1
|
Ma Y, Lai X, Wen Z, Zhou Z, Yang M, Chen Q, Wang X, Mei F, Yang L, Yin T, Sun S, Lu G, Qi J, Lin H, Han H, Yang Y. Design, synthesis and biological evaluation of novel modified dual-target shikonin derivatives for colorectal cancer treatment. Bioorg Chem 2023; 139:106703. [PMID: 37399615 DOI: 10.1016/j.bioorg.2023.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Warburg effect provides energy and material essential for tumor proliferation, the reverse of Warburg effect provides insights into the development of a novel anti-cancer strategy. Pyruvate kinase 2 (PKM2) and pyruvate dehydrogenase kinase 1 (PDK1) are two key enzymes in tumor glucose metabolism pathway that not only contribute to the Warburg effect through accelerating aerobic glycolysis, but also serve as druggable target for colorectal cancer (CRC). Considering that targeting PKM2 or PDK1 alone does not seem to be sufficient to remodel abnormal glucose metabolism and achieve significant antitumor activity, a series of novel benzenesulfonyl shikonin derivatives were designed to regulate PKM2 and PDK1 simultaneously. By means of molecular docking and antiproliferative screen, we found that compound Z10 could act as the combination of PKM2 activator and PDK1 inhibitor, thereby significantly inhibited glycolysis that reshaping tumor metabolism. Moreover, Z10 could inhibit proliferation, migration and induce apoptosis in CRC cell HCT-8. Finally, the in vivo anti-tumor activity of Z10 was evaluated in a colorectal cancer cell xenograft model in nude mice and the results demonstrated that Z10 induced tumor cell apoptosis and inhibited tumor cell proliferation with lower toxicity than shikonin. Our findings indicated that it is feasible to alter tumor energy metabolism through multi-target synergies, and the dual-target benzenesulfonyl shikonin derivative Z10 could be a potential anti-CRC agent.
Collapse
Affiliation(s)
- Yudi Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; School of Biology and Geography Science, Yili Normal University, Yining 835000, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ziling Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Feng Mei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shucun Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Hongwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Pal M, Yadav R, Goutam U, Chaudhury A. A simple protocol for high frequency plant regeneration and enhancing Shikonin production from callus cultures in Arnebia hispidissima. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:781-788. [DOI: 10.1016/j.sajb.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
4
|
Sun X, Peng Y, Zhao J, Xie Z, Lei X, Tang G. Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors. Bioorg Chem 2021; 112:104891. [PMID: 33940446 DOI: 10.1016/j.bioorg.2021.104891] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022]
Abstract
Tumor cells mainly provide necessary energy and substances for rapid cell growth through aerobic perglycolysis rather than oxidative phosphorylation. This phenomenon is called the "Warburg effect". The mechanism of glycolysis in tumor cells is more complicated, which is caused by the comprehensive regulation of multiple factors. Abnormal enzyme metabolism is one of the main influencing factors and inhibiting the three main rate-limiting enzymes in glycolysis is thought to be important strategy for cancer treatment. Therefore, numerous inhibitors of glycolysis rate-limiting enzyme have been developed in recent years, such as the latest HKII inhibitor and PKM2 inhibitor Pachymic acid (PA) and N-(4-(3-(3-(methylamino)-3-oxopropyl)-5-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-pyrazol-1-yl)phenyl)propiolamide. The review focuses on source, structure-activity relationship, bioecological activity and mechanism of the three main rate-limiting enzymes inhibitors, and hopes to guide the future research on the design and synthesis of rate-limiting enzyme inhibitors.
Collapse
Affiliation(s)
- Xueyan Sun
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Yijiao Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Zhizhong Xie
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang City, Hunan Province, PR China
| | - Xiaoyong Lei
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang City, Hunan Province, PR China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
5
|
Zhang X, Zhu J, Yan J, Xiao Y, Yang R, Huang R, Zhou J, Wang Z, Xiao W, Zheng C, Wang Y. Systems pharmacology unravels the synergic target space and therapeutic potential of Rhodiola rosea L. for non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153326. [PMID: 32992083 DOI: 10.1016/j.phymed.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lung cancer is the most common and mortal cancer worldwide. Rhodiola rosea L. (RR), a well-known traditional Chinese medicine (TCM), has been turned out to be effective in anti-lung cancer therapy, but its molecular mechanism of action has not been clearly understood. PURPOSE In this study, we aimed to elucidate the possible molecular mechanism underlying the effect of RR against non-small cell lung cancer (NSCLC) by systems pharmacology. METHODS The effects of RR on NSCLC were examined in Lewis lung carcinoma (LLC) tumor-bearing mice models. The possible molecular mechanism was unraveled by systems pharmacology, which includes pharmacokinetics evaluation, active compounds screening, target prediction and network analysis. Cell proliferation was examined by cell counting kit-8 (CCK-8) assay; cell apoptosis was detected by flow cytometry; protein and proinflammatory cytokines expression were evaluated by Western blot and qRT-PCR. RESULTS In vivo, RR significantly inhibited the tumor growth and prolonged the survival of the tumor bearing mice. In silico, we identified 19 potential active molecules (e.g., salidroside and rhodiosin), 112 targets (e.g., COX-2 and AKT) and 27 pathways (e.g., PI3K/AKT signaling pathway and NF-κB signaling pathway) for RR. Additionally, targets analysis and networks construction further revealed that RR exerted anti-cancer effects by regulating apoptosis, angiogenesis and inflammation. In vitro, salidroside could significantly decrease expression of pro-angiogenic factors (e.g., VEGF and eNOS) and proinflammatory cytokines (e.g., COX-2, iNOS and TNF-α). Also, Bcl-2, an anti-apoptotic protein was decreased whereas Bax, a pro-apoptotic protein, was increased. Further flow cytometry analysis showed that salidroside could induce apoptosis in H1975 cells. CONCLUSIONS Mechanistically, the antitumor effect of RR on NSCLC was responsible for the synergy among anti-inflammatory, anti-angiogenic and pro-apoptotic.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Biological Availability
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor/methods
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Glucosides/pharmacology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mice
- Mice, Inbred C57BL
- Monosaccharides/pharmacology
- Phenols/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RAW 264.7 Cells
- Rhodiola/chemistry
- Signal Transduction/drug effects
- Transcription Factor RelA
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jiangna Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Yue Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Ruijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Ruifei Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Jun Zhou
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China.
