1
|
Wolf G, Craigon C, Teoh ST, Essletzbichler P, Onstein S, Cassidy D, Uijttewaal ECH, Dvorak V, Cao Y, Bensimon A, Elling U, Ciulli A, Superti-Furga G. The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells. Cell Chem Biol 2025; 32:291-306.e6. [PMID: 39755121 DOI: 10.1016/j.chembiol.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored. Here, we utilized transporter-focused genetic screens to identify the ATP-binding cassette transporter ABCC1/MRP1 as a key PROTAC resistance factor. Unlike the previously identified inducible PROTAC exporter ABCB1/MDR1, ABCC1 is highly expressed among cancers of various origins and constitutively restricts PROTAC bioavailability. Moreover, in a genome-wide PROTAC resistance screen, we identified candidates involved in processes such as ubiquitination, mTOR signaling, and apoptosis as genetic factors involved in PROTAC resistance. In summary, our findings reveal ABCC1 as a crucial constitutively active efflux pump limiting PROTAC efficacy in various cancer cells, offering insights for overcoming drug resistance.
Collapse
Affiliation(s)
- Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Conner Craigon
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Diane Cassidy
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Esther C H Uijttewaal
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Yuting Cao
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Ariel Bensimon
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
2
|
García de Alba Graue P, Abdouh M, Goyeneche A, Burnier JV, Burnier MN. CYSLTR1 antagonism displays potent anti-tumor effects in uveal melanoma. Exp Eye Res 2024; 248:110120. [PMID: 39389443 DOI: 10.1016/j.exer.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Uveal Melanoma (UM) is the most common primary intraocular malignancy in adults. Although rare, it is a deadly tumor, with a long-term prognosis of death occurring in more than 50% of the cases. It is characterized by frequent (∼80%) driver mutations in GNAQ and GNA11 genes, both of which are activated by cysteinyl leukotriene receptors (CYSLTRs). CYSLTR1 is upregulated and participated in the progression of several cancers. In the present study, we sought to determine the expression levels of CYSLTR1 in 31 human UM specimens and cell lines (3 primary and 1 metastatic), and its role in the proliferation and viability of these cells by analyzing cell metabolic activity, cell confluence and apoptosis levels. We show that all analyzed UM specimens and cells expressed CYSLTR1 at high levels. Notably, the pharmacological blockage of this receptor, using the inverse agonist MK571, reduced the growth and metabolic activity, and increased the apoptotic cell death of all analyzed UM cell lines. We provide evidence that CYSLTR1 is expressed in human UM and plays a significant role in UM progression behavior. Our data highlight the potential beneficial effects of targeting CYSLTR1 in the control of UM progression.
Collapse
Affiliation(s)
- Paulina García de Alba Graue
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The MUHC - McGill University Ocular Pathology & Translational Research Laboratory, Montreal, QC, Canada
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The MUHC - McGill University Ocular Pathology & Translational Research Laboratory, Montreal, QC, Canada.
| | - Alicia Goyeneche
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The MUHC - McGill University Ocular Pathology & Translational Research Laboratory, Montreal, QC, Canada
| | - Julia Valdemarin Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Miguel N Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; The MUHC - McGill University Ocular Pathology & Translational Research Laboratory, Montreal, QC, Canada
| |
Collapse
|
3
|
Sahores A, González AR, Yaneff A, May M, Gómez N, Monczor F, Fernández N, Davio C, Shayo C. Ceefourin-1, a MRP4/ABCC4 inhibitor, induces apoptosis in AML cells enhanced by histamine. Biochim Biophys Acta Gen Subj 2023; 1867:130322. [PMID: 36773726 DOI: 10.1016/j.bbagen.2023.130322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Ceefourin-1 is a specific MRP4/ABCC4 inhibitor with potential antileukemic activity. In this study, we evaluate the ability of ceefourin-1 alone or in combination with histamine, an approved antileukemic agent, to induce cell differentiation or apoptosis in human acute myeloid leukemic cells. We also examine ceefourin-1 toxicity in mice. METHODS U937, HL-60, and KG1a cells were used as models for human acute myeloid leukemia. Cyclic AMP efflux was estimated by measuring intracellular and extracellular cAMP levels. Cell differentiation was assessed by levels of CD14 and CD11b by FACS, and CD88 by western blot, and by cell morphology. Apoptosis was evaluated by cleavage of caspase-3 and PARP by western blot, and by annexin V binding assay. Subacute toxicity study of ceefourin-1 was carried out in BALB/c mice. RESULTS Ceefourin-1 inhibits cAMP exclusion in AML cells and promotes intracellular signaling via CREB. Ceefourin-1 leads AML cells to apoptosis and histamine potentiates this effect, without evidence of cell differentiation. Intraperitoneal administration of ceefourin-1 shows no important alterations in mice blood parameters, hepatic, and renal functions, nor signs of histologic damage. CONCLUSIONS These results show that ceefourin-1 promotes apoptosis in AML cells that is enhanced by histamine. GENERAL SIGNIFICANCE This work indicates that ceefourin-1 represents a promising molecule that could be used alone or in combination with histamine for in vivo evaluation in acute myeloid leukemia malignancies.
Collapse
Affiliation(s)
- Ana Sahores
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angela Rodríguez González
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Monczor
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
4
|
de Oliveira MG, Passos GR, de Gomes EDT, Leonardi GR, Zapparoli A, Antunes E, Mónica FZ. Inhibition of multidrug resistance proteins by MK571 restored the erectile function in obese mice through cGMP accumulation. Andrology 2023; 11:611-620. [PMID: 36375168 DOI: 10.1111/andr.13340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/09/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intracellular levels of cyclic nucleotides can also be controlled by the action of multidrug resistance protein types 4 (MRP4) and 5 (MRP5). To date, no studies evaluated the role of their inhibition in an animal model of erectile dysfunction (ED). OBJECTIVES To evaluate the effect of a 2-week treatment with MK571, an inhibitor of the efflux of cyclic nucleotides in the ED of obese mice. MATERIALS AND METHODS Mice were divided in three groups: (i) lean, (ii) obese, and (iii) obese + MK571. The corpus cavernosum (CC) were isolated, and concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), and tadalafil in addition to electrical field stimulation (EFS) were carried out in phenylephrine pre-contracted tissues. Expression of ABCC4 and ABCC5, intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), the protein levels for pVASPSer157 and pVASPSer239 , and the intracavernous pressure (ICP) were also determined. The intracellular and extracellular (supernatant) ratios in CC from obese and lean stimulated with a cGMP-increasing substance (BAY 58-2667) in the absence and presence of MK571 (20 μM, 30 min) were also assessed. RESULTS The treatment with MK571 completely reversed the lower relaxing responses induced by EFS, ACh, SNP, and tadalafil observed in obese mice CC in comparison with untreated obese mice. Cyclic GMP and p-VASPSer239 expression were significantly reduced in CC from obese groups. MK571 promoted a sixfold increase in cGMP without interfering in the protein expression of p-VASPSer239 . Neither the cAMP levels nor p-VASPSer157 were altered in MK571-treated animals. The ICP was ∼50% lower in obese than in the lean mice; however, the treatment with MK571 fully reversed this response. Expressions of ABCC4 and ABCC5 were not different between groups. The intra/extracellular ratio of cGMP was similar in CC from obese and lean mice stimulated with BAY 58-2667. CONCLUSIONS The MRPs inhibition by MK571 favored the accumulation of cGMP in the smooth muscle cells, thus improving the smooth muscle relaxation and the erectile function in obese mice.
Collapse
Affiliation(s)
- Mariana Gonçalves de Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Reolon Passos
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Erick de Toledo de Gomes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Ruiz Leonardi
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Zapparoli
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
da Costa KM, Valente RDC, da Fonseca LM, Freire-de-Lima L, Previato JO, Mendonça-Previato L. The History of the ABC Proteins in Human Trypanosomiasis Pathogens. Pathogens 2022; 11:pathogens11090988. [PMID: 36145420 PMCID: PMC9505544 DOI: 10.3390/pathogens11090988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Human trypanosomiasis affects nearly eight million people worldwide, causing great economic and social impact, mainly in endemic areas. T. cruzi and T. brucei are protozoan parasites that present efficient mechanisms of immune system evasion, leading to disease chronification. Currently, there is no vaccine, and chemotherapy is effective only in the absence of severe clinical manifestations. Nevertheless, resistant phenotypes to chemotherapy have been described in protozoan parasites, associated with cross-resistance to other chemically unrelated drugs. Multidrug resistance is multifactorial, involving: (i) drug entry, (ii) activation, (iii) metabolism and (iv) efflux pathways. In this context, ABC transporters, initially discovered in resistant tumor cells, have drawn attention in protozoan parasites, owing to their ability to decrease drug accumulation, thus mitigating their toxic effects. The discovery of these transporters in the Trypanosomatidae family started in the 1990s; however, few members were described and functionally characterized. This review contains a brief history of the main ABC transporters involved in resistance that propelled their investigation in Trypanosoma species, the main efflux modulators, as well as ABC genes described in T. cruzi and T. brucei according to the nomenclature HUGO. We hope to convey the importance that ABC transporters play in parasite physiology and chemotherapy resistance.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| | - Raphael do Carmo Valente
- Núcleo de Pesquisa Multidisciplinar em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias Prof. Geraldo Cidade, Duque de Caxias 25250-470, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: (K.M.C.); (L.M.P.)
