressed in the skeletal muscle and monocytes. Cell therapy constitutes a promising tool for the treatment of muscular dystrophies. The aim of our study was to evaluate the effect of bone marrow transplantation (BMT) using the A/J Dysf(prmd) mouse model of dysferlinopathy. For that purpose, we studied dysferlin expression by western blot and/or immunohistochemistry in transplanted mice and controls. Computerized analyses of locomotion and electrophysiological techniques were also performed to test the functional improvement. We observed dysferlin expression in splenocytes, but not in the skeletal muscle of the transplanted mice. However, the locomotion test, electromyography studies, and muscle histology showed an improvement in all transplanted mice that was more significant in the animals transplanted with dysferlin⁺/⁺ cells. In conclusion, although BMT restores dysferlin expression in monocytes, but not in skeletal muscle, muscle function was partially recovered. We propose that the slight improvement observed in the functional studies could be related with factors, such as the hepatocyte growth factor, released after BMT that prevented muscle degeneration.
Collapse
Affiliation(s)
- Bàrbara Flix
- 1 Laboratori de Malalties Neuromusculars, Institut de Recerca de HSCSP, Universitat Autònoma de Barcelona (UAB) , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Impact of diaphragm muscle fiber atrophy on neuromotor control. Respir Physiol Neurobiol 2013; 189:411-8. [PMID: 23831121 DOI: 10.1016/j.resp.2013.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 11/21/2022]
Abstract
In skeletal muscles, motor units comprise a motoneuron and the group of muscle fibers innervated by it, which are usually classified based on myosin heavy chain isoform expression. Motor units displaying diverse contractile and fatigue properties are important in determining the range of motor behaviors that can be accomplished by a muscle. Muscle fiber atrophy and weakness may disproportionately affect specific fiber types across a variety of diseases or clinical conditions, thus impacting neuromotor control. In this regard, fiber atrophy that affects a specific fiber type will alter the relative contribution of different motor units to overall muscle structure and function. For example, in various diseases there is fairly selective atrophy of type IIx and/or IIb fibers comprising the strongest yet most fatigable motor units. As a result, there is muscle weakness (i.e., reductions in force per cross-sectional area) associated with an apparent improvement in resistance to fatiguing contractions. This review will examine neuromotor control of respiratory muscles such as the diaphragm muscle and the impact of muscle fiber atrophy on motor performance.
Collapse
|
40
|
Shibuta Y, Shimatani Y, Nodera H, Izumi Y, Kaji R. Increased variability of axonal excitability in amyotrophic lateral sclerosis. Clin Neurophysiol 2013; 124:2046-53. [PMID: 23726502 DOI: 10.1016/j.clinph.2013.02.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/30/2013] [Accepted: 02/18/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is characterised by the increased excitability of motoneurons and heterogeneous loss of axons. The heterogeneous nature of the disease process among fibres may show variability of excitability in ALS. METHODS Multiple nerve excitability tests were performed in 28 ALS patients and 23 control subjects, by tracking at the varying threshold levels (10%, 20%, 40% and 60% of maximum amplitudes). RESULTS In normal controls, excitability measures at low target levels have the following characteristics compared to those at high target levels: longer strength-duration time constant, greater threshold reduction during depolarising currents and smaller threshold increase to hyperpolarising currents. ALS patients had less clear amplitude dependency of the parameters than the controls, indicating variability of axonal excitability. Three ALS patients demonstrated greater target-amplitude-dependent threshold changes in threshold electrotonus than controls, suggesting selective axonal hyperexcitability. CONCLUSIONS Some of the ALS patients had variable axonal excitability at different target amplitudes, suggesting preferential hyperexcitability in the axons with low target amplitude levels. SIGNIFICANCE Variable membrane potentials of motor axons in ALS may be assessed by recording excitability testing at different target amplitude levels.
