1
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
2
|
Wang R, Huang R, Liu Y, Tamalunas A, Stief CG, Hennenberg M. Silencing of CDC42 inhibits contraction and growth-related functions in prostate stromal cells, which is mimicked by ML141. Life Sci 2023; 329:121928. [PMID: 37437651 DOI: 10.1016/j.lfs.2023.121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Prostate smooth muscle contraction and stromal growth may contribute to lower urinary tract symptoms suggestive of benign prostatic hyperplasia, but are incompletely understood. A role of the monomeric GTPase CDC42 for smooth muscle contraction and proliferation appears possible, but is unknown for the prostate. Here, we silenced CDC42 expression in prostate stromal cells (WPMY-1), and examined contractility, growth-related functions and responses to the presumed CDC42 inhibitor, ML141. METHODS WPMY-1 cells were transfected with scrambled or CDC42-specific siRNA, and characterized for GTPase activities, contraction, proliferation, colony formation, apoptosis, cell death and viability. Effects of ML141 were examined in cells with and without silencing. RESULTS CDC42 silencing was confirmed by reduced mRNA and protein expression, and reduced CDC42 activity. Silencing impaired contraction (23-47 %), actin organization (25 %), proliferation (17-63 %), colony formation and viability (64-89 %), and increased the percentage of dead cells (2.6-fold). ML141 mimicked the phenotype of silencing in scrambled siRNA-transfected controls, and in non-transfected WPMY-1 cells, including inhibition of contraction, proliferation, colony formation and viability, breakdown of actin organization and increased cell death. In CDC42-silenced cells, ML141 still affected phalloiding organization, proliferation and cell death, with effect sizes resembling controls without silencing. ML141 inhibited RhoA activity in CDC42-silenced cells, but not in cells without silencing. CONCLUSIONS CDC42 promotes contraction of prostate stromal cells, and drives stromal growth by CDC42-mediated proliferation and suppression of apoptosis-independent cell death. ML141 mimicks all effects of CDC42 silencing, but its specificity may be limited and depends on GTPase phenotypes of cells.
Collapse
Affiliation(s)
- Ruixiao Wang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christan G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Shinozaki R, Eguchi R, Wakabayashi I. Experimental conditions and protein markers for redifferentiation of human coronary artery smooth muscle cells. Biomed Rep 2023; 18:24. [PMID: 36846618 PMCID: PMC9944247 DOI: 10.3892/br.2023.1606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
A phenotype switch from contractile type to proliferative type of arterial smooth muscle cells is known as dedifferentiation, but to the best of our knowledge, little is known about redifferentiation of coronary artery smooth muscle cells. The purpose of the present study was to determine in vitro culture conditions for inducing redifferentiation of coronary artery smooth muscle cells. In addition, the present study aimed to determine protein markers for detection of redifferentiated arterial smooth muscle cells. Human coronary artery smooth muscle cells (HCASMCs) were cultured in the presence or absence of growth factors, including epidermal growth factor, fibroblast growth factor-B and insulin. Protein expression and migration activity of HCASMCs were evaluated using western blotting and migration assay, respectively. In HCASMCs 5 days after 100% confluency, expression levels of α-smooth muscle actin (α-SMA), calponin, caldesmon and SM22α were significantly increased, while expression levels of proliferation cell nuclear antigen (PCNA) and S100A4 and migration activity were significantly decreased, compared with the corresponding levels just after reaching 100% confluency, indicating that redifferentiation occurred. Redifferentiation was also induced in a low-density culture of HCASMCs in the medium without growth factors. When the culture medium for confluent cells was replaced daily with fresh medium, the expression levels of α-SMA, caldesmon, SM22α, PCNA and S100A4 and migration activity were not significantly different but the calponin expression was significantly increased compared with the levels in dedifferentiated cells just after reaching 100% confluency. Thus, redifferentiation was induced in HCASMCs by deprivation of growth factors from culture medium. The results suggested that α-SMA, caldesmon and SM22α, but not calponin, are markers of redifferentiation of HCASMCs.
Collapse
Affiliation(s)
- Ryota Shinozaki
- Department of Environmental and Preventive Medicine, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Ryoji Eguchi
- Department of Environmental and Preventive Medicine, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan,Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan,Correspondence to: Professor Ichiro Wakabayashi, Department of Environmental and Preventive Medicine, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
4
|
Li H. Physiologic and pathophysiologic roles of AKAP12. Sci Prog 2022; 105:368504221109212. [PMID: 35775596 PMCID: PMC10450473 DOI: 10.1177/00368504221109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A kinase anchoring protein (AKAP) 12 is a scaffolding protein that improves the specificity and efficiency of spatiotemporal signal through assembling intracellular signal proteins into a specific complex. AKAP12 is a negative mitogenic regulator that plays an important role in controlling cytoskeletal architecture, maintaining endothelial integrity, regulating glial function and forming blood-brain barrier (BBB) and blood retinal barrier (BRB). Moreover, elevated or reduced AKAP12 contributes to a variety of diseases. Complex connections between AKAP12 and various diseases including chronic liver diseases (CLDs), inflammatory diseases and a series of cancers will be tried to delineate in this paper. We first describe the expression, distribution and physiological function of AKAP12. Then we summarize the current knowledge of different connections between AKAP12 expression and various diseases. Some research groups have found paradoxical roles of AKAP12 in different diseases and further confirmation is needed. This paper aims to assess the role of AKAP12 in physiology and diseases to help lay the foundation for the design of small molecules for specific AKAP12 to correct the pathological signal defects.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
5
|
Egorov V, Kim P, Kharazov A, Dzigasov S, Popov P, Rykova S, Zelter P, Demidova A, Kondratiev E, Grigorievsky M, Sorokin A. Hemodynamic, Surgical and Oncological Outcomes of 40 Distal Pancreatectomies with Celiac and Left Gastric Arteries Resection (DP CAR) without Arterial Reconstructions and Preoperative Embolization. Cancers (Basel) 2022; 14:1254. [PMID: 35267562 PMCID: PMC8909059 DOI: 10.3390/cancers14051254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
DPCAR’s short- and long-term outcomes are highly diverse, while the causes and prevention of ischemic complications are unclear. To assess oncological, surgical, and hemodynamic outcomes of 40 consecutive DPCARs for pancreatic (n37) and gastric tumors (n3) (2009−2021), retrospective analyses of mortality, morbidity, survival, and hemodynamic consequences after DPCAR were undertaken using case history data, IOUS, and pre- and postoperative CT measurements. In postoperative complications (42.5%), the pancreatic fistula was the most frequent event (27%), 90-day mortality was 7.5. With 27 months median follow-up, median overall (OS) and progression-free survival (PFS) for PDAC were 29 and 18 months, respectively; with 1-, 3-, and 5-years, the OS were 90, 60, and 28%, with an R0-resection rate of 92.5%. Liver and gastric ischemia developed in 0 and 5 (12.5%) cases. Comparison of clinical and vascular geometry data revealed fast adaptation of collateral circulation, insignificant changes in proper hepatic artery diameter, and high risk of ischemic gastropathy if the preoperative diameter of pancreaticoduodenal artery was <2 mm. DP CAR can be performed with acceptable morbidity and survival. OS and RFS in this super-selective cohort were compared to those for resectable cancer. The changes in the postoperative arterial geometry could explain the causes of ischemic complications and determine directions for their prevention.
Collapse
Affiliation(s)
- Viacheslav Egorov
- Surgical Oncology Department, Ilyinskaya Hospital, 143421 Moscow, Russia
| | - Pavel Kim
- HPB Department, Ilyinskaya Hospital, 143421 Moscow, Russia;
| | - Alexander Kharazov
- Vascular Surgery Department, Vishnevsky National Medical Research Center of Surgery, 117997 Moscow, Russia;
| | - Soslan Dzigasov
- Vascular Surgery Department, Ilyinskaya Hospital, 143421 Moscow, Russia;
| | - Pavel Popov
- Radiology Department, Ilyinskaya Hospital, 143421 Moscow, Russia; (P.P.); (S.R.); (A.D.); (E.K.)
| | - Sofia Rykova
- Radiology Department, Ilyinskaya Hospital, 143421 Moscow, Russia; (P.P.); (S.R.); (A.D.); (E.K.)
| | - Pavel Zelter
- Radiology Department, Samara State Medical University, 443099 Samara, Russia;
| | - Anna Demidova
- Radiology Department, Ilyinskaya Hospital, 143421 Moscow, Russia; (P.P.); (S.R.); (A.D.); (E.K.)
- Department of Ultrasound Diagnostics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Eugeny Kondratiev
- Radiology Department, Ilyinskaya Hospital, 143421 Moscow, Russia; (P.P.); (S.R.); (A.D.); (E.K.)
| | - Maxim Grigorievsky
- Department of Hospital Surgery, Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia;
| | - Alexander Sorokin
- Mathematical Statistics and Econometrics Department, Plekhanov Russian University of Economics, 117997 Moscow, Russia;
| |
Collapse
|
6
|
Grandy C, Port F, Pfeil J, Gottschalk KE. Influence of ROCK Pathway Manipulation on the Actin Cytoskeleton Height. Cells 2022; 11:cells11030430. [PMID: 35159239 PMCID: PMC8834639 DOI: 10.3390/cells11030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The actin cytoskeleton with its dynamic properties serves as the driving force for the movement and division of cells and gives the cell shape and structure. Disorders in the actin cytoskeleton occur in many diseases. Deeper understanding of its regulation is essential in order to better understand these biochemical processes. In our study, we use metal-induced energy transfer (MIET) as a tool to quantitatively examine the rarely considered third dimension of the actin cytoskeleton with nanometer accuracy. In particular, we investigate the influence of different drugs acting on the ROCK pathway on the three-dimensional actin organization. We find that cells treated with inhibitors have a lower actin height to the substrate while treatment with a stimulator for the ROCK pathway increases the actin height to the substrate, while the height of the membrane remains unchanged. This reveals the precise tuning of adhesion and cytoskeleton tension, which leads to a rich three-dimensional structural behaviour of the actin cytoskeleton. This finetuning is differentially affected by either inhibition or stimulation. The high axial resolution shows the importance of the precise finetuning of the actin cytoskeleton and the disturbed regulation of the ROCK pathway has a significant impact on the actin behavior in the z dimension.