| |
Collapse
|
6
|
Marques CF, Marques MM, Justino GC. Leukotrienes vs. Montelukast—Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15091039. [PMID: 36145259 PMCID: PMC9505853 DOI: 10.3390/ph15091039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing environmental distress is associated with a growing asthma incidence; no treatments are available but montelukast (MTK)—an antagonist of the cysteinyl leukotrienes receptor 1—is widely used in the management of symptoms among adults and children. Recently, new molecular targets have been identified and MTK has been proposed for repurposing in other therapeutic applications, with several ongoing clinical trials. The proposed applications include neuroinflammation control, which could be explored in some neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases (AD and PD). However, this drug has been associated with an increasing number of reported neuropsychiatric adverse drug reactions (ADRs). Besides, and despite being on the market since 1998, MTK metabolism is still poorly understood and the mechanisms underlying neuropsychiatric ADRs remain unknown. We review the role of MTK as a modulator of leukotriene pathways and systematize the current knowledge about MTK metabolism. Known toxic effects of MTK are discussed, and repurposing applications are presented comprehensively, with a focus on AD and PD.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Matilde Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
7
|
Watanabe K, Fujikawa Y, Murakami-Tonami Y, Mori M, Sakata M, Inoue H. Design and synthesis of versatile GSTP1-specific fluorogenic substrates for the highly sensitive detection of GSTP1 activity in living cells. Talanta 2022; 251:123796. [DOI: 10.1016/j.talanta.2022.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
|
8
|
Riganti C, Giampietro R, Kopecka J, Costamagna C, Abatematteo FS, Contino M, Abate C. MRP1-Collateral Sensitizers as a Novel Therapeutic Approach in Resistant Cancer Therapy: An In Vitro and In Vivo Study in Lung Resistant Tumor. Int J Mol Sci 2020; 21:ijms21093333. [PMID: 32397184 PMCID: PMC7247425 DOI: 10.3390/ijms21093333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Multidrug resistance (MDR) is the main obstacle to current chemotherapy and it is mainly due to the overexpression of some efflux transporters such as MRP1. One of the most studied strategies to overcome MDR has been the inhibition of MDR pumps through small molecules, but its translation into the clinic unfortunately failed. Recently, a phenomenon called collateral sensitivity (CS) emerged as a new strategy to hamper MDR acting as a synthetic lethality, where the genetic changes developed upon the acquisition of resistance towards a specific agent are followed by the development of hypersensitivity towards a second agent. Among our library of sigma ligands acting as MDR modulators, we identified three compounds, F397, F400, and F421, acting as CS-promoting agents. We deepened their CS mechanisms in the "pure" model of MRP1-expressing cells (MDCK-MRP1) and in MRP1-expressing/drug resistant non-small cell lung cancer cells (A549/DX). The in vitro results demonstrated that (i) the three ligands are highly cytotoxic for MRP1-expressing cells; (ii) their effect is MRP1-mediated; (iii) they increase the cytotoxicity induced by cis-Pt, the therapeutic agent commonly used in the treatment of lung tumors; and (iv) their effect is ROS-mediated. Moreover, a preclinical in vivo study performed in lung tumor xenografts confirms the in vitro findings, making the three CS-promoting agents candidates for a novel therapeutic approach in lung resistant tumors.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (C.R.); (J.K.); (C.C.)
| | - Roberta Giampietro
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
| | - Joanna Kopecka
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (C.R.); (J.K.); (C.C.)
| | - Costanzo Costamagna
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (C.R.); (J.K.); (C.C.)
| | - Francesca Serena Abatematteo
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
| | - Marialessandra Contino
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
- Correspondence:
| | - Carmen Abate
- Department of Pharmacy-Drug Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy; (R.G.); (F.S.A.); (C.A.)
| |
Collapse
|
9
|
Imoto M. Chemistry and biology for the small molecules targeting characteristics of cancer cells. Biosci Biotechnol Biochem 2018; 83:1-10. [PMID: 30247093 DOI: 10.1080/09168451.2018.1518704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Abstract
Despite the marked progress of cancer research, cancer is the predominant cause of death in Japan, and therefore development of effective therapeutic drugs is expected. Chemical biology is a research field utilizing small molecules to investigate biological phenomena. One of the most important aims of chemical biology is to find the small molecules, and natural products are ideal screening sources due to their structural diversity. Therefore, natural product screening based on the progress of chemical biology prompted us to find small molecules targeting cancer characteristics. Another contribution of chemical biology is to facilitate the target identification of small molecule. Therefore, among a variety of methods to uncover protein function, chemical biology is a remarkable approach in which small molecules are used as probes to elucidate protein functions related to cancer development. ABBREVIATIONS EGF: Epidermal growth factor; PDGF: Platelet-derived growth factor; CRPC: Castration-resistant prostate cancer; AR: Androgen receptor; FTase: Farnesyl transferase; 5-LOX: 5-Lipoxygenase; LT: Leukotriene; CysLT1: Cysteinyl leukotriene receptor 1; GPA: Glucopiericidin A; PA: Piericidin A; XN: Xanthohumol; VCP: Valosin-containing protein; ACACA: Acetyl-CoA carboxylase-α.
Collapse
Affiliation(s)
- Masaya Imoto
- a Department of Biosciences and Informatics, Faculty of Science and Technology , Keio University , Kohoku-ku, Yokohama , Japan
| |
Collapse
|
10
|
Bosc D, Vezenkov L, Bortnik S, An J, Xu J, Choutka C, Hannigan AM, Kovacic S, Loo S, Clark PGK, Chen G, Guay-Ross RN, Yang K, Dragowska WH, Zhang F, Go NE, Leung A, Honson NS, Pfeifer TA, Gleave M, Bally M, Jones SJ, Gorski SM, Young RN. A new quinoline-based chemical probe inhibits the autophagy-related cysteine protease ATG4B. Sci Rep 2018; 8:11653. [PMID: 30076329 PMCID: PMC6076261 DOI: 10.1038/s41598-018-29900-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
The cysteine protease ATG4B is a key component of the autophagy machinery, acting to proteolytically prime and recycle its substrate MAP1LC3B. The roles of ATG4B in cancer and other diseases appear to be context dependent but are still not well understood. To help further explore ATG4B functions and potential therapeutic applications, we employed a chemical biology approach to identify ATG4B inhibitors. Here, we describe the discovery of 4-28, a styrylquinoline identified by a combined computational modeling, in silico screening, high content cell-based screening and biochemical assay approach. A structure-activity relationship study led to the development of a more stable and potent compound LV-320. We demonstrated that LV-320 inhibits ATG4B enzymatic activity, blocks autophagic flux in cells, and is stable, non-toxic and active in vivo. These findings suggest that LV-320 will serve as a relevant chemical tool to study the various roles of ATG4B in cancer and other contexts.
Collapse
Affiliation(s)
- D Bosc
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Inserm, Institut Pasteur de Lille, U1177 Drugs & Molecules for Living Systems, Université de Lille, F-59000, Lille, France
| | - L Vezenkov
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie, 15 avenue Charles Flahault, 34093, Montpellier, France
| | - S Bortnik
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
| | - J An
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - J Xu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - C Choutka
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - A M Hannigan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - S Kovacic
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - S Loo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - P G K Clark
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - G Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - R N Guay-Ross
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - K Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - W H Dragowska
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - F Zhang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - N E Go
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - A Leung
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - N S Honson
- Centre for Drug Research and Development, 2405 Wesbrook Mall - 4th Floor, Vancouver, BC, V6T 1Z3, Canada
| | - T A Pfeifer
- Centre for Drug Research and Development, 2405 Wesbrook Mall - 4th Floor, Vancouver, BC, V6T 1Z3, Canada
| | - M Gleave
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - M Bally
- Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
| | - S J Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - S M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4E6, Canada.
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, Canada.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - R N Young
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
11
|
Apolipoprotein M mediates sphingosine-1-phosphate efflux from erythrocytes. Sci Rep 2017; 7:14983. [PMID: 29118354 PMCID: PMC5678177 DOI: 10.1038/s41598-017-15043-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid implicated in e.g. angiogenesis, lymphocyte trafficking, and endothelial barrier function. Erythrocytes are a main source of plasma S1P together with platelets and endothelial cells. Apolipoprotein M (apoM) in HDL carries 70% of plasma S1P, whereas 30% is carried by albumin. The current aim was to investigate the role of apoM in export of S1P from human erythrocytes. Erythrocytes exported S1P more efficiently to HDL than to albumin, particularly when apoM was present in HDL. In contrast, export of sphingosine to HDL was unaffected by the presence of apoM. The specific ability of apoM to promote export of S1P was independent of apoM being bound in HDL particles. Treatment with MK-571, an inhibitor of the ABCC1 transporter, effectively reduced export of S1P from human erythrocytes to apoM, whereas the export was unaffected by inhibitors of ABCB1 or ATPase. Thus, ABCC1 could be involved in export of S1P from erythrocytes to apoM.
Collapse
|
12
|
Csandl MA, Conseil G, Cole SPC. Cysteinyl Leukotriene Receptor 1/2 Antagonists Nonselectively Modulate Organic Anion Transport by Multidrug Resistance Proteins (MRP1-4). Drug Metab Dispos 2016; 44:857-66. [PMID: 27068271 DOI: 10.1124/dmd.116.069468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/07/2016] [Indexed: 02/13/2025] Open
Abstract
Active efflux of both drugs and organic anion metabolites is mediated by the multidrug resistance proteins (MRPs). MRP1 (ABCC1), MRP2 (ABCC2), MRP3 (ABCC3), and MRP4 (ABCC4) have partially overlapping substrate specificities and all transport 17β-estradiol 17-(β-d-glucuronide) (E217βG). The cysteinyl leukotriene receptor 1 (CysLT1R) antagonist MK-571 inhibits all four MRP homologs, but little is known about the modulatory effects of newer leukotriene modifiers (LTMs). Here we examined the effects of seven CysLT1R- and CysLT2R-selective LTMs on E217βG uptake into MRP1-4-enriched inside-out membrane vesicles. Their effects on uptake of an additional physiologic solute were also measured for MRP1 [leukotriene C4 (LTC4)] and MRP4 [prostaglandin E2 (PGE2)]. The two CysLT2R-selective LTMs studied were generally more potent inhibitors than CysLT1R-selective LTMs, but neither class of antagonists showed any MRP selectivity. For E217βG uptake, LTM IC50s ranged from 1.2 to 26.9 μM and were most comparable for MRP1 and MRP4. The LTM rank order inhibitory potencies for E217βG versus LTC4 uptake by MRP1, and E217βG versus PGE2 uptake by MRP4, were also similar. Three of four CysLT1R-selective LTMs also stimulated MRP2 (but not MRP3) transport and thus exerted a concentration-dependent biphasic effect on MRP2. The fourth CysLT1R antagonist, LY171883, only stimulated MRP2 (and MRP3) transport but none of the MRPs were stimulated by either CysLT2R-selective LTM. We conclude that, in contrast to their CysLTR selectivity, CysLTR antagonists show no MRP homolog selectivity, and data should be interpreted cautiously if obtained from LTMs in systems in which more than one MRP is present.
