1
|
Ciltas AC, Ozdemir E, Gunes H, Ozturk A. Inhibition of the TRPM2 cation channel attenuates morphine tolerance by modulating endoplasmic reticulum stress and apoptosis in rats. Neurosci Lett 2025:138168. [PMID: 39978668 DOI: 10.1016/j.neulet.2025.138168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Opioid drugs such as morphine are frequently preferred drugs for severe pain in cancer and chronic diseases, but long-term use causes opioid tolerance. The mechanism of tolerance to opioids is quite complex and not fully understood. Our aim in this study was to investigate the effects of TRPM2 cation channel antagonists N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethoxydiphenyl borate (2-APB) on morphine analgesia and tolerance in rats. Forty-eight Wistar Albino male rats were included in the study and the rats were randomly divided into drug and control (saline) groups. To induce morphine tolerance, the rats were injected with 10 mg/kg morphine intraperitoneally for 7 days. After thermal analgesia tests, dorsal root ganglion (DRG) and cortex tissues were isolated. Proapoptotic mediators caspase-3 and 9, total oxidant status (TOS) and total antioxidant status (TAS) and ER stress proteins GRP78/BiP, ATF-6, p-IRE1 and pERK levels were measured by biochemical analysis of tissue homogenates. The findings showed that there was a significant decrease in morphine tolerance in rats administered ACA and 2-APB (p<0.05). In addition, biochemical tests revealed a significant decrease in ER stress proteins, proapoptotic biomarkers and TOS levels and a significant increase in TAS levels in DRG, thalamus and sensory cortex tissues (p<0.05). In conclusion, inhibition of TRPM2 cation channel by ACA and 2-APB reduces morphine tolerance by preventing ER stress and apoptosis. It may be possible to increase the analgesic potential of morphine by combined application with ACA and 2-APB in the clinic, but further experimental and molecular studies are needed.
Collapse
Affiliation(s)
- Arzuhan Cetindag Ciltas
- Depatments of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ercan Ozdemir
- Departments of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Handan Gunes
- Departments of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Aysegul Ozturk
- Depatments of Medical Services and Techniques, Vocational School of Health Services, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
2
|
Hussain S, Bahadar H, Khan MI, Qazi NG, Wazir SG, Ahmad HA. Modulation of oxidative stress/NMDA/nitric oxide pathway by topiramate attenuates morphine dependence in mice. Heliyon 2024; 10:e40584. [PMID: 39719994 PMCID: PMC11667026 DOI: 10.1016/j.heliyon.2024.e40584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
Morphine belongs to the class of opioids and is known for its potential to cause dependence and addiction, particularly with prolonged use. Due to the associated risks, caution must be taken when prescribing and limiting its clinical use. Overexpression of N-methyl-D-aspartate (NMDA) receptors, nitric oxide and cGMP pathway has been implicated in exacerbate the development of morphine dependence and withdrawal. Topiramate, an antiepileptic drug, interacts with various receptors, ion channels and certain enzymes. In this study, we investigated the effects of topiramate on morphine dependence in mice, specifically targeting NMDA/Nitric oxide/cGMP pathway. Mice were administered different doses of topiramate (intraperitoneally) during the development phase, 45 min prior to morphine administration. Topiramate (20 mg/kg) significantly reduced naloxone-induced withdrawal symptoms in morphine-dependent mice. Additionally, subeffective doses of topiramate, when co-administered with NMDA receptor antagonist MK-801 (0.05 mg/kg) or nitric oxide synthase inhibitors such as L-NAME (10 mg/kg, a non-specific NOS inhibitor) and 7-NI (20 mg/kg, a selective nNOS inhibitor), showed a marked reduction in withdrawal signs. However, the effect of topiramate (20 mg/kg) was abolished when co-administered with NMDA (75 mg/kg, an NMDA receptor agonist) or L-arginine (60 mg/kg, a NOS substrate). Ex-vivo analysis revealed that topiramate significantly reduced oxidative stress and downregulated the gene expression of nNOS, NR1, and NR2B in morphine-treated mice. Furthermore, the expression of NR1 and NR2B proteins in the hippocampus and cortex was significantly reduced in topiramate-pretreated mice. Hence, this finding suggest that topiramate mitigates morphine dependence and withdrawal by inhibiting oxidative stress and modulating the NMDA/NO pathway.
Collapse
Affiliation(s)
- Shabir Hussain
- Department of Pharmacology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Haji Bahadar
- Department of Pharmacology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Neelum Gul Qazi
- Department of Pharmacy, Iqra University, Islamabad, Pakistan
| | - Shabnum Gul Wazir
- Frontier Medical and Dental College, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| | - Habab Ali Ahmad
- Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Badshah I, Anwar M, Murtaza B, Khan MI. Molecular mechanisms of morphine tolerance and dependence; novel insights and future perspectives. Mol Cell Biochem 2024; 479:1457-1485. [PMID: 37470850 DOI: 10.1007/s11010-023-04810-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Drug addiction is a devastating condition that poses a serious burden on the society. The use of some drugs like morphine for their tremendous analgesic properties is also accompanied with developing tolerance, dependence and the withdrawal symptoms. These symptoms are frequently severe enough to reinforce the person in recovery to start over the use of drug again and hinder the clinical use of drugs like morphine for chronic pain. Research into opioid receptors and related molecular pathways has seen resurgence in the wake of the growing opioid epidemic. The current study provides a comprehensive scientific exploration of the molecular mechanisms and underlying signalling in morphine tolerance and dependence. It also critically evaluates current therapeutic approaches, shedding light on their efficacy and limitations, and future prospects.
Collapse
Affiliation(s)
- Ismail Badshah
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Maira Anwar
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Babar Murtaza
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan.
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
4
|
Ozdemir E, Avcı O, Inan ZDS, Taskiran AS, Gunes H, Gursoy S. Aspirin attenuates morphine antinociceptive tolerance in rats with diabetic neuropathy by inhibiting apoptosis in the dorsal root ganglia. Metab Brain Dis 2023; 38:2145-2158. [PMID: 37148432 DOI: 10.1007/s11011-023-01226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Morphine is a drug used in chronic pain such as diabetic neuropathy, but the development of tolerance to its antinociceptive effect is an important clinical problem. Aspirin is an analgesic and antiapoptotic drug used in combination with morphine as an adjuvant in diabetic neuropathy. Our aim in this study was to investigate the effects of aspirin on morphine-induced neuronal apoptosis and analgesic tolerance in rats with diabetic neuropathy. The antinociceptive effects of aspirin (50 mg/kg) and morphine (5 mg/kg) were evaluated by thermal pain tests. Streptozotocin (65 mg/kg) was injected intraperitoneally to induce diabetic neuropathy. To evaluate apoptosis, ELISA kits were used to measure caspase-3, Bax and Bcl-2 levels. Apoptotic cells were detected histologically by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method. Study results indicate that prior administration of aspirin to diabetic rats significantly increased the antinociceptive efficacy of morphine compared to morphine alone. Thermal pain tests showed that aspirin significantly reduced morphine tolerance in rats with diabetic neuropathy. Biochemical analysis revealed that aspirin significantly decreased the levels of pro-apoptotic proteins, caspase-3 and Bax, while increasing the anti-apoptotic Bcl-2 in DRG neurons. Semiquantitative scoring demonstrated that aspirin provided a significant reduction in apoptotic cell counts in diabetic rats. In conclusion, these data suggested that aspirin attenuated morphine antinociceptive tolerance through anti-apoptotic activity in diabetic rat DRG neurons.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Departments of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, 58140, Turkey.