Collapse
Affiliation(s)
- Yoshiko Shibuta
- Department of Neurology, Tokushima University, Tokushima, Japan
| | | | | | | | | |
Collapse
|
41
|
The Motor Unit Number Index (MUNIX) in sarcopenic patients. Exp Gerontol 2013; 48:381-4. [DOI: 10.1016/j.exger.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/11/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022]
|
42
|
Abstract
Neuromotor control of skeletal muscles, including respiratory muscles, is ultimately dependent on the structure and function of the motor units (motoneurons and the muscle fibers they innervate) comprising the muscle. In most muscles, considerable diversity of contractile and fatigue properties exists across motor units, allowing a range of motor behaviors. In diseases such as chronic obstructive pulmonary disease (COPD), there may be disproportional primary (disease related) or secondary effects (related to treatment or other concomitant factors) on the size and contractility of specific muscle fiber types that would influence the relative contribution of different motor units. For example, with COPD there is a disproportionate atrophy of type IIx and/or IIb fibers that comprise more fatigable motor units. Thus fatigue resistance may appear to improve, while overall motor performance (e.g., 6-min walk test) and endurance (e.g., reduced aerobic exercise capacity) are diminished. There are many coexisting factors that might also influence motor performance. For example, in COPD patients, there may be concomitant hypoxia and/or hypercapnia, physical inactivity and unloading of muscles, and corticosteroid treatment, all of which may disproportionately affect specific muscle fiber types, thereby influencing neuromotor control. Future studies should address how plasticity in motor units can be harnessed to mitigate the functional impact of COPD-induced changes.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
43
|
Sobotka S, Mu L. Comparison of muscle force after immediate and delayed reinnervation using nerve-muscle-endplate band grafting. J Surg Res 2013; 179:e117-26. [PMID: 22480827 PMCID: PMC3393842 DOI: 10.1016/j.jss.2012.02.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Because of poor functional outcomes of currently used reinnervation methods, we developed novel treatment strategy for the restoration of paralyzed muscles-the nerve-muscle-endplate band grafting (NMEG) technique. The graft was obtained from the sternohyoid muscle (donor) and implanted into the ipsilateral paralyzed sternomastoid (SM) muscle (recipient). METHODS Rats were subjected to immediate or delayed (1 or 3 mo) reinnervation of the experimentally paralyzed SM muscles using the NMEG technique or the conventionally used nerve end-to-end anastomosis. The SM muscle at the opposite side served as a normal control. RESULTS NMEG produced better recovery of muscle force as compared with end-to-end anastomosis. A larger force produced by NMEG was most evident for small stimulation currents. CONCLUSIONS The NMEG technique holds great potential for successful muscle reinnervation. We hypothesize that even better muscle reinnervation and functional recovery could be achieved with further improvement of the environment that favors axon-end plate connections and accelerates axonal growth and sprouting.
Collapse
Affiliation(s)
- Stanislaw Sobotka
- Upper Airway Research Laboratory, Department of Research, Hackensack University Medical Center, Hackensack, New Jersey, USA.
| | | |
Collapse
|
44
|
|
45
|
Neuromuscular junction protection for the potential treatment of amyotrophic lateral sclerosis. Neurol Res Int 2012; 2012:379657. [PMID: 22919482 PMCID: PMC3423938 DOI: 10.1155/2012/379657] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by the progressive degeneration of upper and lower motor neurons (MNs), leading to muscular atrophy and eventual respiratory failure. ALS research has primarily focused on mechanisms regarding MN cell death; however, degenerative processes in the skeletal muscle, particularly involving neuromuscular junctions (NMJs), are observed in the early stages of and throughout disease progression. According to the "dying-back" hypothesis, NMJ degeneration may not only precede, but actively cause upper and lower MN loss. The importance of NMJ pathology has relatively received little attention in ALS, possibly because compensatory mechanisms mask NMJ loss for prolonged periods. Many mechanisms explaining NMJ degeneration have been proposed such as the disruption of anterograde/retrograde axonal transport, irregular cellular metabolism, and changes in muscle gene and protein expression. Neurotrophic factors, which are known to have neuroprotective and regenerative properties, have been intensely investigated for their therapeutic potential in both the preclinical and clinical setting. Additional research should focus on the potential of preserving NMJs in order to delay or prevent disease progression.