Collapse
Affiliation(s)
- Mark A Csandl
- Departments of Biomedical and Molecular Sciences (M.A.C., S.P.C.C.), and Pathology and Molecular Medicine (G.C., S.P.C.C.), Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - Gwenaëlle Conseil
- Departments of Biomedical and Molecular Sciences (M.A.C., S.P.C.C.), and Pathology and Molecular Medicine (G.C., S.P.C.C.), Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| | - Susan P C Cole
- Departments of Biomedical and Molecular Sciences (M.A.C., S.P.C.C.), and Pathology and Molecular Medicine (G.C., S.P.C.C.), Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada
| |
Collapse
|
13
|
Yeh DYW, Yang YC, Wang JJ. Hepatic Warm Ischemia-Reperfusion-Induced Increase in Pulmonary Capillary Filtration Is Ameliorated by Administration of a Multidrug Resistance-Associated Protein 1 Inhibitor and Leukotriene D4 Antagonist (MK-571) Through Reducing Neutrophil Infiltration and Pulmonary Inflammation and Oxidative Stress in Rats. Transplant Proc 2016; 47:1087-91. [PMID: 26036526 DOI: 10.1016/j.transproceed.2014.10.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/28/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Hepatopulmonary syndrome (HPS) is the major complication subsequent to liver ischemia and reperfusion (I/R) injury after resection or transplantation of liver. Hallmarks of HPS include increases in pulmonary leukotrienes and neutrophil recruitment and infiltrating across capillaries. We aimed to investigate the protective efficacy of MK-571, a multidrug resistance-associated protein 1 inhibitor and leukotriene D4 agonist, against hepatic I/R injury-associated change in capillary filtration. METHODS Eighteen Sprague-Dawley male rats were evenly divided into a sham-operated group, a hepatic I/R group, and an MK-571-treated I/R group. MK-571 was administered intraperitoneally 15 min before hepatic ischemia and every 12 hours during reperfusion. Ischemia was conducted by occluding the hepatic artery and portal vein for 30 min, followed by removing the clamps and closing the incision. Forty-eight hours after hepatic ischemia, we assessed the pulmonary capillary filtration coefficient (Kfc) through the use of in vitro-isolated, perfused rat lung preparation. We also measured the lung wet-to-dry weight ratio (W/D) and protein concentration in broncho-alveolar lavage fluid (PCBAL). Lung inflammation and oxidative stress were evaluated by use of tissue tumor necrosis factor (TNF)-α and malondialdehyde levels and lavage differential macrophage and neutrophil cell count. RESULTS Hepatic I/R injury markedly increased Kfc, W/D, PCBAL, tissue TNF-α level, and differential neutrophil cell count (P < .05). MK-571 treatment reduced neutrophil infiltration and lung inflammation and improved pulmonary capillary filtration, collectively suggesting lung protection. CONCLUSIONS Treatment with MK-571 before and during hepatic ischemia and reperfusion protects lung against pulmonary capillary barrier function impairment through decreasing pulmonary lung inflammation and lavage neutrophils.
Collapse
Affiliation(s)
- D Y-W Yeh
- Division of Chest Medicine, Internal Medicine, Shin Kong Wu-Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Y-C Yang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - J-J Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
14
|
Tashiro E, Imoto M. Chemical biology of compounds obtained from screening using disease models. Arch Pharm Res 2015; 38:1651-60. [PMID: 26177809 DOI: 10.1007/s12272-015-0633-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
Bioactive compounds are extremely powerful tools for studying biological systems because they can rapidly, conditionally, often reversibly, and dose-dependently modulate the biological function of living cells. Moreover, they are expected to be drug seeds for chemotherapy of several diseases. Two approaches are used to find and obtain bioactive compounds, namely, molecular-target-based screening and phenotypic screening. Through phenotypic screening that mimics tumor metastasis, multi-drug resistance, and Parkinson's disease, we identified several compounds that inhibit cancer cell migration, anti-apoptotic function of Bcl-2/Bcl-xL, and neuronal cell death. By using MEK inhibitor that was developed by target-based screening, we discovered that MEK inhibitor selectively induces apoptosis in tumor cells with β-catenin mutation. Using target-based screening, we identified arabilin, a novel androgen antagonist. In this review, we introduce our recent studies on the identification of bioactive compounds by phenotypic screening and by target-based screening for drug-seed discovery.
Collapse
Affiliation(s)
- Estu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
15
|
Chemistry and biology of the compounds that modulate cell migration. J Ind Microbiol Biotechnol 2015; 43:213-9. [PMID: 26173498 DOI: 10.1007/s10295-015-1654-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.
Collapse
|
16
|
Sacerdoti D, Pesce P, Di Pascoli M, Brocco S, Cecchetto L, Bolognesi M. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension. Prostaglandins Other Lipid Mediat 2015; 120:80-90. [PMID: 26072731 DOI: 10.1016/j.prostaglandins.2015.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022]
Abstract
Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial growth factor (VEGF) inside the liver and in the portal circulation. Pharmacological manipulation of AA metabolites may be beneficial for cirrhotic portal hypertension.
Collapse
Affiliation(s)
- David Sacerdoti
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy.
| | - Paola Pesce
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| | - Marco Di Pascoli
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| | - Silvia Brocco
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| | - Lara Cecchetto
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| | - Massimo Bolognesi
- Department of Medicine, University of Padova Via Giustiniani, 2, 35100 Padova, Italy
| |
Collapse
|
17
|
Cheung L, Flemming CL, Watt F, Masada N, Yu DMT, Huynh T, Conseil G, Tivnan A, Polinsky A, Gudkov AV, Munoz MA, Vishvanath A, Cooper DMF, Henderson MJ, Cole SPC, Fletcher JI, Haber M, Norris MD. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4). Biochem Pharmacol 2014; 91:97-108. [PMID: 24973542 DOI: 10.1016/j.bcp.2014.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022]
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application.
Collapse
Affiliation(s)
- Leanna Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Claudia L Flemming
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Fujiko Watt
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Nanako Masada
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | - Denise M T Yu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Tony Huynh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Gwenaëlle Conseil
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Amanda Tivnan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Andrei V Gudkov
- Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Marcia A Munoz
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Anasuya Vishvanath
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Michelle J Henderson
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Susan P C Cole
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Jamie I Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| |
Collapse
|
18
|
Bartho L, Benko R. Should antihistamines be re-considered as antiasthmatic drugs as adjuvants to anti-leukotrienes? Eur J Pharmacol 2013; 701:181-4. [PMID: 23353593 DOI: 10.1016/j.ejphar.2013.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/30/2012] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
Abstract
In spite of histamine mimicking the symptoms of allergic bronchoconstriction and severe anaphylaxis, histamine antagonists most probably represent no effective treatment for these conditions. Anti-leukotrienes proved effective for preventing attacks of allergic asthma. In vitro evidence supports a supra-additive effect of histamine H1 receptor antagonists and anti-leukotrienes in vitro, in asthma models utilizing human bronchi. The same seems to hold true for human allergen provocation tests in vivo. We conclude that combinations of second-generation antihistamines and anti-leukotrienes deserve a large-scale clinical trial for preventing and/or treating attacks of allergic asthma. If useful, these drugs could provide a cost-effective alternative to some recent antiasthmatics. Given that redundant mechanisms may be included in asthma pathophysiology, other combinations (including thromboxane or platelet activating factor antagonists) could also be considered.
Collapse
Affiliation(s)
- Lorand Bartho
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pécs, Pécs, Hungary.
| | | |
Collapse
|
19
|
Mitchell C, Syed NIH, Tengah A, Gurney AM, Kennedy C. Identification of contractile P2Y1, P2Y6, and P2Y12 receptors in rat intrapulmonary artery using selective ligands. J Pharmacol Exp Ther 2012; 343:755-62. [PMID: 22991416 DOI: 10.1124/jpet.112.198051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
ATP and UDP constrict rat intrapulmonary arteries, but which receptors mediate these actions is unclear. Here, we used selective agonists and antagonists, along with measurements of P2Y receptor expression, to characterize the receptor subtypes involved. Isometric tension was recorded from endothelium-denuded rat intrapulmonary artery rings (i.d. 200-500 μm) mounted on a wire myograph. Expression of P2Y receptor subtype expression was determined by using reverse transcription-polymerase chain reaction with receptor-specific oligonucleotide primers. The selective P2Y(1) agonist (N)-methanocarba-2-methylthioadenosine-5'-O-diphosphate (MRS2365) induced small, concentration-dependent contractions that were inhibited by the P2Y(1) antagonist N(6)-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179). Contractions evoked by ATP were unaffected by MRS2179, but inhibited by approximately one-third by the P2Y(12) antagonist N(6)-(2-methylthiomethyl)-2-(3,3,3-trifluoropropylthio)dichloro-methylene ATP (AR-C69931MX). Combined blockade of P2X1 and P2Y(12) receptors virtually abolished the response to ATP. ADP also evoked contractions that were abolished by AR-C69931MX. The selective P2Y(6) receptor agonist 3-(2-oxo-2-phenylethyl)-UDP (PSB 0474) evoked concentration-dependent contractions and was approximately three times more potent than UDP, but the P2Y(14) agonist UDP-glucose had no effect. Contractions evoked by UDP were inhibited by the P2Y(6) receptor antagonist N,N'-1,4-butanediylbis-N'-(3-isothiocyanatophenyl)thiourea (MRS2578), but not the cysteinyl leukotriene 1 (CysL(1)) antagonist 3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl)((3-dimethylamino-3-oxopropyl)thio)methyl)thiopropanoic acid (MK571). Higher concentrations of MRS2578 inhibited contractions to KCl, so they were not studied further. mRNA for P2Y(1), P2Y(6), and P2Y(12) receptors was identified. Our working model is that P2Y(12) and P2X1 receptors are present in rat intrapulmonary arteries and together mediate ATP-induced vasoconstriction. Contractile P2Y(6), but not P2Y(14) or CysLT(1), receptors are also present and are a major site through which UDP evokes constriction.