Collapse
Affiliation(s)
- Carolin Grandy
- Institute of Experimental Physics, University Ulm, 89081 Ulm, Baden-Württemberg, Germany
| | - Fabian Port
- Institute of Experimental Physics, University Ulm, 89081 Ulm, Baden-Württemberg, Germany
| | - Jonas Pfeil
- Institute of Experimental Physics, University Ulm, 89081 Ulm, Baden-Württemberg, Germany
| | | |
Collapse
|
7
|
Petit C, Karkhaneh Yousefi AA, Guilbot M, Barnier V, Avril S. AFM Stiffness Mapping in Human Aortic Smooth Muscle Cells. J Biomech Eng 2022; 144:1133331. [DOI: 10.1115/1.4053657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Abstract
Aortic Smooth Muscle Cells (SMCs) play a vital role in maintaining mechanical homeostasis in the aorta. We recently found that SMCs of aneurysmal aortas apply larger traction forces than SMCs of healthy aortas. This result was explained by the significant increase of hypertrophic SMCs abundance in aneurysms. In the present study, we investigate whether the cytoskeleton stiffness of SMCs may also be altered in aneurysmal aortas. For that, we use Atomic Force Microscopy (AFM) nanoindentation with a specific mode that allows subcellular-resolution mapping of the local stiffness across a specified region of interest of the cell. Aortic SMCs from a commercial human lineage (AoSMCs, Lonza) and primary aneurysmal SMCs (AnevSMCs) are cultured in conditions promoting the development of their contractile apparatus, and seeded on hydrogels with stiffness properties of 12kPa and 25kPa. Results show that all SMC exhibit globally a lognormal stiffness distribution, with medians in the range 10-30 kPa. The mean of stiffness distributions is slightly higher in aneurysmal SMCs than in healthy cells (16 kPa versus 12 kPa) but the differences are not statistically significant due to the large dispersion of AFM nanoindentation stiffness. We conclude that the possible alterations previously found in aneurysmal SMCs do not affect significantly the AFM nanoindentation stiffness of their cytoskeleton.
Collapse
Affiliation(s)
- Claudie Petit
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | | | - Marine Guilbot
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | - Vincent Barnier
- Mines Saint-Etienne, Université de Lyon, CNRS, UMR 5307 LGF, F - 42023 Saint-Etienne France
| | - Stephane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| |
Collapse
|
8
|
Morales-Quinones M, Ramirez-Perez FI, Foote CA, Ghiarone T, Ferreira-Santos L, Bloksgaard M, Spencer N, Kimchi ET, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIMK (LIM Kinase) Inhibition Prevents Vasoconstriction- and Hypertension-Induced Arterial Stiffening and Remodeling. Hypertension 2020; 76:393-403. [PMID: 32594801 DOI: 10.1161/hypertensionaha.120.15203] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased arterial stiffness and vascular remodeling precede and are consequences of hypertension. They also contribute to the development and progression of life-threatening cardiovascular diseases. Yet, there are currently no agents specifically aimed at preventing or treating arterial stiffening and remodeling. Previous research indicates that vascular smooth muscle actin polymerization participates in the initial stages of arterial stiffening and remodeling and that LIMK (LIM kinase) promotes F-actin formation and stabilization via cofilin phosphorylation and consequent inactivation. Herein, we hypothesize that LIMK inhibition is able to prevent vasoconstriction- and hypertension-associated arterial stiffening and inward remodeling. We found that small visceral arteries isolated from hypertensive subjects are stiffer and have greater cofilin phosphorylation than those from nonhypertensives. We also show that LIMK inhibition prevents arterial stiffening and inward remodeling in isolated human small visceral arteries exposed to prolonged vasoconstriction. Using cultured vascular smooth muscle cells, we determined that LIMK inhibition prevents vasoconstrictor agonists from increasing cofilin phosphorylation, F-actin volume, and cell cortex stiffness. We further show that localized LIMK inhibition prevents arteriolar inward remodeling in hypertensive mice. This indicates that hypertension is associated with increased vascular smooth muscle cofilin phosphorylation, cytoskeletal stress fiber formation, and heightened arterial stiffness. Our data further suggest that pharmacological inhibition of LIMK prevents vasoconstriction-induced arterial stiffening, in part, via reductions in vascular smooth muscle F-actin content and cellular stiffness. Accordingly, LIMK inhibition should represent a promising therapeutic means to stop the progression of arterial stiffening and remodeling in hypertension.
Collapse
Affiliation(s)
- Mariana Morales-Quinones
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Francisco I Ramirez-Perez
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Christopher A Foote
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Thaysa Ghiarone
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO
| | - Larissa Ferreira-Santos
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Instituto do Coração (InCor), Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo, Brazil (L.F.-S.)
| | - Maria Bloksgaard
- Department of Molecular Medicine, University of Southern Denmark, Odense (M.B.)
| | | | - Eric T Kimchi
- Department of Surgery (E.T.K.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Camila Manrique-Acevedo
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism (C.M.-A.), University of Missouri, Columbia, MO.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (E.T.K., C.M.-A.)
| | - Jaume Padilla
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Nutrition and Exercise Physiology (J.P.), University of Missouri, Columbia, MO
| | - Luis A Martinez-Lemus
- From the Dalton Cardiovascular Research Center (M.M.-Q., F.I.R.-P., C.A.F., T.G., L.F.-S., C.M.-A., J.P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Biological Engineering (F.I.R.-P., L.A.M.-L.), University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology (L.A.M.-L.), University of Missouri, Columbia, MO
| |
Collapse
|
9
|
Wang L, Chitano P, Seow CY. Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and potential new therapy for asthma. Pharmacol Res 2020; 159:104995. [PMID: 32534100 DOI: 10.1016/j.phrs.2020.104995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The principle of mechanopharmacology of airway smooth muscle (ASM) is based on the premise that physical agitation, such as pressure oscillation applied to an airway, is able to induce bronchodilation by reducing contractility and softening the cytoskeleton of ASM. Although the underlying mechanism is not entirely clear, there is evidence to suggest that large-amplitude stretches are able to disrupt the actomyosin interaction in the crossbridge cycle and weaken the cytoskeleton in ASM cells. Rho-kinase is known to enhance force generation and strengthen structural integrity of the cytoskeleton during smooth muscle activation and plays a key role in the maintenance of force during prolonged muscle contractions. Synergy in relaxation has been observed when the muscle is subject to oscillatory length change while Rho-kinase is pharmacologically inhibited. In this review, inhibition of Rho-kinase coupled to therapeutic pressure oscillation applied to the airways is explored as a combination treatment for asthma.
Collapse
Affiliation(s)
- Lu Wang
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada.
| | - Pasquale Chitano
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| | - Chun Y Seow
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| |
Collapse
|
10
|
Abstract
Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Albany Medical College, Albany, NY, United States.
| |
Collapse
|
11
|
Schubert KM, Qiu J, Blodow S, Wiedenmann M, Lubomirov LT, Pfitzer G, Pohl U, Schneider H. The AMP-Related Kinase (AMPK) Induces Ca
2+
-Independent Dilation of Resistance Arteries by Interfering With Actin Filament Formation. Circ Res 2017; 121:149-161. [DOI: 10.1161/circresaha.116.309962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Rationale:
Decreasing Ca
2+
sensitivity of vascular smooth muscle (VSM) allows for vasodilation without lowering of cytosolic Ca
2+
. This may be particularly important in states requiring maintained dilation, such as hypoxia. AMP-related kinase (AMPK) is an important cellular energy sensor in VSM. Regulation of Ca
2+
sensitivity usually is attributed to myosin light chain phosphatase activity, but findings in non-VSM identified changes in the actin cytoskeleton. The potential role of AMPK in this setting is widely unknown.
Objective:
To assess the influence of AMPK on the actin cytoskeleton in VSM of resistance arteries with regard to potential Ca
2+
desensitization of VSM contractile apparatus.
Methods and Results:
AMPK induced a slowly developing dilation at unchanged cytosolic Ca
2+
levels in potassium chloride–constricted intact arteries isolated from mouse mesenteric tissue. This dilation was not associated with changes in phosphorylation of myosin light chain or of myosin light chain phosphatase regulatory subunit. Using ultracentrifugation and confocal microscopy, we found that AMPK induced depolymerization of F-actin (filamentous actin). Imaging of arteries from LifeAct mice showed F-actin rarefaction in the midcellular portion of VSM. Immunoblotting revealed that this was associated with activation of the actin severing factor cofilin. Coimmunoprecipitation experiments indicated that AMPK leads to the liberation of cofilin from 14-3-3 protein.
Conclusions:
AMPK induces actin depolymerization, which reduces vascular tone and the response to vasoconstrictors. Our findings demonstrate a new role of AMPK in the control of actin cytoskeletal dynamics, potentially allowing for long-term dilation of microvessels without substantial changes in cytosolic Ca
2+
.