Collapse
|
46
|
A self-referential outlier detection method for quantitative motor unit action potential analysis. Med Hypotheses 2012; 78:430-1. [PMID: 22285626 DOI: 10.1016/j.mehy.2011.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/28/2011] [Accepted: 12/27/2011] [Indexed: 11/24/2022]
Abstract
Quantitative MUAP analysis is often based on outlier detection, in the case of neurogenic conditions, the finding of MUAPs that are larger than the limit determined from a reference normal population. Such reference data is available from only a few sources and for only a few muscles. It would be desirable if muscles could serve as their own controls. The Henneman size principle determines the order of recruitment, following an exponential distribution of twitch force, motor neurone, motor unit, and MUAP size. Therefore, an outlier could be detected by being too large for the level of recruitment, as judged by its size relative to the other MUAPs. This would improve the sensitivity of detecting neurogenic muscles and obviate the need for external reference data.
Collapse
|
47
|
Prather JF, Nardelli P, Nakanishi ST, Ross KT, Nichols TR, Pinter MJ, Cope TC. Recovery of proprioceptive feedback from nerve crush. J Physiol 2011; 589:4935-47. [PMID: 21788349 DOI: 10.1113/jphysiol.2011.210518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sensorimotor functions are restored by peripheral nerve regeneration with greater success following injuries that crush rather than sever the nerve. Better recovery following nerve crush is commonly attributed to superior reconnection of regenerating axons with their original peripheral targets. The present study was designed to estimate the fraction of stretch reflex recovery attributable to functional recovery of regenerated spindle afferents. Recovery of the spindle afferent population was estimated from excitatory postsynaptic potentials evoked by muscle stretch (strEPSPs) in motoneurons. These events were measured in cats that were anaesthetized, so that recovery of spindle afferent function, including both muscle stretch encoding and monosynaptic transmission, could be separated from other factors that act centrally to influence muscle stretch-evoked excitation of motoneurons. Recovery of strEPSPs to 70% of normal specified the extent of overall functional recovery by the population spindle afferents that regained responsiveness to muscle stretch. In separate studies, we examined recovery of the stretch reflex in decerebrate cats, and found that it recovered to supranormal levels after nerve crush. The substantial disparity in recovery between strEPSPs and stretch reflex led us to conclude that factors in addition to recovery of spindle afferents make a large contribution in restoring the stretch reflex following nerve crush.
Collapse
Affiliation(s)
- Jonathan F Prather
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors. Respir Physiol Neurobiol 2011; 179:57-63. [PMID: 21763470 DOI: 10.1016/j.resp.2011.06.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 02/07/2023]
Abstract
Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing.
Collapse
|
49
|
Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat 2011; 193:347-53. [DOI: 10.1016/j.aanat.2011.02.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/14/2011] [Accepted: 02/24/2011] [Indexed: 12/27/2022]
|
50
|
Bamford JA, Mushahwar VK. Intraspinal microstimulation for the recovery of function following spinal cord injury. PROGRESS IN BRAIN RESEARCH 2011; 194:227-39. [PMID: 21867807 DOI: 10.1016/b978-0-444-53815-4.00004-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Spinal cord injury is a devastating neurological trauma, often resulting in the impairment of bladder, bowel, and sexual function as well as the loss of voluntary control of muscles innervated by spinal cord segments below the lesion site. Research is ongoing into several classes of therapies to restore lost function. These include the encouragement of neural sparing and regeneration of the affected tissue, and the intervention with pharmacological and rehabilitative means to improve function. This review will focus on the application of electrical current in the spinal cord in order to reactivate extant circuitry which coordinates and controls smooth and skeletal muscle below the injury. We first present a brief historical review of intraspinal microstimulation (ISMS) focusing on its use for restoring bladder function after spinal cord injury as well as its utilization as a research tool for mapping spinal cord circuits that coordinate movements. We then present a review of our own results related to the use of ISMS for restoring standing and walking movements after spinal cord injury. We discuss the mechanisms of action of ISMS and how they relate to observed functional outcomes in animal models. These include the activation of fibers-in-passage which lead to the transsynaptic spread of activation through the spinal cord and the ability of ISMS to produce fatigue-resistant, weight-bearing movements. We present our thoughts on the clinical potential for ISMS with regard to implantation techniques, stability, and damage induced by mechanical and electrical factors. We conclude by suggesting improvements in materials and techniques that are needed in preparation for a clinical proof-of-principle and review our current attempts to achieve these.
Collapse
Affiliation(s)
- Jeremy A Bamford
- Department of Cell Biology and the Centre for Neuroscience, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|