Collapse
Affiliation(s)
- Callum Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 2011; 111:6299-320. [PMID: 21939239 PMCID: PMC3216694 DOI: 10.1021/cr200273u] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
21
|
Wu CP, Hsieh CH, Wu YS. The Emergence of Drug Transporter-Mediated Multidrug Resistance to Cancer Chemotherapy. Mol Pharm 2011; 8:1996-2011. [DOI: 10.1021/mp200261n] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chung-Pu Wu
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Basic Medical Science, China Medical University and Hospital, Taichung, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| |
Collapse
|
22
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
23
|
Cirino M, Motz C, Maw J, Ford-Hutchinson AW, Yano M. BQ-153, a novel endothelin (ET)A antagonist, attenuates the renal vascular effects of endothelin-1. J Pharm Pharmacol 2011; 44:782-5. [PMID: 1360536 DOI: 10.1111/j.2042-7158.1992.tb05522.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Endothelin (ET)-l, leukotriene D4 and the thromboxane analogue, U-44069, were all shown to produce dose-dependent reductions in renal blood flow after direct injection into the renal artery of anaesthetized pigs. The effects of ET-1 differed from the other two mediators in that ET-1 caused a transient vasodilator followed by a prolonged vasoconstrictor response. The pressor response was not mediated by the secondary release of either leukotriene D4 or thromboxane A2 as evidenced by the lack of effect of appropriate receptor antagonist MK571 (3-{-2(7-chloro-2 quinolinyl) ethenyl}phenyl{3-(dimethylamino-3-oxopropyl)thio}methyl thio propionic acid) and L-670,596 respectively. This response, however, could be inhibited in a dose-dependent fashion by the selective ETA antagonist, BQ-153 (cyclo-d-sulphalanine-l-Pro-d-Val-l-Leu-d-Trp-). Following blockade by BQ-153 the vasodilator response was unaffected and a residual pressor response remained, suggesting that either or both of these effects were mediated either through an ETB or a novel, as yet undefined, endothelin receptor.
Collapse
Affiliation(s)
- M Cirino
- Department of Pharmacology, Merck Frosst Centre for Therapeutic Research, Kirkland, Québec, Canada
| | | | | | | | | |
Collapse
|
24
|
Galemmo RA, Gavai A, Huang FC. Overview: Recent Developments in Sulphidopeptide Leukotriene Receptor Antagonists. ACTA ACUST UNITED AC 2011. [DOI: 10.1517/13543776.2.6.811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 2011:299-323. [PMID: 21103974 DOI: 10.1007/978-3-642-14541-4_8] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nine multidrug resistance proteins (MRPs) represent the major part of the 12 members of the MRP/CFTR subfamily belonging to the 48 human ATP-binding cassette (ABC) transporters. Cloning, functional characterization, and cellular localization of most MRP subfamily members have identified them as ATP-dependent efflux pumps with a broad substrate specificity for the transport of endogenous and xenobiotic anionic substances localized in cellular plasma membranes. Prototypic substrates include glutathione conjugates such as leukotriene C(4) for MRP1, MRP2, and MRP4, bilirubin glucuronosides for MRP2 and MRP3, and cyclic AMP and cyclic GMP for MRP4, MRP5, and MRP8. Reduced glutathione (GSH), present in living cells at millimolar concentrations, modifies the substrate specificities of several MRPs, as exemplified by the cotransport of vincristine with GSH by MRP1, or by the cotransport of GSH with bile acids or of GSH with leukotriene B(4) by MRP4.The role of MRP subfamily members in pathophysiology may be illustrated by the MRP-mediated release of proinflammatory and immunomodulatory mediators such as leukotrienes and prostanoids. Pathophysiological consequences of many genetic variants leading to a lack of functional MRP protein in the plasma membrane are observed in the hereditary MRP2 deficiency associated with conjugated hyperbilirubinemia in Dubin-Johnson syndrome, in pseudoxanthoma elasticum due to mutations in the MRP6 (ABCC6) gene, or in the type of human earwax and osmidrosis determined by single nucleotide polymorphisms in the MRP8 (ABCC8) gene. The hepatobiliary and renal elimination of many drugs and their metabolites is mediated by MRP2 in the hepatocyte canalicular membrane and by MRP4 as well as MRP2 in the luminal membrane of kidney proximal tubules. Therefore, inhibition of these efflux pumps affects pharmacokinetics, unless compensated by other ATP-dependent efflux pumps with overlapping substrate specificities.
Collapse
|
26
|
Lorrain DS, Bain G, Correa LD, Chapman C, Broadhead AR, Santini AM, Prodanovich P, Darlington JV, Hutchinson JH, King C, Lee C, Baccei C, Li Y, Arruda JM, Evans JF. Pharmacological characterization of 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103), a novel selective 5-lipoxygenase-activating protein inhibitor that reduces acute and chronic inflammation. J Pharmacol Exp Ther 2009; 331:1042-50. [PMID: 19749079 DOI: 10.1124/jpet.109.158089] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leukotrienes (LTs) are proinflammatory lipid mediators synthesized by the conversion of arachidonic acid (AA) to LTA(4) by the enzyme 5-lipoxygenase (5-LO) in the presence of 5-LO-activating protein (FLAP). 3-[3-tert-Butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103) is a novel selective FLAP inhibitor in development for the treatment of respiratory conditions such as asthma. In a rat ex vivo whole-blood calcium ionophore-induced LTB(4) assay, AM103 (administered orally at 1 mg/kg) displayed >50% inhibition for up to 6 h with a calculated EC(50) of approximately 60 nM. When rat lung was challenged in vivo with calcium ionophore, AM103 inhibited LTB(4) and cysteinyl leukotriene (CysLT) production with ED(50) values of 0.8 and 1 mg/kg, respectively. In this model, the EC(50) derived from plasma AM103 was approximately 330 nM for inhibition of both LTB(4) and CysLT. In an acute inflammation setting, AM103 displayed dose-dependent inhibition of LTB(4), CysLT, and plasma protein extravasation induced by peritoneal zymosan injection. In a model of chronic lung inflammation using ovalbumin-primed and challenged BALB/c mice, AM103 reduced the concentrations of eosinophil peroxidase, CysLTs, and interleukin-5 in the bronchoalveolar lavage fluid. Finally, AM103 increased survival time in mice exposed to a lethal intravenous injection of platelet-activating factor. In summary, AM103 is a novel, potent and selective FLAP inhibitor that has excellent pharmacodynamic properties in vivo and is effective in animal models of acute and chronic inflammation and in a model of lethal shock.
Collapse
|
27
|
Itagaki K, Barton BE, Murphy TF, Taheri S, Shu P, Huang H, Jordan ML. Eicosanoid-induced store-operated calcium entry in dendritic cells. J Surg Res 2009; 169:301-10. [PMID: 20080257 DOI: 10.1016/j.jss.2009.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/24/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Eicosanoids are generally recognized to exert potent immunomodulatory properties, including effects on T cell, antigen-presenting cell (APC), and dendritic cell (DC) maturation and function. Since DC maturation and function may also be regulated by store-operated calcium entry (SOCE), we hypothesized that the effects of eicosanoids on DC function may in part be regulated through changes in intracellular calcium. METHODS DC derived from the bone marrow of male Balb/ByJ mice cultured for 7 d in the presence of granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) were used to study the effects of eicosanoids on SOCE and the resulting Ca(2+) mobilization. RESULTS The 5-lipoxygenase (5-LO) products leukotriene B(4) (LTB(4)) and LTD(4,) but not LTC(4), depleted Ca(2+) from DC endoplasmic reticulum stores. The specificity of LTB(4) and LTD(4) on Ca(2+) store-depletion was confirmed by the ability of the specific receptor antagonists, LY25583 and MK571, respectively, to abrogate Ca(2+) store depletion. RT-PCR demonstrated DC receptors for LTB(4) (BLT(1) and BLT(2)) and the cysteinyl-LTs (CysLT(1), CysLT(2), and GPR17). We also detected transient receptor potential canonical (TRPC) 1, 2, 4, and 6 and stromal interaction molecule 1 (STIM1) on CD11c(+) DCs, suggesting these proteins also participate in DC SOCE. In contrast, the cyclooxygenase (CO) metabolite PGE(2) had no effect on DC Ca(2+) mobilization. CONCLUSIONS To our knowledge, these are the first observations of distinct effects of eicosanoids on DC Ca(2+) mobilization, which may have important implications for the regulation of DC maturation at sites of immune and non-immune inflammation.