| | - Onur Avcı
- Anesthesiology and Reanimation, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | | | - Ahmet Sevki Taskiran
- Departments of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, 58140, Turkey
| | - Handan Gunes
- Departments of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, 58140, Turkey
| | - Sinan Gursoy
- Anesthesiology and Reanimation, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| |
Collapse
|
5
|
Ozdemir E, Baser T, Taskiran AS. Blockade of orexin receptor type-1 by SB-334867 and activation of orexin receptor type-2 attenuate morphine tolerance in rats. Physiol Int 2022; 109:457-474. [DOI: 10.1556/2060.2022.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/17/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
AbstractPurposeThe interaction of orexinergic neurons with the opioidergic system and their effects on morphine analgesia and tolerance have not been fully elucidated. The purpose of the study was to evaluate the effects of the orexin-1 and orexin-2 receptor (OX1R and OX2R) agonist and antagonist on morphine analgesia and tolerance in rats.Material and methodsA total of 90 Wistar albino male rats weighing 180–220 g were used in the experiments. To induce morphine tolerance, rats were injected with a single dose of morphine (50 mg kg−1, s.c.) for 3 days. Morphine tolerance was assessed on day 4 in randomly selected rats by analgesia tests. In order to evaluate morphine tolerance situation, orexin-A, SB-334867, orexin-B and TCS OX2 29 were administered together with morphine for 3 days. The analgesic effects of orexin-A (10 μg kg−1), OXR1 antagonist SB-334867 (10 mg kg−1), OXR2 agonist orexin-B (15 μg kg−1), OXR2 antagonist TCS OX2 29 (0.5 mg kg−1) and morphine (5 mg kg−1) were measured at 15 or 30-min intervals by tail-flick and hot-plate antinociceptive tests.ResultsThe results suggested that the combination of orexin-1 receptor antagonist SB-334867 and orexin-B with morphine significantly increased the analgesic effect compared to morphine-tolerant rats. In addition, administration of orexin-A and -B alone showed significant analgesic effects compared to the saline group. However, co-administration of orexin-A and -B with morphine did not increase the analgesic efficacy of morphine.ConclusionsThe results of this study demonstrated that co-administration of SB-334867 and orexin-B with morphine attenuated morphine tolerance. Further studies are needed to elucidate the details of the interaction between orexin receptors and the opioidergic system.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Tayfun Baser
- Department of Physiology, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
| | - Ahmet Sevki Taskiran
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
6
|
Li DY, Gao SJ, Sun J, Zhang LQ, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural Regen Res 2022; 18:996-1003. [PMID: 36254980 PMCID: PMC9827765 DOI: 10.4103/1673-5374.355748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Nitric oxide (NO)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling has been shown to act as a mediator involved in pain transmission and processing. In this review, we summarize and discuss the mechanisms of the NO/cGMP signaling pathway involved in chronic pain, including neuropathic pain, bone cancer pain, inflammatory pain, and morphine tolerance. The main process in the NO/cGMP signaling pathway in cells involves NO activating soluble guanylate cyclase, which leads to subsequent production of cGMP. cGMP then activates cGMP-dependent protein kinase (PKG), resulting in the activation of multiple targets such as the opening of ATP-sensitive K+ channels. The activation of NO/cGMP signaling in the spinal cord evidently induces upregulation of downstream molecules, as well as reactive astrogliosis and microglial polarization which participate in the process of chronic pain. In dorsal root ganglion neurons, natriuretic peptide binds to particulate guanylyl cyclase, generating and further activating the cGMP/PKG pathway, and it also contributes to the development of chronic pain. Upregulation of multiple receptors is involved in activation of the NO/cGMP signaling pathway in various pain models. Notably the NO/cGMP signaling pathway induces expression of downstream effectors, exerting both algesic and analgesic effects in neuropathic pain and inflammatory pain. These findings suggest that activation of NO/cGMP signaling plays a constituent role in the development of chronic pain, and this signaling pathway with dual effects is an interesting and promising target for chronic pain therapy.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Correspondence to: Wei Mei, ; Ya-Qun Zhou, .
| | - Wei Mei
- Correspondence to: Wei Mei, ; Ya-Qun Zhou, .
| |
Collapse
|
7
|
Avci O, Ozdemir E, Taskiran AS, Inan ZDS, Gursoy S. Metformin prevents morphine-induced apoptosis in rats with diabetic neuropathy: a possible mechanism for attenuating morphine tolerance. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1449-1462. [PMID: 36050544 DOI: 10.1007/s00210-022-02283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Morphine is a drug of choice for the treatment of severe and chronic pain, but tolerance to the antinociceptive effect limits its use. The development of tolerance to morphine has recently been associated with neuronal apoptosis. In this study, our aim was to investigate the effects of metformin on morphine-induced neuronal apoptosis and antinociceptive tolerance in diabetic rats. Three days of cumulative dosing were administered to establish morphine tolerance in rats. The antinociceptive effects of metformin (50 mg/kg) and test dose of morphine (5 mg/kg) were considered at 30-min intervals by thermal antinociceptive tests. To induce diabetic neuropathy, streptozotocin (STZ, 65 mg/kg) was injected intraperitoneally. ELISA kits were used to measure caspase-3, bax, and bcl-2 levels from dorsal root ganglion (DRG) tissue. Semi-quantitative scoring system was used to evaluate apoptotic cells with the the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method. The findings suggest that co-administration of metformin with morphine to diabetic rats showed a significant increase in antinociceptive effect compared to morphine alone. The antinociceptive tests indicated that metformin significantly attenuated morphine antinociceptive tolerance in diabetic rats. In addition, metformin decreased the levels of apoptotic proteins caspase 3 and Bax in DRG neurons, while significantly increased the levels of antiapoptotic Bcl-2. Semi-quantitative scoring showed that metformin provided a significant reduction in apoptotic cell counts in diabetic rats. These data revealed that metformin demonstrated antiapoptotic activity in diabetic rat DRG neurons and attenuated morphine tolerance. The antiapoptotic activity of metformin probably plays a significant role in reducing morphine tolerance.
Collapse
Affiliation(s)
- Onur Avci
- Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University School of Medicine, 58140, Sivas, Turkey
| | - Ercan Ozdemir
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey.
| | - Ahmet Sevki Taskiran
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Zeynep Deniz Sahin Inan
- Department of Histology and Embryology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Sinan Gursoy
- Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University School of Medicine, 58140, Sivas, Turkey
| |
Collapse
|
8
|
Getsy PM, Young AP, Bates JN, Baby SM, Seckler JM, Grossfield A, Hsieh YH, Lewis THJ, Jenkins MW, Gaston B, Lewis SJ. S-nitroso-L-cysteine stereoselectively blunts the adverse effects of morphine on breathing and arterial blood gas chemistry while promoting analgesia. Biomed Pharmacother 2022; 153:113436. [PMID: 36076552 PMCID: PMC9464305 DOI: 10.1016/j.biopha.2022.113436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Alex P Young
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - Santhosh M Baby
- Galleon Pharmaceuticals, Inc., 213 Witmer Road, Horsham, PA, USA.
