1
|
da Silveira ALB, Seara FAC, Lustrino D, Mecawi AS, Antunes-Rodrigues J, Kettelhut ÍC, Chakur-Brum P, Reis LC, Olivares EL. Thyroid hormone induces restrictive cardiomyopathy in β1-adrenoceptor knockout mice. Can J Physiol Pharmacol 2023; 101:620-629. [PMID: 37747059 DOI: 10.1139/cjpp-2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The purpose of this study was to characterize the role of β1-AR signaling and its cross-talk between cardiac renin-angiotensin system and thyroid-hormone-induced cardiac hypertrophy. T3 was administered at 0.5 mg·kg-1·day-1 for 10 days in β1-KOT3 and WTT3 groups, while control groups received vehicle alone. Echocardiography and myocardial histology was performed; cardiac and serum ANGI/ANGII and ANP and cardiac levels of p-PKA, p-ERK1/2, p-p38-MAPK, p-AKT, p-4EBP1, and ACE were measured. WTT3 showed decreased IVSTd and increased LVEDD versus WTsal (p < 0.05). β1-KOT3 exhibited lower LVEDD and higher relative IVSTd versus β1-KOsal, the lowest levels of ejection fraction, and the highest levels of cardiomyocyte diameter (p < 0.05). Cardiac ANP levels decreased in WTT3 versus β1-KOT3 (p < 0.05). Cardiac ACE expression was increased in T3-treated groups (p < 0.05). Phosphorylated-p38 MAPK levels were higher in WTT3 versus WTsal or β1-KOT3, p-4EBP1 was elevated in β1-KO animals, and p-ERK1/2 was up-regulated in β1-KOT3. These findings suggest that β1-AR signaling is crucial for TiCH.
Collapse
Affiliation(s)
- Anderson L B da Silveira
- Departamento de Educação Física e Desportos, Instituto de Educação, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Brasil
- Departmento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Fernando A C Seara
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Brasil
- Departmento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Danilo Lustrino
- Departmento de Fisiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Sergipe, São Cristóvão, Sergipe, Brasil
| | - André S Mecawi
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - José Antunes-Rodrigues
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeiro Preto, São Paulo, Brasil
| | - Ísis C Kettelhut
- Departmento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Patrícia Chakur-Brum
- Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Luis C Reis
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Brasil
- Departmento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Emerson L Olivares
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Brasil
- Departmento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| |
Collapse
|
2
|
Resveratrol attenuates angiotensin II-induced cellular hypertrophy through the inhibition of CYP1B1 and the cardiotoxic mid-chain HETE metabolites. Mol Cell Biochem 2020; 471:165-176. [PMID: 32533462 PMCID: PMC7291180 DOI: 10.1007/s11010-020-03777-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Several reports demonstrated the direct contribution of cytochrome P450 1B1 (CYP1B1) enzyme and its associated cardiotoxic mid-chain, hydroxyeicosatetraenoic acid (HETEs) metabolites in the development of cardiac hypertrophy. Resveratrol is commercially available polyphenol that exerts beneficial effects in wide array of cardiovascular diseases including cardiac hypertrophy, myocardial infarction and heart failure. Nevertheless, the underlying mechanisms responsible for these effects are not fully elucidated. Since resveratrol is a well-known CYP1B1 inhibitor, the purpose of this study is to test whether resveratrol attenuates angiotensin II (Ang II)-induced cellular hypertrophy through inhibition of CYP1B1/mid-chain HETEs mechanism. RL-14 and H9c2 cells were treated with vehicle or 10 μM Ang II in the absence and presence of 2, 10 or 50 μM resveratrol for 24 h. Thereafter, the level of mid-chain HETEs was determined using liquid chromatography–mass spectrometry (LC/MS). Hypertrophic markers and CYP1B1 gene expression and protein levels were measured using real-time PCR and Western blot analysis, respectively. Our results demonstrated that resveratrol, at concentrations of 10 and 50 μM, was able to attenuate Ang-II-induced cellular hypertrophy as evidenced by substantial inhibition of hypertrophic markers, β-myosin heavy chain (MHC)/α-MHC and atrial natriuretic peptide. Ang II significantly induced the protein expression of CYP1B1 and increased the metabolite formation rate of its associated mid-chain HETEs. Interestingly, the protective effect of resveratrol was associated with a significant decrease of CYP1B1 protein expression and mid-chain HETEs. Our results provided the first evidence that resveratrol protects against Ang II-induced cellular hypertrophy, at least in part, through CYP1B1/mid-chain HETEs-dependent mechanism.