Collapse
Affiliation(s)
- Kiyoshi Itagaki
- Division of Trauma, Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07101, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Maeno K, Nakajima A, Conseil G, Rothnie A, Deeley RG, Cole SPC. Molecular basis for reduced estrone sulfate transport and altered modulator sensitivity of transmembrane helix (TM) 6 and TM17 mutants of multidrug resistance protein 1 (ABCC1). Drug Metab Dispos 2009; 37:1411-20. [PMID: 19398503 DOI: 10.1124/dmd.109.026633] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Multidrug resistance protein 1 (MRP1) confers drug resistance and also mediates cellular efflux of many organic anions. MRP1 also transports glutathione (GSH); furthermore, this tripeptide stimulates transport of several substrates, including estrone 3-sulfate. We have previously shown that mutations of Lys(332) in transmembrane helix (TM) 6 and Trp(1246) in TM17 cause different substrate-selective losses in MRP1 transport activity. Here we have extended our characterization of mutants K332L and W1246C to further define the different roles these two residues play in determining the substrate and inhibitor specificity of MRP1. Thus, we have shown that TM17-Trp(1246) is crucial for conferring drug resistance and for binding and transport of methotrexate, estradiol glucuronide, and estrone 3-sulfate, as well as for binding of the tricyclic isoxazole inhibitor N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide (LY465803). In contrast, TM6-Lys(332) is important for enabling GSH and GSH-containing compounds to serve as substrates (e.g., leukotriene C(4)) or modulators (e.g., S-decyl-GSH, GSH disulfide) of MRP1 and, further, for enabling GSH (or S-methyl-GSH) to enhance the transport of estrone 3-sulfate and increase the inhibitory potency of LY465803. On the other hand, both mutants are as sensitive as wild-type MRP1 to the non-GSH-containing inhibitors (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]-ethanone (LY171883), and highly potent 6-[4'-carboxyphenylthio]-5[S]-hydroxy-7[E], 11[Z]14[Z]-eicosatetrenoic acid (BAY u9773). Finally, the differing abilities of the cysteinyl leukotriene derivatives leukotriene C(4), D(4), and F(4) to inhibit estradiol glucuronide transport by wild-type and K332L mutant MRP1 provide further evidence that TM6-Lys(332) is involved in the recognition of the gamma-Glu portion of substrates and modulators containing GSH or GSH-like moieties.
Collapse
Affiliation(s)
- Kazuma Maeno
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
29
|
Takahashi K, Shibata T, Oba T, Ishikawa T, Yoshikawa M, Tatsunami R, Takahashi K, Tampo Y. Multidrug-resistance-associated protein plays a protective role in menadione-induced oxidative stress in endothelial cells. Life Sci 2008; 84:211-7. [PMID: 19111752 DOI: 10.1016/j.lfs.2008.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 11/20/2008] [Accepted: 11/27/2008] [Indexed: 11/17/2022]
Abstract
AIMS Menadione, a redox-cycling quinone known to cause oxidative stress, binds to reduced glutathione (GSH) to form glutathione S-conjugate. Glutathione S-conjugates efflux is often mediated by multidrug-resistance-associated protein (MRP). We investigated the effect of a transporter inhibitor, MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), on menadione-induced oxidative stress in bovine aortic endothelial cells (BAECs). MAIN METHODS BAECs were treated with menadione and MK571, and cell viability was measured. Modulation of intracellular GSH levels was performed with buthionine sulfoximine and GSH ethyl ester treatments. Intracellular superoxide was estimated by dihydroethidium oxidation using fluorescence microscopy or flow cytometry. Expression of MRP was determined by flow cytometry using phycoerythrin-conjugated anti-MRP monoclonal antibody. KEY FINDINGS Intracellular GSH depletion by buthionine sulfoximine promoted the loss of viability of BAECs exposed to menadione. Exogenous GSH, which does not permeate the cell membrane, or GSH ethyl ester protected BAECs against the loss of viability induced by menadione. The results suggest that GSH binds to menadione outside the cells as well as inside. Pretreatment of BAECs with MK571 dramatically increased intracellular levels of superoxide generated from menadione, indicating that menadione may accumulate in the intracellular milieu. Finally, we found that MK571 aggravated menadione-induced toxicity in BAECs and that MRP levels were increased in menadione-treated cells. SIGNIFICANCE We conclude that MRP plays a vital role in protecting BAECs against menadione-induced oxidative stress, presumably due to its ability to transport glutathione S-conjugate.
Collapse
Affiliation(s)
- Kyohei Takahashi
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors. Proc Natl Acad Sci U S A 2008; 105:16695-700. [PMID: 18931305 DOI: 10.1073/pnas.0808993105] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cysteinyl leukotrienes (cys-LTs) are a family of potent lipid mediators of inflammation derived from arachidonic acid. Activation of certain cell types results in the biosynthesis and export of leukotriene (LT) C(4), which then undergoes extracellular metabolism to LTD(4) and LTE(4). LTE(4), the most stable cys-LT, is only a weak agonist for the defined type 1 and type 2 cys-LT receptors (CysLT(1)R and CysLT(2)R, respectively). We had recognized a greater potency for LTE(4) than LTC(4) or LTD(4) in constricting guinea pig trachea in vitro and comparable activity in eliciting a cutaneous wheal and flare response in humans. Thus, we hypothesized that a vascular permeability response to LTE(4) in mice lacking both the CysLT(1)R and CysLT(2)R could establish the existence of a separate LTE(4) receptor. We now report that the intradermal injection of LTE(4) into the ear of mice deficient in both CysLT(1)R and CysLT(2)R elicits a vascular leak that exceeds the response to intradermal injection of LTC(4) or LTD(4), and that this response is inhibited by pretreatment of the mice with pertussis toxin or a Rho kinase inhibitor. LTE(4) is approximately 64-fold more potent in the CysLT(1)R/CysLT(2)R double-deficient mice than in sufficient mice. The administration of a CysLT(1)R antagonist augmented the permeability response of the CysLT(1)R/CysLT(2)R double-deficient mice to LTC(4), LTD(4), and LTE(4). Our findings establish the existence of a third receptor, CysLT(E)R, that responds preferentially to LTE(4), the most abundant cys-LT in biologic fluids, and thus reveal a new target for therapeutic intervention.
Collapse
|
31
|
Létourneau IJ, Nakajima A, Deeley RG, Cole SPC. Role of proline 1150 in functional interactions between the membrane spanning domains and nucleotide binding domains of the MRP1 (ABCC1) transporter. Biochem Pharmacol 2008; 75:1659-69. [PMID: 18336795 DOI: 10.1016/j.bcp.2008.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
Abstract
The ATP-binding cassette multidrug resistance protein 1 (MRP1) mediates ATP-dependent cellular efflux of drugs and organic anions. We previously described a mutant, MRP1-Pro1150Ala, which exhibits selectively increased estradiol glucuronide (E217betaG) and methotrexate transport as well as altered interactions with ATP. We have now further explored the functional importance of MRP1-Pro1150 at the interface of transmembrane helix 15 and cytoplasmic loop 7 (CL7) by replacing it with Gly, Ile, Leu and Val. All four mutants exhibited a phenotype similar to MRP1-Pro1150Ala with respect to organic anion transport and [gamma32P]8N3ATP photolabeling. They also displayed very low levels of substrate-independent vanadate-induced trapping of [alpha32P]8N3ADP. To better understand the relationship between the altered nucleotide interactions and transport activity of these mutants, [alpha32P]8N3ADP trapping experiments were performed under different conditions. Unlike leukotriene C4, E217betaG decreased [alpha32P]8N3ADP trapping by both wild-type and mutant MRP1. [alpha32P]8N3ADP trapping by MRP1-Pro1150Ala could be increased by using Ni2+ instead of Mg2+, and by decreasing temperature; however, the transport properties of the mutant remained unchanged. We conclude that the reduced [alpha32P]8N3ADP trapping associated with loss of Pro1150, or the presence of E217betaG, is due to enhanced ADP release following ATP hydrolysis rather than a reduction in ATP hydrolysis itself. We hypothesize that loss of Pro1150 alters the role of CL7 as a coupling helix that mediates signaling between the nucleotide binding domains and some substrate binding sites in the membrane spanning domains of MRP1.
Collapse
Affiliation(s)
- Isabelle J Létourneau
- Department of Pharmacology & Toxicology, Division of Cancer Biology & Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
32
|
Abstract
The guinea pig has been the most commonly used small animal species in preclinical studies related to asthma and COPD. The primary advantages of the guinea pig are the similar potencies and efficacies of agonists and antagonists in human and guinea pig airways and the many similarities in physiological processes, especially airway autonomic control and the response to allergen. The primary disadvantages to using guinea pigs are the lack of transgenic methods, limited numbers of guinea pig strains for comparative studies and a prominent axon reflex that is unlikely to be present in human airways. These attributes and various models developed in guinea pigs are discussed.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
33
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Wong WSF, Zhu H, Liao W. Cysteinyl leukotriene receptor antagonist MK-571 alters bronchoalveolar lavage fluid proteome in a mouse asthma model. Eur J Pharmacol 2007; 575:134-41. [PMID: 17689528 DOI: 10.1016/j.ejphar.2007.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/07/2007] [Accepted: 07/16/2007] [Indexed: 11/21/2022]
Abstract
Cysteinyl leukotriene receptor type 1 (leukotriene CysLT(1) receptor) antagonist is one of the most effective anti-inflammatory agents for asthma. The spectrum of protein targets that can be regulated by leukotriene CysLT(1) receptor antagonist in asthma is not fully understood. The present study tried to identify novel protein targets of a selective leukotriene CysLT(1) receptor antagonist MK-571 in allergic airway inflammation by analyzing the proteome of mouse bronchoalveolar lavage fluid. BALB/c mice sensitized and challenged with ovalbumin showed increased pulmonary inflammatory cell infiltration, airway mucus production and serum ovalbumin-specific IgE level. MK-571 inhibited all these allergic airway inflammation endpoints. Lavage fluid proteins were resolved by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The level of fourteen bronchoalveolar lavage fluid protein spots was markedly altered by MK-571. A family of chitinases (Ym1, Ym2 and acidic mammalian chitinase), lungkine, surfactant protein-D and gamma-actin have been found for the first time to be down-regulated by leukotriene CysLT(1) receptor antagonist in mouse allergic airways. Some of the down-regulatory effects were confirmed with reverse transcription-polymerase chain reaction analyses. Taken together, we have identified novel protein targets that can be regulated by leukotriene CysLT(1) receptor antagonist in mouse allergic airway inflammation, and our findings reveal additional pharmacological actions of leukotriene CysLT(1) receptor antagonist in the treatment of asthma.