| | - James M Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Tristan H J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Getsy PM, Baby SM, Gruber RB, Gaston B, Lewis THJ, Grossfield A, Seckler JM, Hsieh YH, Bates JN, Lewis SJ. S-Nitroso-L-Cysteine Stereoselectively Blunts the Deleterious Effects of Fentanyl on Breathing While Augmenting Antinociception in Freely-Moving Rats. Front Pharmacol 2022; 13:892307. [PMID: 35721204 PMCID: PMC9199495 DOI: 10.3389/fphar.2022.892307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
Endogenous and exogenously administered S-nitrosothiols modulate the activities of central and peripheral systems that control breathing. We have unpublished data showing that the deleterious effects of morphine on arterial blood-gas chemistry (i.e., pH, pCO2, pO2, and sO2) and Alveolar-arterial gradient (i.e., index of gas exchange) were markedly diminished in anesthetized Sprague Dawley rats that received a continuous intravenous infusion of the endogenous S-nitrosothiol, S-nitroso-L-cysteine. The present study extends these findings by showing that unanesthetized adult male Sprague Dawley rats receiving an intravenous infusion of S-nitroso-L-cysteine (100 or 200 nmol/kg/min) markedly diminished the ability of intravenous injections of the potent synthetic opioid, fentanyl (10, 25, and 50 μg/kg), to depress the frequency of breathing, tidal volume, and minute ventilation. Our study also found that the ability of intravenously injected fentanyl (10, 25, and 50 μg/kg) to disturb eupneic breathing, which was measured as a marked increase of the non-eupneic breathing index, was substantially reduced in unanesthetized rats receiving intravenous infusions of S-nitroso-L-cysteine (100 or 200 nmol/kg/min). In contrast, the deleterious effects of fentanyl (10, 25, and 50 μg/kg) on frequency of breathing, tidal volume, minute ventilation and non-eupneic breathing index were fully expressed in rats receiving continuous infusions (200 nmol/kg/min) of the parent amino acid, L-cysteine, or the D-isomer, namely, S-nitroso-D-cysteine. In addition, the antinociceptive actions of the above doses of fentanyl as monitored by the tail-flick latency assay, were enhanced by S-nitroso-L-cysteine, but not L-cysteine or S-nitroso-D-cysteine. Taken together, these findings add to existing knowledge that S-nitroso-L-cysteine stereoselectively modulates the detrimental effects of opioids on breathing, and opens the door for mechanistic studies designed to establish whether the pharmacological actions of S-nitroso-L-cysteine involve signaling processes that include 1) the activation of plasma membrane ion channels and receptors, 2) selective intracellular entry of S-nitroso-L-cysteine, and/or 3) S-nitrosylation events. Whether alterations in the bioavailability and bioactivity of endogenous S-nitroso-L-cysteine is a key factor in determining the potency/efficacy of fentanyl on breathing is an intriguing question.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | | | - Ryan B. Gruber
- Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, United States
| | - James M. Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
10
|
Wolińska R, Kleczkowska P, de Cordé-Skurska A, Poznański P, Sacharczuk M, Mika J, Bujalska-Zadrożny M. Nitric oxide modulates tapentadol antinociceptive tolerance and physical dependence. Eur J Pharmacol 2021; 907:174245. [PMID: 34126091 DOI: 10.1016/j.ejphar.2021.174245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Tapentadol, an analgesic with a dual mechanism of action, involving both μ-opioid receptor agonism and noradrenaline reuptake inhibition (MOP-NRI), was designed for the treatment of moderate to severe pain. However, the widely acknowledged risk of analgesic tolerance and development of physical dependence following sustained opioid use may hinder their effectiveness. One of the possible mechanisms behind these phenomena are alterations in nitric oxide synthase (NOS) system activity. The aim of the study was to investigate the tolerance and dependence potential of tapentadol in rodent models and to evaluate the possible role of nitric oxide (NO) in these processes. Our study showed that chronic tapentadol treatment resulted in tolerance to its antinociceptive effects to an extent similar to tramadol, but much less than morphine. A single injection of a non-selective NOS inhibitor, NG-nitro-L-arginine (L-NOArg), reversed the tapentadol tolerance. In dependence studies, repeated administration of L-NOArg attenuated naloxone-precipitated withdrawal in tapentadol-treated mice, whereas a single injection of L-NOArg was ineffective. Biochemical analysis revealed that tapentadol decreased nNOS protein levels in the dorsal root ganglia of rats following 31 days of treatment, while no significant changes were found in iNOS and eNOS protein expression. Moreover, pre-treatment with L-NOArg augmented tapentadol antinociception in an opioid- and α2-adrenoceptor-dependent manner. In conclusion, our data suggest that the NOS system plays an important role in the attenuation of tapentadol-induced tolerance and withdrawal. Thus, inhibition of NOS activity can serve as a promising treatment option for long-term tapentadol use by extending its effectiveness and improving the side-effects profile.
Collapse
Affiliation(s)
- Renata Wolińska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland.
| | - Patrycja Kleczkowska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland; Military Institute of Hygiene and Epidemiology, 4 Kozielska Street, 01-163 Warsaw, Poland
| | - Anna de Cordé-Skurska
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences in Jastrzebiec, Postepu 36A Street, 05-552 Magdalenka, Poland
| | - Mariusz Sacharczuk
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland; Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences in Jastrzebiec, Postepu 36A Street, 05-552 Magdalenka, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1b Banacha Street, 01-793 Warsaw, Poland
| |
Collapse
|
11
|
Gledhill LJ, Babey AM. Synthesis of the Mechanisms of Opioid Tolerance: Do We Still Say NO? Cell Mol Neurobiol 2021; 41:927-948. [PMID: 33704603 DOI: 10.1007/s10571-021-01065-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/12/2021] [Indexed: 10/21/2022]
Abstract
The use of morphine as a first-line agent for moderate-to-severe pain is limited by the development of analgesic tolerance. Initially opioid receptor desensitization in response to repeated stimulation, thought to underpin the establishment of tolerance, was linked to a compensatory increase in adenylate cyclase responsiveness. The subsequent demonstration of cross-talk between N-methyl-D-aspartate (NMDA) glutamate receptors and opioid receptors led to the recognition of a role for nitric oxide (NO), wherein blockade of NO synthesis could prevent tolerance developing. Investigations of the link between NO levels and opioid receptor desensitization implicated a number of events including kinase recruitment and peroxynitrite-mediated protein regulation. Recent experimental advances and the identification of new cellular constituents have expanded the potential signaling candidates to include unexpected, intermediary compounds not previously linked to this process such as zinc, histidine triad nucleotide-binding protein 1 (HINT1), micro-ribonucleic acid (mi-RNA) and regulator of G protein signaling Z (RGSZ). A further complication is a lack of consistency in the protocols used to create tolerance, with some using acute methods measured in minutes to hours and others using days. There is also an emphasis on the cellular changes that are extant only after tolerance has been established. Although a review of the literature demonstrates a lack of spatio-temporal detail, there still appears to be a pivotal role for nitric oxide, as well as both intracellular and intercellular cross-talk. The use of more consistent approaches to verify these underlying mechanism(s) could provide an avenue for targeted drug development to rescue opioid efficacy.