Collapse
Affiliation(s)
- Kai Michael Schubert
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Jiehua Qiu
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Stephanie Blodow
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Margarethe Wiedenmann
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Lubomir T. Lubomirov
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Gabriele Pfitzer
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Ulrich Pohl
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Holger Schneider
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| |
Collapse
|
12
|
Banathy A, Cheung-Flynn J, Goleniewska K, Boyd KL, Newcomb DC, Peebles RS, Komalavilas P. Heat Shock-Related Protein 20 Peptide Decreases Human Airway Constriction Downstream of β2-Adrenergic Receptor. Am J Respir Cell Mol Biol 2017; 55:225-33. [PMID: 26909644 DOI: 10.1165/rcmb.2015-0139oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe bronchospasm refractory to β-agonists is a challenging aspect of asthma therapy, and novel therapeutics are needed. β-agonist-induced airway smooth muscle (ASM) relaxation is associated with increases in the phosphorylation of the small heat shock-related protein (HSP) 20. We hypothesized that a transducible phosphopeptide mimetic of HSP20 (P20 peptide) causes relaxation of human ASM (HASM) by interacting with target(s) downstream of the β2-adrenergic receptor (β2AR) pathway. The effect of the P20 peptide on ASM contractility was determined in human and porcine ASM using a muscle bath. The effect of the P20 peptide on filamentous actin dynamics and migration was examined in intact porcine ASM and cultured primary HASM cells. The efficacy of the P20 peptide in vivo on airway hyperresponsiveness (AHR) was determined in an ovalbumin (OVA) sensitization and challenge murine model of allergic airway inflammation. P20 peptide caused dose-dependent relaxation of carbachol-precontracted ASM and blocked carbachol-induced contraction. The β2AR inhibitor, (±)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride (ICI 118,551), abrogated isoproterenol but not P20 peptide-mediated relaxation. The P20 peptide decreased filamentous actin levels in intact ASM, disrupted stress fibers, and inhibited platelet-derived growth factor-induced migration of HASM cells. The P20 peptide treatment reduced methacholine-induced AHR in OVA mice without affecting the inflammatory response. These results suggest that the P20 peptide decreased airway constriction and disrupted stress fibers through regulation of the actin cytoskeleton downstream of β2AR. Thus, the P20 peptide may be a potential therapeutic for asthma refractory to β-agonists.
Collapse
Affiliation(s)
| | | | | | - Kelly L Boyd
- 3 Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | | | - R Stokes Peebles
- 2 Medicine, and.,4 Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Padmini Komalavilas
- Departments of 1 Surgery.,4 Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
13
|
El-Yazbi AF, Abd-Elrahman KS. ROK and Arteriolar Myogenic Tone Generation: Molecular Evidence in Health and Disease. Front Pharmacol 2017; 8:87. [PMID: 28280468 PMCID: PMC5322222 DOI: 10.3389/fphar.2017.00087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
The myogenic response is an inherent property of resistance arteries that warrants a relatively constant blood flow in response to changes in perfusion pressure and protect delicate organs from vascular insufficiencies and excessive blood flow. This fundamental phenomenon has been extensively studied aiming to elucidate the underlying mechanisms triggering smooth muscle contraction in response to intraluminal pressure elevation, particularly, Rho-associated kinase (ROK)-mediated Ca2+-independent mechanisms. The size of the resistance arteries limits the capacity to examine changes in protein phosphorylation/expression levels associated with ROK signaling. A highly sensitive biochemical detection approach was beneficial in examining the role of ROK in different force generation mechanisms along the course of myogenic constriction. In this mini review, we summarize recent results showing direct evidence for the contribution of ROK in development of myogenic response at the level of mechanotransduction, myosin light chain phosphatase inhibition and dynamic actin cytoskeleton reorganization. We will also present evidence that alterations in ROK signaling could underlie the progressive loss in myogenic response in a rat model of type 2 diabetes.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt
| | - Khaled S Abd-Elrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria UniversityAlexandria, Egypt; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of OttawaOttawa, ON, Canada
| |
Collapse
|
14
|
Hocking KM, Putumbaka G, Wise ES, Cheung-Flynn J, Brophy CM, Komalavilas P. Papaverine Prevents Vasospasm by Regulation of Myosin Light Chain Phosphorylation and Actin Polymerization in Human Saphenous Vein. PLoS One 2016; 11:e0154460. [PMID: 27136356 PMCID: PMC4852981 DOI: 10.1371/journal.pone.0154460] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 04/13/2016] [Indexed: 11/18/2022] Open
Abstract
Objective Papaverine is used to prevent vasospasm in human saphenous veins (HSV) during vein graft preparation prior to implantation as a bypass conduit. Papaverine is a nonspecific inhibitor of phosphodiesterases, leading to increases in both intracellular cGMP and cAMP. We hypothesized that papaverine reduces force by decreasing intracellular calcium concentrations ([Ca2+]i) and myosin light chain phosphorylation, and increasing actin depolymerization via regulation of actin regulatory protein phosphorylation. Approach and Results HSV was equilibrated in a muscle bath, pre-treated with 1 mM papaverine followed by 5 μM norepinephrine, and force along with [Ca2+]i levels were concurrently measured. Filamentous actin (F-actin) level was measured by an in vitro actin assay. Tissue was snap frozen to measure myosin light chain and actin regulatory protein phosphorylation. Pre-treatment with papaverine completely inhibited norepinephrine-induced force generation, blocked increases in [Ca2+]i and led to a decrease in the phosphorylation of myosin light chain. Papaverine pre-treatment also led to increased phosphorylation of the heat shock-related protein 20 (HSPB6) and the vasodilator stimulated phosphoprotein (VASP), as well as decreased filamentous actin (F-actin) levels suggesting depolymerization of actin. Conclusions These results suggest that papaverine-induced force inhibition of HSV involves [Ca2+]i-mediated inhibition of myosin light chain phosphorylation and actin regulatory protein phosphorylation-mediated actin depolymerization. Thus, papaverine induces sustained inhibition of contraction of HSV by the modulation of both myosin cross-bridge formation and actin cytoskeletal dynamics and is a pharmacological alternative to high pressure distention to prevent vasospasm.
Collapse
Affiliation(s)
- Kyle M. Hocking
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| | - Gowthami Putumbaka
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric S. Wise
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joyce Cheung-Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Colleen M. Brophy
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Padmini Komalavilas
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
15
|
P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS One 2016; 11:e0153312. [PMID: 27071060 PMCID: PMC4829229 DOI: 10.1371/journal.pone.0153312] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
Prostate smooth muscle tone and hyperplastic growth are involved in the pathophysiology and treatment of male lower urinary tract symptoms (LUTS). Available drugs are characterized by limited efficacy. Patients' adherence is particularly low to combination therapies of 5α-reductase inhibitors and α1-adrenoceptor antagonists, which are supposed to target contraction and growth simultaneously. Consequently, molecular etiology of benign prostatic hyperplasia (BPH) and new compounds interfering with smooth muscle contraction or growth in the prostate are of high interest. Here, we studied effects of p21-activated kinase (PAK) inhibitors (FRAX486, IPA3) in hyperplastic human prostate tissues, and in stromal cells (WPMY-1). In hyperplastic prostate tissues, PAK1, -2, -4, and -6 may be constitutively expressed in catecholaminergic neurons, while PAK1 was detected in smooth muscle and WPMY-1 cells. Neurogenic contractions of prostate strips by electric field stimulation were significantly inhibited by high concentrations of FRAX486 (30 μM) or IPA3 (300 μM), while noradrenaline- and phenylephrine-induced contractions were not affected. FRAX486 (30 μM) inhibited endothelin-1- and -2-induced contractions. In WPMY-1 cells, FRAX486 or IPA3 (24 h) induced concentration-dependent (1-10 μM) degeneration of actin filaments. This was paralleled by attenuation of proliferation rate, being observed from 1 to 10 μM FRAX486 or IPA3. Cytotoxicity of FRAX486 and IPA3 in WPMY-1 cells was time- and concentration-dependent. Stimulation of WPMY-1 cells with endothelin-1 or dihydrotestosterone, but not noradrenaline induced PAK phosphorylation, indicating PAK activation by endothelin-1. Thus, PAK inhibitors may inhibit neurogenic and endothelin-induced smooth muscle contractions in the hyperplastic human prostate, and growth of stromal cells. Targeting prostate smooth muscle contraction and stromal growth at once by a single compound is principally possible, at least under experimental conditions.
Collapse
|
16
|
Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res 2015; 16:134. [PMID: 26517982 PMCID: PMC4628321 DOI: 10.1186/s12931-015-0296-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
17
|
Martinsen A, Dessy C, Morel N. Regulation of calcium channels in smooth muscle: new insights into the role of myosin light chain kinase. Channels (Austin) 2015; 8:402-13. [PMID: 25483583 DOI: 10.4161/19336950.2014.950537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca(2+) flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca(2+) channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca(2+) channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca(2+) entry in VSM is described in the present review.
Collapse
Key Words
- CaM, calmodulin
- ER, endoplasmic reticulum
- MLCK, myosin light chain kinase
- Myosin light chain kinase
- ROC, receptor-operated Ca2+ (channel)
- SMC, smooth muscle cell
- SOC, store-operated Ca2+ (channel)
- SR, sarcoplasmic reticulum
- TRP
- TRP, transient receptor potential (channel)
- VOC, voltage-operated Ca2+ (channel)
- VSM, vascular smooth muscle
- VSMC, vascular smooth muscle cell
- [Ca2+]cyt, cytosolic Ca2+ concentration
- siRNA, small interfering RNA
- vascular smooth muscle
- voltage-dependent calcium channels
Collapse
Affiliation(s)
- A Martinsen
- a Cell physiology; IoNS; UCLouvain ; Brussels , Belgium
| | | | | |
Collapse
|
18
|
Wang T, Cleary RA, Wang R, Tang DD. Glia maturation factor-γ phosphorylation at Tyr-104 regulates actin dynamics and contraction in human airway smooth muscle. Am J Respir Cell Mol Biol 2015; 51:652-9. [PMID: 24818551 DOI: 10.1165/rcmb.2014-0125oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Actin dynamics plays an essential role in regulating airway smooth muscle contraction. The mechanisms that regulate actin dynamics in smooth muscle are not completely understood. Glia maturation factor (GMF) is a protein that has been reported to inhibit actin nucleation and to induce actin network debranching in vitro. The role of GMF in human smooth muscle cells and tissues has not been investigated. In this study, knockdown of GMF-γ by RNA interference enhanced actin polymerization and contraction in human airway smooth muscle (HASM) cells and tissues without affecting myosin phosphorylation (another important biochemical change during contractile activation). Activation of HASM cells and tissues with acetylcholine induced dissociation of GMF-γ from Arp2 of the Arp2/3 complex. Acetylcholine stimulation also increased GMF-γ phosphorylation at Tyr-104. GMF-γ phosphorylation at this residue was mediated by c-Abl tyrosine kinase. The GMF-γ mutant Y104F (phenylalanine substitution at Tyr-104) had higher association with Arp2 in HASM cells upon contractile activation. Furthermore, expression of mutant Y104F GMF-γ attenuated actin polymerization and contraction in smooth muscle. Thus, we propose a novel mechanism for the regulation of actin dynamics and smooth muscle contraction. In unstimulated smooth muscle, GMF-γ binds to the Arp2/3 complex, which induces actin disassembly and retains lower levels of F-actin. Upon contractile stimulation, phosphorylation at Tyr-104 mediated by c-Abl tyrosine kinase leads to the dissociation of GMF-γ from Arp2/3, by which GMF-γ no longer induces actin disassembly. Reduced actin disassembly renders F-actin in higher level, which facilitates smooth muscle contraction.
