1
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Bower RL, Yule L, Rees TA, Deganutti G, Hendrikse ER, Harris PWR, Kowalczyk R, Ridgway Z, Wong AG, Swierkula K, Raleigh DP, Pioszak AA, Brimble MA, Reynolds CA, Walker CS, Hay DL. Molecular Signature for Receptor Engagement in the Metabolic Peptide Hormone Amylin. ACS Pharmacol Transl Sci 2018; 1:32-49. [PMID: 32219203 DOI: 10.1021/acsptsci.8b00002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 11/30/2022]
Abstract
The pancreatic peptide hormone, amylin, plays a critical role in the control of appetite, and synergizes with other key metabolic hormones such as glucagon-like peptide 1 (GLP-1). There is opportunity to develop potent and long-acting analogues of amylin or hybrids between these and GLP-1 mimetics for treating obesity. To achieve this, interrogation of how the 37 amino acid amylin peptide engages with its complex receptor system is required. We synthesized an extensive library of peptides to profile the human amylin sequence, determining the role of its disulfide loop, amidated C-terminus and receptor "capture" and "activation" regions in receptor signaling. We profiled four signaling pathways with different ligands at multiple receptor subtypes, in addition to exploring selectivity determinants between related receptors. Distinct roles for peptide subregions in receptor binding and activation were identified, resulting in peptides with greater activity than the native sequence. Enhanced peptide activity was preserved in the brainstem, the major biological target for amylin. Interpretation of our data using full-length active receptor models supported by molecular dynamics, metadynamics, and supervised molecular dynamics simulations guided the synthesis of a potent dual agonist of GLP-1 and amylin receptors. The data offer new insights into the function of peptide amidation, how allostery drives peptide-receptor interactions, and provide a valuable resource for the development of novel amylin agonists for treating diabetes and obesity.
Collapse
Affiliation(s)
- Rebekah L Bower
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Lauren Yule
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Giuseppe Deganutti
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Erica R Hendrikse
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Amy G Wong
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Katarzyna Swierkula
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,Department of Structural and Molecular Biology, University College London, London WC1E 6BT, U.K
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Margaret A Brimble
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Christopher A Reynolds
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Christopher S Walker
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
3
|
Bower RL, Hay DL. Amylin structure-function relationships and receptor pharmacology: implications for amylin mimetic drug development. Br J Pharmacol 2016; 173:1883-98. [PMID: 27061187 DOI: 10.1111/bph.13496] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 01/19/2023] Open
Abstract
Amylin is an important, but poorly understood, 37 amino acid glucoregulatory hormone with great potential to target metabolic diseases. A working example that the amylin system is one worth developing is the FDA-approved drug used in insulin-requiring diabetic patients, pramlintide. However, certain characteristics of pramlintide pharmacokinetics and formulation leave considerable room for further development of amylin-mimetic compounds. Given that amylin-mimetic drug design and development is an active area of research, surprisingly little is known about the structure/function relationships of amylin. This is largely due to the unfavourable aggregative and solubility properties of the native peptide sequence, which are further complicated by the composition of amylin receptors. These are complexes of the calcitonin receptor with receptor activity-modifying proteins. This review explores what is known of the structure-function relationships of amylin and provides insights that can be drawn from the closely related peptide, CGRP. We also describe how this information is aiding the development of more potent and stable amylin mimetics, including peptide hybrids.