Collapse
Affiliation(s)
- Laura J Gledhill
- CURA Pharmacy, St. John of God Hospital, Bendigo, VIC, 3550, Australia
| | - Anna-Marie Babey
- Faculty of Medicine and Health, University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
12
|
Jia X, Zhang A, Li Z, Peng X, Tian X, Gao F. Activation of spinal PDGFRβ in microglia promotes neuronal autophagy via p38 MAPK pathway in morphine-tolerant rats. J Neurochem 2021; 158:373-390. [PMID: 33950542 DOI: 10.1111/jnc.15383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022]
Abstract
The adverse side effects of opioids, especially antinociceptive tolerance, limit their clinical application. A recent study reported that platelet-derived growth factor receptor β (PDGFRβ) blockage selectively inhibited morphine tolerance. Autophagy has been reported to contribute to the cellular and behavioral responses to morphine. However, little is known about the relationship between PDGFRβ and autophagy in the mechanisms of morphine tolerance. In this study, rats were intrathecally administered with morphine twice daily for 7 days to induce antinociceptive tolerance, which was evaluated using a tail-flick latency test. By administration autophagy inhibitor 3-Methyladenine, PDGFRβ inhibitor imatinib, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 hydrochloride and minocycline hydrochloride, western blot, immunofluorescence, and transmission electron microscopy techniques were used to elucidate the roles of PDGFRβ, autophagy, and related signaling pathways in morphine tolerance. This study demonstrated for the first time that spinal PDGFRβ in microglia promotes autophagy in gamma-aminobutyric acid (GABA) interneurons through activating p38 MAPK pathway during the development of morphine tolerance, which suggest a potential strategy for preventing the development of morphine tolerance clinically, thereby improving the use of opioids in pain management.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoling Peng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Baser T, Ozdemir E, Filiz AK, Taskiran AS, Gursoy S. Ghrelin receptor agonist hexarelin attenuates antinociceptive tolerance to morphine in rats. Can J Physiol Pharmacol 2021; 99:461-467. [PMID: 32893668 DOI: 10.1139/cjpp-2020-0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ghrelin, a peptide hormone released from the gastric endocrine glands, shows analgesic activity apart from its various physiological effects. Nevertheless, the effects of ghrelin receptor (GHS-R) agonists on morphine analgesia and tolerance have not yet been elucidated. The purpose of this study was to evaluate the effects of the ghrelin receptor agonist hexarelin and antagonist [d-Lys3]-GHRP-6 on morphine antinociception and tolerance in rats. A total of 104 Wistar albino male adult rats (weighing approximately 220-240 g) were used in the experiments. To induce morphine tolerance, a three-day cumulative dose regimen was used in the rats. Then, randomly selected rats were evaluated for morphine tolerance on day 4. The analgesic effects of hexarelin (0.2 mg·kg-1), [d-Lys3]-GHRP-6 (10 mg·kg-1), and morphine (5 mg·kg-1) were measured at 30-min intervals (0, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests. The findings suggest that hexarelin in combination with morphine attenuates analgesic tolerance to morphine. On the other hand, ghrelin receptor antagonist [d-Lys3]-GHRP-6 has no significant analgesic activity on the morphine tolerance in analgesia tests. Furthermore, co-administration of hexarelin and morphine increases the analgesic effect. In conclusion, these data indicate that administration of GHS-R agonist hexarelin with morphine enhances the antinociception and attenuates morphine tolerance.
Collapse
Affiliation(s)
- Tayfun Baser
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ercan Ozdemir
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ahmet Sevki Taskiran
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Sinan Gursoy
- Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| |
Collapse
|
14
|
Alifarsangi A, Esmaeili-Mahani S, Sheibani V, Abbasnejad M. The citrus flavanone naringenin prevents the development of morphine analgesic tolerance and conditioned place preference in male rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:43-51. [PMID: 33006902 DOI: 10.1080/00952990.2020.1813296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Opioids are effective analgesics in the management of chronic pain. However, their clinical use is hindered by adverse side effects such as addiction and analgesic tolerance. Naringenin is a common polyphenolic constituent of the citrus fruits and is one of the most commonly consumed flavonoids within our regular diet. However, its influences on opioid tolerance and addiction have not yet been clarified. OBJECTIVES To examine the effect of different doses of naringenin on analgesic tolerance, conditioned place preference and neuroinflammation in morphine-exposed rats. METHODS Analgesic tolerance was induced by the injection of 10 mg/kg morphine twice daily for 8 days in 70 male Wistar rats. To evaluate the effect of naringenin on the development of morphine tolerance, different doses (10, 25 and 50 mg/kg i.p.) were injected 15 min before morphine. The tail-flick test was used to assess nociceptive threshold. Conditioned place preference test was used to evaluate morphine-seeking behaviors. The lumbar spinal cord was assayed to determine glial fibrillary acidic protein (GFAP) and cyclooxygenase-2 (COX-2) levels by Western blotting. RESULTS The data showed that naringenin could significantly prevent morphine tolerance (p < .001) and conditioned place preference. In addition, chronic morphine-induced GFAP and COX-2 overexpression was significantly reversed by 50 mg/kg naringenin (p < .05 and p < .01, respectively). CONCLUSION Our results suggest that naringenin may have a potential anti-tolerant/anti-addiction property against chronic morphine misuse and that this preventive effect is associated with its anti-neuroinflammatory effects.
Collapse
Affiliation(s)
- Atena Alifarsangi
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Vahid Sheibani
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Qin W, Qu H, Pan L, Sun W, Chen Y, Wu C. Possible mechanism and potential application of anti-opioid effect of diazepam-binding inhibitor. Life Sci 2020; 265:118836. [PMID: 33259865 DOI: 10.1016/j.lfs.2020.118836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
AIMS Our previous study has demonstrated that porcine diazepam-binding inhibitor (pDBI) and its active fragments, pDBI-16 and pDBI-19, have inhibition effect on morphine analgesia in mice. The present study aimed to investigate the underlying mechanism and potential application of this anti-opioid effect. MATERIALS AND METHODS Effect of DBI on morphine analgesia was examined by the tail electric stimulation vocalization test. Complementary peptides and antiserum were used to further confirm the effect of DBI in morphine tolerance and dependence. Pharmacological and microinjection methods were used to investigate the underlying mechanism. KEY FINDINGS Firstly, pDBI administered either intracerebroventricularly or intravenously dose-dependently inhibited morphine analgesia, while blocking DBI-16 or DBI-19 by the complementary peptides for DBI-16 (CP-DBI-16) or DBI-19 (CP-DBI-19) potentiated it in mice. Secondly, explicit immunoexpression of DBI in the lateral habenular (LHb) was observed in naive rats, and intra-LHb injection of pDBI dose-dependently abolished analgesic effect produced by intra-periaqueductal gray (PAG) injection of morphine in rats. Thirdly, pretreatment with N-Methyl-d-Aspartate receptor (NMDAR) antagonist MK-801 or nitric oxide (NO) synthase inhibitor L-NAME abolished the inhibition effect of pDBI, pDBI-16 or pDBI-19 on morphine analgesia in mice. Finally, antiserum against DBI dose-dependently reversed analgesic tolerance induced by increasing doses of morphine twice daily for 13 days in mice, while CP-DBI-16 or CP-DBI-19 significantly inhibited naloxone-precipitated morphine withdrawal jumping in mice. SIGNIFICANCE Taken together, our results demonstrated that NMDAR/NO signaling and LHb-PAG pathway are crucially involved in the anti-opioid effect of DBI, which could provide a potential biological target for opioid tolerance and dependence.
Collapse
Affiliation(s)
- Wangjun Qin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lin Pan
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Weiliang Sun
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuzhen Chen
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China; State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China.
| | - Caihong Wu
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Azimi G, Asgarpanah J. Chemical composition of Zhumeria majdae essential oil and its effects on the expression of morphine withdrawal syndrome and tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. BRAZ J BIOL 2020; 81:881-886. [PMID: 33053122 DOI: 10.1590/1519-6984.228825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/06/2020] [Indexed: 12/11/2022] Open
Abstract
Regarding the proven anticonvulsant effect of Zhumeria majdae essential oil (ZMEO) in previous studies we were prompted to investigate the ZMEO effects on the tolerance to the anticonvulsant effects of morphine and the morphine withdrawal syndrome. Tolerance to the morphine anticonvulsant effect was induced in mice by subcutaneous injection of 2.5 mg/kg of morphine for 4 days. Subsequent doses of ZMEO (20 mg/kg) were used to study the expression and development of morphine tolerance. Clonidine was used as the standard drug to inhibit the morphine withdrawal syndrome symptoms. To study the ZMEO effect on withdrawal syndrome, mice received appropriate morphine values for 4 days and on the fifth day, 60 min before administration of naloxone. The effective dose of ZMEO was determined and the number of jumps, stands and changes in the dry stool weight, as symptoms of withdrawal syndrome were evaluated. The dose of 20 mg/kg of ZMEO decreased the tolerance in development and expression groups significantly. Counting the number of jumping, standing and defecation were assessed 30 min after morphine and 1 h after the vehicle and clonidine. The dose of 40 mg/kg ZMEO decreased all the signs of withdrawal syndrome significantly. ZMEO was analyzed by GC/MS and linalool (53.1%) and camphor (23.8%) were characterized as the main components. The results suggest that ZMEO possesses constituent(s) that have activity against tolerance to the anticonvulsant effects of morphine and the morphine withdrawal symptoms.