Collapse
Affiliation(s)
- Tao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | | | | | |
Collapse
|
19
|
Moreno-Domínguez A, El-Yazbi AF, Zhu HL, Colinas O, Zhong XZ, Walsh EJ, Cole DM, Kargacin GJ, Walsh MP, Cole WC. Cytoskeletal reorganization evoked by Rho-associated kinase- and protein kinase C-catalyzed phosphorylation of cofilin and heat shock protein 27, respectively, contributes to myogenic constriction of rat cerebral arteries. J Biol Chem 2014; 289:20939-52. [PMID: 24914207 PMCID: PMC4110300 DOI: 10.1074/jbc.m114.553743] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
Our understanding of the molecular events contributing to myogenic control of diameter in cerebral resistance arteries in response to changes in intravascular pressure, a fundamental mechanism regulating blood flow to the brain, is incomplete. Myosin light chain kinase and phosphatase activities are known to be increased and decreased, respectively, to augment phosphorylation of the 20-kDa regulatory light chain subunits (LC20) of myosin II, which permits cross-bridge cycling and force development. Here, we assessed the contribution of dynamic reorganization of the actin cytoskeleton and thin filament regulation to the myogenic response and serotonin-evoked constriction of pressurized rat middle cerebral arteries. Arterial diameter and the levels of phosphorylated LC(20), calponin, caldesmon, cofilin, and HSP27, as well as G-actin content, were determined. A decline in G-actin content was observed following pressurization from 10 mm Hg to between 40 and 120 mm Hg and in three conditions in which myogenic or agonist-evoked constriction occurred in the absence of a detectable change in LC20 phosphorylation. No changes in thin filament protein phosphorylation were evident. Pressurization reduced G-actin content and elevated the levels of cofilin and HSP27 phosphorylation. Inhibitors of Rho-associated kinase and PKC prevented the decline in G-actin; reduced cofilin and HSP27 phosphoprotein content, respectively; and blocked the myogenic response. Furthermore, phosphorylation modulators of HSP27 and cofilin induced significant changes in arterial diameter and G-actin content of myogenically active arteries. Taken together, our findings suggest that dynamic reorganization of the cytoskeleton involving increased actin polymerization in response to Rho-associated kinase and PKC signaling contributes significantly to force generation in myogenic constriction of cerebral resistance arteries.
Collapse
Affiliation(s)
| | - Ahmed F. El-Yazbi
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Hai-Lei Zhu
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Olaia Colinas
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - X. Zoë Zhong
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Emma J. Walsh
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Dylan M. Cole
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Gary J. Kargacin
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Michael P. Walsh
- Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - William C. Cole
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| |
Collapse
|
20
|
You T, Fan Y, Li Q, Gao Y, Yang Y, Zhao Z, Wang C. Increased SSeCKS expression in rat hepatic stellate cells upon activation in vitro and in vivo. Inflammation 2014; 36:1415-23. [PMID: 23925424 DOI: 10.1007/s10753-013-9681-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent reports suggest that src suppressed c kinase substrates (SSeCKS) are early inflammatory response protein. However, there is only scarce knowledge on the functional role of SSeCKS in liver under conditions of acute inflammation. In the present study, we investigated SSeCKS expression in liver after administration of carbon tetrachloride (CCl4) in rats and in isolated primary hepatic stellate cells (HSCs) upon activation on a plastic dish. We found that SSeCKS mRNA was hardly detectable in healthy liver tissue and further increased in carbon tetrachloride-mediated acute liver failure. SSeCKS protein expression was mainly found in hepatic stellate cells. In vitro, SSeCKS expression in activated rat HSCs was dramatically increased. The upregulation of SSeCKS protein expression in rat HSCs during activation in vitro and in vivo suggested the possibility of SSeCKS, an important part of function of the activated HSCs, perhaps through modulation of liver regeneration or formation of liver fibrosis after various injuries.
Collapse
Affiliation(s)
- Tiangeng You
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Lan B, Wang L, Zhang J, Pascoe CD, Norris BA, Liu JCY, Solomon D, Paré PD, Deng L, Seow CY. Rho-kinase mediated cytoskeletal stiffness in skinned smooth muscle. J Appl Physiol (1985) 2013; 115:1540-52. [PMID: 24072407 DOI: 10.1152/japplphysiol.00654.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The structurally dynamic cytoskeleton is important in many cell functions. Large gaps still exist in our knowledge regarding what regulates cytoskeletal dynamics and what underlies the structural plasticity. Because Rho-kinase is an upstream regulator of signaling events leading to phosphorylation of many cytoskeletal proteins in many cell types, we have chosen this kinase as the focus of the present study. In detergent skinned tracheal smooth muscle preparations, we quantified the proteins eluted from the muscle cells over time and monitored the muscle's ability to respond to acetylcholine (ACh) stimulation to produce force and stiffness. In a partially skinned preparation not able to generate active force but could still stiffen upon ACh stimulation, we found that the ACh-induced stiffness was independent of calcium and myosin light chain phosphorylation. This indicates that the myosin light chain-dependent actively cycling crossbridges are not likely the source of the stiffness. The results also indicate that Rho-kinase is central to the ACh-induced stiffness, because inhibition of the kinase by H1152 (1 μM) abolished the stiffening. Furthermore, the rate of relaxation of calcium-induced stiffness in the skinned preparation was faster than that of ACh-induced stiffness, with or without calcium, suggesting that different signaling pathways lead to different means of maintenance of stiffness in the skinned preparation.
Collapse
Affiliation(s)
- Bo Lan
- Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Austin KM, Nguyen N, Javid G, Covic L, Kuliopulos A. Noncanonical matrix metalloprotease-1-protease-activated receptor-1 signaling triggers vascular smooth muscle cell dedifferentiation and arterial stenosis. J Biol Chem 2013; 288:23105-15. [PMID: 23814055 DOI: 10.1074/jbc.m113.467019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular injury that results in proliferation and dedifferentiation of vascular smooth muscle cells (SMCs) is an important contributor to restenosis following percutaneous coronary interventions or plaque rupture. Protease-activated receptor-1 (PAR1) has been shown to play a role in vascular repair processes; however, little is known regarding its function or the relative roles of the upstream proteases thrombin and matrix metalloprotease-1 (MMP-1) in triggering PAR1-mediated arterial restenosis. The goal of this study was to determine whether noncanonical MMP-1 signaling through PAR1 would contribute to aberrant vascular repair processes in models of arterial injury. A mouse carotid arterial wire injury model was used for studies of neointima hyperplasia and arterial stenosis. The mice were treated post-injury for 21 days with a small molecule inhibitor of MMP-1 or a direct thrombin inhibitor and compared with vehicle control. Intimal and medial hyperplasia was significantly inhibited by 2.8-fold after daily treatment with the small molecule MMP-1 inhibitor, an effect that was lost in PAR1-deficient mice. Conversely, chronic inhibition of thrombin showed no benefit in suppressing the development of arterial stenosis. Thrombin-PAR1 signaling resulted in a supercontractile, differentiated phenotype in SMCs. Noncanonical MMP-1-PAR1 signaling resulted in the opposite effect and led to a dedifferentiated phenotype via a different G protein pathway. MMP-1-PAR1 significantly stimulated hyperplasia and migration of SMCs, and resulted in down-regulation of SMC contractile genes. These studies provide a new mechanism for the development of vascular intimal hyperplasia and suggest a novel therapeutic strategy to suppress restenosis by targeting noncanonical MMP-1-PAR1 signaling in vascular SMCs.
Collapse
Affiliation(s)
- Karyn M Austin
- Hemostasis and Thrombosis Laboratory, Molecular Oncology Research Institute, Tufts Medical Center, the Program in Genetics at the Sackler School of Biomedical Sciences, Tufts University, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
23
|
Rembold CM, Garvey SM, Tejani AD. Slack length reduces the contractile phenotype of the Swine carotid artery. J Vasc Res 2013; 50:221-7. [PMID: 23711915 DOI: 10.1159/000350823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/17/2013] [Indexed: 11/19/2022] Open
Abstract
Contraction is the primary function of adult arterial smooth muscle. However, in response to vessel injury or inflammation, arterial smooth muscle is able to phenotypically modulate from the contractile state to several 'synthetic' states characterized by proliferation, migration and/or increased cytokine secretion. We examined the effect of tissue length (L) on the phenotype of intact, isometrically held, initially contractile swine carotid artery tissues. Tissues were studied (1) without prolonged incubation at the optimal length for force generation (1.0 Lo, control), (2) with prolonged incubation for 17 h at 1.0 Lo, or (3) with prolonged incubation at slack length (0.6 Lo) for 16 h and then restoration to 1.0 Lo for 1 h. Prolonged incubation at 1.0 Lo minimally reduced the contractile force without substantially altering the mediators of contraction (crossbridge phosphorylation, shortening velocity or stimulated actin polymerization). Prolonged incubation of tissues at slack length (0.6 Lo), despite return of length to 1.0 Lo, substantially reduced contractile force, reduced crossbridge phosphorylation, nearly abolished crossbridge cycling (shortening velocity) and abolished stimulated actin polymerization. These data suggest that (1) slack length treatment significantly alters the contractile phenotype of arterial tissue, and (2) slack length treatment is a model to study acute phenotypic modulation of intact arterial smooth muscle.
Collapse
Affiliation(s)
- Christopher M Rembold
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908-0146, USA.
| | | | | |
Collapse
|
24
|
Hocking KM, Baudenbacher FJ, Putumbaka G, Venkatraman S, Cheung-Flynn J, Brophy CM, Komalavilas P. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries. PLoS One 2013; 8:e60986. [PMID: 23593369 PMCID: PMC3625185 DOI: 10.1371/journal.pone.0060986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.