Collapse
Affiliation(s)
- Rebekah L Bower
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Characterization of capsaicin induced responses in mice vas deferens: evidence of CGRP uptake. Eur J Pharmacol 2011; 667:375-82. [PMID: 21741970 DOI: 10.1016/j.ejphar.2011.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 11/20/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is extensively distributed in primary afferent sensory nerves, including those innervating the genitourinary tract. Capsaicin can stimulate the release of CGRP from intracellular stores of these nerves, but this phenomenon has not been investigated in-depth in isolated preparations. The present study sets out to study and characterize the capsaicin as well as CGRP-induced responses in isolated mouse vas deferens. The effects of capsaicin and CGRP family of peptides were studied on electrically-induced twitch responses in the absence or presence of transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1) antagonist and CGRP receptor antagonists. Twitch responses were attenuated by capsaicin (1nM-30nM) and CGRP family of peptides. The potency order was CGRP>intermedin-long (IMDL)~[Cys(Et)(2,7)]αCGRP~adrenomedullin (AM)>[Cys(ACM)(2,7)]αCGRP>amylin (AMY). These responses were disinhibited by the CGRP receptor antagonists and TRPV1 antagonists. The addition of CGRP receptor antagonists caused a transient potentiation of the twitch response and this potentiation was blocked by pretreatment with capsaicin and enhanced by incubation with exogenous CGRP. During the second consecutive cumulative concentration-response curve with capsaicin, the first phase of concentration-response curve disappeared and this was partially restored when the mouse vas deferens was preincubated with CGRP, suggesting the uptake of exogenous CGRP by nerves. Besides showing capsaicin-induced CGRP releases this study shows that exogenous CGRP can be taken up in vas deferens and can be re-released. CGRP uptake will add another dimension in understanding the homeostasis of this neuropeptide.
Collapse
|
5
|
Mehrotra S, Gupta S, Chan KY, Villalón CM, Centurión D, Saxena PR, MaassenVanDenBrink A. Current and prospective pharmacological targets in relation to antimigraine action. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:371-94. [PMID: 18626630 DOI: 10.1007/s00210-008-0322-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 06/06/2008] [Indexed: 05/10/2023]
Abstract
Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, alpha-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT(1B/1D) receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT(2) receptor antagonists, Ca(2+) channel blockers, and beta-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT(1-7)), adrenergic (alpha(1), alpha(2,) and beta), calcitonin gene-related peptide (CGRP(1) and CGRP(2)), adenosine (A(1), A(2), and A(3)), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Division of Vascular Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol Rev 2006; 86:1309-79. [PMID: 17015491 DOI: 10.1152/physrev.00026.2005] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
Collapse
|
8
|
Banerjee S, Evanson J, Harris E, Lowe SL, Thomasson KA, Porter JE. Identification of specific calcitonin-like receptor residues important for calcitonin gene-related peptide high affinity binding. BMC Pharmacol 2006; 6:9. [PMID: 16776831 PMCID: PMC1525162 DOI: 10.1186/1471-2210-6-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 06/15/2006] [Indexed: 11/29/2022] Open
Abstract
Background Calcitonin gene-related peptide (CGRP) is a vasoactive neuropeptide whose biological activity has potential therapeutic value for many vascular related diseases. CGRP is a 37 amino acid neuropeptide that signals through a G protein-coupled receptor belonging to the secretin receptor family. Previous studies on the calcitonin-like receptor (CLR), which requires co-expression of the receptor-activity-modifying protein-1 (RAMP1) to function as a CGRP receptor, have shown an 18 amino acid N-terminus sequence important for binding CGRP. Moreover, several investigations have recognized the C-terminal amidated phenylalanine (F37) of CGRP as essential for docking to the mature receptor. Therefore, we hypothesize that hydrophobic amino acids within the previously characterized 18 amino acid CLR N-terminus domain are important binding contacts for the C-terminal phenylalaninamide of CGRP. Results Two leucine residues within this previously characterized CLR N-terminus domain, when mutated to alanine and expressed on HEK293T cells stably transfected with RAMP1, demonstrated a significantly decreased binding affinity for CGRP compared to wild type receptor. Additional decreases in binding affinity for CGRP were not found when both leucine mutations were expressed in the same CLR construct. Decreased binding characteristic of these leucine mutant receptors was observed for all CGRP ligands tested that contained the necessary amidated phenylalanine at their C-terminus. However, there was no difference in the potency of CGRP to increase cAMP production by these leucine mutant receptors when compared to wild type CLR, consistent with the notion that the neuropeptide C-terminal F37 is important for docking but not activation of the receptor. This observation was conserved when modified CGRP ligands lacking the amidated F37 demonstrated similar potencies to generate cAMP at both wild type and mutant CLRs. Furthermore, these modified CGRP ligands displayed a significant but similar loss of binding for all leucine mutant and wild type CLR because the important receptor contact on the neuropeptide was missing in all experimental situations. Conclusion These results are consistent with previous structure-function investigations of the neuropeptide and are the first to propose specific CLR binding contacts for the amidated F37 of CGRP that are important for docking but not activation of the mature CGRP receptor.