Collapse
Affiliation(s)
- G Azimi
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - J Asgarpanah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
17
|
Effect of Essential Oil of Zhumeria majdae on Morphine Tolerance and Dependence in Mice. Chin J Integr Med 2020; 26:683-687. [PMID: 32720116 DOI: 10.1007/s11655-020-3424-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To evaluate the effects of Zhumeria majdae essential oil (ZMEO) on morphine dependence and tolerance in mice. METHODS ZMEO (10, 20, and 40 mg/kg) and clonidine (0.1 mg/kg) as the positive control were injected intraperitoneally (i.p.). The effect of ZMEO and clonidine on the dependence were evaluated by counting the number of jumps induced by naloxone (5 mg/kg) while the tolerance was evaluated by the tail-flick test. RESULTS ZMEO at the dose of 10 mg/kg during the development period led to a significant inhibition of morphine tolerance (P<0.01), while it led to reduced morphine dependence with the doses of 20 and 40 mg/kg. ZMEO at two dose levels of 20 and 40 mg/kg indicated significant antinociceptive activity (P>0.01), and significantly reduced the withdrawal signs (number of jumps) of mice (P>0.01). CONCLUSIONS ZMEO had significant effects on morphine tolerance and dependence. The linalool rich essential oil of Z. majdae plays a major role in the reduction of tolerance and dependence induced by morphine.
Collapse
|
18
|
Mehanna M, Domiati S, Nakkash Chmaisse H, El Mallah A. Analgesia additive interaction between tadalafil and morphine in an experimental animal model. Can J Physiol Pharmacol 2020; 98:771-776. [PMID: 32516551 DOI: 10.1139/cjpp-2019-0674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since both morphine and tadalafil have been proven to exert some of their analgesic activity through modulation of the NO-cGMP pathway, the aim of the current study is to evaluate the pharmacologic interaction between tadalafil and morphine to decrease the dose of morphine and subsequently its side effects. The assessment was carried out through isobolographic analysis relative to ED50s of both morphine and tadalafil obtained by tail-flick test on BALB/c mice. Morphine and tadalafil ED50s calculated from the dose-response curves were 8303 and 2080 μg/kg, respectively. The experimental ED50 values of morphine and tadalafil in their mixture were 4800 and 1210 μg/kg, respectively. Those results showed an additive interaction between morphine and tadalafil presented by a total fraction value for the mixture of 1160 μg/kg. This outcome can be interpreted by the fact that both drugs share common pathways, namely, NO-cGMP and opioid receptors. As a conclusion, the morphine and tadalafil combination showed an additive effect against acute pain, which is mediated through the central nervous system, thus providing a rationale for combining them to decrease morphine dose and thus minimizing its side effects.
Collapse
Affiliation(s)
- Mohammed Mehanna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Hania Nakkash Chmaisse
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ahmed El Mallah
- Department of Pharmacology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
19
|
Ozdemir E. The Role of the Cannabinoid System in Opioid Analgesia and Tolerance. Mini Rev Med Chem 2020; 20:875-885. [DOI: 10.2174/1389557520666200313120835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/29/2019] [Accepted: 02/01/2020] [Indexed: 11/22/2022]
Abstract
Opioid receptor agonist drugs, such as morphine, are very effective for treating chronic and severe pain; but, tolerance can develop with long-term use. Although there is a lot of information about the pathophysiological mechanisms of opioid tolerance, it is still not fully clarified. Suggested mechanisms for opioid tolerance include opioid receptor desensitisation, reduction of sensitivity G-proteins, activation of Mitogen-Activated Protein Kinase (MAPK), altered intracellular signaling pathway including nitric oxide, and activation of mammalian Target of Rapamycin (mTOR). One way to reduce opioid tolerance and increase the analgesic potential is to use low doses. Combination of cannabinoids with opioids has been shown to manifest the reduction of the opioid dose. Experimental studies revealed an interaction of the endocannabinoid system and opioid antinociception. Cannabinoid and opioid receptor systems use common pathways in the formation of analgesic effect and demonstrate their activity via G Protein Coupled Receptors (GPCR). Cannabinoid drugs modulate opioid analgesic activity at a number of distinct levels within the cell, ranging from direct receptor associations to post-receptor interactions through shared signal transduction pathways. This review summarizes the data indicating that with combining cannabinoids and opioids drugs may be able to produce long-term analgesic effects, while preventing the opioid analgesic tolerance.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, School of Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
20
|
Parlar A, Arslan SO, Çam SA. Glabridin Alleviates Inflammation and Nociception in Rodents by Activating BK Ca Channels and Reducing NO Levels. Biol Pharm Bull 2020; 43:884-897. [DOI: 10.1248/bpb.b20-00038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ali Parlar
- Department of Pharmacology, Faculty of Medicine, University of Adiyaman
| | | | - Saliha Ayşenur Çam
- Department of Pharmacology, Faculty of Medicine, University of Ankara Yildirim Beyazit
| |
Collapse
|
21
|
Demirkazik A, Ozdemir E, Arslan G, Taskiran AS, Pelit A. The effects of extremely low-frequency pulsed electromagnetic fields on analgesia in the nitric oxide pathway. Nitric Oxide 2019; 92:49-54. [PMID: 31408675 DOI: 10.1016/j.niox.2019.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
There is growing interest in the effects of extremely low-frequency electromagnetic fields on mechanisms in biological organisms. This study's goal is to determine the role of the Nitiric Oxide (NO) pathway for thermal pain by intentionally interfering with it using a pulsed electromagnetic field generated by an extremely low-frequency alternating current (ELF-PEMF) in combination with BAY41-2272 (sGC activator), NOS inhibitor l-NAME, and NO donor l-arginine. This study included 72 adult male Wistar albino rats (mean weight of 230 ± 12 g). The rats were kept at room temperature (22 ± 2 °C) in a 12-h light/dark cycle and in a room with sound insulation. PEMF (50 Hz, 5 mT) were applied four times a day for 30 min and at 15-min intervals for 15 days. Analgesic effects were assessed with tail-flick and hot-plate tests. Before the tests, NO donor l-arginine (300 mg/kg), sGC activator BAY41-2272 (10 mg/kg), and NOS inhibitor l-name (40 mg/kg) were injected intraperitoneally into rats in six randomly-selected groups. The maximum analgesic effect of a 5 mT electromagnetic field was on day 7. PEMF significantly increased the analgesia effect when the functioning of the NO pathway was ensured with l-arginine, which is a NO donor, and BAY41-2271, which is the intracellular receptor and sGC activator. However, there was no difference between rats treated with PEMF and the NOS inhibitor l-NAME as compared to rats only treated with PEMF. In conclusion, PEMF generate analgesia by activating the NO pain pathway.