Collapse
Affiliation(s)
- Kyle M. Hocking
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Franz J. Baudenbacher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gowthami Putumbaka
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sneha Venkatraman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joyce Cheung-Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Colleen M. Brophy
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Padmini Komalavilas
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
25
|
Moreno-Domínguez A, Colinas O, El-Yazbi A, Walsh EJ, Hill MA, Walsh MP, Cole WC. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries. J Physiol 2012; 591:1235-50. [PMID: 23230233 DOI: 10.1113/jphysiol.2012.243576] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract The myogenic response of resistance arteries to intravascular pressure elevation is a fundamental physiological mechanism of crucial importance for blood pressure regulation and organ-specific control of blood flow. The importance of Ca(2+) entry via voltage-gated Ca(2+) channels leading to phosphorylation of the 20 kDa myosin regulatory light chains (LC20) in the myogenic response is well established. Recent studies, however, have suggested a role for Ca(2+) sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway in the myogenic response. The possibility that enhanced actin polymerization is also involved in myogenic vasoconstriction has been suggested. Here, we have used pressurized resistance arteries from rat gracilis and cremaster skeletal muscles to assess the contribution to myogenic constriction of Ca(2+) sensitization due to: (1) phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) by ROK; (2) phosphorylation of the 17 kDa protein kinase C (PKC)-potentiated protein phosphatase 1 inhibitor protein (CPI-17) by PKC; and (3) dynamic reorganization of the actin cytoskeleton evoked by ROK and PKC. Arterial diameter, MYPT1, CPI-17 and LC20 phosphorylation, and G-actin content were determined at varied intraluminal pressures ± H1152, GF109203X or latrunculin B to suppress ROK, PKC and actin polymerization, respectively. The myogenic response was associated with an increase in MYPT1 and LC20 phosphorylation that was blocked by H1152. No change in phospho-CPI-17 content was detected although the PKC inhibitor, GF109203X, suppressed myogenic constriction. Basal LC20 phosphorylation at 10 mmHg was high at ∼40%, increased to a maximal level of ∼55% at 80 mmHg, and exhibited no additional change on further pressurization to 120 and 140 mmHg. Myogenic constriction at 80 mmHg was associated with a decline in G-actin content by ∼65% that was blocked by inhibition of ROK or PKC. Taken together, our findings indicate that two mechanisms of Ca(2+) sensitization (ROK-mediated phosphorylation of MYPT1-T855 with augmentation of LC20 phosphorylation, and a ROK- and PKC-evoked increase in actin polymerization) contribute to force generation in the myogenic response of skeletal muscle arterioles.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhu Y, Qiu H, Trzeciakowski JP, Sun Z, Li Z, Hong Z, Hill MA, Hunter WC, Vatner DE, Vatner SF, Meininger GA. Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging. Aging Cell 2012; 11:741-50. [PMID: 22639979 DOI: 10.1111/j.1474-9726.2012.00840.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A spectral analysis approach was developed for detailed study of time-resolved, dynamic changes in vascular smooth muscle cell (VSMC) elasticity and adhesion to identify differences in VSMC from young and aged monkeys. Atomic force microscopy (AFM) was used to measure Young's modulus of elasticity and adhesion as assessed by fibronectin (FN) or anti-beta 1 integrin interaction with the VSMC surface. Measurements demonstrated that VSMC cells from old vs. young monkeys had increased elasticity (21.6 kPa vs. 3.5 kPa or a 612% increase in elastic modulus) and adhesion (86 pN vs. 43 pN or a 200% increase in unbinding force). Spectral analysis identified three major frequency components in the temporal oscillation patterns for elasticity (ranging from 1.7 × 10(-3) to 1.9 × 10(-2) Hz in old and 8.4 × 10(-4) to 1.5 × 10(-2) Hz in young) and showed that the amplitude of oscillation was larger (P < 0.05) in old than in young at all frequencies. It was also observed that patterns of oscillation in the adhesion data were similar to the elasticity waveforms. Cell stiffness was reduced and the oscillations were inhibited by treatment with cytochalasin D, ML7 or blebbistatin indicating the involvement of actin-myosin-driven processes. In conclusion, these data demonstrate the efficacy of time-resolved analysis of AFM cell elasticity and adhesion measurements and that it provides a uniquely sensitive method to detect real-time functional differences in biomechanical and adhesive properties of cells. The oscillatory behavior suggests that mechanisms governing elasticity and adhesion are coupled and affected differentially during aging, which may link these events to changes in vascular stiffness.
Collapse
Affiliation(s)
- Yi Zhu
- Dalton Cardiovascular Res Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Osteocytes were the forgotten bone cell until the bone community could become convinced that these cells do serve an important role in bone function and maintenance. In this review we trace the history of osteocyte characterization and present some of the major observations that are leading to the conclusion that these cells are not passive placeholders residing in the bone matrix, but are indeed, major orchestrators of bone remodeling.
Collapse
Affiliation(s)
- Dayong Guo
- University of Missouri, Kansas City, MO, USA
| | | |
Collapse
|
28
|
Rao JN, Rivera-Santiago R, Li XE, Lehman W, Dominguez R. Structural analysis of smooth muscle tropomyosin α and β isoforms. J Biol Chem 2011; 287:3165-74. [PMID: 22119916 DOI: 10.1074/jbc.m111.307330] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A large number of tropomyosin (Tm) isoforms function as gatekeepers of the actin filament, controlling the spatiotemporal access of actin-binding proteins to specialized actin networks. Residues ∼40-80 vary significantly among Tm isoforms, but the impact of sequence variation on Tm structure and interactions with actin is poorly understood, because structural studies have focused on skeletal muscle Tmα. We describe structures of N-terminal fragments of smooth muscle Tmα and Tmβ (sm-Tmα and sm-Tmβ). The 2.0-Å structure of sm-Tmα81 (81-aa) resembles that of skeletal Tmα, displaying a similar super-helical twist matching the contours of the actin filament. The 1.8-Å structure of sm-Tmα98 (98-aa) unexpectedly reveals an antiparallel coiled coil, with the two chains staggered by only 4 amino acids and displaying hydrophobic core interactions similar to those of the parallel dimer. In contrast, the 2.5-Å structure of sm-Tmβ98, containing Gly-Ala-Ser at the N terminus to mimic acetylation, reveals a parallel coiled coil. None of the structures contains coiled-coil stabilizing elements, favoring the formation of head-to-tail overlap complexes in four of five crystallographically independent parallel dimers. These complexes show similarly arranged 4-helix bundles stabilized by hydrophobic interactions, but the extent of the overlap varies between sm-Tmβ98 and sm-Tmα81 from 2 to 3 helical turns. The formation of overlap complexes thus appears to be an intrinsic property of the Tm coiled coil, with the specific nature of hydrophobic contacts determining the extent of the overlap. Overall, the results suggest that sequence variation among Tm isoforms has a limited effect on actin binding but could determine its gatekeeper function.
Collapse
Affiliation(s)
- Jampani Nageswara Rao
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
29
|
Roscioni SS, Maarsingh H, Elzinga CRS, Schuur J, Menzen M, Halayko AJ, Meurs H, Schmidt M. Epac as a novel effector of airway smooth muscle relaxation. J Cell Mol Med 2011; 15:1551-63. [PMID: 20716113 PMCID: PMC3823199 DOI: 10.1111/j.1582-4934.2010.01150.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dysfunctional regulation of airway smooth muscle tone is a feature of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Airway smooth muscle contraction is directly associated with changes in the phosphorylation of myosin light chain (MLC), which is increased by Rho and decreased by Rac. Although cyclic adenosine monophosphate (cAMP)-elevating agents are believed to relieve bronchoconstriction mainly via activation of protein kinase A (PKA), here we addressed the role of the novel cAMP-mediated exchange protein Epac in the regulation of airway smooth muscle tone. Isometric tension measurements showed that specific activation of Epac led to relaxation of guinea pig tracheal preparations pre-contracted with methacholine, independently of PKA. In airway smooth muscle cells, Epac activation reduced methacholine-induced MLC phosphorylation. Moreover, when Epac was stimulated, we observed a decreased methacholine-induced RhoA activation, measured by both stress fibre formation and pull-down assay whereas the same Epac activation prevented methacholine-induced Rac1 inhibition measured by pull-down assay. Epac-driven inhibition of both methacholine-induced muscle contraction by Toxin B-1470, and MLC phosphorylation by the Rac1-inhibitor NSC23766, were significantly attenuated, confirming the importance of Rac1 in Epac-mediated relaxation. Importantly, human airway smooth muscle tissue also expresses Epac, and Epac activation both relaxed pre-contracted human tracheal preparations and decreased MLC phosphorylation. Collectively, we show that activation of Epac relaxes airway smooth muscle by decreasing MLC phosphorylation by skewing the balance of RhoA/Rac1 activation towards Rac1. Therefore, activation of Epac may have therapeutical potential in the treatment of obstructive airway diseases.
Collapse
Affiliation(s)
- Sara S Roscioni
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Obinata T, Ono K, Ono S. Detection of a troponin I-like protein in non-striated muscle of the tardigrades (water bears). BIOARCHITECTURE 2011; 1:96-102. [PMID: 21866271 DOI: 10.4161/bioa.1.2.16251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 12/29/2022]
Abstract
Tardigrades, also known as water bears, have somatic muscle fibers that are responsible for movement of their body and legs. These muscle fibers contain thin and thick filaments in a non-striated pattern. However, the regulatory mechanism of muscle contraction in tardigrades is unknown. In the absence of extensive molecular and genomic information, we detected a protein of 31 kDa in whole lysates of tardigrades that cross-reacted with the antibody raised against nematode troponin I (TnI). TnI is a component of the troponin complex that regulates actin-myosin interaction in a Ca(2+)-dependent and actin-linked manner. This TnI-like protein was co-extracted with actin in a buffer containing ATP and EGTA, which is known to induce relaxation of a troponin-regulated contractile system. The TnI-like protein was specifically expressed in the somatic muscle fibers in adult animals and partially co-localized with actin filaments in a non-striated manner. Interestingly, the pharyngeal muscle did not express this protein. These observations suggest that the non-striated somatic muscle of tardigrades has an actin-linked and troponin-regulated system for muscle contraction.