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
6
|
Man GCW, Wang J, Song Y, Wong JH, Zhao Y, Lau TS, Leung KT, Chan TH, Wang H, Kwong J, Ng TB, Wang CC. Therapeutic potential of a novel prodrug of green tea extract in induction of apoptosis via ERK/JNK and Akt signaling pathway in human endometrial cancer. BMC Cancer 2020; 20:964. [PMID: 33023525 PMCID: PMC7539473 DOI: 10.1186/s12885-020-07455-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Previous studies have shown a major green tea polyphenol (−)-epigallocatechin-3-gallate ((−)-EGCG) as a powerful anti-cancer agent. However, its poor bioavailability and requirement of a high dosage to manifest activity have restricted its clinical application. Recently, our team synthesized a peracetate-protected derivative of EGCG, which can act as a prodrug of (−)-EGCG (ProEGCG) with enhanced stability and improved bioavailability in vitro and in vivo. Herein, we tested the therapeutic efficacy of this novel ProEGCG, in comparison to EGCG, toward human endometrial cancer (EC). Methods In this study, the effects of ProEGCG and EGCG treatments on cell growth, cell survival and modulation of intracellular signaling pathways in RL95–2 and AN3 CA EC cells were compared. The antiproliferative effect was evaluated by cell viability assay. Apoptosis was measured by annexin/propidium iodide staining. Expression of mitogen-activated protein kinases, markers of proliferation and apoptosis were measured by immunoblot analysis. In addition, the effects of ProEGCG and EGCG on tumor growth, vessel formation and gene expression profiles on xenograft models of the EC cells were investigated. Results We found that treatment with ProEGCG, but not EGCG, inhibited, in a time- and dose-dependent manner, the proliferation and increased apoptosis of EC cells. Treatment with low-dose ProEGCG significantly enhanced phosphorylation of JNK and p38 MAPK and inhibited phosphorylation of Akt and ERK which are critical mediators of apoptosis. ProEGCG, but not EGCG, elicited a significant decrease in the growth of the EC xenografts, promoted apoptotic activity of tumour cells in the EC xenografts, and decreased microvessel formation, by differentially suppressing anti-apoptotic molecules, NOD1 and NAIP. Notably, no obvious adverse effects were detected. Conclusions Taken together, ProEGCG at a low dose exhibited anticancer activity in EC cells through its anti-proliferative, pro-apoptotic and anti-tumor actions on endometrial cancer in vitro and in vivo. In contrast, a low dose of EGCG did not bring about similar effects. Importantly, our data demonstrated the efficacy and safety of ProEGCG which manifests the potential of a novel anticancer agent for the management of endometrial cancer.
Collapse
Affiliation(s)
- Gene Chi Wai Man
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Jianzhang Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Department of Gynecology and Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Song
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yu Zhao
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Tat San Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Pediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Joseph Kwong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China. .,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
7
|
Fayez H, El-Motaleb MA, Selim AA. Synergistic Cytotoxicity Of Shikonin-Silver Nanoparticles As An Opportunity For Lung Cancer. J Labelled Comp Radiopharm 2020; 63:25-32. [PMID: 31785206 DOI: 10.1002/jlcr.3818] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
The combined action of shikonin and silver nanoparticles (AgNPs) for apoptosis in human cancer cells has not been elucidated. Hence, we investigated the synergistic combinatorial effect of shikonin and AgNPs in human lung cancer cells. Shikonin was used as a reducing and capping agent for AgNPs synthesis as a green method avoiding the hazards of chemical methods. Radiolabeling of shikonin-AgNPs with radioactive iodine forming [131 I]I-Shikonin-AgNPs was carried out to enable the intracellular tracking of NPs. The antitumor effect of a combined treatment (shikonin-AgNPs) was evaluated using tissue culture assay. The 50% inhibitory concentration (IC50 ) of SHK-AgNPs on A549 cells after 24 hours determined by an MTT assay is 2.4 ± 0.11 μg/mL. As a deduction, this study revealed that the combination of shikonin and AgNPs treatment significantly inhibited cell viability and proliferation of A549 cells (human lung carcinoma cell line) with a great potential than the monotherapy.
Collapse
Affiliation(s)
- Hend Fayez
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed Abd El-Motaleb
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Adli Abdullah Selim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
8
|
Li X, Zeng X. Shikonin suppresses progression and epithelial-mesenchymal transition in hepatocellular carcinoma (HCC) cells by modulating miR-106b/SMAD7/TGF-β signaling pathway. Cell Biol Int 2019; 44:467-476. [PMID: 31617643 DOI: 10.1002/cbin.11247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/13/2019] [Indexed: 12/13/2022]
Abstract
Shikonin is a natural naphthoquinone component with antioxidant and anti-tumor function and has been used for hepatocellular carcinoma (HCC) treatment. According to the previous study, many herbs can regulate cancer cell progression by targeting specific microRNA (miRNA) (Liu, 2016). However, the underlying pathological mechanism of shikonin in HCC therapy is still unclear. The detection of cell growth and death rate were performed by hemacytometry and trypan blue staining, respectively. The expression of miR-106b and SMAD7 messenger RNA (mRNA) in HCC cells was evaluated by quantitative real-time polymerase chain reaction. Cell proliferation, apoptosis, and migration ability were measured by cell counting kit-8 (CCK-8), flow cytometry, and transwell assay. The expression of proteins E-cadherin, N-cadherin, vimentin, SMAD7, TGF-β1, p-SMAD3, SMAD3, and GAPDH was examined by western blot. The interaction between SMAD7 and miR-106b was assessed by luciferase reporter system. Shikonin inhibited Huh7 and HepG2 cell growth in a dose-dependent manner while induced cell death in a time-dependent manner. In addition, the expression of miR-106b was reduced after shikonin treatment. Moreover, miR-106b attenuated the suppressive effects of shikonin on HCC cell migration and epithelial-mesenchymal transition (EMT). SMAD7 was predicted as a target of miR-106b and the prediction was confirmed by luciferase reporter system. Additionally, we observed that SMAD7 reversed the promotive effects of miR-106b on HCC cell progression and EMT. The subsequent western blot assay revealed that shikonin could modulate SMAD7/TGF-β signaling pathway by targeting miR-106b. In conclusion, Shikonin suppresses cell progression and EMT and accelerates cell death of HCC cells via modulating miR-106b/SMAD7/TGF-β signaling pathway, suggesting shikonin could be an effective agent for HCC treatment.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Minimal Invasive Surgery, the Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Xianpeng Zeng
- Department of Institute of Hepatobiliary Diseases, the Zhongnan Hospital of Wuhan University, Wuhan, 430000, China
| |
Collapse
|
9
|
An W, Lai H, Zhang Y, Liu M, Lin X, Cao S. Apoptotic Pathway as the Therapeutic Target for Anticancer Traditional Chinese Medicines. Front Pharmacol 2019; 10:758. [PMID: 31354479 PMCID: PMC6639427 DOI: 10.3389/fphar.2019.00758] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Apoptosis is a process of programmed cell death and it plays a vital role in human development and tissue homeostasis. Mounting evidence indicates that apoptosis is closely related to the survival of cancer and it has emerged as a key target for the discovery and development of novel anticancer drugs. Various studies indicate that targeting the apoptotic signaling pathway by anticancer drugs is an important mechanism in cancer therapy. Therefore, numerous novel anticancer agents have been discovered and developed from traditional Chinese medicines (TCMs) by targeting the cellular apoptotic pathway of cancer cells and shown clinically beneficial effects in cancer therapy. This review aims to provide a comprehensive discussion for the role, pharmacology, related biology, and possible mechanism(s) of a number of important anticancer TCMs and their derivatives mainly targeting the cellular apoptotic pathway. It may have important clinical implications in cancer therapy.
