1
|
Kindlovits R, Sousa AC, Viana JL, Milheiro J, Oliveira BMPM, Marques F, Santos A, Teixeira VH. Eight Weeks of Intermittent Exercise in Hypoxia, with or without a Low-Carbohydrate Diet, Improves Bone Mass and Functional and Physiological Capacity in Older Adults with Type 2 Diabetes. Nutrients 2024; 16:1624. [PMID: 38892557 PMCID: PMC11173956 DOI: 10.3390/nu16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
In an increasingly aging and overweight population, osteoporosis and type 2 diabetes (T2DM) are major public health concerns. T2DM patients experience prejudicial effects on their bone health, affecting their physical capacity. Exercise in hypoxia (EH) and a low-carbohydrate diet (LCD) have been suggested for therapeutic benefits in T2DM, improving bone mineral content (BMC) and glycemic control. This study investigated the effects of EH combined with an LCD on body composition and functional and physiologic capacity in T2DM patients. Older T2DM patients (n = 42) were randomly assigned to the following groups: (1) control group: control diet + exercise in normoxia; (2) EH group: control diet + EH; (3) intervention group: LCD + EH. Cardiopulmonary tests (BRUCE protocol), body composition (DEXA), and functional capacity (6MWT, handgrip strength) were evaluated. Body mass index (kg/m2) and body fat (%) decreased in all groups (p < 0.001). BMC (kg) increased in all groups (p < 0.001) and was significantly higher in the EH and EH + LCD groups (p < 0.001). VO2peak improved in all groups (p < 0.001), but more so in the hypoxia groups (p = 0.019). Functional capacity was increased in all groups (p < 0.001), but more so in the EH group in 6MWT (p = 0.030). EH with and without an LCD is a therapeutic strategy for improving bone mass in T2DM, which is associated with cardiorespiratory and functional improvements.
Collapse
Affiliation(s)
- Raquel Kindlovits
- Faculty of Nutrition and Food Sciences, University of Porto, FCNAUP, 4150-180 Porto, Portugal; (R.K.); (B.M.P.M.O.); (A.S.)
| | - Ana Catarina Sousa
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal; (A.C.S.); (J.L.V.)
| | - João Luís Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal; (A.C.S.); (J.L.V.)
| | - Jaime Milheiro
- CMEP, Exercise Medical Centre Laboratory, 4150-044 Porto, Portugal;
- Centre of Research, Education, Innovation and Intervention in Sport, CIFI2D, Faculty of Sport, University of Porto, 4200-540 Porto, Portugal
| | - Bruno M. P. M. Oliveira
- Faculty of Nutrition and Food Sciences, University of Porto, FCNAUP, 4150-180 Porto, Portugal; (R.K.); (B.M.P.M.O.); (A.S.)
- Laboratory of Artificial Intelligence and Decision Support, Institute for Systems and Computer Engineering, Technology and Science (LIAAD, INESC-TEC), 4200-465 Porto, Portugal
| | - Franklim Marques
- Laboratory of Biochemistry, Department of Biological Sciences, UCIBIO, REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Alejandro Santos
- Faculty of Nutrition and Food Sciences, University of Porto, FCNAUP, 4150-180 Porto, Portugal; (R.K.); (B.M.P.M.O.); (A.S.)
- Institute for Research and Innovation in Health, i3S, 4200-135 Porto, Portugal
| | - Vitor Hugo Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto, FCNAUP, 4150-180 Porto, Portugal; (R.K.); (B.M.P.M.O.); (A.S.)