Collapse
Affiliation(s)
- Takashi Obinata
- Department of Biology; Faculty of Science; Chiba University; Chiba, Japan
| | | | | |
Collapse
|
31
|
Dokas LA, Malone AM, Williams FE, Nauli SM, Messer WS. Multiple protein kinases determine the phosphorylated state of the small heat shock protein, HSP27, in SH-SY5Y neuroblastoma cells. Neuropharmacology 2011; 61:12-24. [PMID: 21338617 PMCID: PMC3105189 DOI: 10.1016/j.neuropharm.2011.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/25/2011] [Accepted: 02/11/2011] [Indexed: 01/21/2023]
Abstract
In SH-SY5Y human neuroblastoma cells, the cholinergic agonist, carbachol, stimulates phosphorylation of the small heat shock protein 27 (HSP27). Carbachol increases phosphorylation of both Ser-82 and Ser-78 while the phorbol ester, phorbol-12, 13-dibutyrate (PDB) affects only Ser-82. Muscarinic receptor activation by carbachol was confirmed by sensitivity of Ser-82 phosphorylation to hyoscyamine with no effect of nicotine or bradykinin. This response to carbachol is partially reduced by inhibition of protein kinase C (PKC) with GF 109203X and p38 mitogen-activated protein kinase (MAPK) with SB 203580. In contrast, phosphorylation produced by PDB is completely reversed by GF 109203X or CID 755673, an inhibitor of PKD. Inhibition of phosphatidylinositol 3-kinase or Akt with LY 294002 or Akti-1/2 stimulates HSP27 phosphorylation while rapamycin, which inhibits mTORC1, does not. The stimulatory effect of Akti-1/2 is reversed by SB 203580 and correlates with increased p38 MAPK phosphorylation. SH-SY5Y cells differentiated with a low concentration of PDB and basic fibroblast growth factor to a more neuronal phenotype retain carbachol-, PDB- and Akti-1/2-responsive HSP27 phosphorylation. Immunofluorescence microscopy confirms increased HSP27 phosphorylation in response to carbachol or PDB. At cell margins, PDB causes f-actin to reorganize forming lamellipodial structures from which phospho-HSP27 is segregated. The resultant phenotypic change in cell morphology is dependent upon PKC, but not PKD, activity. The major conclusion from this study is that the phosphorylated state of HSP27 in SH-SY5Y cells results from integrated signaling involving PKC, p38 MAPK and Akt.
Collapse
Affiliation(s)
- Linda A. Dokas
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| | - Amy M. Malone
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| | - Frederick E. Williams
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| | - Surya M. Nauli
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
- Department of Medicinal & Biological Chemistry, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| | - William S. Messer
- Department of Pharmacology, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
- Department of Medicinal & Biological Chemistry, College of Pharmacy, 3000 Arlington Avenue, The University of Toledo, Toledo OH 43614 USA
| |
Collapse
|
32
|
Milewicz DM, Østergaard JR, Ala-Kokko LM, Khan N, Grange DK, Mendoza-Londono R, Bradley TJ, Olney AH, Adès L, Maher JF, Guo D, Buja LM, Kim D, Hyland JC, Regalado ES. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am J Med Genet A 2010; 152A:2437-43. [PMID: 20734336 DOI: 10.1002/ajmg.a.33657] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Smooth muscle cells (SMCs) contract to perform many physiological functions, including regulation of blood flow and pressure in arteries, contraction of the pupils, peristalsis of the gut, and voiding of the bladder. SMC lineage in these organs is characterized by cellular expression of the SMC isoform of α-actin, encoded by the ACTA2 gene. We report here on a unique and de novo mutation in ACTA2, R179H, that causes a syndrome characterized by dysfunction of SMCs throughout the body, leading to aortic and cerebrovascular disease, fixed dilated pupils, hypotonic bladder, malrotation, and hypoperistalsis of the gut and pulmonary hypertension.
Collapse
Affiliation(s)
- Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jia L, Tang DD. Abl activation regulates the dissociation of CAS from cytoskeletal vimentin by modulating CAS phosphorylation in smooth muscle. Am J Physiol Cell Physiol 2010; 299:C630-7. [PMID: 20610769 DOI: 10.1152/ajpcell.00095.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abl is a nonreceptor tyrosine kinase that is required for smooth muscle contraction. However, the mechanism by which Abl regulates smooth muscle contraction is not completely understood. In the present study, Abl underwent phosphorylation at Tyr412 (an index of Abl activation) in smooth muscle in response to contractile activation. Treatment with a cell-permeable decoy peptide, but not the control peptide, attenuated Abl phosphorylation during contractile stimulation. Treatment with the decoy peptide did not affect the association of Abl with the cytoskeletal protein vinculin and the spatial location of vinculin in smooth muscle. Inhibition of Abl phosphorylation by the decoy peptide attenuated the agonist-induced phosphorylation of Crk-associated substrate (CAS), an adapter protein participating in the signaling processes that regulate force development in smooth muscle. Additionally, previous studies have shown that contractile stimulation triggers the dissociation of CAS from the vimentin network, which is important for cytoskeletal signaling and contraction in smooth muscle. In this report, the decrease in the amount of CAS in cytoskeletal vimentin in response to contractile activation was reversed by the Abl inhibition with the decoy peptide. Moreover, force development and the enhancement of F-actin-to-G-actin ratios (an indication of actin polymerization) upon contractile activation were also attenuated by the Abl inhibition. However, myosin phosphorylation induced by contractile activation was not affected by the inhibition of Abl. These results suggest that Abl regulates the dissociation of CAS from the vimentin network, actin polymerization, and contraction by modulating CAS phosphorylation in smooth muscle.
Collapse
Affiliation(s)
- Li Jia
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | | |
Collapse
|
34
|
Obinata T, Ono K, Ono S. Troponin I controls ovulatory contraction of non-striated actomyosin networks in the C. elegans somatic gonad. J Cell Sci 2010; 123:1557-66. [PMID: 20388732 DOI: 10.1242/jcs.065060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The myoepithelial sheath of the Caenorhabditis elegans somatic gonad has non-striated actomyosin networks that provide contractile forces during ovulation, a process in which a mature oocyte is expelled from the ovary. Troponin T and troponin C are known regulators of contraction of the myoepithelial sheath. These are two of the three components of the troponin complex that is generally considered as a striated-muscle-specific regulator of actomyosin contraction. Here, we report identification of troponin I as the third component of the troponin complex that regulates ovulatory contraction of the myoepithelial sheath. C. elegans has four genes encoding troponin-I isoforms. We found that tni-1 and unc-27 (also known as tni-2) encode two major troponin-I isoforms in the myoepithelial sheath. Combination of RNA interference and mutation of tni-1 and unc-27 resulted in loss of the troponin-I protein in the gonad and caused sterility due to defective contraction of the myoepithelial sheath. Troponin-I-depleted gonads were hypercontracted, which is consistent with the function of troponin I as an inhibitor of actomyosin contraction. Troponin I was associated with non-striated actin networks in a tropomyosin-dependent manner. Our results demonstrate that troponin I regulates contraction of non-striated actomyosin networks and is an essential cytoskeletal component of the C. elegans reproductive system.
Collapse
Affiliation(s)
- Takashi Obinata
- Department of Health and Nutrition, Teikyo-Heisei University, Tokyo 170-8445, Japan
| | | | | |
Collapse
|
35
|
El-Yazbi AF, Johnson RP, Walsh EJ, Takeya K, Walsh MP, Cole WC. Pressure-dependent contribution of Rho kinase-mediated calcium sensitization in serotonin-evoked vasoconstriction of rat cerebral arteries. J Physiol 2010; 588:1747-62. [PMID: 20351047 DOI: 10.1113/jphysiol.2010.187146] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our understanding of the cellular signalling mechanisms contributing to agonist-induced constriction is almost exclusively based on the study of conduit arteries. Resistance arteries/arterioles have received less attention as standard biochemical approaches lack the necessary sensitivity to permit quantification of phosphoprotein levels in these small vessels. Here, we have employed a novel, highly sensitive Western blotting method to assess: (1) the contribution of Ca(2+) sensitization mediated by phosphorylation of myosin light chain phosphatase targeting subunit 1 (MYPT1) and the 17 kDa PKC-potentiated protein phosphatase 1 inhibitor protein (CPI-17) to serotonin (5-HT)-induced constriction of rat middle cerebral arteries, and (2) whether there is any interplay between pressure-induced myogenic and agonist-induced mechanisms of vasoconstriction. Arterial diameter and levels of MYPT1 (T697 and T855), CPI-17 and 20 kDa myosin light chain subunit (LC(20)) phosphorylation were determined following treatment with 5-HT (1 micromol l(1)) at 10 or 60 mmHg in the absence and presence of H1152 or GF109203X to suppress the activity of Rho-associated kinase (ROK) and protein kinase C (PKC), respectively. Although H1152 and GF109203X suppressed 5-HT-induced constriction and reduced phospho-LC(20) content at 10 mmHg, we failed to detect any increase in MYPT1 or CPI-17 phosphorylation. In contrast, an increase in MYPT1-T697 and MYPT1-T855 phosphorylation, but not phospho-CPI-17 content, was apparent at 60 mmHg following exposure to 5-HT, and the phosphorylation of both MYPT1 sites was sensitive to H1152 inhibition of ROK. The involvement of MYPT1 phosphorylation in the response to 5-HT at 60 mmHg was not dependent on force generation per se, as inhibition of cross-bridge cycling with blebbistatin (10 micromol l(1)) did not affect phosphoprotein content. Taken together, the data indicate that Ca(2+) sensitization owing to ROK-mediated phosphorylation of MYPT1 contributes to 5-HT-evoked vasoconstriction only in the presence of pressure-induced myogenic activation. These findings provide novel evidence of an interplay between myogenic- and agonist-induced vasoconstriction in cerebral resistance arteries.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
36
|
Li QF, Tang DD. Role of p47(phox) in regulating Cdc42GAP, vimentin, and contraction in smooth muscle cells. Am J Physiol Cell Physiol 2009; 297:C1424-33. [PMID: 19812368 DOI: 10.1152/ajpcell.00324.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cdc42GAP (GTPase activating protein) has been shown to regulate smooth muscle contraction as well as cell motility, adhesion, proliferation, and apoptosis. We have recently shown that Cdc42GAP activity is suppressed in smooth muscle cells during contractile activation, which is reversed by inhibitors of reactive oxygen species (ROS). Because p47(phox), a regulatory subunit of NAD(P)H oxidase, has been implicated in smooth muscle signaling, we determined whether this subunit modulates Cdc42GAP activity in response to contractile stimulation. Transfection of smooth muscle cells with plasmids encoding short hairpin RNA (shRNA) against p47(phox), but not plasmids for luciferase shRNA, inhibited the expression of p47(phox). ROS production and the suppression of Cdc42GAP activity in response to stimulation with 5-hydroxytryptamine (5-HT) were attenuated in cells producing p47(phox) shRNA compared with cells producing luciferase shRNA. In contrast, the addition of hydrogen peroxide to p47(phox)-deficient cells suppressed the activity of Cdc42GAP. Furthermore, exposure to hydrogen peroxide led to a decrease in Cdc42GAP activity in an in vitro assay. Cdc42 activation, p21-activated kinase 1 (PAK1) phosphorylation at Thr-423 (an indication of PAK activation), and vimentin phosphorylation at Ser-56 in response to 5-HT activation were also attenuated in smooth muscle cells producing shRNA against p47(phox). The knockdown of p47(phox) inhibited smooth muscle contraction during stimulation with 5-HT but not hydrogen peroxide. These results suggest that the p47(phox) subunit of NAD(P)H oxidase may mediate the agonist-induced GAP suppression by controlling ROS generation in smooth muscle cells during agonist stimulation. p47(phox)-regulated GAP affects smooth muscle contraction likely through the Cdc42/PAK1/vimentin pathway.