Collapse
Affiliation(s)
- Ayse Demirkazik
- Departments of Biophysics, School of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Ercan Ozdemir
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Gökhan Arslan
- Departments of Physiology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Sevki Taskiran
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Aykut Pelit
- Department of Biophysics, School of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
22
|
Zakaria ZA, Abdul Rahim MH, Mohd Sani MH, Omar MH, Ching SM, Abdul Kadir A, Ahmed QU. Antinociceptive activity of petroleum ether fraction obtained from methanolic extract of Clinacanthus nutans leaves involves the activation of opioid receptors and NO-mediated/cGMP-independent pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:79. [PMID: 30940120 PMCID: PMC6446312 DOI: 10.1186/s12906-019-2486-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Methanol extract (MECN) of Clinacanthus nutans Lindau leaves (family Acanthaceae) demonstrated peripherally and centrally mediated antinociceptive activity via the modulation of opioid/NO-mediated, but cGMP-independent pathway. In the present study, MECN was sequentially partitioned to obtain petroleum ether extract of C. nutans (PECN), which was subjected to antinociceptive study with aims of establishing its antinociceptive potential and determining the role of opioid receptors and L-arginine/nitric oxide/cyclic-guanosine monophosphate (L-arg/NO/cGMP) pathway in the observed antinociceptive activity. METHODS The antinociceptive potential of orally administered PECN (100, 250, 500 mg/kg) was studied using the abdominal constriction-, hot plate- and formalin-induced paw licking-test in mice (n = 6). The effect of PECN on locomotor activity was also evaluated using the rota rod assay. The role of opioid receptors was determined by pre-challenging 500 mg/kg PECN (p.o.) with antagonist of opioid receptor subtypes, namely β-funaltrexamine (β-FNA; 10 mg/kg; a μ-opioid antagonist), naltrindole (NALT; 1 mg/kg; a δ-opioid antagonist) or nor-binaltorphimine (nor-BNI; 1 mg/kg; a κ-opioid antagonist) followed by subjection to the abdominal constriction test. In addition, the role of L-arg/NO/cGMP pathway was determined by prechallenging 500 mg/kg PECN (p.o.) with L-arg (20 mg/kg; a NO precursor), 1H-[1, 2, 4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 2 mg/kg; a specific soluble guanylyl cyclase inhibitor), or the combinations thereof (L-arg + ODQ) for 5 mins before subjection to the abdominal constriction test. PECN was also subjected to phytoconstituents analyses. RESULTS PECN significantly (p < 0.05) inhibited nociceptive effect in all models in a dose-dependent manner. The highest dose of PECN (500 mg/kg) also did not significantly (p > 0.05) affect the locomotor activity of treated mice. The antinociceptive activity of PECN was significantly (p < 0.05) inhibited by all antagonists of μ-, δ-, and κ-opioid receptors. In addition, the antinociceptive activity of PECN was significantly (p < 0.05) reversed by L-arg, but insignificantly (p > 0.05) affected by ODQ. HPLC analysis revealed the presence of at least cinnamic acid in PECN. CONCLUSION PECN exerted antinocicpetive activity at peripheral and central levels possibly via the activation of non-selective opioid receptors and modulation of the NO-mediated/cGMP-independent pathway partly via the synergistic action of phenolic compounds.
Collapse
|
23
|
Antidotal effects of thymoquinone against neurotoxic agents. Interdiscip Toxicol 2019; 11:122-128. [PMID: 31719783 PMCID: PMC6829686 DOI: 10.2478/intox-2018-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 11/22/2022] Open
Abstract
Several plants which contain the active component thymoquinone (TQ) have been traditionally used in herbal medicine to treat various diseases. Several studies indicated the protective effects of TQ against neurotoxic agents. The present study was aimed to highlight the protective effects of TQ against neurotoxic agents. For this reason, the literature from 1998 to 2017 regarding the protective effects of TQ against neurotoxic agents and their involvement mechanisms has been studied. The present review suggests the protective effects of TQ against neurotoxic agents in experimental models. More clinical trial studies are however needed to confirm the antidotal effects of TQ in human intoxication.
Collapse
|
24
|
Lee YH, Huang YF, Chou HH, Lin WT, Yang HW, Lin-Shiau SY. Studies on a novel regimen for management of orofacial pain and morphine tolerance. J Dent Sci 2018; 13:131-137. [PMID: 30895108 PMCID: PMC6388850 DOI: 10.1016/j.jds.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/08/2017] [Indexed: 11/29/2022] Open
Abstract
Background/purpose The prevalence of orofacial pain is high but the etiology of orofacial pain is not well understood. Because of clinical treatment is not so effective, it is urgent to explore novel regimens with more effective and less side effects for clinical application. Materials and methods Male mice (ICR strain) were injected with capsaicin (10μg/5 μl) in vibrissa pad. Spontaneous orofacial pain in 20 min was recorded after receiving capsaicin to quantify the nociceptive level. Green tea polyphenols (GTP 60 mg/kg), memantine (Mem 10 mg/kg), and GTPm (GTP 30 mg/kg plus Mem 3 mg/kg) were dissolved in 2% carboxymethyl cellulose, which was orally administered to mice twice per day and five times per week consecutively for 2 weeks. TruScan photobeam tracking was used to record changes of behavior and locomotor activities. Results GTPm by itself attenuated orofacial pain induced by capsaicin. Moreover, GTPm enhanced morphine analgesic effects, reduced morphine depressant side effects and delayed morphine tolerance. Along with this experiment, GTPm was tested on the hot plate (52 °C)-induced peripheral thermal pain. It was found that both memantine and GTPm reduced morphine-analgesia in hind paw thermal pain. Conclusion In this study, GTP (60 mg/kg/day) orally administrated produced a significant analgesic effect on capsaicin–induced orofacial pain. Memantine combined with GTP synergistically not only reduced orofacial pain but also enhanced morphine analgesic effects. Thus, a new regimen of GTPm orally administered twice per day attenuated orofacial pain after consecutive 5 days.
Collapse
|
25
|
Rahmati B, Beik A. Prevention of morphine dependence and tolerance by Nepeta menthoides was accompanied by attenuation of Nitric oxide overproduction in male mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:39-51. [PMID: 28130112 DOI: 10.1016/j.jep.2017.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 12/04/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Repeated administration of morphine for chronic pain leads to dependence and tolerance that limits clinical usage. Nepeta menthoides is commonly known as Iranian Ustukhuddoos and are administered in traditional medicine for gastrodynia, bone pain, blood depurative and restlessness. AIMS OF STUDY To investigate the effects of Nepeta menthoides on expression and acquisition of morphine dependence and tolerance in mice with regard to oxidative stress. MATERIALS AND METHODS Morphine dependence in mice was developed by administration of gradually increasing doses of morphine twice daily for 7 consecutive days. In experimental groups, administration of Nepeta menthoides (200 and 400mg/kg), methadone and their combination were performed 60min prior to each morphine injection (for acquisition) or the last injection of morphine on test day (for expression). Morphine tolerance was measured by the tail-immersion test before and after the administration of a single dose of morphine (100mg/kg; i.p.) on the test day (8th day). Morphine dependence was also evaluated by counting the number of jumps after the injection of naloxone (5mg/kg; i.p.). RESULTS Nepeta menthoides, similar to methadone, significantly prevented the development (but not the expression) of morphine dependence, tolerance, and potentiated morphine antinociception and also reduced (23.23±1.15) Nitric oxide (NO) overproduction (35.23±3.36) (in compared with naloxone group (6.3±0.52)). However, single and repeated application of the extract could not change high single-dose morphine analgesia. CONCLUSION It appears that Nepeta menthoides and methadone prevented morphine dependence and tolerance, partly through inhibition of the NO overproduction.