Collapse
Affiliation(s)
- Sugato Banerjee
- Department of Pharmacology, Physiology & Therapeutics, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Janel Evanson
- Department of Pharmacology, Physiology & Therapeutics, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Erik Harris
- Department of Pharmacology, Physiology & Therapeutics, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Stephen L Lowe
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202-9024, USA
| | - Kathryn A Thomasson
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202-9024, USA
| | - James E Porter
- Department of Pharmacology, Physiology & Therapeutics, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| |
Collapse
|
9
|
Bailey RJ, Hay DL. Pharmacology of the human CGRP1 receptor in Cos 7 cells. Peptides 2006; 27:1367-75. [PMID: 16375989 DOI: 10.1016/j.peptides.2005.11.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 11/15/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
Only limited pharmacological characterization of the CGRP1 receptor, a heterodimer of the calcitonin (CT) receptor-like receptor (CL) and receptor activity-modifying protein 1 has been performed in cells that do not endogenously express RAMP2. We characterized the receptor in RAMP-deficient Cos 7 cells by measuring cAMP responses following agonist treatment in the absence or presence of antagonists. Potent cAMP responses to human alpha-and beta-CGRP (Cys(Et)2,7)halphaCGRP and human adrenomedullin (AM) were observed. Adrenomedullin15-52 was also an effective agonist of the CGRP1 receptor but human and salmon calcitonin and rat amylin were only weak agonists. As expected, BIBN4096BS and CGRP(8-37) were effective antagonists of the CGRP1 receptor. (Cys(Acm)2,7)halphaCGRP also antagonized CGRP responses. Antagonists of related receptors were only weakly able to inhibit CGRP responses.
Collapse
Affiliation(s)
- Richard J Bailey
- Proteomics & Biomedicine Research Group, School of Biological Sciences, University of Auckland, 3 Symonds Street, Private Bag 92 019, New Zealand
| | | |
Collapse
|
10
|
Gupta S, Mehrotra S, Avezaat CJJ, Villalón CM, Saxena PR, Maassenvandenbrink A. Characterisation of CGRP receptors in the human isolated middle meningeal artery. Life Sci 2006; 79:265-71. [PMID: 16458930 DOI: 10.1016/j.lfs.2006.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/14/2005] [Accepted: 01/02/2006] [Indexed: 11/18/2022]
Abstract
Although the understanding of migraine pathophysiology is still incomplete, there seems to be little doubt that dilatation of cranial blood vessels, including meningeal arteries, is involved in the headache phase of migraine. Since calcitonin gene-related peptide (CGRP) has been implicated in this vasodilatation, the present study set out to compare the relaxant effects of the endogenous ligand h-alphaCGRP, and [ethylamide-Cys(2,7)]h-alphaCGRP ([Cys(Et)(2,7)]h-alphaCGRP), a CGRP(2) receptor agonist, on human isolated middle meningeal artery segments, precontracted with KCl. Classical Schild plot analysis was used to characterise the receptor population in this artery using BIBN4096BS and h-alphaCGRP(8-37) as antagonists. h-alphaCGRP relaxed arterial segments more potently than [Cys(Et)(2,7)]h-alphaCGRP (pEC(50): 8.51+/-0.16 and 7.48+/-0.24, respectively), while the maximal responses to these agonists were not significantly different. BIBN4096BS equipotently blocked the relaxations induced by both agonists with a pA(2) of approximately 10 and with a Schild plot slope not significantly different from unity. h-alphaCGRP(8-37) also antagonised the response to h-alphaCGRP with a pA(2) of 6.46+/-0.16 and a Schild plot slope not different from unity. Furthermore, the results obtained from RT-PCR studies confirmed the presence of all the essential components required for a functional CGRP(1) receptor in these arteries. Considering the high antagonist potency of BIBN4096BS, coupled to the lower agonist potency of [Cys (Et)(2,7)]h-alphaCGRP, it is reasonable to suggest a predominant role of CGRP(1) receptors in the human middle meningeal artery. This view is reinforced by Schild plot analysis, which revealed a slope of unity in all experiments, giving further evidence for a homogeneous CGRP receptor population in this vascular preparation.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pharmacology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Gupta S, Mehrotra S, Villalón CM, Garrelds IM, de Vries R, van Kats JP, Sharma HS, Saxena PR, Maassenvandenbrink A. Characterisation of CGRP receptors in human and porcine isolated coronary arteries: evidence for CGRP receptor heterogeneity. Eur J Pharmacol 2005; 530:107-16. [PMID: 16375887 DOI: 10.1016/j.ejphar.2005.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 11/01/2005] [Accepted: 11/08/2005] [Indexed: 11/25/2022]