Collapse
|
3
|
Cardiac Cx43 and ECM Responses to Altered Thyroid Status Are Blunted in Spontaneously Hypertensive versus Normotensive Rats. Int J Mol Sci 2019; 20:ijms20153758. [PMID: 31374823 PMCID: PMC6696036 DOI: 10.3390/ijms20153758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor β1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.
Collapse
|
4
|
Wangensteen R, Rodríguez-Gómez I, Perez-Abud R, Quesada A, Montoro-Molina S, Osuna A, Vargas F. Dietary salt restriction in hyperthyroid rats. Differential influence on left and right ventricular mass. Exp Biol Med (Maywood) 2014; 240:113-20. [PMID: 25030483 DOI: 10.1177/1535370214544265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study assessed the impact of salt restriction on cardiac morphology and biochemistry and its effects on hemodynamic and renal variables in experimental hyperthyroidism. Four groups of male Wistar rats were used: control, hyperthyroid, and the same groups under low salt intake. Body weight, blood pressure (BP), and heart rate (HR) were recorded weekly for 4 weeks. Morphologic, metabolic, plasma, cardiac, and renal variables were also measured. Low salt intake decreased BP in T(4)-treated rats but not in controls. Low salt intake reduced relative left ventricular mass but increased absolute right ventricular weight and right ventricular weight/BW ratio in both control and hyperthyroid groups. Low salt intake increased Na(+)/H(+) exchanger-1 (NHE-1) protein abundance in both ventricles in normal rats but not in hyperthyroid rats, independently of its effect on ventricular mass. Mammalian target of rapamycin (mTOR) protein abundance was not related to left or right ventricular mass in hyperthyroid or controls rats under normal or low salt conditions. Proteinuria was increased in hyperthyroid rats and attenuated by low salt intake. In this study, low salt intake produced an increase in right ventricular mass in normal and hyperthyroid rats. Changes in the left or right ventricular mass of control and hyperthyroid rats under low salt intake were not explained by the NHE-1 or mTOR protein abundance values observed. In hyperthyroid rats, low salt intake also slightly reduced BP and decreased HR, proteinuria, and water and sodium balances.
Collapse
Affiliation(s)
| | | | - Rocío Perez-Abud
- Servicio de Nefrología, Unidad Experimental, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Andrés Quesada
- Servicio de Nefrología, Unidad Experimental, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | | | - Antonio Osuna
- Servicio de Nefrología, Unidad Experimental, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Félix Vargas
- Departamento de Fisiología, Facultad de Medicina, 18012 Granada, Spain
| |
Collapse
|
5
|
Abstract
Existing methods for human induced pluripotent stem cell (hiPSC) cardiac differentiation are efficient but require complex, undefined medium constituents that hinder further elucidation of the molecular mechanisms of cardiomyogenesis. Using hiPSCs derived under chemically defined conditions on synthetic matrices, we systematically developed an optimized cardiac differentiation strategy, using a chemically defined medium consisting of just three components: the basal medium RPMI 1640, L-ascorbic acid 2-phosphate and rice-derived recombinant human albumin. Along with small molecule-based induction of differentiation, this protocol produced contractile sheets of up to 95% TNNT2(+) cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell and was effective in 11 hiPSC lines tested. This chemically defined platform for cardiac specification of hiPSCs will allow the elucidation of cardiomyocyte macromolecular and metabolic requirements and will provide a minimal system for the study of maturation and subtype specification.