Collapse
Affiliation(s)
- Batool Rahmati
- Neurophysiology Research Center, Shahed University, 1417953836 Tehran, Iran; Department of Physiology, School of Medicine, Shahed University, 3319118651 Tehran, Iran.
| | - Ahmad Beik
- Department of Physiology, School of Medicine, Shahed University, 3319118651 Tehran, Iran.
| |
Collapse
|
26
|
Altun A, Yildirim K, Ozdemir E, Bagcivan I, Gursoy S, Durmus N. Attenuation of morphine antinociceptive tolerance by cannabinoid CB1 and CB2 receptor antagonists. J Physiol Sci 2015; 65:407-15. [PMID: 25894754 PMCID: PMC10717898 DOI: 10.1007/s12576-015-0379-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Cannabinoid CB1 and CB2 receptor antagonists may be useful for their potential to increase or prolong opioid analgesia while attenuating the development of opioid tolerance. The aim of this study was to investigate the effects of AM251 (a selective CB1 antagonist) and JTE907 (a selective CB2 antagonist) on morphine analgesia and tolerance in rats. Adult male Wistar albino rats weighing 205-225 g were used in these experiments. To constitute morphine tolerance, we used a 3 day cumulative dosing regimen. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated by analgesia tests. The analgesic effects of morphine (5 mg/kg), ACEA (a CB1 receptor agonist, 5 mg/kg), JWH-015 (a CB2 receptor agonist, 5 mg/kg), AM251 (1 mg/kg) and JTE907 (5 mg/kg) were considered at 30-min intervals (0, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests. Our findings indicate that ACEA and JWH907 significantly increased morphine analgesia and morphine antinociceptive tolerance in the analgesia tests. In contrast, the data suggested that AM251 and JTE907 significantly attenuated the expression of morphine tolerance. In conclusion, we observed that co-injection of AM251 and JTE907 with morphine attenuated expression of tolerance to morphine analgesic effects and decreased the morphine analgesia.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoid Receptor Antagonists/pharmacology
- Dioxoles/pharmacology
- Dose-Response Relationship, Drug
- Drug Tolerance
- Male
- Morphine/pharmacology
- Nociception/drug effects
- Pain Threshold/drug effects
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Quinolones/pharmacology
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Ahmet Altun
- Departments of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Kemal Yildirim
- Departments of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ercan Ozdemir
- Department of Physiology, Cumhuriyet University School of Medicine, 58140 Sivas, Turkey
| | - Ihsan Bagcivan
- Departments of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Sinan Gursoy
- Department of Anesthesiology and Reanimation, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Nedim Durmus
- Departments of Pharmacology Hacettepe, University School of Medicine, Ankara, Turkey
| |
Collapse
|
27
|
Contribution of nitric oxide-dependent guanylate cyclase and reactive oxygen species signaling pathways to desensitization of μ-opioid receptors in the rat locus coeruleus. Neuropharmacology 2015; 99:422-31. [PMID: 26254861 DOI: 10.1016/j.neuropharm.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is involved in desensitization of μ-opioid receptors (MOR). We used extracellular recordings in vitro to unmask the NO-dependent pathways involved in MOR desensitization in the rat locus coeruleus (LC). Perfusion with ME (3 and 10 μM) concentration-dependently reduced subsequent ME effect, indicative of MOR desensitization. ME (3 μM)-induced desensitization was enhanced by a NO donor (DEA/NO 100 μM), two soluble guanylate cyclase (sGC) activators (A 350619 30 μM and BAY 418543 1 μM) or a cGMP-dependent protein kinase (PKG) activator (8-pCPT-cGMP 30 μM). DEA/NO-induced enhancement was blocked by the sGC inhibitor NS 2028 (10 μM). A 350619 effect was also blocked by NS 2028, but not by the antioxidant Trolox. ME (10 μM)-induced desensitization was blocked by the neuronal NO synthase inhibitor 7-NI (100 μM) and restored by the PKG activator 8-Br-cGMP (100-300 μM). Paradoxically, ME (10 μM)-induced desensitization was not modified by sGC inhibitors (NS 2028 and ODQ), PKG inhibitors (H8 and Rp-8-Br-PET-cGMP) or antioxidant agents (Trolox, U-74389G and melatonin), but it was attenuated by a combination of NS 2028 and Trolox. In conclusion, MOR desensitization in the LC may be mediated or regulated by NO through sGC and reactive oxygen species signaling pathways.
Collapse
|
28
|
Activation of JNK pathway in spinal astrocytes contributes to acute ultra–low-dose morphine thermal hyperalgesia. Pain 2015; 156:1265-1275. [DOI: 10.1097/j.pain.0000000000000164] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Tsakova A, Surcheva S, Simeonova K, Altankova I, Marinova T, Usunoff K, Vlaskovska M. Nitroxidergic modulation of behavioural, cardiovascular and immune responses, and brain NADPH diaphorase activity upon morphine tolerance/dependence in rats. BIOTECHNOL BIOTEC EQ 2014; 29:92-100. [PMID: 26019621 PMCID: PMC4434040 DOI: 10.1080/13102818.2014.990924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022] Open
Abstract
Opioid and non-opioid effects of acute and chronic morphine administration on behaviour, cardiovascular responses, cell proliferation and apoptosis and nitric-oxide synthase (NOS) activity were studied in rats. A novel score-point scale was introduced to quantify the signs of opioid withdrawal syndrome. NOS inhibitor L-NAME (NG-nitro-L-arginine methyl ester) was applied to reveal the role of NOS/NO pathway in the modulation of morphine-induced in vivo and in vitro responses. The obtained data showed that chronic co-administration of L-NAME drastically attenuated naloxone-precipitated withdrawal syndrome and prevented the development of morphine tolerance to cardiovascular action of morphine. The apoptotic process was very much restricted by L-NAME supplementation of chronic morphine treatment, which resulted in few apoptotic cells, less low molecular weight genomic DNA and preservation of high molecular weight non-fragmented genomic DNA. The study provides new data for nitroxidergic modulation of opioid tolerance and dependence.
Collapse
Affiliation(s)
- Ana Tsakova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University of Sofia , Sofia , Bulgaria
| | - Slavina Surcheva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University of Sofia , Sofia , Bulgaria
| | - Katerina Simeonova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University of Sofia , Sofia , Bulgaria
| | - Iskra Altankova
- Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University "St. Kliment Ohridski" , Sofia , Bulgaria
| | - Tsvetanka Marinova
- Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University "St. Kliment Ohridski" , Sofia , Bulgaria
| | - Kamen Usunoff
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University of Sofia , Sofia , Bulgaria
| | - Mila Vlaskovska
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University of Sofia , Sofia , Bulgaria
| |
Collapse
|
30
|
Shahlaee A, Farahanchi A, Javadi S, Delfan B, Dehpour AR. Sucrose-induced analgesia in mice: role of nitric oxide and opioid receptor-mediated system. Indian J Pharmacol 2014; 45:593-6. [PMID: 24347767 PMCID: PMC3847249 DOI: 10.4103/0253-7613.121370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/31/2013] [Accepted: 08/14/2013] [Indexed: 11/05/2022] Open
Abstract
Background: The mechanism of action of sweet substance-induced analgesia is thought to involve activation of the endogenous opioid system. The nitric oxide (NO) pathway has a pivotal role in pain modulation of analgesic compounds such as opioids. Objectives: We investigated the role of NO and the opioid receptor-mediated system in the analgesic effect of sucrose ingestion in mice. Materials and Methods: We evaluated the effect of intraperitoneal administration of 10 mg/kg of NO synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME) and 20 mg/kg of opioid receptor antagonist, naltrexone on the tail flick response in sucrose ingesting mice. Results: Sucrose ingestion for 12 days induced a statistically significant increase in the latency of tail flick response which was unmodified by L-NAME, but partially inhibited by naltrexone administration. Conclusions: Sucrose-induced nociception may be explained by facilitating the release of endogenous opioid peptides. Contrary to some previously studied pain models, the NO/cyclic guanosine monophosphate (cGMP) pathway had no role in thermal hyperalgesia in our study. We recommend further studies on the involvement of NO in other animals and pain models.