Collapse
Affiliation(s)
- Weixiao An
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Nanchong Central Hospital, Nanchong, China
| | - Honglin Lai
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Jia L, Zhu Z, Li H, Li Y. RETRACTED ARTICLE: Shikonin inhibits proliferation, migration, invasion and promotes apoptosis in NCI-N87 cells via inhibition of PI3K/AKT signal pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2662-2669. [PMID: 31257936 DOI: 10.1080/21691401.2019.1632870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liushun Jia
- Department of General Surgery, Jining Traditional Chinese Medicine Hospital, Jining, China
| | - Zhen Zhu
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Jining, China
| | - Hongbo Li
- Department of General Surgery, Traditional Chinese Medicine Hospital of Sishui County, Jining, China
| | - Yaofeng Li
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
11
|
Xu WT, Shen GN, Luo YH, Piao XJ, Wang JR, Wang H, Zhang Y, Li JQ, Feng YC, Zhang Y, Zhang T, Wang SN, Wang CY, Jin CH. New naphthalene derivatives induce human lung cancer A549 cell apoptosis via ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Chem Biol Interact 2019; 304:148-157. [PMID: 30871965 DOI: 10.1016/j.cbi.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022]
Abstract
1,4-Naphthoquinone compounds are a class of organic compounds derived from naphthalene. They exert a wide variety of biological effects, but when used as anticancer drugs, have varying levels of side effects. In the present study, in order to reduce toxicity and improve the antitumor activity, we synthesized two novel 1,4-naphthoquinone derivatives, 2-(butane-1-sulfinyl)-1,4-naphthoquinone (BSQ) and 2-(octane-1-sulfinyl)-1,4-naphthoquinone (OSQ). We investigated the antitumor effects of BSQ and OSQ in human lung cancer cells and the underlying molecular mechanisms of these effects, focusing on the relationship between these compounds and reactive oxygen species (ROS) production. MTT assay and trypan blue exclusion assay results showed that BSQ and OSQ had significant cytotoxic effects in human lung cancer cells. Flow cytometry results indicated that the number of apoptotic cells and the intracellular ROS levels significantly increased after treatment with BSQ and OSQ. However, cell apoptosis was inhibited by pretreatment with the ROS scavenger N-acetyl-l-cysteine (NAC). Western blotting results showed that BSQ and OSQ increased the expression levels of p-p38 kinase and p-c-Jun N-terminal kinase (p-JNK), and decreased the expression levels of p-extracellular signal-regulated kinase (p-ERK), p-protein kinase B (p-Akt), and p-signal transducer and activator of transcription-3 (p-STAT3). These phenomena were blocked by mitogen-activated protein kinase (MAPK) inhibitors, Akt inhibitors and NAC. In conclusion, BSQ and OSQ induce human lung cancer A549 cell apoptosis by ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Therefore, BSQ and OSQ may be therapeutic potential agents for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Ying-Hua Luo
- College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, 163316, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Yu-Chao Feng
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Shi-Nong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Chang-Yuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China.
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China.
| |
Collapse
|
12
|
Han X, Kang KA, Piao MJ, Zhen AX, Hyun YJ, Kim HM, Ryu YS, Hyun JW. Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways. Biomol Ther (Seoul) 2019; 27:41-47. [PMID: 29925224 PMCID: PMC6319547 DOI: 10.4062/biomolther.2018.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022] Open
Abstract
The apoptotic effects of shikonin (5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-enyl]naphthalene-1,4-dione) on the human colon cancer cell line SNU-407 were investigated in this study. Shikonin showed dose-dependent cytotoxic activity against SNU-407 cells, with an estimated IC50 value of 3 µM after 48 h of treatment. Shikonin induced apoptosis, as evidenced by apoptotic body formation, sub-G1 phase cells, and DNA fragmentation. Shikonin induced apoptotic cell death by activating mitogen-activated protein kinase family members, and the apoptotic process was mediated by the activation of endoplasmic reticulum (ER) stress, leading to activation of the PERK/elF2α/CHOP apoptotic pathway, and mitochondrial Ca2+ accumulation. Shikonin increased mitochondrial membrane depolarization and altered the levels of apoptosis-related proteins, with a decrease in B cell lymphoma (Bcl)-2 and an increase in Bcl-2-associated X protein, and subsequently, increased expression of cleaved forms of caspase-9 and -3. Taken together, we suggest that these mechanisms, including MAPK signaling and the ER-and mitochondria-mediated pathways, may underlie shikonin-induced apoptosis related to its anticancer effect.
Collapse
Affiliation(s)
- Xia Han
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Ao Xuan Zhen
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Yu Jae Hyun
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Hyun Min Kim
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Yea Seong Ryu
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju National University School of Medicine, Jeju 63243, Republic of Korea
| |
Collapse
|
13
|
Allegra A, Innao V, Allegra AG, Musolino C. Relationship between mitofusin 2 and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:209-236. [PMID: 31036292 DOI: 10.1016/bs.apcsb.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles whose actions are fundamental for cell viability. Within the cell, the mitochondrial system is incessantly modified via the balance between fusion and fission processes. Among other proteins, mitofusin 2 is a central protagonist in all these mitochondrial events (fusion, trafficking, contacts with other organelles), the balance of which causes the correct mitochondrial action, shape, and distribution within the cell. Here we examine the structural and functional characteristics of mitofusin 2, underlining its essential role in numerous intracellular pathways, as well as in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
14
|
Figat R, Zgadzaj A, Geschke S, Sieczka P, Pietrosiuk A, Sommer S, Skrzypczak A. Cytotoxicity and antigenotoxicity evaluation of acetylshikonin and shikonin. Drug Chem Toxicol 2018; 44:140-147. [PMID: 30574814 DOI: 10.1080/01480545.2018.1536710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shikonin (SH) is used as a red pigment for food coloring and cosmetics, and has cytotoxic activity towards cancer cells. However, due to strong toxicity SH has limited potential as an anticancer drug. Acetylshikonin (ASH) is one of the SH derivatives with promising anticancer potential. In present study, we attempted to evaluate and compare the cytotoxicity of SH and ASH towards a normal cell line (V79) and in addition to evaluate their antigenotoxic activity. The evaluation was made with the use of the set of cytotoxicity assays with V79 line and the micronucleus test in vitro performed using clinafloxacin (CLFX), ethyl methanesulfonate (EMS) as direct genotoxins and cyclophosphamide (CPA) as indirect genotoxin. For CPA and EMS the simultaneous protocol was used and for CLFX three different variants were performed: pretreatment, simultaneous, and post-treatment. A higher cytotoxic effect was observed for SH. The EC50 values obtained for SH were approximately twofold lower compared to that of ASH. Moreover, ASH exhibited an antigenotoxic potential against CPA-induced genotoxicity, whereas SH has no activity. However, ASH increased the EMS-induced genotoxicity, when SH exhibited no effect. Both compounds decreased the genotoxicity of CLFX in pretreatment and simultaneous protocol. Based on the results of the present study it can be concluded that ASH is less cytotoxic than SH to normal cells and has comparable antigenotoxic potential.
Collapse
Affiliation(s)
- Ramona Figat
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Sylwia Geschke
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Patrycja Sieczka
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| | - Agnieszka Pietrosiuk
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Medical University of Warsaw, Poland
| | - Sylwester Sommer
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Agata Skrzypczak
- Department of Environmental Health Sciences, Medical University of Warsaw, Poland
| |
Collapse
|
15
|
Novel 1,4-naphthoquinone derivatives induce apoptosis via ROS-mediated p38/MAPK, Akt and STAT3 signaling in human hepatoma Hep3B cells. Int J Biochem Cell Biol 2018; 96:9-19. [DOI: 10.1016/j.biocel.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/28/2022]
|
16
|
Shikonin causes apoptosis by disrupting intracellular calcium homeostasis and mitochondrial function in human hepatoma cells. Exp Ther Med 2017; 15:1484-1492. [PMID: 29434733 PMCID: PMC5776525 DOI: 10.3892/etm.2017.5591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Shikonin is known to suppress proliferation and induce apoptosis in a variety of cancer cell lines. In the present study, SMMC-7721 human hepatocellular carcinoma cells were treated with shikonin (1, 2 or 4 µM) for 12–48 h. Cell morphological alterations and DNA damage were determined. Furthermore, changes in cell cycle, mitochondrial transmembrane potential, calcium homeostasis and levels of reactive oxygen species were measured. Shikonin-treated SMMC-7721 cells exhibited morphological changes and DNA damage. Shikonin inhibited cell proliferation causing cell cycle arrest at the G0/G1 phase and induced apoptosis in a dose- and time-dependent manner. Shikonin-induced apoptosis was associated with activation of caspases-3, −8 and −9, elevated levels of intracellular Ca2+ and reactive oxygen species, reduced mitochondrial membrane potential and enhanced efflux of Ca2+ and K+. Gene expression B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), p53 and caspase-3 was up-regulated, whereas Bcl-2 expression was downregulated. Shikonin caused apoptosis by inhibiting cell cycle progression, disrupting Ca2+ homeostasis, inducing oxidative stress and triggering mitochondrial dysfunction. Activation of caspases-3, −8 and −9, K+ efflux, and regulation of Bax, Bcl-2, p53 and caspase-3 expression are involved in the process. These results provide in-depth insight into the mechanisms of action of shikonin in the treatment of cancer.