Collapse
|
6
|
Silveira ALBD, de Souza Miranda MF, Mecawi AS, Melo RL, Marassi MP, Matos da Silva AC, Antunes-Rodrigues J, Olivares EL. Sexual dimorphism in autonomic changes and in the renin-angiotensin system in the hearts of mice subjected to thyroid hormone-induced cardiac hypertrophy. Exp Physiol 2014; 99:868-80. [PMID: 24659612 DOI: 10.1113/expphysiol.2013.076976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Based on the relevance of the renin-angiotensin system and the ongoing controversy regarding the role of the sympathetic nervous system in thyroid hormone-induced cardiac hypertrophy, the aim of the present study was to establish whether the putative difference in the degree of cardiac hypertrophy exhibited by males and females might be related to differences in the sympathetic-vagal balance and/or in the cardiac renin-angiotensin system in mice of different genders. Male and female mice (n = 117) were given 0.1 mg kg(-1) of triiodothyronine or normal saline each day for 10 days consecutively. At the end of that period, study of the heart rate variability, spectral analysis and histopathological examination were performed to assess the sympathetic-vagal balance and the diameter of cardiomyocytes. The cardiac levels of angiotensin I and II were also measured. Treatment with triiodothyronine induced a greater degree of cardiac hypertrophy in male (~73%) than in female mice (~42%). This difference was attributed to greater modulation of the sympathetic nervous system and higher levels of angiotensin I and II in male than in female mice. Our data indicate that thyroid hormone-induced cardiac hypertrophy was more intense in male mice due to the synergic effect of the sympathetic nervous system and the cardiac renin-angiotensin system.
Collapse
Affiliation(s)
- Anderson Luiz Bezerra da Silveira
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Manuela França de Souza Miranda
- Graduate Program in Veterinary Medicine, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - André Souza Mecawi
- Department of Physiology, School of Medicine, Ribeirao Preto USP - São Paulo, Brazil
| | - Roberto Laureano Melo
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Michelle Porto Marassi
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Alba Cenélia Matos da Silva
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | | | - Emerson Lopes Olivares
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil Graduate Program in Veterinary Medicine, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| |
Collapse
|
7
|
Myocardial Rac1 exhibits partial involvement in thyroxin-induced cardiomyocyte hypertrophy and its inhibition is not sufficient to improve cardiac dysfunction or contractile abnormalities in mouse papillary muscles. J Cardiovasc Pharmacol 2013; 61:536-44. [PMID: 23429587 DOI: 10.1097/fjc.0b013e31828d4b9d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: Development of cardiac hypertrophy after thyroxin (T4) treatment is well recognized. Recently, we observed that T4-induced cardiac hypertrophy is associated with increased cardiac Rac1 expression and activity. Whether this Rac1 increase has a role in inducing this cardiac phenotype is, however, still unknown. Here, we showed that T4 treatment (500 µg/kg/d) for 2 weeks resulted in increased myocardial Rac1 activity with subsequent hypertension, cardiac hypertrophy, and left ventricular systolic dysfunction in vivo. Isolated right ventricular papillary muscles of T4-treated mice maintained their peak isometric active developed tension but exhibited significant decreases in their corresponding time to peak and in relaxation times. Positive inotropic responses to increasing pacing rate and β-adrenergic stimulation were also depressed in these muscles. Pravastatin (10 mg/kg/d), a Rac1 inhibitor, significantly decreased myocardial Rac1 activity, hypertension, and cardiomyocyte size in T4-treated mice but could not attenuate gross heart weight or functional cardiac changes in these mice. Our data showed that T4 could activate different signaling pathways with distinct cardiovascular outcomes. We also provide the first mechanistic evidence for the partial involvement of Rac1 activation in T4-induced cardiomyocyte hypertrophy and reveal a putative role for Rac1 in the development of T4-induced hypertension.