Abstract
This study sets out to characterise calcitonin gene-related peptide (CGRP) receptors in human and porcine isolated proximal and distal coronary arteries using BIBN4096BS. Human (h)-alphaCGRP induced relaxations that were blocked by BIBN4096BS in all arteries studied. In contrast to the other vessels, the Schild plot slope in the human distal coronary artery segments (0.68 +/- 0.07) was significantly less than unity and BIBN4096BS potently blocked these responses (pK(b) (10 nM): 9.29 +/- 0.34, n = 5). In the same preparation, h-alphaCGRP(8-37) behaved as a weak antagonist of h-alphaCGRP-induced relaxations (pK(b) (3 microM): 6.28 +/- 0.17, n = 4), with also a Schild plot slope smaller than unity. The linear agonists, [ethylamide-Cys(2,7)]-h-alphaCGRP ([Cys(Et)(2,7)]-h-alphaCGRP) and [acetimidomethyl-Cys(2,7)]-h-alphaCGRP ([Cys(Acm)(2,7)]-h-alphaCGRP), had a high potency (pEC(50): 8.21 +/- 0.25 and 7.25 +/- 0.14, respectively), suggesting the presence of CGRP(2) receptors, while the potent blockade by BIBN4096BS (pK(b) (10 nM): 10.13 +/- 0.29 and 9.95 +/- 0.11, respectively) points to the presence of CGRP(1) receptors. Using RT-PCR, mRNAs encoding for the essential components for functional CGRP(1) receptors were demonstrated in both human proximal and distal coronary artery. Further, h-alphaCGRP (100 nM) increased cAMP levels, and this was attenuated by BIBN4096BS (1 microM). The above results demonstrate the presence of CGRP(1) receptors in all coronary artery segments investigated, but the human distal coronary artery segments seem to have an additional population of CGRP receptors not complying with the currently classified CGRP(1) or CGRP(2) receptors.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Adaptor Proteins, Signal Transducing
- Adolescent
- Adult
- Aged
- Animals
- Calcitonin Gene-Related Peptide/analogs & derivatives
- Calcitonin Gene-Related Peptide/pharmacology
- Calcitonin Receptor-Like Protein
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Child
- Child, Preschool
- Colforsin/pharmacology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/physiology
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/physiology
- Female
- Humans
- In Vitro Techniques
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Piperazines/pharmacology
- Potassium Chloride/pharmacology
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- Quinazolines/pharmacology
- Receptor Activity-Modifying Proteins
- Receptors, Calcitonin/genetics
- Receptors, Calcitonin/metabolism
- Receptors, Calcitonin Gene-Related Peptide/genetics
- Receptors, Calcitonin Gene-Related Peptide/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Substance P/pharmacology
- Swine
- Time Factors
- Transcription Factor Brn-3A/genetics
- Transcription Factor Brn-3A/metabolism
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Pharmacology, University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nodin C, Vauquelin G, von Mentzer B. Cys2,7EtalphaCGRP is a potent agonist for CGRP1 receptors in SK-N-MC cells. Biochem Pharmacol 2005; 69:1235-40. [PMID: 15794944 DOI: 10.1016/j.bcp.2005.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/03/2005] [Indexed: 11/22/2022]
Abstract
The present study reveals that cystein2,7 ethyl-amidealphaCGRP (Cys2,7EtalphaCGRP), an advertised calcitonin gene-related peptide 2 (CGRP2) receptor subtype-selective agonist, is also a potent agonist for the calcitonin gene-related peptide 1 (CGRP1) receptors natively expressed in the SK-N-MC human neuroblastoma cell line. Cys2,7EtalphaCGRP and alpha calcitonin gene-related peptide (alphaCGRP) promote cyclic AMP accumulation in intact SK-N-MC cells to the same extent with EC50 of 1.6+/-0.2 and 0.4+/-0.08 nM, respectively. The antagonist alpha calcitonin gene-related peptide-8-37 (alphaCGRP-(8-37)) produces a concentration-dependent rightward shift of the alphaCGRP- and Cys2,7EtalphaCGRP concentration-response curves with KB-values (71+/-33 and 47+/-21 nM, respectively). The competitive antagonism by alphaCGRP-(8-37) and the similar KB-values suggests that alphaCGRP and Cys2,7EtalphaCGRP stimulate the same receptor. In competition binding studies with [125I]-alphaCGRP on SK-N-MC cell membranes, Cys2,7EtalphaCGRP and alphaCGRP-(8-37) display high affinity for the majority of the binding sites with Ki-values of 0.030+/-0.013 and 0.60+/-0.013 nM, respectively. The present findings are at odds with the proclaimed utilization of Cys2,7EtalphaCGRP as a CGRP2 receptor-selective pharmacological tool. Differences between the agonistic profile of this ligand in this and other experimental systems might be species--or even cell type--dependent.