Collapse
|
17
|
Luo Y, Yu H, Yang Y, Tian W, Dong K, Shan J, Ma X. A flavonoid compound from Chrysosplenium nudicaule inhibits growth and induces apoptosis of the human stomach cancer cell line SGC-7901. PHARMACEUTICAL BIOLOGY 2016; 54:1133-1139. [PMID: 26428258 DOI: 10.3109/13880209.2015.1055634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Gastric cancer remains highly prevalent, but treatment options are limited. Natural products have proved to be a rich source of anticancer drugs. Chrysosplenium nudicaule Ledeb. (Saxifragaceae) is a perennial herb that grows in the highlands of China. It has been used as a traditional Chinese medicine to treat digestive diseases for hundreds of years. Recent studies revealed that this herb had anticancer activity, and the flavonoids were speculated to be the effective components. 6,7,3'-Trimethoxy-3,5,4'-trihydroxy flavone (TTF) and 5,4'-dihydroxy-3,6,3'trimethoxy-flavone-7-O-β-d-glucoside (DTFG) are flavonoid compounds isolated from Chrysosplenium nudicaule. OBJECTIVE This study examined the effect of TTF and DTFG on SGC-7901 human stomach cancer cell in vitro to determine the anticancer and induction of apoptosis properties of TTF. MATERIALS AND METHODS The proliferation of cells treated with 32, 16, 8, 4, and 2 μg/mL of TTF or DTFG for 24, 48, and 72 h was assessed by the MTT assay. After being treated with TTF, the apoptosis of SGC-7901 cells was assessed by acridine orange staining, ultrastructure, electrophoresis of DNA fragmentation, and flow cytometry. RESULTS Results indicated that TTF inhibited the growth of cancer cells with an IC50 value of 8.33 μg/mL after 72 h incubation. However, DTFG showed no inhibitory effect on the growth of the cancer cell. Further studies on TTF also confirmed that it was able to induce apoptosis of SGC-7901 cells at a concentration as low as 4 μg/mL. DISCUSSION AND CONCLUSION The apoptotic effect of TTF makes it a promising candidate for future chemotherapeutic application in treating stomach cancer.
Collapse
Affiliation(s)
- Yanping Luo
- a Department of Immunology , School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Hongjuan Yu
- a Department of Immunology , School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Yunshang Yang
- b Institute of Organic and Medicinal Chemistry, School of Petrochemical Engineering, Lanzhou University of Technology , Lanzhou , China
| | - Weihua Tian
- c Department of Clinical Laboratory , Gansu Provincial Hospital of Traditional Chinese Medicine , Lanzhou , China
| | - Kaizhong Dong
- d Medical College, Northwest University for Nationalities , Lanzhou , China , and
| | - Jinyu Shan
- e Department of Infection , Immunity and Inflammation, University of Leicester , Leicester , UK
| | - Xingming Ma
- a Department of Immunology , School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| |
Collapse
|
18
|
Tang X, Zhang C, Wei J, Fang Y, Zhao R, Yu J. Apoptosis is induced by shikonin through the mitochondrial signaling pathway. Mol Med Rep 2016; 13:3668-74. [PMID: 26935754 DOI: 10.3892/mmr.2016.4967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/16/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of shikonin (SHI) on the induction of apoptosis in human TT medullary thyroid carcinoma cells, and to explore the role of mitochondrial signaling in this process. MTT, Annexin V‑phycoerythrin/7‑aminoactinomycin D staining, electron microscopy and JC‑1 probe staining were performed to analyze mitochondrial membrane potential, and western blot analysis was used to examine the activation of the mitochondrial signaling pathway, and the changes in mitochondrial apoptosis pathway‑associated protein expression. Following culture for 24‑72 h, treatment with various concentrations of SHI inhibited the proliferation of TT cells, in a dose‑ and time‑dependent manner. Transmission electron microscopy demonstrated the presence of typical apoptotic structures, as well as mitochondrial structural changes. The expression levels of apoptosis‑associated proteins caspase‑9, caspase‑3 and poly adenosine triphosphate ribose polymerase increased in a dose‑dependent manner following treatment with SHI. In addition, the mitochondrial membrane potential of the experimental group was significantly decreased, and the mitochondrial apoptosis pathway‑associated proteins were altered. A possible mechanism underlying SHI‑induced apoptosis through the mitochondrial signaling pathway is the regulation of B cell lymphoma 2 (Bcl‑2)/Bcl‑2‑associated protein X expression levels, resulting in the decrease in mitochondrial membrane potential and the activation of the caspase‑9/caspase‑3 enzyme‑associated reactions.
Collapse
Affiliation(s)
- Xuxia Tang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Traditional Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Chen Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Traditional Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jiongzhou Wei
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Traditional Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yuting Fang
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Traditional Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Rongxiang Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Zhejiang Traditional Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jianxin Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
19
|
Jin YD, Ren Y, Wu MW, Chen P, Lu J. Effect of shikonin on multidrug resistance in HepG2: The role of SIRT1. PHARMACEUTICAL BIOLOGY 2015; 53:1016-1021. [PMID: 25471124 DOI: 10.3109/13880209.2014.952836] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Overexpression of SIRT1 is considered to enhance the resistance of HepG2 cells to irradiation. Shikonin, a naturally occurring naphthoquinone compound, displays anticancer effects and circumvents cancer drug resistance. OBJECTIVES This study investigated the MDR reversal effect of shikonin induced by the overexpression of SIRT1. MATERIALS AND METHODS The overexpression of SIRT1 in HepG2 cells was established by lentivirus infection. Five days after transduction, real-time quantitative polymerase chain reaction and western blotting were used to detect the expression of SIRT1 and MDR1/P-gp. Drug resistance was also evaluated by flow cytometry after rhodamine-123 staining. On day 5, the multidrug resistance cells were treated by shikonin (10(-7), 10(-6), and 10(-5) µmol/L) one time. The cell viability was detected by the MTT assay, and apoptosis was evaluated by Hoechst 33342 staining and caspase-3 activity 24 h after shikonin treatment. RESULTS Overexpression of SIRT1 decreased rhodamine-123 staining and successfully produced the R-HepG2 cell line. Compared with HepG2, the expression of MDR1/P-gp mRNA (3.45 ± 0.35) and protein (1.40 ± 0.05) were both upregulated in R-HepG2. Shikonin inhibited cell viability (from 93.9 ± 2.1 to 66.7 ± 1.5%), induced apoptosis of R-HepG2 (apoptotic ratio from 3.5 ± 0.8 to 47.5 ± 2.7%, caspase-3 activity from 103.5 ± 1.9 to 329.2 ± 14.9%, respectively), downregulated the mRNA and protein expression of SIRT1 and MDR1/P-gp, and decreased rhodamin 123 efflux. DISCUSSION AND CONCLUSION In the present study, we demonstrated that shikonin is able to overcome drug resistance in hepatocellular carcinoma cells, and the mechanism is related to the SIRT1-MDR1/P-gp signaling pathway.