Collapse
|
8
|
Mao X, Wang T, Liu Y, Irwin MG, Ou JS, Liao XL, Gao X, Xu Y, Ng KFJ, Vanhoutte PM, Xia Z. N-acetylcysteine and allopurinol confer synergy in attenuating myocardial ischemia injury via restoring HIF-1α/HO-1 signaling in diabetic rats. PLoS One 2013; 8:e68949. [PMID: 23874823 PMCID: PMC3715528 DOI: 10.1371/journal.pone.0068949] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/04/2013] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES To determine whether or not the antioxidants N-acetylcysteine (NAC) and allopurinol (ALP) confer synergistic cardioprotection against myocardial ischemia/reperfusion (MI/R) injury by stabilizing hypoxia inducible factor 1α (HIF-1α)/heme oxygenase 1 (HO-1) signaling in diabetic myocardium. METHODS Control or diabetic [streptozotocin (STZ)-induced] Sprague Dawley rats received vehicle or NAC, ALP or their combination for four weeks starting one week after STZ injection. The animals were then subjected to thirty minutes of coronary artery occlusion followed by two hours reperfusion in the absence or presence of the selective HO-1 inhibitor, tin protoporphyrin-IX (SnPP-IX) or the HIF-1α inhibitor 2-Methoxyestradiol (2ME2). Cardiomyocytes exposed to high glucose were subjected to hypoxia/re-oxygenation in the presence or absence of HIF-1α and HO-1 achieved by gene knock-down with related siRNAs. RESULTS Myocardial and plasma levels of 15-F2t-isoprostane, an index of oxidative stress, were significantly increased in diabetic rats while cardiac HO-1 protein and activity were reduced; this was accompanied with reduced cardiac protein levels of HIF-1α, and increased post-ischemic myocardial infarct size and cellular injury. NAC and ALP given alone and in particular their combination normalized cardiac levels of HO-1 and HIF-1α protein expression and prevented the increase in 15-F2t-isoprostane, resulting in significantly attenuated post-ischemic myocardial infarction. NAC and ALP also attenuated high glucose-induced post-hypoxic cardiomyocyte death in vitro. However, all the above protective effects of NAC and ALP were cancelled either by inhibition of HO-1 or HIF-1α with SnPP-IX and 2ME2 in vivo or by HO-1 or HIF-1α gene knock-down in vitro. CONCLUSION NAC and ALP confer synergistic cardioprotection in diabetes via restoration of cardiac HIF-1α and HO-1 signaling.
Collapse
Affiliation(s)
- Xiaowen Mao
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
| | - Tingting Wang
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
| | - Yanan Liu
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
| | - Michael G. Irwin
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
| | - Jing-song Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-long Liao
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Gao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuan Xu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kwok F. J. Ng
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Paul M. Vanhoutte
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Zhengyuan Xia
- Department of Anaesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
- * E-mail:
| |
Collapse
|
9
|
Electrophoretic mobility of cardiac myosin heavy chain isoforms revisited: application of MALDI TOF/TOF analysis. J Biomed Biotechnol 2011; 2011:634253. [PMID: 22187528 PMCID: PMC3237020 DOI: 10.1155/2011/634253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/09/2011] [Indexed: 01/15/2023] Open
Abstract
The expression of two cardiac myosin heavy chain (MyHC) isoforms in response to the thyroid status was studied in left ventricles (LVs) of Lewis rats. Major MyHC isoform in euthyroid and hyperthyroid LVs had a higher mobility on SDS-PAGE, whereas hypothyroid LVs predominantly contained a MyHC isoform with a lower mobility corresponding to that of the control soleus muscle. By comparing the MyHC profiles obtained under altered thyroid states together with the control soleus, we concluded that MyHCα was represented by the lower band with higher mobility and MyHCβ by the upper band. The identity of these two bands in SDS-PAGE gels was confirmed by western blot and mass spectrometry. Thus, in contrast to the literature data, we found that the MyHCα possessed a higher mobility rate than the MyHCβ isoform. Our data highlighted the importance of the careful identification of the MyHCα and MyHCβ isoforms analyzed by the SDS-PAGE.