- Research Center in Physical Activity, Health and Leisure, CIAFEL, Faculty of Sports, University of Porto, FADEUP, 4200-540 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, ITR, 4050-600 Porto, Portugal
| |
Collapse
|
2
|
Kindlovits R, Sousa AC, Viana JL, Milheiro J, Marques F, Teixeira VH. Combined low-carbohydrate diet and long-term exercise in hypoxia in type 2 diabetes: A randomized controlled trial protocol to assess glycemic control, cardiovascular risk factors and body composition. Nutr Health 2024; 30:5-13. [PMID: 37499218 PMCID: PMC10924702 DOI: 10.1177/02601060231190663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background: Cardiovascular disease is the leading cause of mortality associated with diabetes, which is characterized by chronic hyperglycemia. Low-carbohydrate diet has gained popularity as an intervention in patients with type 2 diabetes mellitus, acting to improve glycemic profile and serum lipids. In its turn, exercise in hypoxia induces specific adaptations, mostly modulated via hypoxia-induced transcription factor signaling cascade, which increases with exposure to altitude, and promotes angiogenesis, glycogen supply, glucose tolerance, and raises GLUT-4 expression. Aim: Given that hyperglycemia decreases HIF-1α and it is better controlled when following a low-carbohydrate diet, this study aims to examine the hypothesis that a combination of both low-carbohydrate diet and chronic exercise in hypoxia in type 2 diabetes mellitus is associated with improved glycemic control and cardiovascular parameters, whose protocol is described. Methods: Patients with type 2 diabetes mellitus (n = 48) will be recruited and randomized into one of the three groups: (a) Control group: Control diet (low-fat and moderate-carbohydrate diet) + exercise in normoxia; (2) exercise in hypoxia group: Control diet + exercise in hypoxia; (3) intervention group: Low-carbohydrate diet (low-carbohydrate and high-fat diet) + exercise in hypoxia. Before and after 8 weeks of interventions, cardiopulmonary tests (Bruce protocol), body composition and blood pressure will be evaluated. Blood samples will be collected to measure hypoxia-induced transcription factor, C-reactive protein, glycemic and lipid profiles. Summary: This will be the first trial to examine the isolated and combined effect of chronic exercise in hypoxia and low-carbohydrate diet in type 2 diabetes mellitus. This trial will help to fill a significant research gap, guide future research and contribute to the combined nutrition and exercise approach to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Raquel Kindlovits
- Faculty of Nutrition and Food Sciences, University of Porto, FCNAUP, Porto, Portugal
| | - Ana C Sousa
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, Maia, Portugal
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, Maia, Portugal
| | | | - Franklim Marques
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, FFUP, Porto, Portugal
| | - Vitor H Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto, FCNAUP, Porto, Portugal
- Research Center in Physical Activity, Health and Leisure, CIAFEL - Faculty of Sports, University of Porto, FADEUP, Portugal
- Laboratory for Integrative and Translational Research in Population Health, ITR, Porto, Portugal
| |
Collapse
|
3
|
Raberin A, Burtscher J, Burtscher M, Millet GP. Hypoxia and the Aging Cardiovascular System. Aging Dis 2023; 14:2051-2070. [PMID: 37199587 PMCID: PMC10676797 DOI: 10.14336/ad.2023.0424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Older individuals represent a growing population, in industrialized countries, particularly those with cardiovascular diseases, which remain the leading cause of death in western societies. Aging constitutes one of the largest risks for cardiovascular diseases. On the other hand, oxygen consumption is the foundation of cardiorespiratory fitness, which in turn is linearly related to mortality, quality of life and numerous morbidities. Therefore, hypoxia is a stressor that induces beneficial or harmful adaptations, depending on the dose. While severe hypoxia can exert detrimental effects, such as high-altitude illnesses, moderate and controlled oxygen exposure can potentially be used therapeutically. It can improve numerous pathological conditions, including vascular abnormalities, and potentially slows down the progression of various age-related disorders. Hypoxia can exert beneficial effects on inflammation, oxidative stress, mitochondrial functions, and cell survival, which are all increased with age and have been discussed as main promotors of aging. This narrative review discusses specificities of the aging cardiovascular system in hypoxia. It draws upon an extensive literature search on the effects of hypoxia/altitude interventions (acute, prolonged, or intermittent exposure) on the cardiovascular system in older individuals (over 50 years old). Special attention is directed toward the use of hypoxia exposure to improve cardiovascular health in older individuals.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, A-6020, Austria.