Collapse
Affiliation(s)
- W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | | | |
Collapse
|
35
|
Kimura A, Ishida Y, Hayashi T, Wada T, Yokoyama H, Sugaya T, Mukaida N, Kondo T. Interferon-gamma plays protective roles in sodium arsenite-induced renal injury by up-regulating intrarenal multidrug resistance-associated protein 1 expression. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1118-28. [PMID: 17003472 PMCID: PMC1780179 DOI: 10.2353/ajpath.2006.060024] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subcutaneous injection of sodium arsenite (NaAs, 12.5 mg/kg) into BALB/c [wild-type (WT)] mice causes acute renal dysfunction characterized by severe hemorrhages, acute tubular necrosis, and cast formation, with increases in serum blood urea nitrogen and creatinine levels. Concomitant enhancement in intrarenal interferon (IFN)-gamma expression prompted us to examine its roles in this pathology. IFN-gamma-deficient (IFN-gamma-/-) mice exhibited higher serum blood urea nitrogen and creatinine levels and exaggerated histopathological changes, compared with WT mice. Eventually, IFN-gamma-/- mice exhibited a high mortality (87.5%) within 24 hours after NaAs challenge, whereas most WT mice survived. The intrarenal arsenic concentration was significantly higher in IFN-gamma-/- mice later than 10 hours after NaAs treatment, with attenuated intrarenal expression of multidrug resistance-associated protein (MRP) 1, a main transporter for NaAs efflux, compared with WT mice. NF-E2-related factor (Nrf) 2 protein, a transcription factor crucial for MRP1 gene expression, was similarly increased in the kidneys of both strains of mice after NaAs treatment. In contrast, the absence of IFN-gamma augmented transforming growth factor-beta-Smad3 signal pathway and eventually enhanced the expression of activating transcription factor 3, which is presumed to repress Nrf2-mediated MRP1 gene expression. Thus, IFN-gamma can protect against NaAs-induced acute renal injury, probably by maintaining Nrf2-mediated intrarenal MRP1 gene expression.
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Williams HWR, Young RN, Zamboni R, Shaw DRD. Synthesis of [35s]-labelled MK-0571, a potent antagonist of LTD4. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580280306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Schmitt-Grohé S, Zielen S. Leukotriene receptor antagonists in children with cystic fibrosis lung disease : anti-inflammatory and clinical effects. Paediatr Drugs 2006; 7:353-63. [PMID: 16356023 DOI: 10.2165/00148581-200507060-00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic endobronchial infection resulting in progressive pulmonary destruction; this is a major cause of mortality and morbidity. Neutrophils are the primary effector cells responsible for the progressive deterioration of lung function. Peptido-leukotriene B4 antagonists, new anti-inflammatory agents that block the neutrophil-dominated inflammation, could have had the potential for long-term use. A trial on the pharmacokinetics of amelubant administered orally as a single dose of up to 75 mg in pediatric patients with CF and 300 mg in adults, and as a repeated dose of 75 mg and 150 mg, respectively, once daily for 15 days provided evidence that amelubant metabolism in adult and pediatric patients with CF is similar to that in healthy adults. In another study using the same dosage regimen, amelubant appeared to be safe and well tolerated. Safety measures included physical examination, vital signs, spirometry, oximetry, ECG, and clinical laboratory testing. However, a randomized, double-blind, placebo-controlled, multinational, phase II trial (Boehringer Ingelheim 543.45) was conducted to investigate the clinical efficacy of 24 weeks of treatment with amelubant in patients with CF with mild-to-moderate lung disease. Two doses of amelubant (75 and 150 mg) were tested in adult patients (> or = 18 years) and one dose of amelubant (75mg) was tested in pediatric (6-17 years) patients. The trial was terminated early due to a statistically significant increase in the risk of pulmonary-related, serious adverse events in adults receiving amelubant. Cysteinyl leukotrienes, eosinophilic inflammation, and viral infections also contribute to progressive pulmonary destruction in CF. Cysteinyl leukotrienes are potential targets for cysteinyl leukotriene receptor antagonist use. A study on the pharmacokinetics of montelukast in children with CF provided evidence that the dose of montelukast and the administration interval does not need to be modified if the goal is to mimic the serum concentrations used to treat asthma. In a randomized, double-blind, crossover, placebo-controlled study, 16 children with mild CF (median age 9.5 years; vital capacity [VC] >70%) were treated with montelukast (5 to < or =14 years; 5 mg; >14 years; 10 mg) or placebo as a once-daily tablet for 21 days. There was a significant (p < or = 0.02) reduction in serum eosinophil cationic protein levels and eosinophils (p < or = 0.027) with montelukast. However, neither lung function tests (VC, forced expiratory volume in 1 second [FEV1], maximum expiratory flow at 25% of forced VC), nor clinical symptom scores changed significantly. In another study, 26 patients aged 6-18 years with moderate CF (VC between 40% and 69% predicted) received montelukast or placebo for 8 weeks in a 20-week, randomized, double-blind, crossover, placebo-controlled trial. After treatment with montelukast there was a significant improvement in FEV1, peak expiratory flow, and forced expiratory flow between 25% and 75%, and a significant decrease in cough and wheezing scale scores (p < 0.001 for all). Montelukast treatment decreased serum and sputum levels of eosinophil cationic protein and interleukin-8 (IL-8), decreased sputum levels of myeloperoxidase, and increased serum and sputum levels of IL-10 (p < 0.001 for all) compared with placebo. To date, clinical experience and research data on the anti-inflammatory effects of leukotriene receptor antagonists in CF are limited. Multicenter trials with longer observation periods and greater patient numbers are needed to prove the hypothesis that leukotriene receptor antagonists have the potential to ameliorate CF lung disease with long term use.
Collapse
|
38
|
Kobayashi N, Nishi T, Hirata T, Kihara A, Sano T, Igarashi Y, Yamaguchi A. Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. J Lipid Res 2005; 47:614-21. [PMID: 16371645 DOI: 10.1194/jlr.m500468-jlr200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is accumulated in platelets and released on stimulation by thrombin or Ca(2+). Thrombin-stimulated S1P release was inhibited by staurosporin, whereas Ca(2+)-stimulated release was not. When the platelet plasma membrane was permeabilized with streptolysin O (SLO), S1P leaked out with cytosol markers, whereas granular markers remained in the platelets. The SLO-induced S1P leakage required BSA, probably for solubilization of S1P in the medium. These results indicate that S1P is localized in the inner leaflet of the plasma membrane and that its release is a carrier-mediated process. We also used alpha-toxin (ATX), which makes smaller pores in the plasma membrane than SLO and depletes cytosolic ATP without BSA-dependent S1P leakage. The addition of ATP drove S1P release from ATX platelets. The ATP-driven S1P release from ATX platelets was greatly enhanced by thrombin. An ATP binding cassette transporter inhibitor, glyburide, prevents ATP- and thrombin-induced S1P release from platelets. Ca(2+) also stimulated S1P release from ATX platelets without ATP, whereas the Ca(2+)-induced release was not inhibited by glyburide. Our results indicate that two independent S1P release systems might exist in the platelet plasma membrane, an ATP-dependent system stimulated by thrombin and an ATP-independent system stimulated by Ca(2+).
Collapse
Affiliation(s)
- Nobuyoshi Kobayashi
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Mamedova L, Capra V, Accomazzo MR, Gao ZG, Ferrario S, Fumagalli M, Abbracchio MP, Rovati GE, Jacobson KA. CysLT1 leukotriene receptor antagonists inhibit the effects of nucleotides acting at P2Y receptors. Biochem Pharmacol 2005; 71:115-25. [PMID: 16280122 PMCID: PMC4967539 DOI: 10.1016/j.bcp.2005.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/29/2005] [Accepted: 10/03/2005] [Indexed: 11/23/2022]
Abstract
Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y(1,2,4,6,11,12,13,14) receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 microM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 microM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y(1,2,4,6) receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were <1 microM. In control astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 microM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions.