Collapse
|
10
|
Jiang SY, Xu M, Ma XW, Xiao H, Zhang YY. A distinct AMP-activated protein kinase phosphorylation site characterizes cardiac hypertrophy induced by L-thyroxine and angiotensin II. Clin Exp Pharmacol Physiol 2010; 37:919-25. [PMID: 20497424 DOI: 10.1111/j.1440-1681.2010.05404.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. The purpose of the present study was to evaluate differences in the AMP-activated protein kinase (AMPK) phosphorylation sites in cardiac hypertrophy induced by L-thyroxine and angiotensin (Ang) II. 2. Cardiac hypertrophy was induced in wild-type and AMPKalpha2-knockout mice by treatment with 1 mg/kg, i.p., thyroxine or 1.44 mg/kg per day AngII for 14 days. The phenotype of the hypertrophy was evaluated using echocardiographic measurements and histological analyses. The phosphorylation of AMPK at alpha-Ser(485/491) and alpha-Thr(172) was determined by western blot analysis. 3. In wild-type mice, the phosphorylation of AMPKalpha-Ser(485/491) was significantly elevated in the AngII-treated group, but not in the thyroxine-treated group, compared with the vehicle control group. In contrast, the phosphorylation of AMPKalpha-Thr(172) was significantly increased by thyroxine, but not AngII, treatment compared with the vehicle control group. Furthermore, knockout of the AMPKalpha2 subunit abolished phosphorylation at the alpha-Ser(485/491) site and significantly suppressed phosphorylation at the alpha-Thr(172) site, resulting in alleviation of thyroxine- but not AngII-induced hypertrophy. 4. In conclusion, L-thyroxine and AngII induce the phosphorylation of distinct sites of AMPK in cardiac hypertrophy. Phosphorylation of AMPK alpha-Thr(172) may contribute to thyroxine-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Sheng-Yang Jiang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | | | | | | | | |
Collapse
|
11
|
Iordanidou A, Hadzopoulou-Cladaras M, Lazou A. Non-genomic effects of thyroid hormone in adult cardiac myocytes: relevance to gene expression and cell growth. Mol Cell Biochem 2010; 340:291-300. [PMID: 20232113 DOI: 10.1007/s11010-010-0430-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 02/26/2010] [Indexed: 11/25/2022]
Abstract
Besides the well-characterized genomic action of thyroid hormone (TH), mediated by thyroid hormone receptors (TRs), accumulating data support the so-called non-genomic action of TH, which is often related to activation of signalling pathways. In this study, we sought to determine whether TH activates intracellular signalling pathways in the adult cardiac myocytes and whether such activation modulates cell growth and the expression of target proteins important in cardiac function. We demonstrate that TH promotes a rapid increase in the phosphorylation of several kinases, ERK1/2, PKCdelta, p38-MAPK and Akt. This activation is inhibited by triiodothyroacetic acid (triac), which is a TH analogue known to displace the hormone from membrane bound receptors, indicating that this TH effect is mediated through a cell membrane-initiated mechanism. Furthermore, using specific inhibitors of the TH-activated kinases, we show that the long-term effects of TH on the expression of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), alpha- and beta-myosin heavy chain (MHC) and cell growth are reverted, implying that what is initiated as a non-genomic action of the hormone interfaces with genomic effects. These data provide further insights into the underlying mechanisms of TH action in the heart with potentially important implications in the management of cardiac pathology.
Collapse
Affiliation(s)
- Anna Iordanidou
- Laboratory of Developmental Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | |
Collapse
|
12
|
Diniz GP, Carneiro-Ramos MS, Barreto-Chaves MLM. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 2009; 104:653-67. [PMID: 19588183 DOI: 10.1007/s00395-009-0043-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 01/13/2023]
Abstract
Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT1R) is critically required to the development of T3-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT1R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT1R blocker (Losartan, 1 microM) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T3 (10 nM) treatment. The cardiomyocytes transfected with the AT1R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT1R. The AT1R silencing and the AT1R blockade totally prevented the T3-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T3 demonstrated a rapid activation of Akt/GSK-3beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 microM and Wortmannin, 200 nM). In addition, we demonstrated that the AT1R mediated the T3-induced activation of Akt/GSK-3beta/mTOR signaling pathway, since the AT1R silencing and the AT1R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT1R expression (180%, P < 0.05) were rapidly increased by T3 treatment. These data demonstrate for the first time that the AT1R is a critical mediator to the T3-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T3-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT1R-Akt/GSK-3beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T3 in cardiomyocytes.