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
4
|
Kindlovits R, Pereira AMDS, Sousa AC, Viana JL, Teixeira VH. Effects of Acute and Chronic Exercise in Hypoxia on Cardiovascular and Glycemic Parameters in Patients with Type 2 Diabetes: A Systematic Review. High Alt Med Biol 2022; 23:301-312. [PMID: 36036723 DOI: 10.1089/ham.2022.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Kindlovits, Raquel, Alberto Mello da Silva Pereira, Ana Catarina Sousa, João Luís Viana,and Vitor Hugo Teixeira. Effects of acute and chronic exercise in hypoxia on cardiovascular and glycemic parameters in patients with type 2 diabetes: a systematic review. High Alt Med Biol. 23:301-312, 2022. Background: Exercise in hypoxia (EH, decreased oxygen availability) has been proposed as a potential therapeutic intervention to promote angiogenesis and improve glucose metabolism to a greater extent than exercise under normoxia (normal ambient air) in patients with type 2 diabetes (T2D). Currently, there are no studies that systematize the existent evidence. This study aims to systematically review the literature and qualitatively evaluate the effects of acute and chronic EH on cardiovascular and glycemic parameters in T2D patients. Methods: A structured search was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines until March 2021, in the MEDLINE/PubMed, Scopus, and Web of Science databases. The inclusion criteria were as follows: (1) randomized and nonrandomized trials, (2) in complication-free patients with T2D, (3) in which EH was compared with exercise in normoxia or with baseline data, and (4) published in English. Results: Six articles (64 subjects) met the inclusion criteria and were reviewed to data extraction. Four articles investigated the acute effect of EH (33 subjects), and two articles investigated the chronic effect of EH (31 subjects), ranging from 6 to 8 weeks. All studies used a cycle ergometer as exercise. Acute EH benefits insulin sensitivity, blood glucose, vascular endothelial growth factor, and metalloproteinase-9, while chronic EH benefits nitric oxide synthase in erythrocytes, but not brachial artery flow-mediated dilation. Conclusion: Acute EH improves glucose homeostasis in T2D patients, which was not seen with chronic EH. Both acute EH and chronic EH improve angiogenesis regulators, but not vascular function. Despite the putative benefits of EH in patients with T2D, the evidence is still scarce and further research is needed before recommendations can be provided.
Collapse
Affiliation(s)
- Raquel Kindlovits
- Faculty of Nutrition and Food Sciences, University of Porto (FCNAUP), Porto, Portugal
| | | | - Ana Catarina Sousa
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - João Luís Viana
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Maia, Maia, Portugal
| | - Vitor Hugo Teixeira
- Faculty of Nutrition and Food Sciences, University of Porto (FCNAUP), Porto, Portugal.,Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Portugal.,Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
5
|
Wróbel M, Rokicka D, Gołaś A, Drozd M, Nowowiejska-Wiewióra A, Pyka Ł, Stołtny T, Gąsior M, Strojek K. Combined Aerobic and Resistance Training Performed under Conditions of Normobaric Hypoxia and Normoxia Has the Same Impact on Metabolic Control in Men with Type 1 Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13058. [PMID: 34948667 PMCID: PMC8701162 DOI: 10.3390/ijerph182413058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/05/2022]
Abstract
(1) Background: The aim was to assess whether combined aerobic and resistance training performed under hypoxic and normoxic conditions had an impact on diabetes control, VO2max (maximum oxygen consumption), and echocardiological and anthropometric parameters in men with long-term type 1 diabetes. (2) Methods: Sixteen male participants (mean age: 37 years, mean HbA1c (glycated hemoglobin): 7.0%) were randomly assigned to two groups: training in normoxic conditions or training in conditions of altitude hypoxia. All subjects participated in 60 min combined aerobic and resistance training sessions twice a week for 6 weeks. At baseline and in the 6th week, echocardiography, incremental exercise test, and anthropometric and diabetes control parameters were assessed. (3) Results: After 6 weeks, there was no significant change in HbA1c value in any group. We noted a more stable glycemia profile during training in the hypoxia group (p > 0.05). Patients in the hypoxia group required less carbohydrates during training than in the normoxia group. A comparable increase in VO2max was observed in both groups (p > 0.05). There were no significant differences in cardiological and anthropometric parameters. (4) Conclusions: Combined aerobic and resistance training improved VO2max after 6 weeks regardless of the conditions of the experiments. This exercise is safe in terms of glycemic control in patients with well-controlled diabetes.
Collapse
Affiliation(s)
- Marta Wróbel
- Department of Internal Medicine, Diabetology and Cardiometabolic Disorders, Faculty of Medical Sciences Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (D.R.); (K.S.)
| | - Dominika Rokicka
- Department of Internal Medicine, Diabetology and Cardiometabolic Disorders, Faculty of Medical Sciences Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (D.R.); (K.S.)
| | - Artur Gołaś
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (A.G.); (M.D.)
| | - Miłosz Drozd
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland; (A.G.); (M.D.)
| | - Alicja Nowowiejska-Wiewióra
- 3rd Department of Cardiology, Faculty of Medical Sciences Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (A.N.-W.); (Ł.P.); (M.G.)
| | - Łukasz Pyka
- 3rd Department of Cardiology, Faculty of Medical Sciences Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (A.N.-W.); (Ł.P.); (M.G.)
| | - Tomasz Stołtny
- District Hospital of Orthopaedics, Trauma Surgery in Piekary Śląskie, 41-940 Piekary Śląskie, Poland;
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (A.N.-W.); (Ł.P.); (M.G.)