Collapse
Affiliation(s)
- Qing-Fen Li
- The Center for Cardiovascular Sciences, Albany Medical College, NY 12208, USA
| | | |
Collapse
|
37
|
Chen S, Wang R, Li QF, Tang DD. Abl knockout differentially affects p130 Crk-associated substrate, vinculin, and paxillin in blood vessels of mice. Am J Physiol Heart Circ Physiol 2009; 297:H533-9. [PMID: 19542491 DOI: 10.1152/ajpheart.00237.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin polymerization has recently emerged as an important cellular process that regulates smooth muscle contraction. Abelson tyrosine kinase (Abl) has been implicated in the regulation of actin dynamics and force development in vascular smooth muscle. In the present study, the systolic blood pressure was lower in Abl(-/-) knockout mice compared with wild-type mice. The knockout of Abl diminished the tyrosine phosphorylation of p130 Crk-associated substrate (CAS, an adapter protein associated with smooth muscle contraction) in resistance arteries upon stimulation with phenylephrine or angiotensin II. The agonist-elicited enhancement of F-actin-to-G-actin ratios in arteries assessed by fluorescent microscopy was also reduced in Abl(-/-) mice. It has been known that vinculin is a structural protein that links actin filaments to extracellular matrix via transmembrane integrins, whereas paxillin is a signaling protein associated with focal contacts mediating actin cytoskeleton remodeling. The expression of vinculin and paxillin at protein and messenger levels was lower in arterial vessels from Abl knockout mice. However, the agonist-induced increase in myosin phosphorylation was not attenuated in arteries from Abl knockout mice. These results indicate that Abl differentially regulates Crk-associated substrate, vinculin, and paxillin in arterial vessels. The Abl-regulated cellular process and blood pressure are independent of myosin activation in vascular smooth muscle.
Collapse
Affiliation(s)
- Shu Chen
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
38
|
Li QF, Spinelli AM, Tang DD. Cdc42GAP, reactive oxygen species, and the vimentin network. Am J Physiol Cell Physiol 2009; 297:C299-309. [PMID: 19494238 DOI: 10.1152/ajpcell.00037.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cdc42GAP (GTPase-activating protein) has been implicated in the regulation of cell motility, adhesion, proliferation, and apoptosis. In this study, Cdc42GAP was cloned from smooth muscle tissues. Cdc42GAP, but not inactive R282A Cdc42GAP (alanine substitution at arginine-282), enhanced the GTP hydrolysis of Cdc42 in an in vitro assay. Furthermore, we developed an assay to evaluate the activity of Cdc42GAP in vivo. Stimulation of smooth muscle cells with 5-hydroxytryptamine (5-HT) resulted in the decrease in Cdc42GAP activity. The agonist-induced GAP suppression was reversed by reactive oxygen species inhibitors. Treatment with hydrogen peroxide also inhibited GAP activity in smooth muscle cells. Because the vimentin cytoskeleton undergoes dynamic changes in response to contractile activation, we evaluated the role of Cdc42GAP in regulating vimentin filaments. Smooth muscle cells were infected with retroviruses encoding wild-type Cdc42GAP or its R282A mutant. Expression of wild-type Cdc42GAP, but not mutant R282A GAP, inhibited the increase in the activation of Cdc42 upon agonist stimulation. Phosphorylation of p21-activated kinase (PAK) at Thr-423 (an indication of PAK activation), vimentin phosphorylation (Ser-56), partial disassembly and spatial remodeling, and contraction were also attenuated in smooth muscle cells expressing Cdc42GAP. Our results suggest that the activity of Cdc42GAP is regulated upon contractile activation, which is mediated by intracellular ROS. Cdc42GAP regulates the vimentin network through the Cdc42-PAK pathway in smooth muscle cells during 5-HT stimulation.
Collapse
Affiliation(s)
- Qing-Fen Li
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | |
Collapse
|
39
|
Li A, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL. Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration. Proteomics 2009; 9:2788-98. [DOI: 10.1002/pmic.200800850] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC. Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J Physiol 2009; 587:2537-53. [PMID: 19359365 DOI: 10.1113/jphysiol.2008.168252] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ca(2+) sensitization has been postulated to contribute to the myogenic contraction of resistance arteries evoked by elevation of transmural pressure. However, the biochemical evidence of pressure-induced increases in phosphorylated myosin light chain phosphatase (MLCP) targeting subunit 1 (MYPT1) and/or 17 kDa protein kinase C (PKC)-potentiated protein phosphatase 1 inhibitor protein (CPI-17) required to sustain this view is not currently available. Here, we determined whether Ca(2+) sensitization pathways involving Rho kinase (ROK)- and PKC-dependent phosphorylation of MYPT1 and CPI-17, respectively, contribute to the myogenic response of rat middle cerebral arteries. ROK inhibitors (Y27632, 0.03-10 micromol l(-1); H1152, 0.001-0.3 micromol l(-1)) and PKC inhibitors (GF109203X, 3 micromol l(-1); Gö6976; 10 micromol l(-1)) suppressed myogenic vasoconstriction between 40 and 120 mmHg. An improved, highly sensitive 3-step Western blot method was developed for detection and quantification of MYPT1 and CPI-17 phosphorylation. Increasing pressure from 10 to 60 or 100 mmHg significantly increased phosphorylation of MYPT1 at threonine-855 (T855) and myosin light chain (LC(20)). Phosphorylation of MYPT1 at threonine-697 (T697) and CPI-17 were not affected by pressure. Pressure-evoked elevations in MYPT1-T855 and LC(20) phosphorylation were reduced by H1152, but MYPT1-T697 phosphorylation was unaffected. Inhibition of PKC with GF109203X did not affect MYPT1 or LC(20) phosphorylation at 100 mmHg. Our findings provide the first direct, biochemical evidence that a Ca(2+) sensitization pathway involving ROK-dependent phosphorylation of MYPT1 at T855 (but not T697) and subsequent augmentation of LC(20) phosphorylation contributes to myogenic control of arterial diameter in the cerebral vasculature. In contrast, suppression of the myogenic response by PKC inhibitors cannot be attributed to block of Ca(2+) sensitization mediated by CPI-17 or MYPT1 phosphorylation.
Collapse
Affiliation(s)
- Rosalyn P Johnson
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Vascular smooth muscle is a key effector in the wall of blood vessels during the pathogenesis of hypertension. Various factors directly elicit smooth muscle cell contraction, migration, growth, and hypertrophy, which lead to the progression of hypertension. Crk-associated substrate (CAS), the first discovered member of the adapter protein CAS family, has recently emerged as a critical cellular component that regulates smooth muscle functions. In this review, the molecular structure and protein interactions of the CAS family members are summarized. Evidence for the role of CAS in the regulation of vascular smooth muscle contractility, cell migration, hypertrophy, and growth is presented. Regulation of CAS by novel tyrosine kinases/phosphatases and unique downstream signaling partners of CAS are also discussed. These new findings establish the important role for CAS in regulating vascular smooth muscle functions. The CAS-associated processes may be new biological targets for the development of new treatment of cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| |
Collapse
|
42
|
Kutcher ME, Herman IM. The pericyte: cellular regulator of microvascular blood flow. Microvasc Res 2009; 77:235-46. [PMID: 19323975 DOI: 10.1016/j.mvr.2009.01.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 01/03/2023]
Abstract
The vascular system - through its development, response to injury, and remodeling during disease - constitutes one of the key organ systems sustaining normal human physiology; conversely, its dysregulation also underlies multiple pathophysiologic processes. Regulation of vascular endothelial cell function requires the integration of complex signals via multiple cell types, including arterial smooth muscle, capillary and post-capillary pericytes, and other perivascular cells such as glial and immune cells. Here, we focus on the pericyte and its roles in microvascular remodeling, reviewing current concepts in microvascular pathophysiology and offering new insights into the specific roles that pericyte-dependent signaling pathways may play in modulating endothelial growth and microvascular tone during pathologic angiogenesis and essential hypertension.