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP 05508-900, Brazil
| | | | | |
Collapse
|
13
|
Singal T, Dhalla NS, Tappia PS. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes. J Cell Mol Med 2009; 14:1824-35. [PMID: 19538471 PMCID: PMC3829042 DOI: 10.1111/j.1582-4934.2009.00812.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.
Collapse
Affiliation(s)
- Tushi Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre & Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
14
|
Vanamala SK, Gopinath S, Gondi CS, Rao JS. Effect of human umbilical cord blood cells on Ang-II-induced hypertrophy in mice. Biochem Biophys Res Commun 2009; 386:386-91. [PMID: 19524549 DOI: 10.1016/j.bbrc.2009.05.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/13/2009] [Indexed: 01/12/2023]
Abstract
We have assessed the capacity of human umbilical cord blood (hUCB)-derived stem cells to differentiate into cardiomyocytes and repair angiotensin II induced insult in culture and in mouse hearts when injected. hUCB were able to differentiate into cardiomyocyte-like cells, when induced with 5-azacytidine or co-cultured with rat neonatal cardiomyocytes (NRCM). When co-cultured, hUCB reversed the pathological effects induced by angiotensin II (Ang-II) in NRCM and in mice injected after Ang-II infusion. As assessed by increased heart weight to body mass ratio and Ang-II-induced fibrosis, cardiac hypertrophy was also reduced after hUCB were injected. hUCB also reversed the pathological heart failure markers induced by Ang-II in mice. Further, we observed a shift from pathological hypertrophy towards physiological hypertrophy by hUCB in Ang-II-challenged mice. Our findings support hUCB as a feasible model for experimentation in stem cell therapy and emphasize the relevance of the hUCB in reversing heart failure conditions.
Collapse
Affiliation(s)
- Sravan K Vanamala
- Department of Cancer Biology & Pharmacology, University of Illinois, College of Medicine at Peoria, Peoria, IL 61656, USA
| | | | | | | |
Collapse
|
15
|
Pantos C, Mourouzis I, Cokkinos DV. Rebuilding the post-infarcted myocardium by activating ‘physiologic’ hypertrophic signaling pathways: the thyroid hormone paradigm. Heart Fail Rev 2008; 15:143-54. [DOI: 10.1007/s10741-008-9111-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 08/07/2008] [Indexed: 12/01/2022]
|
16
|
Schlüter KD, Wenzel S. Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol Ther 2008; 119:311-25. [PMID: 18619489 DOI: 10.1016/j.pharmthera.2008.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 12/23/2022]
Abstract
Angiotensin II (Ang II) plays a major role in the progression of myocardial hypertrophy to heart failure. Inhibiting the angiotensin converting enzyme (ACE) or blockade of the corresponding Ang II receptors is used extensively in clinical practice, but there is scope for refinement of this mode of therapy. This review summarizes the current understanding of the direct effects of Ang II on cardiomyocytes and then focus particularly on interaction of components of the renin-angiotensin system with other hormones and cytokines. New findings described in approximately 400 papers identified in the PubMed database and published during the 2.5 years are discussed in the context of previous relevant literature. The cardiac action of Ang II is influenced by the activity of different isoforms of ACE leading to different amounts of Ang II by comparison with other angiotensinogen-derived peptides. The effect of Ang II is mediated by at least two different AT receptors that are differentially expressed in cardiomyocytes from neonatal, adult and failing hearts. The intracellular effects of Ang II are influenced by nitric oxide (NO)/cGMP-dependent cross talk and are mediated by the release of autocrine factors, such as transforming growth factor (TGF)-beta1 and interleukin (IL)-6. Besides interactions with cytokines, Ang II is involved in systemic networks including aldosterone, parathyroid hormone and adrenomedullin, which have their own effects on cardiomyocytes that modify, amplify or antagonize the primary effect of Ang II. Finally, hyperinsulemia and hyperglycaemia influence Ang II-dependent processes in diabetes and its cardiac sequelae.