Collapse
Affiliation(s)
- Yong-Dong Jin
- Department of Medical Oncology, Sichuan Cancer Hospital , Chengdu , China and
| | | | | | | | | |
Collapse
|
20
|
Tian R, Li Y, Gao M. Shikonin causes cell-cycle arrest and induces apoptosis by regulating the EGFR-NF-κB signalling pathway in human epidermoid carcinoma A431 cells. Biosci Rep 2015; 35:e00189. [PMID: 25720435 PMCID: PMC4413019 DOI: 10.1042/bsr20150002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 01/21/2023] Open
Abstract
Shikonin, a naphthoquinone pigment isolated from the Chinese herbal Zicao, has been shown to exhibit antioxidant and anticancer effects. In the present study, we investigated the antiproliferative and pro-apoptotic effects of shikonin on A431 cells and explored the underlying molecular mechanisms. In the present study, our results showed that shikonin significantly inhibited the growth of A431 cells in a concentration- and time-dependent manner, and caused cell cycle arrest by upregulation of p21 and p27, and downregulation of cyclins and cyclin-dependent kinases. In addition, shikonin evidently induced apoptosis due to decreasing Bcl-2 expression, increasing Bax expression, activating caspase and inactivating NF-κB, while pretreatment with a pan-caspase inhibitor Z-Asp-CH2-DCB abrogated shikonin-induced apoptosis. Moreover, EGF could significantly increase the NF-κB DNA-binding activity and reversed the shikonin-induced inactivation of NF-κB. As anticipated AG1478 (EGFR inhibitor) and Bay11-7082 (NF-κB inhibitor) blocked EGF-reversed the inactivation of NF-κB induced by shikonin. Our data also showed that EGF could evidently reverse the shikonin-induced decreases in cell viability and increases in apoptosis. Then, the NF-κB inhibitors such as Bay11-7082, SN50, Helenalin and the EGFR inhibitor AG1478 and its downstream inhibitor such as PI3K inhibitor LY294002 and STAT3 inhibitor Stattic dramatically blocked EGF-reversed decreases in cell viability and increases in apoptosis induced by shikonin. Collectively, our findings indicated that shikonin inhibited cell growth and caused cell cycle arrest of the A431 cells through the regulation of apoptosis. Moreover, these effects were mediated at least partially by suppressing the activation of the EGFR-NF-κB signaling pathways.
Collapse
Key Words
- apoptosis
- cell cycle
- epidermal growth factor receptor–nuclear factor-kappa b signalling pathway
- human epidermoid carcinoma cells
- shikonin
- skin cancer
- akt, protein kinase b
- bcl-2, b-cell lymphoma 2
- cdk, cyclin-dependent kinase
- dmem, dulbecco's modified eagle's medium
- egf, epidermal growth factor
- egfr, epidermal growth factor receptor
- erk, extracellular signal-regulated kinase
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- jak, janus kinase
- jnk, c-jun n-terminal kinase
- mapk, mitogen-activated protein kinase
- nf-κb, nuclear factor kappa-light-chain-enhancer of activated b-cells
- pi, propidium iodide
- pi3k, phosphoinositide 3-kinase
- scc, squamous cell carcinoma
- stat3, signal transducer and activator of transcription 3
Collapse
Affiliation(s)
- Rong Tian
- *Department of Dermatology, Air Force General Hospital of PLA, Beijing 100142, China
| | - You Li
- *Department of Dermatology, Air Force General Hospital of PLA, Beijing 100142, China
| | - Mei Gao
- *Department of Dermatology, Air Force General Hospital of PLA, Beijing 100142, China
| |
Collapse
|
21
|
Nam C, Hwang JS, Kim MJ, Choi YW, Han KG, Kang JK. Single- and Repeat-dose Oral Toxicity Studies of Lithospermum erythrorhizon Extract in Dogs. Toxicol Res 2015; 31:77-88. [PMID: 25874036 PMCID: PMC4395658 DOI: 10.5487/tr.2015.31.1.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/31/2023] Open
Abstract
Lithospermum erythrorhizon has long been used in traditional Asian medicine for the treatment of diseases, including skin cancer. The oral toxicity of a hexane extract of Lithospermum erythrorhizon root (LEH) was investigated in Beagle dogs by using single escalating doses, two-week dose range-finding, and 4-week oral repeat dosing. In the single dose-escalating oral toxicity study, no animal died, showed adverse clinical signs, or changes in body weight gain at LEH doses of up to 2,000 mg/kg. In a 2 week dose range-finding study, no treatment-related adverse effects were detected by urinalysis, hematology, blood biochemistry, organ weights, or gross and histopathological examinations at doses of up to 500 mg LEH/kg/day. In the 4 week repeat-dose toxicity study, a weight loss or decreased weight gain was observed at 300 mg/kg/day. Although levels of serum triglyceride and total bilirubin were increased in a dose dependent manner, there were no related morphological changes. Based on these findings, the sub-acute no observable adverse effect level for 4-week oral administration of LEH in Beagles was 100 mg/kg/day.
Collapse
Affiliation(s)
| | | | | | - Young Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang, Korea
| | | | - Jong-Koo Kang
- Biotoxtech Co., Ltd., Cheongju, Korea ; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
22
|
Gara RK, Srivastava VK, Duggal S, Bagga JK, Bhatt M, Sanyal S, Mishra DP. Shikonin selectively induces apoptosis in human prostate cancer cells through the endoplasmic reticulum stress and mitochondrial apoptotic pathway. J Biomed Sci 2015; 22:26. [PMID: 25879420 PMCID: PMC4389804 DOI: 10.1186/s12929-015-0127-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/06/2015] [Indexed: 12/12/2022] Open
Abstract
Background Despite the recent progress in screening and therapy, a majority of prostate cancer cases eventually attain hormone refractory and chemo-resistant attributes. Conventional chemotherapeutic strategies are effective at very high doses for only palliative management of these prostate cancers. Therefore chemo-sensitization of prostate cancer cells could be a promising strategy for increasing efficacy of the conventional chemotherapeutic agents in prostate cancer patients. Recent studies have indicated that the chemo-preventive natural agents restore the pro-apoptotic protein expression and induce endoplasmic reticulum stress (ER stress) leading to the inhibition of cellular proliferation and activation of the mitochondrial apoptosis in prostate cancer cells. Therefore reprogramming ER stress-mitochondrial dependent apoptosis could be a potential approach for management of hormone refractory chemoresistant prostate cancers. We aimed to study the effects of the natural naphthoquinone Shikonin in human prostate cancer cells. Results The results indicated that Shikonin induces apoptosis in prostate cancer cells through the dual induction of the endoplasmic reticulum stress and mitochondrial dysfunction. Shikonin induced ROS generation and activated ER stress and calpain activity. Moreover, addition of antioxidants attenuated these effects. Shikonin also induced the mitochondrial apoptotic pathway mediated through the enhanced expression of the pro-apoptotic Bax and inhibition of Bcl-2, disruption of the mitochondrial membrane potential (MMP) followed by the activation of caspase-9, caspase-3, and PARP cleavage. Conclusion The results suggest that shikonin could be useful in the therapeutic management of hormone refractory prostate cancers due to its modulation of the pro-apoptotic ER stress and mitochondrial apoptotic pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0127-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rishi Kumar Gara
- Cell Death Research Laboratory, Endocrinology Division CSIR-Central Drug Research Institute, Lucknow, 226031, India. .,Center for Cancer Research, UTHSC, Memphis, TN, USA.
| | | | - Shivali Duggal
- Department of Radiotherapy, King George Medical University, Lucknow, 226003, India.
| | - Jaspreet Kaur Bagga
- Cell Death Research Laboratory, Endocrinology Division CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Mlb Bhatt
- Department of Radiotherapy, King George Medical University, Lucknow, 226003, India.