Collapse
Affiliation(s)
- Matthew E Kutcher
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
43
|
Louzao MC, Ares IR, Cagide E. Marine toxins and the cytoskeleton: a new view of palytoxin toxicity. FEBS J 2008; 275:6067-74. [PMID: 19016862 DOI: 10.1111/j.1742-4658.2008.06712.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Palytoxin is a marine toxin first isolated from zoanthids (genus Palythoa), even though dinoflagellates of the genus Ostreopsis are the most probable origin of the toxin. Ostreopsis has a wide distribution in tropical and subtropical areas, but recently these dinoflagellates have also started to appear in the Mediterranean Sea. Two of the most remarkable properties of palytoxin are the large and complex structure (with different analogs, such as ostreocin-D or ovatoxin-a) and the extreme acute animal toxicity. The Na(+)/K(+)-ATPase has been proposed as receptor for palytoxin. The marine toxin is known to act on the Na(+) pump and elicit an increase in Na(+) permeability, which leads to depolarization and a secondary Ca(2+) influx, interfering with some functions of cells. Studies on the cellular cytoskeleton have revealed that the signaling cascade triggered by palytoxin leads to actin filament system distortion. The activity of palytoxin on the actin cytoskeleton is only partially associated with the cytosolic Ca(2+) changes; therefore, this ion represents an important factor in altering this structure, but it is not the only cause. The goal of the present minireview is to compile the findings reported to date about: (a) how palytoxin and analogs are able to modify the actin cytoskeleton within different cellular models; and (b) what signaling mechanisms could be involved in the modulation of cytoskeletal dynamics by palytoxin.
Collapse
Affiliation(s)
- M Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.
| | | | | |
Collapse
|
44
|
Ono K, Yamashiro S, Ono S. Essential role of ADF/cofilin for assembly of contractile actin networks in the C. elegans somatic gonad. J Cell Sci 2008; 121:2662-70. [PMID: 18653537 DOI: 10.1242/jcs.034215] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The somatic gonad of the nematode Caenorhabditis elegans contains a myoepithelial sheath, which surrounds oocytes and provides contractile forces during ovulation. Contractile apparatuses of the myoepithelial-sheath cells are non-striated and similar to those of smooth muscle. We report the identification of a specific isoform of actin depolymerizing factor (ADF)/cofilin as an essential factor for assembly of contractile actin networks in the gonadal myoepithelial sheath. Two ADF/cofilin isoforms, UNC-60A and UNC-60B, are expressed from the unc-60 gene by alternative splicing. RNA interference of UNC-60A caused disorganization of the actin networks in the myoepithelial sheath. UNC-60B, which is known to function in the body-wall muscle, was not necessary or sufficient for actin organization in the myoepithelial sheath. However, mutant forms of UNC-60B with reduced actin-filament-severing activity rescued the UNC-60A-depletion phenotype. UNC-60A has a much weaker filament-severing activity than UNC-60B, suggesting that an ADF/cofilin with weak severing activity is optimal for assembly of actin networks in the myoepithelial sheath. By contrast, strong actin-filament-severing activity of UNC-60B was required for assembly of striated myofibrils in the body-wall muscle. Our results suggest that an optimal level of actin-filament-severing activity of ADF/cofilin is required for assembly of actin networks in the somatic gonad.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
45
|
Räägel H, Lust M, Uri A, Pooga M. Adenosine-oligoarginine conjugate, a novel bisubstrate inhibitor, effectively dissociates the actin cytoskeleton. FEBS J 2008; 275:3608-24. [DOI: 10.1111/j.1742-4658.2008.06506.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Syyong H, Cheung C, Solomon D, Seow CY, Kuo KH. Adaptive response of pulmonary arterial smooth muscle to length change. J Appl Physiol (1985) 2008; 104:1014-20. [DOI: 10.1152/japplphysiol.01203.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypervasoconstriction is associated with pulmonary hypertension and dysfunction of the pulmonary arterial smooth muscle (PASM) is implicated. However, relatively little is known about the mechanical properties of PASM. Recent advances in our understanding of plastic adaptation in smooth muscle may shed light on the disease mechanism. In this study, we determined whether PASM is capable of adapting to length changes (especially shortening) and regain its contractile force. We examined the time course of length adaptation in PASM in response to step changes in length and to length oscillations mimicking the periodic stretches due to pulsatile arterial pressure. Rings from sheep pulmonary artery were mounted on myograph and stimulated using electrical field stimulation (12–16 s, 20 V, 60 Hz). The length-force relationship was determined at Lref to 0.6 Lref, where Lref was a reference length close to the in situ length of PASM. The response to length oscillations was determined at Lref, after the muscle was subjected to length oscillation of various amplitudes for 200 s at 1.5 Hz. Release (or stretch) of resting PASM from Lref to 0.6 (and vice versa) was followed by a significant force recovery (73 and 63%, respectively), characteristic of length adaptation. All recoveries of force followed a monoexponential time course. Length oscillations with amplitudes ranging from 5 to 20% Lref caused no significant change in force generation in subsequent contractions. It is concluded that, like many smooth muscles, PASM possesses substantial capability to adapt to changes in length. Under pathological conditions, this could contribute to hypervasoconstriction in pulmonary hypertension.
Collapse
|
47
|
Abstract
The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
48
|
Tang DD, Anfinogenova Y. Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmacol Ther 2008; 13:130-40. [PMID: 18212360 DOI: 10.1177/1074248407313737] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular smooth muscle tone plays a fundamental role in regulating blood pressure, blood flow, microcirculation, and other cardiovascular functions. The cellular and molecular mechanisms by which vascular smooth muscle contractility is regulated are not completely elucidated. Recent studies show that the actin cytoskeleton in smooth muscle is dynamic, which regulates force development. In this review, evidence for actin polymerization in smooth muscle upon external stimulation is summarized. Protein kinases such as Abelson tyrosine kinase, focal adhesion kinase, Src, and mitogen-activated protein kinase have been documented to coordinate actin polymerization in smooth muscle. Transmembrane integrins have also been reported to link to signaling pathways modulating actin dynamics. The roles of Rho family of the small proteins that bind to guanosine triphosphate (GTP), also known as GTPases, and the actin-regulatory proteins, including Crk-associated substrate, neuronal Wiskott-Aldrich Syndrome protein, the Arp2/3 complex, and profilin, and heat shock proteins in regulating actin assembly are discussed. These new findings promote our understanding on how smooth muscle contraction is regulated at cellular and molecular levels.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | |
Collapse
|
49
|
Angstenberger M, Wegener JW, Pichler BJ, Judenhofer MS, Feil S, Alberti S, Feil R, Nordheim A. Severe intestinal obstruction on induced smooth muscle-specific ablation of the transcription factor SRF in adult mice. Gastroenterology 2007; 133:1948-59. [PMID: 18054566 DOI: 10.1053/j.gastro.2007.08.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 08/16/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS SRF (Serum Response Factor), a widely expressed transcription factor, controls expression of mitogen-responsive and muscle-specific genes, thereby regulating the contractile actin microfilament. Genetic Srf deletion studies showed SRF to be indispensable for in vivo skeletal and cardiac muscle cell development. We now investigated for the first time in vivo SRF functions in smooth muscle cells of adult mice. METHODS We conditionally deleted a floxed Srf allele (Srf(flex1)) in adult mice by inducible activation of the CreER(T2) recombinase expressed specifically in smooth muscle cells. Tamoxifen-induced CreER(T2) activity stimulated deletion of exon 1 coding sequences of Srf(flex1), thereby abolishing full-length SRF protein expression in adult smooth muscle cells of the analyzed organs: colon, bladder, and stomach. RESULTS Smooth muscle cell-specific ablation of full-length SRF protein in adult mice showed impaired contraction of intestinal smooth muscle, resulting in defective peristalsis. Mutant mice died within 2 weeks of tamoxifen treatment, displaying clear symptoms of ileus paralyticus. Cultured primary SRF-deficient colon smooth muscle cells were viable, but displayed drastic structural alterations and elevated senescence, paralleled by degeneration of the actin microfilament and impaired expression of smooth muscle-specific genes. CONCLUSIONS SRF plays a vital role in the contractile activity and cytoskeletal architecture of adult smooth muscle cells and is therefore essential for physiologic functions of the gastrointestinal tract in vivo. Our mouse genetic model may resemble features of human chronic intestinal pseudo-obstruction.
Collapse
Affiliation(s)
- Meike Angstenberger
- Interfaculty Institute for Cell Biology, Tuebingen University, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Humphrey JD. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 2007; 50:53-78. [PMID: 18209957 DOI: 10.1007/s12013-007-9002-3] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2007] [Indexed: 12/20/2022]
Abstract
Blood vessels exhibit a remarkable ability to adapt throughout life that depends upon genetic programming and well-orchestrated biochemical processes. Findings over the past four decades demonstrate, however, that the mechanical environment experienced by these vessels similarly plays a critical role in governing their adaptive responses. This article briefly reviews, as illustrative examples, six cases of tissue level growth and remodeling, and then reviews general observations at cell-matrix, cellular, and sub-cellular levels, which collectively point to the existence of a "mechanical homeostasis" across multiple length and time scales that is mediated primarily by endothelial cells, vascular smooth muscle cells, and fibroblasts. In particular, responses to altered blood flow, blood pressure, and axial extension, disease processes such as cerebral aneurysms and vasospasm, and diverse experimental manipulations and clinical treatments suggest that arteries seek to maintain constant a preferred (homeostatic) mechanical state. Experiments on isolated microvessels, cell-seeded collagen gels, and adherent cells isolated in culture suggest that vascular cells and sub-cellular structures such as stress fibers and focal adhesions likewise seek to maintain constant a preferred mechanical state. Although much is known about mechanical homeostasis in the vasculature, there remains a pressing need for more quantitative data that will enable the formulation of an integrative mathematical theory that describes and eventually predicts vascular adaptations in response to diverse stimuli. Such a theory promises to deepen our understanding of vascular biology as well as to enable the design of improved clinical interventions and implantable medical devices.
Collapse
Affiliation(s)
- J D Humphrey
- Department of Biomedical Engineering, 337 Zachry Engineering Center, Texas A&M University, 3120 TAMU, College Station, TX 77843-3120, USA.
| |
Collapse
|