Collapse
Affiliation(s)
- K-D Schlüter
- Physiologisches Institut, Justus-Liebig-Universität Giessen, Germany.
| | | |
Collapse
|
17
|
Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D. Thyroid hormone and “cardiac metamorphosis”: Potential therapeutic implications. Pharmacol Ther 2008; 118:277-94. [DOI: 10.1016/j.pharmthera.2008.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
18
|
Freire G, Ocampo C, Ilbawi N, Griffin AJ, Gupta M. Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload. J Mol Cell Cardiol 2007; 43:465-78. [PMID: 17720185 DOI: 10.1016/j.yjmcc.2007.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/26/2007] [Accepted: 07/11/2007] [Indexed: 11/22/2022]
Abstract
Reduced expression of alpha-MHC plays a significant role in cardiac contractile dysfunction from hemodynamic overload. Previously, Pur proteins and YY1 have been shown to play a role in alpha-MHC repression during heart failure induced by pressure overload and by spontaneous hypertension, respectively. This was not observed in volume-overload-induced heart failure, suggesting additional regulatory mechanisms for alpha-MHC repression. The present study was performed to identify volume overload responsive transcription factors involved in alpha-MHC gene regulation. DNA binding activity of several transcription factors was evaluated in a functionally characterized rat model of heart failure induced by aorto-caval shunt. After 10 weeks of shunt, severe LV dilatation and reduced LV function were accompanied by increased expression of ANF and beta-MHC, and decreased expression of alpha-MHC. This was associated with dramatic (10-fold) activation of AP-1 together with increased expression of c-fos and c-jun. AP-1 activation was not observed following 4 weeks of shunt when cardiac function was preserved. In cultured cardiomyocytes, induction of AP-1 by PMA attenuated alpha-MHC mRNA by 60%. Transient transfection assays mapped PMA responsive sequence to -582 to -588 bp of alpha-MHC promoter. Deletion or mutation of these nucleotides had minimal effect on basal promoter activity but played a dominant role in PMA-mediated repression of alpha-MHC promoter activity. Over-expression of c-fos and c-jun in cardiomyocytes inhibited alpha-MHC promoter activity in a concentration dependent manner. Data suggest a repressive role of AP-1 in alpha-MHC expression and its possible involvement in the transition from compensatory hypertrophy to heart failure in chronic volume overload.
Collapse
Affiliation(s)
- Grace Freire
- The Heart Institute for Children, Advocate Hope Children's Hospital, Oak Lawn, IL, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Thyroid hormones (THs) have many effects on the cardiovascular system including cardiac hypertrophy. Although THs induce cardiac hypertrophy, the mechanism through which they exert this effect is unknown. We previously found that THs activate signaling related to increased protein synthesis [mammalian target of rapamycin (mTOR) and p70 S6 kinase] in the heart. It is unknown whether this activation contributes to TH-induced hypertrophy or whether it is merely incidental. In this study, we used rapamycin to inhibit mTOR function in mice and neonatal cardiomyocyte cultures treated with THs to test whether mTOR/S6 kinase signaling is involved in TH-mediated cardiac hypertrophy. C57 mice were treated with T4 for 3 d, 1 wk, 2 wk, or 1 month with either placebo, T4 (50 microg/100 g body weight.d), rapamycin (200 microg/100 g body weight.d) or T4/rapamycin by sc slow-release pellets. At the end of the treatment period, hemodynamics and physical data were collected and hearts were frozen for Western blot analysis or myocytes were isolated. The effects of T3 and rapamycin were also investigated using neonatal cardiomyocytes. THs activated specific components of the AKT signaling pathway in vivo and in vitro. THs induced cardiac hypertrophy, which was completely inhibited by rapamycin. Our results suggest that TH-induced hypertrophy is mediated by AKT/mTOR/S6 kinase signaling, which is important in the regulation of protein synthesis, a hallmark of cardiac hypertrophy.
Collapse
Affiliation(s)
- James A Kuzman
- stanford Research/University of South Dakota, Sanford School of Medicine, Cardiovascular Research Institute, 1100 East 21st Street, Suite 700, Sioux Falls, South Dakota 57105, USA
| | | | | |
Collapse
|