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Endocrinology Division CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
23
|
Qu D, Xu XM, Zhang M, Jiang TS, Zhang Y, Li SQ. Cbl participates in shikonin-induced apoptosis by negatively regulating phosphoinositide 3-kinase/protein kinase B signaling. Mol Med Rep 2015; 12:1305-13. [PMID: 25815461 DOI: 10.3892/mmr.2015.3510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 02/11/2015] [Indexed: 11/06/2022] Open
Abstract
Shikonin, a naturally occurring naphthoquinone, exhibits anti-tumorigenic activity. However, its precise mechanisms of action have remained elusive. In the present study, the involvement in the action of shikonin of the ubiquitin ligases Cbl-b and c-Cbl, which are negative regulators of phosphoinositide 3-kinase (PI3K) activation, was investigated. Shikonin was observed to reduce cell viability and induce apoptosis and G2/M phase arrest in lung cancer cells. In addition, shikonin increased the protein levels of B-cell lymphoma 2 (Bcl-2)-associated X and p53 and reduced those of Bcl-2. Additionally, shikonin inhibited PI3k/Akt activity and upregulated Cbl protein expression. In addition, a specific inhibitor of PI3K, LY294002, was observed to have a synergistic effect on the proliferation inhibition and apoptotic induction of A549 cells with shikonin. In conclusion, the results of the present study suggested that Cbl proteins promote shikonin-induced apoptosis by negatively regulating PI3K/Akt signaling in lung cancer cells.
Collapse
Affiliation(s)
- Dan Qu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Meng Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ting-Shu Jiang
- Department of Respiratory Medicine, Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yi Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Sheng-Qi Li
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
24
|
Qu D, Chen YU, Xu XM, Zhang M, Zhang YI, Li SQ. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med 2015; 9:1265-1270. [PMID: 25780420 PMCID: PMC4353798 DOI: 10.3892/etm.2015.2283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/08/2015] [Indexed: 12/02/2022] Open
Abstract
Shikonin (SK), a naturally occurring naphthoquinone, exhibits antitumor activity. However, its precise mechanisms of action are unknown. In the present study, the effects of SK on NCI-H460 human lung cancer cells were investigated. It was found that SK reduced cell viability and induced apoptosis in the NCI-H460 cells. Additionally, SK inhibited extracellular signal-regulated kinase (ERK) activity, which indicates that inhibition of the ERK pathway is probably one of the mechanisms by which SK induced NCI-H460 cell apoptosis. The expression of Cbl-b was significantly increased by treatment with SK for 4 h, and gradually increased to a maximal level at 24 h; the time taken for the upregulation of Cbl-b protein was in accordance to that required for the downregulation of phospho (p)-ERK protein. The Cbl inhibitor Ps341 reversed the SK-induced downregulation of p-ERK and apoptosis of NCI-H460 cells. These results indicate that Cbl-b potentiates the apoptotic action of SK by inhibiting the ERK pathway in lung cancer cells.
Collapse
Affiliation(s)
- Dan Qu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Y U Chen
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiao-Man Xu
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Meng Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Y I Zhang
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Sheng-Qi Li
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
25
|
Yeh YC, Liu TJ, Lai HC. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:620383. [PMID: 25737737 PMCID: PMC4337265 DOI: 10.1155/2015/620383] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/11/2023]
Abstract
Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1-2.5 μg/mL) cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5-10 μg/mL) precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice.
Collapse
Affiliation(s)
- Yueh-Chiao Yeh
- Department of Natural Biotechnology, Nanhua University, Sec. 1, No. 55, Nanhua Road, Dalin, Chiayi 62249, Taiwan
| | - Tsun-Jui Liu
- Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Sec. 4, No. 1650 Taiwan Boulevard, Taichung 40705, Taiwan
- Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Sec. 2, No. 155, Linong Street, Taipei 11221, Taiwan
| | - Hui-Chin Lai
- Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Sec. 4, No. 1650 Taiwan Boulevard, Taichung 40705, Taiwan
- Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Sec. 2, No. 155, Linong Street, Taipei 11221, Taiwan
| |
Collapse
|
26
|
Zhang CS, Yu JJ, Parker S, Zhang AL, May B, Lu C, Xue CC. Oral Chinese herbal medicine combined with pharmacotherapy for psoriasis vulgaris: a systematic review. Int J Dermatol 2014; 53:1305-18. [DOI: 10.1111/ijd.12607] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Claire Shuiqing Zhang
- Traditional & Complementary Medicine Research Program; Health Innovations Research Institute; School of Health Sciences; RMIT University; Bundoora Campus Vic. Australia
| | - Jason Jingjie Yu
- Traditional & Complementary Medicine Research Program; Health Innovations Research Institute; School of Health Sciences; RMIT University; Bundoora Campus Vic. Australia
- Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine; Guangzhou China
| | - Shefton Parker
- Traditional & Complementary Medicine Research Program; Health Innovations Research Institute; School of Health Sciences; RMIT University; Bundoora Campus Vic. Australia
| | - Anthony Lin Zhang
- Traditional & Complementary Medicine Research Program; Health Innovations Research Institute; School of Health Sciences; RMIT University; Bundoora Campus Vic. Australia
| | - Brian May
- Traditional & Complementary Medicine Research Program; Health Innovations Research Institute; School of Health Sciences; RMIT University; Bundoora Campus Vic. Australia
| | - Chuanjian Lu
- Traditional & Complementary Medicine Research Program; Health Innovations Research Institute; School of Health Sciences; RMIT University; Bundoora Campus Vic. Australia
- Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine; Guangzhou China
| | - Charlie Changli Xue
- Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine; Guangzhou China
- Health Innovations Research Institute; School of Health Sciences; RMIT University; Bundoora Campus Vic. Australia
| |
Collapse
|
27
|
Baloch† SK, Ling† LJ, Qiu HY, Ma L, Lin HY, Huang SC, Qi JL, Wang XM, Lu GH, Yang YH. Synthesis and biological evaluation of novel shikonin ester derivatives as potential anti-cancer agents. RSC Adv 2014. [DOI: 10.1039/c4ra05610h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
28
|
Chen Y, Zheng L, Liu J, Zhou Z, Cao X, Lv X, Chen F. Shikonin inhibits prostate cancer cells metastasis by reducing matrix metalloproteinase-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways. Int Immunopharmacol 2014; 21:447-55. [PMID: 24905636 DOI: 10.1016/j.intimp.2014.05.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/07/2014] [Accepted: 05/23/2014] [Indexed: 01/10/2023]
Abstract
Metastasis is one of the most important factors related to prostate cancer therapeutic efficacy. In previous studies, shikonin, an active naphthoquinone isolated from the Chinese medicine Zi Cao, has various anticancer activities both in vivo and in vitro. However, the mechanisms underlying shikonin's anticancer activity are not fully elucidated on prostate cancer cells. In the present study, we aimed to investigate the potential effects of shikonin on prostate cancer cells and the underlying mechanisms by which shikonin exerted its actions. With cell proliferation, flow cytometric cell cycle, migration and invasion assays, we found that shikonin potently suppressed PC-3 and DU145 cell growth by cell cycle arrest at the G2 phase and metastasis in a dose-dependent manner. Mechanically, we presented that shikonin could suppress the metastasis of PC-3 and DU145 cells via inhibiting the matrix metalloproteinase-2 (MMP-2) and MMP-9 expression and activation. In addition, shikonin significantly decreased the phosphorylation of AKT and mTOR in a dose-dependent manner while it induced extracellular signal-regulated kinase (ERK), p38 mitogen activated protein kinase (MAPK) and c-Jun N terminal kinase (JNK) phosphorylation. Further investigation of the underlying mechanism revealed that shikonin also induced the production of reactive oxygen species (ROS) that was reversed by the ROS scavenger dithiothreitol (DTT). Additionally, DTT reversed the shikonin induced activation of ERK1/2, thereby maintaining MMP-2 and MMP-9 expression and restoring cell metastasis. Together, shikonin inhibits aggressive prostate cancer cell migration and invasion by reducing MMP-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways and presents a potential novel alternative agent for the treatment of human prostate cancer.