Collapse
Affiliation(s)
- Liaman Mamedova
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Valérie Capra
- Section of Eicosanoid Pharmacology, Laboratory of Molecular Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Maria Rosa Accomazzo
- Section of Eicosanoid Pharmacology, Laboratory of Molecular Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Silvia Ferrario
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Maria P. Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - G. Enrico Rovati
- Section of Eicosanoid Pharmacology, Laboratory of Molecular Pharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding author. Tel.: +1 301 496 9024; fax: +1 301 480 8422. (K.A. Jacobson)
| |
Collapse
|
40
|
Zhou S, Li Y, Kestell P, Schafer P, Chan E, Paxton JW. Transport of thalidomide by the human intestinal caco-2 monolayers. Eur J Drug Metab Pharmacokinet 2005; 30:49-61. [PMID: 16010862 DOI: 10.1007/bf03226408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies in patients have indicated that the oral absorption of thalidomide is considerably variable at high doses (>200 mg/day). The aim of this study was to investigate the transport of racemic thalidomide using human colon cancer cell line (Caco-2) monolayers, which have been widely used to investigate drug permeability. A typical 21-day protocol was used to prepare Caco-2 monolayers. Thalidomide was determined by a validated high performance liquid chromatography method with ultraviolet detection. The integrity of Caco-2 monolayer was confirmed when the transepithelial electrical resistance (TEER) exceeded 300 Ohmz . cm2, and the leakage of 14C-manitol was <1% per hour. Uptake of thalidomide by Caco-2 cells was very limited (up to 2.1%). The transport of thalidomide appeared to be linear up to 1 hr. Our study indicated that the permeability coefficients (Papp) of thalidomide at 2.5-300 microM from the apical (AP) to basolateral (BL) and from BL to AP side was 2-6 x 10(-5) cm/sec, with a marked decrease in Papp values from AP to BL at increased thalidomide concentration. The transport of thalidomide was sodium-, temperature- and pH-dependent, as replacement of extracellular sodium chloride or reducing temperature and apical pH can result in significant decreases in the Papp values. Additional data indicated that transport of thalidomide is energy-dependent, as it was significantly (P < 0.05) inhibited by the ATP inhibitors, sodium azide and 2,4-dinitrophenol. In addition, DL-glutamic acid, cytidine, diprodomole, papaverine, quinidine, and cyclophosphamide significantly (P < 0.05) inhibited the transport of thalidomide, while the P-glycoprotein inhibitor verapamil and other nucleosides and nucleotides such as thymidine and guanine had no effect. These results indicated that thalidomide was rapidly transported by Caco-2 monolayers, and this might involve a saturable energy-dependent transporter.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
41
|
Prinz I, Gregoire C, Mollenkopf H, Aguado E, Wang Y, Malissen M, Kaufmann SHE, Malissen B. The type 1 cysteinyl leukotriene receptor triggers calcium influx and chemotaxis in mouse alpha beta- and gamma delta effector T cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:713-9. [PMID: 16002666 DOI: 10.4049/jimmunol.175.2.713] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Linker for activation of T cells (LAT) is essential for T cell activation. Mice with mutations of distinct LAT tyrosine residues (LatY136F and Lat3YF) develop lymphoproliferative disorders involving TCR alphabeta or gammadelta T cells that trigger symptoms resembling allergic inflammation. We analyzed whether these T cells share a pattern of gene expression that may account for their pathogenic properties. Both LatY136F alphabeta and Lat3YF gammadelta T cells expressed high levels of the type 1 cysteinyl leukotriene receptor (CysLT(1)). Upon binding to the 5(S)-hydroxy-6(R)-S-cysteinylglycyl-7,9-trans-11,14-cis-eicosatetraenoic acid (LTD(4)) cysteinyl leukotriene, CysLT(1) induced Ca(2+) flux and caused chemotaxis in both LatY136F alphabeta and Lat3YF gammadelta T cells. Wild-type in vitro-activated T cells, but not resting T cells, also migrated toward LTD(4) however with a lower magnitude than T cells freshly isolated from LatY136F and Lat3YF mice. These results suggest that CysLT(1) is likely involved in the recruitment of activated alphabeta and gammadelta T cells to inflamed tissues.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Calcium/metabolism
- Calcium/physiology
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Leukotriene D4/metabolism
- Ligands
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Phenylalanine/genetics
- Phosphoproteins/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Receptors, Leukotriene/biosynthesis
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Tyrosine/genetics
Collapse
Affiliation(s)
- Immo Prinz
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale-Centre National de la Recherche Scientifique-Université de la Méditerranée, Parc Scientifique de Luminy, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yabe T, Suzuki N, Furukawa T, Ishihara T, Katsura I. Multidrug resistance-associated protein MRP-1 regulates dauer diapause by its export activity in Caenorhabditis elegans. Development 2005; 132:3197-207. [PMID: 15983401 DOI: 10.1242/dev.01909] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multidrug resistance-associated proteins (MRPs), when overexpressed, confer drug resistance to cancer cells by exporting anti-cancer agents through the cell membrane, but their role in animal development has not been elucidated. Here we show that an MRP homolog regulates larval development in the nematode Caenorhabditis elegans. C. elegans forms a special third-stage larva called a dauer larva under conditions inappropriate for growth. By contrast, we found that mutants in mrp-1, an MRP homolog gene, form dauer larvae even under conditions appropriate for growth, in the background of certain mutations that partially block the insulin signaling pathway. A functional mrp-1::GFP gene was shown to be expressed in many tissues, and the wild-type mrp-1 gene must be expressed in multiple tissues for a wild-type phenotype. Human MRP1 could substitute for C. elegans MRP-1 in dauer larva regulation, and an inhibitor of the human MRP1 transport activity impaired this function, showing that export activity is required for normal dauer larva regulation. Epistasis studies revealed that MRP-1 acts in neither the TGF-beta nor the cGMP signaling pathway. mrp-1 mutations enhanced the dauer-constitutive phenotype of mutants in the insulin signaling pathway more strongly than that in other pathways. Thus, MRP-1, through its export activity, supports the induction of the normal (non-dauer) life cycle by the insulin signaling pathway.
Collapse
Affiliation(s)
- Tomoko Yabe
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| | | | | | | | | |
Collapse
|
43
|
Tian Q, Zhang J, Tan TMC, Chan E, Duan W, Chan SY, Boelsterli UA, Ho PCL, Yang H, Bian JS, Huang M, Zhu YZ, Xiong W, Li X, Zhou S. Human Multidrug Resistance Associated Protein 4 Confers Resistance to Camptothecins. Pharm Res 2005; 22:1837-53. [PMID: 16132345 DOI: 10.1007/s11095-005-7595-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE The multidrug resistance associated protein (MRP) 4 is a member of the adenosine triphosphate (ATP)-binding cassette transporter family. Camptothecins (CPTs) have shown substantial anticancer activity against a broad spectrum of tumors by inhibiting DNA topoisomerase I, but tumor resistance is one of the major reasons for therapeutic failure. P-glycoprotein, breast cancer resistance protein, MRP1, and MRP2 have been implicated in resistance to various CPTs including CPT-11 (irinotecan), SN-38 (the active metabolite of CPT-11), and topotecan. In this study, we explored the resistance profiles and intracellular accumulation of a panel of CPTs including CPT, CPT-11, SN-38, rubitecan, and 10-hydroxy-CPT (10-OH-CPT) in HepG2 cells with stably overexpressed human MRP4. Other anticancer agents such as paclitaxel, cyclophosphamide, and carboplatin were also included. METHODS HepG2 cells were transfected with an empty vehicle plasmid (V/HepG2) or human MRP4 (MRP4/HepG2). The resistance profiles of test drugs in exponentially growing V/HepG2 and MRP4/HepG2 cells were examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay with 4 or 48 h exposure time of the test drug in the absence or presence of various MRP4 inhibitors. The accumulation of CPT-11, SN-38, and paclitaxel by V/HepG2 and MRP4/HepG2 cells was determined by validated high-performance liquid chromatography methods. RESULTS Based on the resistance folds from the MTT assay with 48 h exposure time of the test drug, MRP4 conferred resistance to CPTs tested in the order 10-OH-CPT (14.21) > SN-38 carboxylate (9.70) > rubitecan (9.06) > SN-38 lactone (8.91) > CPT lactone (7.33) > CPT-11 lactone (5.64) > CPT carboxylate (4.30) > CPT-11 carboxylate (2.68). Overall, overexpression of MRP4 increased the IC50 values 1.78- to 14.21-fold for various CPTs in lactone or carboxylate form. The resistance of MRP4 to various CPTs tested was significantly reversed in the presence of dl-buthionine-(S,R)-sulfoximine (BSO, a gamma-glutamylcysteine synthetase inhibitor), MK571, celecoxib, or diclofenac (all MRP4 inhibitors). In addition, the accumulation of CPT-11 and SN-38 over 120 min in MRP4/HepG2 cells was significantly reduced compared to V/HepG2 cells, whereas the addition of celecoxib, MK571, or BSO significantly increased their accumulation in MRP4/HepG2 cells. There was no significant difference in the intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells, indicating that P-glycoprotein was not involved in the observed resistance to CPTs in this study. MRP4 also conferred resistance to cyclophosphamide and this was partially reversed by BSO. However, MRP4 did not increase resistance to paclitaxel, carboplatin, etoposide (VP-16), 5-fluorouracil, and cyclosporine. CONCLUSIONS Human MRP4 rendered significant resistance to cyclophosphamide, CPT, CPT-11, SN-38, rubitecan, and 10-OH-CPT. CPT-11 and SN-38 are substrates for MRP4. Further studies are needed to explore the role of MRP4 in resistance, toxicity, and pharmacokinetics of CPTs and cyclophosphamide.
Collapse
Affiliation(s)
- Quan Tian
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhou S, Feng X, Kestell P, Paxton JW, Baguley BC, Chan E. Transport of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid and its acyl glucuronide by human intestinal Caco-2 cells. Eur J Pharm Sci 2005; 24:513-24. [PMID: 15784341 DOI: 10.1016/j.ejps.2005.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 12/22/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
5,6-Dimethylxanthenone-4-acetic acid (DMXAA), a potent cytokine inducer, exhibited marked antitumor activity when given as multiple oral doses in mice. The aim of this study was to examine the transport of DMXAA and its acyl glucuronide (DMXAA-G) using the human Caco-2 cells. DMXAA was minimally metabolized by Caco-2 cells and both DMXAA and DMXAA-G were taken up to a minor extent by the cells. The permeability coefficient (Papp) values of DMXAA over 10-500 microM were 4x10(-5) cm/s to 4.3x10(-5) cm/s for both apical (AP) to basolateral (BL) and BL-AP transport, while the Papp values for the BL to AP flux of DMXAA-G were significantly greater than those for the AP to BL flux, with Rnet values of 4.5-17.6 over 50-200 microM. The BL to AP active efflux of DMXAA-G followed Michaelis-Menten kinetics, with a Km of 83.5+/-5.5 microM, and Vmax of 0.022+/-0.001 nmol/min. The flux of DMXAA-G was energy and Na+-dependent and MK-571 significantly (P<0.05) inhibited its BL to AP flux, with an estimated Ki of 130 microM. These data indicate that the transport of DMXAA across Caco-2 monolayers was through a passive process, whereas the transport of DMXAA-G was mediated by MRP1/2.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4, 18 Science Drive 4, S 117543, Singapore.
| | | | | | | | | | | |
Collapse
|
45
|
Kimura A, Ishida Y, Wada T, Yokoyama H, Mukaida N, Kondo T. MRP-1 expression levels determine strain-specific susceptibility to sodium arsenic-induced renal injury between C57BL/6 and BALB/c mice. Toxicol Appl Pharmacol 2005; 203:53-61. [PMID: 15694464 DOI: 10.1016/j.taap.2004.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 07/27/2004] [Indexed: 11/23/2022]
Abstract
To clarify the pathophysiological mechanism underlying acute renal injury caused by acute exposure to arsenic, we subcutaneously injected both BALB/c and C57BL/6 mice with sodium arsenite (NaAs; 13.5 mg/kg). BALB/c mice exhibited exaggerated elevation of serum blood urea nitrogen (BUN) and creatinine (CRE) levels, compared with C57BL/6 mice. Moreover, half of BALB/c mice died by 24 h, whereas all C57BL/6 mice survived. Histopathological examination on kidney revealed severe hemorrhages, acute tubular necrosis, neutrophil infiltration, cast formation, and disappearance of PAS-positive brush borders in BALB/c mice, later than 10 h. These pathological changes were remarkably attenuated in C57BL/6 mice, accompanied with lower intrarenal arsenic concentrations, compared with BALB/c mice. Among heavy metal inducible proteins including multidrug resistance-associated protein (MRP)-1, multidrug resistance gene (MDR)-1, metallothionein (MT)-1, and arsenite inducible, cysteine- and histidine-rich RNA-associated protein (AIRAP), intrarenal MDR-1, MT-1, and AIRAP gene expression was enhanced to a similar extent in both strains, whereas NaAs challenge augmented intrarenal MRP-1 mRNA and protein expression levels in C57BL/6 but not BALB/c mice. Moreover, the administration of a specific inhibitor of MRP-1, MK-571, significantly exaggerated acute renal injury in C57BL/6 mice. Thus, MRP-1 is crucially involved in arsenic efflux and eventually prevention of acute renal injury upon acute exposure to NaAs.