Collapse
Affiliation(s)
- Abtin Shahlaee
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farahanchi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Javadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Delfan
- Department of Pharmacology, Lorestan University of Medical Sciences, Faculty of Medicine, Khoram Abad, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav Brain Res 2013; 247:17-26. [DOI: 10.1016/j.bbr.2013.02.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 02/07/2023]
|
32
|
Abdel-Zaher AO, Mostafa MG, Farghly HM, Hamdy MM, Omran GA, Al-Shaibani NK. Inhibition of brain oxidative stress and inducible nitric oxide synthase expression by thymoquinone attenuates the development of morphine tolerance and dependence in mice. Eur J Pharmacol 2013; 702:62-70. [DOI: 10.1016/j.ejphar.2013.01.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/10/2013] [Accepted: 01/16/2013] [Indexed: 02/07/2023]
|
33
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
34
|
Ozdemir E, Gursoy S, Bagcivan I. The effects of serotonin/norepinephrine reuptake inhibitors and serotonin receptor agonist on morphine analgesia and tolerance in rats. J Physiol Sci 2012; 62:317-23. [PMID: 22544464 PMCID: PMC10717856 DOI: 10.1007/s12576-012-0207-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 03/28/2012] [Indexed: 11/29/2022]
Abstract
Several studies have demonstrated that serotonergic and noradrenergic systems have important roles in morphine analgesia and tolerance. However, the exact mechanism underlying the development of morphine tolerance is not fully understood. The aim of this study was to investigate the possible role of serotonin/norepinephrine reuptake inhibitors (amitriptyline, venlafaxine) and serotonin receptor (5-HT(1A) and 5-HT(1B/1D)) agonist (dihydroergotamine) in morphine analgesia and tolerance in rats. To constitute morphine tolerance, animals received morphine (50 mg/kg; s.c.) once daily for 3 days. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated. The analgesic effects of amitriptyline (20 mg/kg; i.p.), venlafaxine (20 mg/kg; s.c.), dihydroergotamine (100 μg/kg; i.v.) and morphine (5 mg/kg) were considered at 15- to 30-min intervals (0, 15, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests. In this study, the data obtained suggested that amitriptyline and venlafaxine significantly increased the analgesic effect of morphine and attenuated the expression of morphine tolerance. However, dihydroergotamine significantly increased the analgesic effect of morphine but did not reduce the expression of morphine tolerance. In conclusion, we determined that co-administration of morphine with amitriptyline and venlafaxine increased the analgesic effects of morphine and attenuated the morphine analgesic tolerance.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, Cumhuriyet University School of Medicine, 58140 Sivas, Turkey.
| | | | | |
Collapse
|
35
|
|
36
|
Hervera A, Leánez S, Pol O. The inhibition of the nitric oxide-cGMP-PKG-JNK signaling pathway avoids the development of tolerance to the local antiallodynic effects produced by morphine during neuropathic pain. Eur J Pharmacol 2012; 685:42-51. [PMID: 22546233 DOI: 10.1016/j.ejphar.2012.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
Tolerance to the local antiallodynic effects of morphine, DPDPE ([D-Pen(2),D-Pen(5)]-Enkephalin) or JWH-015 ((2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone) after their repeated administration during neuropathic pain was evaluated. The role of the nitric oxide-cGMP-protein kinase G (PKG)-c-Jun N-terminal kinase (JNK) signaling pathway on the peripheral morphine-induced tolerance after the chronic constriction of sciatic nerve in mice was also assessed. The mechanical and thermal antiallodynic effects produced by a high dose of morphine, DPDPE or JWH-015 subplantarly administered daily from days 10 to 20 after nerve injury were estimated with the von Frey filaments and cold plate tests. The antiallodynic effects of the repeated administration of morphine combined with a sub-analgesic dose of a selective inducible nitric oxide synthase (NOS2) (L-N(6)-(1-iminoethyl)-lysine; L-NIL), L-guanylate cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ), PKG ((Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate; Rp-8-pCPT-cGMPs) or JNK (anthra[1,9-cd]pyrazol-6(2H)-one; SP600125) inhibitor from days 10 to 20 after injury were also evaluated. The repeated administration of morphine, but not DPDPE or JWH-015, produced a rapid development of tolerance to its mechanical and thermal antiallodynic effects in sciatic nerve-injured mice. The co-administration of morphine with L-NIL, ODQ, Rp-8-pCPT-cGMPs or SP600125 avoided the development of morphine antiallodynic tolerance after nerve injury. These findings reveal that the repeated local administration of DPDPE or JWH-015 did not induce antinociceptive tolerance after sciatic nerve injury-induced neuropathic pain. Our data also indicate that the peripheral nitric oxide-cGMP-PKG-JNK signaling pathway participates in the development of morphine tolerance after nerve injury and propose the inactivation of this pathway as a promising strategy to avoid morphine tolerance during neuropathic pain.
Collapse
Affiliation(s)
- Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
37
|
Hosseinzadeh H, Imenshahidi M, Hosseini M, Razavi BM. Effect of Linalool on Morphine Tolerance and Dependence in Mice. Phytother Res 2012; 26:1399-404. [DOI: 10.1002/ptr.3736] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/27/2011] [Accepted: 11/17/2011] [Indexed: 12/26/2022]
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad; Iran
| | - Mohsen Imenshahidi
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad; Iran
| | | | - Bibi Marjan Razavi
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad; Iran
| |
Collapse
|
38
|
Gursoy S, Ozdemir E, Bagcivan I, Altun A, Durmus N. Effects of alpha 2-adrenoceptor agonists dexmedetomidine and guanfacine on morphine analgesia and tolerance in rats. Ups J Med Sci 2011; 116:238-46. [PMID: 21919812 PMCID: PMC3207298 DOI: 10.3109/03009734.2011.597889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Alpha 2 (α(2))-adrenoceptor agonists may be useful for their potential to increase or prolong opioid analgesia while attenuating the development of opioid tolerance. The purpose of this study was to investigate the effects of dexmedetomidine and guanfacine (α(2)-adrenoceptor agonists) on morphine analgesia and tolerance in rats. METHODS Adult male Wistar albino rats weighing 195-205 g were used. To constitute morphine tolerance, animals received morphine (50 mg/kg) once daily for 3 days. After the last dose of morphine had been injected on day 4, morphine tolerance was evaluated by analgesia tests. The analgesic effects of dexmedetomidine (20 ug/kg), guanfacine (0.5 mg/kg), MK-467 (0.25 mg/kg), and morphine were estimated at 30-min intervals (0, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests. RESULTS Our findings indicate that dexmedetomidine and guanfacine attenuated the expression of morphine tolerance. In addition, administration of dexmedetomidine with morphine increased morphine analgesia. On the contrary, data suggested that MK-467 (an α(2)-adrenoceptor antagonist) decreased morphine analgesia and increased morphine tolerance in analgesia tests. CONCLUSION In conclusion, we observed that co-injection of dexmedetomidine or guanfacine with morphine attenuated the expression of tolerance to the analgesic effect of morphine and that dexmedetomidine enhanced the morphine analgesia.
Collapse
Affiliation(s)
- Sinan Gursoy
- Anesthesiology and Reanimation, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ercan Ozdemir
- Department of Physiology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ihsan Bagcivan
- Department of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Ahmet Altun
- Department of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Nedim Durmus
- Department of Pharmacology, Cumhuriyet University School of Medicine, Sivas, Turkey
| |
Collapse
|