Collapse
Affiliation(s)
- Yongqiang Chen
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Lu Zheng
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Junquan Liu
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Zhonghai Zhou
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Xiliang Cao
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Xiaoting Lv
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China
| | - Fuxing Chen
- Department of Central Laboratory, 97th Hospital of PLA, 226 Tongshang Road, Xuzhou 221004, China.
| |
Collapse
|
29
|
In vitro induction of erythrocyte phosphatidylserine translocation by the natural naphthoquinone shikonin. Toxins (Basel) 2014; 6:1559-74. [PMID: 24828755 PMCID: PMC4052252 DOI: 10.3390/toxins6051559] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023] Open
Abstract
Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation.
Collapse
|
30
|
Kwak SY, Jeong YK, Kim BY, Lee JY, Ahn HJ, Jeong JH, Kim MS, Kim J, Han YH. β,β-Dimethylacrylshikonin sensitizes human colon cancer cells to ionizing radiation through the upregulation of reactive oxygen species. Oncol Lett 2014; 7:1812-1818. [PMID: 24932238 PMCID: PMC4049772 DOI: 10.3892/ol.2014.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/11/2014] [Indexed: 01/15/2023] Open
Abstract
Shikonin, a naphthoquinone derivative, has been shown to possess antitumor activity. In the present study, the effects of shikonin and its analog, β,β-dimethylacrylshikonin, were investigated as radiosensitizers on the human colon cancer cell line, HCT-116. Shikonin and, to a greater extent, its analog-induced apoptosis of HCT-116 cells further synergistically potentiated the induction of apoptosis when combined with ionizing radiation (IR) treatment. Shikonins also stimulated an increase in reactive oxygen species (ROS) production and IR-induced DNA damage. Pre-treatment with the ROS scavenger, N-acetylcysteine, suppressed the enhancement of IR-induced DNA damage and apoptosis stimulated by shikonins, indicating that shikonins exert their radiosensitizing effects through ROS upregulation. The radiosensitizing effect of shikonins was also examined in vivo using the xenograft mouse model. Consistent with the in vitro results, injection of β,β-dimethylacrylshikonin combined with IR treatment significantly suppressed tumor growth of the HCT-116 xenograft. Taken together, the results show that β,β-dimethylacrylshikonin is a promising agent for developing an improved strategy for radiotherapy against tumors.
Collapse
Affiliation(s)
- Seo-Young Kwak
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea ; Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Youn Kyoung Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Bu-Yeon Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Ji Young Lee
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Hyun-Joo Ahn
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Jae-Hoon Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Mi-Sook Kim
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| | - Joon Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul 139-706, Republic of Korea
| |
Collapse
|
31
|
Choudhary V, Kaddour-Djebbar I, Alaisami R, Kumar MV, Bollag WB. Mitofusin 1 degradation is induced by a disruptor of mitochondrial calcium homeostasis, CGP37157: a role in apoptosis in prostate cancer cells. Int J Oncol 2014; 44:1767-73. [PMID: 24626641 DOI: 10.3892/ijo.2014.2343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
Mitochondria constantly divide (mitochondrial fission) and fuse (mitochondrial fusion) in a normal cell. Disturbances in the balance between these two physiological processes may lead to cell dysfunction or to cell death. Induction of cell death is the prime goal of prostate cancer chemotherapy. Our previous study demonstrated that androgens increase the expression of a mitochondrial protein involved in fission and facilitate an apoptotic response to CGP37157 (CGP), an inhibitor of mitochondrial calcium efflux, in prostate cancer cells. However, the regulation and role of mitochondrial fusion proteins in the death of these cells have not been examined. Therefore, our objective was to investigate the effect of CGP on a key mitochondrial fusion protein, mitofusin 1 (Mfn1), and the role of Mfn1 in prostate cancer cell apoptosis. We used various prostate cancer cell lines and western blot analysis, qRT-PCR, siRNA, M30 apoptosis assay and immunoprecipitation techniques to determine mechanisms regulating Mfn1. Treatment of prostate cancer cells with CGP resulted in selective degradation of Mfn1. Mfn1 ubiquitination was detected following immunoprecipitation of overexpressed Myc-tagged Mfn1 protein from CGP-treated cells, and treatment with the proteasomal inhibitor lactacystin, as well as siRNA-mediated knockdown of the E3 ubiquitin ligase March5, protected Mfn1 from CGP-induced degradation. These data indicate the involvement of the ubiquitin-proteasome pathway in CGP-induced degradation of Mfn1. We also demonstrated that downregulation of Mfn1 by siRNA enhanced the apoptotic response of LNCaP cells to CGP, suggesting a likely pro-survival role for Mfn1 in these cells. Our results suggest that manipulation of mitofusins may provide a novel therapeutic advantage in treating prostate cancer.
Collapse
Affiliation(s)
| | | | - Rabei Alaisami
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA, USA
| | | | | |
Collapse
|
32
|
Lee MJ, Kao SH, Hunag JE, Sheu GT, Yeh CW, Hseu YC, Wang CJ, Hsu LS. Shikonin time-dependently induced necrosis or apoptosis in gastric cancer cells via generation of reactive oxygen species. Chem Biol Interact 2014; 211:44-53. [PMID: 24463199 DOI: 10.1016/j.cbi.2014.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 01/25/2023]
Abstract
The effects of shikonin on gastric cancer cells were investigated in this study. Exposure to shikonin reduced the viability of gastric cancer cells in a time- and dose-dependent manner. However, apoptosis was not observed in gastric cancer cell treatment with different concentrations of shikonin for 6h. By contrast, treatment with shikonin for 24h significantly induced apoptosis, as evidenced by the results of TUNEL assay and flow cytometry analysis in proportion to the concentration. Disruption of the mitochondrial membrane potential was observed in gastric cancer cells that were treated with shikonin for 6 and 24h. Pretreatment with necrostatin-1 recovered cell death and mitochondrial membrane potential in the 6h shikonin treatment, but not in the 24h shikonin treatment. Western blot results reveal enhanced p38 phosphorylation, downregulated AKT phosphorylation, and increased caspase3 and PARP cleavage in cells that were treated with shikonin for 24h, but not in cells treated for 6h. Shikonin also triggered reactive oxygen species (ROS) generation both in the 6 and 24h treatments. Pretreatment with N-acetylcysteine blocked shikonin-induced cell death. In summary, our findings suggest that shikonin, which may function as a promising agent in the treatment of gastric cancers, sequentially triggered necrosis or apoptosis through ROS generation in gastric cancer cells.