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Kimiidera, 641-8509 Wakayama, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The metabolism of arachidonic acid via the 5-lipoxygenase enzymatic pathway leads to the formation of the cysteinyl-leukotrienes and lipoxins, which have been implicated in several inflammatory reactions. While these lipid mediators are responsible for a variety of effects, their actions occur through the activation of 3 specific types of cloned receptors (i.e., CysLT(1), CysLT(2), and ALX). Although receptor activation can explain several biological actions associated with the mediators, there is some evidence to suggest that not all responses fit the well-known characteristics of these cloned receptors. Other receptor subtypes may also exist. Interestingly, the indirect evidence for support of this observation is principally derived from work performed on either blood elements and/or vascular smooth muscle. Because the initiating events associated with inflammation are essentially of vascular origin, further work at the molecular level may be necessary to confirm the data, which do not fit the well-known CysLT and ALX receptor profiles.
Collapse
Affiliation(s)
- Xavier Norel
- CNRS UMR7131, Hôpital Broussais, Bâtiment des Mariniers, 102 rue Didot, 75014 Paris, France
| | | |
Collapse
|
47
|
Zhou S, Feng X, Kestell P, Baguley BC, Paxton JW. Determination of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid and its acyl glucuronide in Caco-2 monolayers by liquid chromatography with fluorescence detection: application to transport studies. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 809:87-97. [PMID: 15282097 DOI: 10.1016/j.jchromb.2004.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/26/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is a potent cytokine inducer, with a bioavailability of >70% in the mouse. The aim of this study was to develop and validate HPLC methods for the determination of DMXAA and DMXAA acyl glucuronide (DMXAA-G) in the human intestinal cell line Caco-2 monolayers. The developed HPLC methods were sensitive and reliable, with acceptable accuracy (85-115% of true values) and precision (intra- and inter-assay CV < 15%). The total running time was within 6.8 min, with acceptable separation of the compounds of interest. The limit of quantitation (LOQ) values for DMXAA and DMXAA-G were 14.2 and 24 ng/ml, respectively. The validated HPLC methods were applied to examine the epithelial transport of DMXAA and DMXAA-G by Caco-2 monolayers. The permeability coefficient (Papp) values (overall mean +/- S.D., n = 3-9) of DMXAA over 10-500 microM were independent of concentration for both apical (AP) to basolateral (BL) (4.0 +/- 0.4 x 10(-5)cm/s) and BL-AP (4.3 +/- 0.5 x 10(-5)cm/s) transport, and of similar magnitude in either direction, with net efflux ratio (Rnet) values of 1-1.3. However, the Papp values for the BL to AP transport of DMXAA-G were significantly greater than those for the AP to BL transport, with Rnet values of 17.6, 6.7 and 4.5 at 50, 100 and 200 microM, respectively. Further studies showed that the transport of DMXAA-G was Na+- and energy-dependent, and inhibited by MK-571 [a multidrug resistance associated protein (MRP) 1/2 inhibitor], but not by verapamil and probenecid. These data indicate that the HPLC methods for the determination of DMXAA and DMXAA-G in the transport buffer were simple and reliable, and the methods have been applied to the transport study of both compounds by Caco-2 monolayers. DMXAA across Caco-2 monolayers was through a passive transcellular process, whereas the transport of DMXAA-G was mediated by MRP1/2.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
48
|
Cummings J, Zelcer N, Allen JD, Yao D, Boyd G, Maliepaard M, Friedberg TH, Smyth JF, Jodrell DI. Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins. Biochem Pharmacol 2004; 67:31-9. [PMID: 14667926 DOI: 10.1016/j.bcp.2003.07.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have recently shown that drug conjugation catalysed by UDP-glucuronosyltransferases (UGTs) functions as an intrinsic mechanism of resistance to the topoisomerase I inhibitors 7-ethyl-10-hydroxycamptothecin and NU/ICRF 505 in human colon cancer cells and now report on the role of drug transport in this mechanism. The ability of transport proteins to recognise NU/ICRF 505 as a substrate was evaluated in model systems either transfected with breast cancer-resistance protein 1 (Bcrp1), multidrug-resistance protein 2 (Mrp2) or Mrp3, or overexpressing MRP1 or P-170 glycoprotein. Results from chemosensitivity assays suggested that NU/ICRF 505 was not a substrate for any of the above proteins. In drug accumulation studies in human colon cancer cell lines NU/ICRF 505 was taken up avidly and retained in cells lacking UGTs (HCT116), whereas, following equally rapid uptake, it was cleared rapidly from cells displaying UGT activity (HT29) as glucuronide metabolites. HT29 cells were shown to express MRP1 and 3, but not P-170 glycoprotein, MRP2 or breast cancer-resistance protein. The major glucuronide of NU/ICRF 505 inhibited ATP-dependent transport of estradiol 17-beta-glucuronide in Sf9 insect cell membrane vesicles containing MRP1 or MRP3, while co-incubation of HT29 cells with the MRP antagonist, MK571, significantly restored intracellular concentrations of NU/ICRF 505. These data lead us to conclude that the presence of a glucuronide transporter is essential for glucuronidation to represent a major de novo resistance mechanism and that UGTs will contribute more as a primary resistance mechanism when the parent drug (e.g. NU/ICRF 505) is not itself recognised by transport proteins.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Cancer Research UK, Edinburgh Oncology Unit, Western General Hospital, EH4 2XR, Edinburgh, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Głowacka-Rogacka D, Arciemiuk M, Kupiec A, Bontemps-Gracz MM, Borowski E, Tarasiuk J. The activity of latent benzoperimidine esters to inhibit P-glycoprotein and multidrug resistance-associated protein 1 dependent efflux of pirarubicin from several lines of multidrug resistant tumor cells. ACTA ACUST UNITED AC 2004; 28:283-93. [PMID: 15350632 DOI: 10.1016/j.cdp.2004.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/03/2002] [Accepted: 02/14/2004] [Indexed: 11/29/2022]
Abstract
Multidrug resistance of tumor cells is associated with the presence of membrane proteins responsible for the cytostatics export. Recently, we have synthesized a new family of benzoperimidines causing the futile cycle of MDR pumps. In this study, biological data for benzoperimidine esters are presented for selected cell lines: sensitive (HL-60, GLC4, K562), P-gp resistant (HL-60/VINC, K562/DX), MRP1 resistant (HL-60/DX) and MRP1/LRP resistant (GLC4/DX). Their ability to inhibit the efflux of anthracycline antitumor drug, pirarubicin and to restore its accumulation in MDR cells was studied using a spectrofluorometric method which allows to follow the uptake and efflux of fluorescent molecules by living cells. Benzoperimidine esters had high effectiveness in inhibiting pirarubicin efflux and in restoring its accumulation in resistant cells. In contrast, examined esters were less active in vitro in restoration of pirarubicin cytotoxicity towards resistant cells because an enzymatic cleavage of esters occurs in presence of serum esterases.
Collapse
Affiliation(s)
- Dorota Głowacka-Rogacka
- Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
50
|
Vargaftig BB, Singer M. Leukotrienes mediate part of Ova-induced lung effects in mice via EGFR. Am J Physiol Lung Cell Mol Physiol 2003; 285:L808-18. [PMID: 12794006 DOI: 10.1152/ajplung.00377.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antigen induces murine bronchial hyperreactivity (BHR), inflammation, mucus accumulation, and airway remodeling. To investigate whether leukotrienes (LT) mediate the effects of antigen [ovalbumin (Ova)], we studied 5-lipoxygenase (5-LO) expression in immunized BP2 mice and blocked LT synthesis with the 5-LO inhibitor zileuton or antagonized their effects with receptor antagonists [cysteinyl leukotriene (Cys-LT)-ra MK-571, LY-171883; LTB4-ra PH-163]. Cys-LT content increased in the bronchoalveolar lavage fluid (BALF) as early as 15 min after the intratracheal instillation of Ova. Zileuton inhibited LT release in the BALF and eosinophil recruitment in the lungs, and dose dependently reduced BHR, mucus accumulation, and remodeling, as did the LT-ra. Thus LT, released just after antigen challenge, might constitute the first step in accounting for the effects of Ova. Because mucus accumulation is regulated via the EGF receptor (EGFR), which is also implicated in the effects of LT, we studied this pathway with AG-1478, an EGFR tyrosine kinase inhibitor given at 0.5, 4, and 20 mg/kg. AG-1478 inhibited BHR, inflammation, and lung remodeling induced by Ova or by molecules themselves generated by Ova, such as LT, IL-13, and monocyte chemoattractant protein-1, which promote identical effects, suggesting the involvement of the EGFR pathway in the asthma-like syndrome observed.
Collapse
Affiliation(s)
- B Boris Vargaftig
- Unité de Pathogénie Microbienne Moléculaire, Unité Associée Institut Pasteur-INSERM U389, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | |
Collapse
|