| | - Krzysztof Strojek
- Department of Internal Medicine, Diabetology and Cardiometabolic Disorders, Faculty of Medical Sciences Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (D.R.); (K.S.)
| |
Collapse
|
6
|
Żebrowska A, Sikora M, Konarska A, Zwierzchowska A, Kamiński T, Robins A, Hall B. Moderate intensity exercise in hypoxia increases IGF-1 bioavailability and serum irisin in individuals with type 1 diabetes. Ther Adv Endocrinol Metab 2020; 11:2042018820925326. [PMID: 32523674 PMCID: PMC7257872 DOI: 10.1177/2042018820925326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022] Open
Abstract
AIM This study aimed to determine the effect of moderate intensity continuous exercise (Ex) and hypoxia (Hyp) on serum brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3), irisin and cytokines levels in patients with type 1 diabetes (T1D). METHODS A total of 14 individuals with T1D (age: 28.7 ± 7.3 years) and 14 healthy adults (age: 27.1 ± 3.9 years) performed 40-min continuous Ex at moderate intensity (50% lactate threshold) on a cycle ergometer in normoxia (Nor) and Hyp (FiO2 = 15.1%) Biochemical factors, glucose concentrations and physiological variables were measured at rest, immediately and up to 24 h after both Ex protocols. RESULTS Patients with T1D had significantly lower pre-Ex serum concentrations of BDNF (p < 0.05, p < 0.01), and total IGF-1 (p < 0.001, p < 0.05) and significantly higher irisin levels (p < 0.05, p < 0.01) in Nor and Hyp, compared with healthy subjects. Ex significantly increased in T1D group serum BDNF (in Nor only p < 0.05) and total IGF-1 levels in Nor and Hyp (p < 0.001 and p < 0.01, respectively). Immediately after Ex in Hyp, freeIGF-1 (p < 0.05) and irisin levels (p < 0.001) were significantly higher compared with the levels induced by Ex alone. Free IGF-1 and irisin serum levels remained elevated in 24 h post-Ex in Hyp. In T1D, significant blood glucose (BG) decrease was observed immediately after Ex in Hyp (p < 0.001) and in 24 h recovery (p < 0.001) compared with pre-Ex level. CONCLUSION The study results suggest that moderate intensity continuous Ex has beneficial effect on BDNF and IGF-1 levels. Ex in hypoxic conditions may be more effective in increasing availability of IGF-1. The alterations in the post-Ex irisin levels and IGF-1 system may be contributing to more effective glycaemia control in patients with T1D.
Collapse
Affiliation(s)
| | - Marcin Sikora
- Department of Physiological and Medical Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Anna Konarska
- Department of Physiological and Medical Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | | | - Tomasz Kamiński
- Department of Physiological and Medical Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Anna Robins
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, University of Salford, Salford, UK
| | - Barbara Hall
- School of Health Sciences, University of Salford, Salford, UK
| |
Collapse
|
7
|
Comparison of the Effectiveness of High-Intensity Interval Training in Hypoxia and Normoxia in Healthy Male Volunteers: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7315714. [PMID: 31662994 PMCID: PMC6778879 DOI: 10.1155/2019/7315714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
Aims The study investigated the effect of high-intensity interval training in hypoxia and normoxia on serum concentrations of proangiogenic factors, nitric oxide, and inflammatory responses in healthy male volunteers. Methods Twelve physically active male subjects completed a high-intensity interval training (HIIT) in normoxia (NorTr) and in normobaric hypoxia (HypTr) (FiO2 = 15.2%). The effects of HIIT in hypoxia and normoxia on maximal oxygen uptake, hypoxia-inducible factor-1-alpha, vascular endothelial growth factor, nitric oxide, and cytokines were analyzed. Results HIIT in hypoxia significantly increases maximal oxygen uptake (p=0.01) levels compared to pretraining levels. Serum hypoxia-inducible factor-1 (p=0.01) and nitric oxide levels (p=0.05), vascular endothelial growth factor (p=0.04), and transforming growth factor-β (p=0.01) levels were increased in response to exercise test after hypoxic training. There was no effect of training conditions for serum baseline angiogenic factors and cytokines (p > 0.05) with higher HIF-1α and NO levels after hypoxic training compared to normoxic training (F = 9.1; p < 0.01 and F = 5.7; p < 0.05, respectively). Conclusions High-intensity interval training in hypoxia seems to induce beneficial adaptations to exercise mediated via a significant increase in the serum concentrations of proangiogenic factors and serum nitric oxide levels compared to the same training regimen in normoxia.