Collapse
Affiliation(s)
- Mu-Jang Lee
- Cardiovascular Center, Antai Tian-Sheng Memorial Hospital, Pingtung 92843, Taiwan
| | - Shao-Hsuan Kao
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Jing-En Hunag
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chi-Wei Yeh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
33
|
Zhang FL, Wang P, Liu YH, Liu LB, Liu XB, Li Z, Xue YX. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS One 2013; 8:e81815. [PMID: 24303074 PMCID: PMC3841142 DOI: 10.1371/journal.pone.0081815] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/16/2013] [Indexed: 01/01/2023] Open
Abstract
Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs) that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Feng-Lei Zhang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Li-bo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Xiao-Bai Liu
- The 96 Class, 7-Year Program, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
34
|
ZHANG SHEHONG, HUANG QIAN. Etoposide induces apoptosis via the mitochondrial- and caspase-dependent pathways and in non-cancer stem cells in Panc-1 pancreatic cancer cells. Oncol Rep 2013; 30:2765-70. [DOI: 10.3892/or.2013.2767] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/12/2013] [Indexed: 11/05/2022] Open
|
35
|
Wei PL, Tu CC, Chen CH, Ho YS, Wu CT, Su HY, Chen WY, Liu JJ, Chang YJ. Shikonin suppresses the migratory ability of hepatocellular carcinoma cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8191-8197. [PMID: 23899086 DOI: 10.1021/jf4009586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Shikonin is a traditional Oriental medical herb extracted from Lithospermum erythrorhizon. Many studies have shown that shikonin possesses anticancer ability against many different cancers, including hepatocellular carcinoma (HCC). Recently, tumor metastasis has been become an important clinical obstacle. However, the effect of shikonin on metastasis by HCC is unknown. The 50% inhibitory concentration (IC50) of shikonin on HCC cells was determined by an MTT assay and the xCELLigence biosensor system. The migratory ability of HCC cells was detected by a transwell migration assay and the xCELLigence biosensor system. Matrix metalloproteinase-2 and -9 (MMP-2 and -9) expression levels were determined by Western blotting, and the activities of MMP-2 and -9 were determined by gelatin zymography. We found that IC50 values of HepJ5 and Mahlavu cells to shikonin treatment were around 2 μM. Exposure to a low dose of shikonin (0-0.4 μM) did not influence the survival of HCC cells. Interestingly, exposure to a low dose of shikonin inhibited the migratory ability on HepJ5 and Mahlavu cells. To further dissect the mechanism, we found that treatment with a low dose of shikonin reduced the activities and expression levels of MMP-2 and -9, which were correlated with the decreased cell migratory ability of HCC cells. In addition, we found a decrease of vimnetin expression, but no influence on the expression levels of N-cadherin, TWIST, or GRP78. In mechanism dissecting, we found that shikonin treatment may suppress the phosphorylation of AKT and then reduce the NF-κB (NF = nuclear factor) levels, but has no influence on the levels of c-Fos and c-Jun. Furthermore, we also found that shikonin may also reduce the phosphorylation of IκB. We concluded that a low dose of shikonin can suppress the migratory ability of HCC cells through downregulation of expression levels of vimentin and MMP-2 and -9. Our findings suggest that shikonin may be a new compound to prevent the migration of HCC cells.
Collapse
Affiliation(s)
- Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen C, Shanmugasundaram K, Rigby AC, Kung AL. Shikonin, a natural product from the root of Lithospermum erythrorhizon, is a cytotoxic DNA-binding agent. Eur J Pharm Sci 2013; 49:18-26. [PMID: 23422689 DOI: 10.1016/j.ejps.2013.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/10/2013] [Accepted: 02/02/2013] [Indexed: 01/05/2023]
Abstract
To search for compounds that disrupt binding of the EWS-FLI1 fusion protein to its cognate targets, we developed a homogeneous high-throughput proximity assay and screened 5200 small molecule compounds. Many well-known DNA-binding chemotherapeutic agents, such as actinomycin D, cisplatin, doxorubicin, daunorubicin, and epirubicin scored in the assay and not surprising also disrupted the binding of other transcription factors. Unexpectedly, we found that Shikonin, a natural product from the root of Lithospermum erythrorhizon, similarly disrupted protein-DNA interactions. Mechanistic studies demonstrated that Shikonin displaces SYBR green from binding to the minor groove of DNA and is able to inhibit topoisomerase mediated DNA relaxation. In cells, Shikonin blocked the binding of EWS-FLI1 to the NR0B1 promoter, and attenuated gene expression. Shikonin rapidly induced G2/M arrest and apoptosis in Ewing sarcoma cells. These results demonstrate that contrary to other purported mechanisms of action, Shikonin is a DNA-binding cytotoxic agent.
Collapse
Affiliation(s)
- Changmin Chen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Kumaran Shanmugasundaram
- Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alan C Rigby
- Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew L Kung
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
37
|
Shen XJ, Wang HB, Ma XQ, Chen JH. β,β-Dimethylacrylshikonin induces mitochondria dependent apoptosis through ERK pathway in human gastric cancer SGC-7901 cells. PLoS One 2012; 7:e41773. [PMID: 22848597 PMCID: PMC3407073 DOI: 10.1371/journal.pone.0041773] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/25/2012] [Indexed: 01/12/2023] Open
Abstract
β,β-Dimethylacrylshikonin, one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we discussed the molecular mechanisms of β,β-dimethylacrylshikonin in the apoptosis of SGC-7901 cells. β,β-Dimethylacrylshikonin reduced the cell viability of SGC-7901 cells in a dose- and time-dependent manner and induced cell apoptosis. β,β-Dimethylacrylshikonin treatment in SGC-7901 cells down-regulated the expression of XIAP, cIAP-2, and Bcl-2 and up-regulated the expression of Bak and Bax and caused the loss of mitochondrial membrane potential and release of cytochrome c. Additionally, β,β-dimethylacrylshikonin treatment led to activation of caspases-9, 8 and 3, and cleavage of poly (ADP-ribose) polymerase (PARP), which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. β,β-Dimethylacrylshikonin induced phosphorylation of extracellular signal-regulated kinase (ERK) in SGC-7901 cells. U0126, a specific MEK inhibitor, blocked the ERK activation by β,β-dimethylacrylshikonin and abrogated β,β-dimethylacrylshikonin -induced apoptosis. Our results demonstrated that β,β-dimethylacrylshikonin inhibited growth of gastric cancer SGC-7901 cells by inducing ERK signaling pathway, and provided a clue for preclinical and clinical evaluation of β,β-dimethylacrylshikonin for gastric cancer therapy.
Collapse
Affiliation(s)
- Xiu-Jin Shen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hai-Bing Wang
- National Clinical Research Base of Traditional Chinese Medicine, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Qiong Ma
- National Clinical Research Base of Traditional Chinese Medicine, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang-Hua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011. [PMID: 21777476 DOI: 10.1186/1749-8546-6- 27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|
39
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011; 6:27. [PMID: 21777476 PMCID: PMC3149025 DOI: 10.1186/1749-8546-6-27] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/22/2011] [Indexed: 02/06/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|