Collapse
|
8
|
Brinkmann C, Bizjak DA, Bischof S, Latsch J, Brixius K, Bloch W, Grau M. Endurance training alters enzymatic and rheological properties of red blood cells (RBC) in type 2 diabetic men during in vivo RBC aging. Clin Hemorheol Microcirc 2017; 63:173-84. [PMID: 26410865 DOI: 10.3233/ch-151957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study examines the effects of endurance training on red blood cells (RBC) in seventeen non-insulin-dependent type 2 diabetic men with a special focus on in vivo RBC aging. Venous blood was collected pre- and post-training at rest. RBC from whole blood and RBC separated according to cell age by density-gradient centrifugation were analyzed. RBC deformability was measured by ektacytometry. Immunohistochemical staining was performed to quantify the RBC-nitric oxide (NO) synthase activation (RBC-NOSSer1177) because RBC-NOS-produced NO can contribute to increased RBC deformability. The proportion of "young" RBC was significantly higher post-training. RBC deformability of all RBC (RBC of all ages) remained unaltered post-training. During RBC aging, RBC deformability decreased in both pre- and post-training. However, the training significantly increased RBC deformability in "young" and reduced their deformability in aging RBC. RBC-NOS activation remained unaltered in all RBC post-training. It tendentially increased in aging RBC pre-training, but did not change during aging post-training. The training significantly reduced RBC-NOS activation in "old" RBC. Endurance training may improve the RBC system (higher amount of "young" RBC which are more deformable). It remains speculative whether changes in older RBC (reduced RBC-NOS activation and deformability) could lead to more rapid elimination of aged RBC.
Collapse
Affiliation(s)
- C Brinkmann
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - D A Bizjak
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - S Bischof
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - J Latsch
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - K Brixius
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - W Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - M Grau
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| |
Collapse
|
9
|
Dyakova EY, Kapilevich LV, Shylko VG, Popov SV, Anfinogenova Y. Physical exercise associated with NO production: signaling pathways and significance in health and disease. Front Cell Dev Biol 2015; 3:19. [PMID: 25883934 PMCID: PMC4382985 DOI: 10.3389/fcell.2015.00019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/07/2015] [Indexed: 12/20/2022] Open
Abstract
Here we review available data on nitric oxide (NO)-mediated signaling in skeletal muscle during physical exercise. Nitric oxide modulates skeletal myocyte function, hormone regulation, and local microcirculation. Nitric oxide underlies the therapeutic effects of physical activity whereas the pharmacological modulators of NO-mediated signaling are the promising therapeutic agents in different diseases. Nitric oxide production increases in skeletal muscle in response to physical activity. This molecule can alter energy supply in skeletal muscle through hormonal modulation. Mitochondria in skeletal muscle tissue are highly abundant and play a pivotal role in metabolism. Considering NO a plausible regulator of mitochondrial biogenesis that directly affects cellular respiration, we discuss the mechanisms of NO-induced mitochondrial biogenesis in the skeletal muscle cells. We also review available data on myokines, the molecules that are expressed and released by the muscle fibers and exert autocrine, paracrine and/or endocrine effects. The article suggests the presence of putative interplay between NO-mediated signaling and myokines in skeletal muscle. Data demonstrate an important role of NO in various diseases and suggest that physical training may improve health of patients with diabetes, chronic heart failure, and even degenerative muscle diseases. We conclude that NO-associated signaling represents a promising target for the treatment of various diseases and for the achievement of better athletic performance.
Collapse
Affiliation(s)
- Elena Y Dyakova
- Department of Sporting Health Tourism, Physiology, and Medicine, National Research Tomsk State University Tomsk, Russia
| | - Leonid V Kapilevich
- Department of Sporting Health Tourism, Physiology, and Medicine, National Research Tomsk State University Tomsk, Russia ; Institute of Physics and Technology, National Research Tomsk Polytechnic University Tomsk, Russia
| | - Victor G Shylko
- Department of Sporting Health Tourism, Physiology, and Medicine, National Research Tomsk State University Tomsk, Russia
| | - Sergey V Popov
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology," Tomsk, Russia
| | - Yana Anfinogenova
- Institute of Physics and Technology, National Research Tomsk Polytechnic University Tomsk, Russia ; Federal State Budgetary Scientific Institution "Research Institute for Cardiology," Tomsk, Russia
| |
Collapse
|