Collapse
Affiliation(s)
- Christina Nodin
- Preclinical Research & Development, AstraZeneca Mölndal, 43183 Mölndal, Sweden
| | | | | |
Collapse
|
13
|
Abstract
This review summarizes the receptor-mediated vascular activities of calcitonin gene-related peptide (CGRP) and the structurally related peptide adrenomedullin (AM). CGRP is a 37-amino acid neuropeptide, primarily released from sensory nerves, whilst AM is produced by stimulated vascular cells, and amylin is secreted from the pancreas. They share vasodilator activity, albeit to varying extents depending on species and tissue. In particular, CGRP has potent activity in the cerebral circulation, which is possibly relevant to the pathology of migraine, whilst vascular sources of AM contribute to dysfunction in cardiovascular disease. Both peptides exhibit potent activity in microvascular beds. All three peptides can act on a family of CGRP receptors that consist of calcitonin receptor-like receptor (CL) linked to one of three receptor activity-modifying proteins (RAMPs) that are essential for functional activity. The association of CL with RAMP1 produces a CGRP receptor, with RAMP2 an AM receptor and with RAMP3 a CGRP/AM receptor. Evidence for the selective activity of the first nonpeptide CGRP antagonist BIBN4096BS for the CGRP receptor is presented. The cardiovascular activity of these peptides in a range of species and in human clinical conditions is detailed, and potential therapeutic applications based on use of antagonists and gene targeting of agonists are discussed.
Collapse
Affiliation(s)
- Susan D Brain
- Centre for Cardiovascular Biology and Medicine, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
14
|
Dumont Y, Chabot JG, Quirion R. Receptor autoradiography as mean to explore the possible functional relevance of neuropeptides: focus on new agonists and antagonists to study natriuretic peptides, neuropeptide Y and calcitonin gene-related peptides. Peptides 2004; 25:365-91. [PMID: 15134861 DOI: 10.1016/j.peptides.2004.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the past 20 years, receptor autoradiography has proven most useful to provide clues as to the role of various families of peptides expressed in the brain. Early on, we used this method to investigate the possible roles of various brain peptides. Natriuretic peptide (NP), neuropeptide Y (NPY) and calcitonin (CT) peptide families are widely distributed in the peripheral and central nervous system and induced multiple biological effects by activating plasma membrane receptor proteins. The NP family includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). The NPY family is composed of at least three peptides NPY, peptide YY (PYY) and the pancreatic polypeptides (PPs). The CT family includes CT, calcitonin gene-related peptide (CGRP), amylin (AMY), adrenomedullin (AM) and two newly isolated peptides, intermedin and calcitonin receptor-stimulating peptide (CRSP). Using quantitative receptor autoradiography as well as selective agonists and antagonists for each peptide family, in vivo and in vitro assays revealed complex pharmacological responses and radioligand binding profile. The existence of heterogeneous populations of NP, NPY and CT/CGRP receptors has been confirmed by cloning. Three NP receptors have been cloned. One is a single-transmembrane clearance receptor (NPR-C) while the other two known as CG-A (or NPR-A) and CG-B (or NPR-B) are coupled to guanylate cyclase. Five NPY receptors have been cloned designated as Y(1), Y(2), Y(4), Y(5) and y(6). All NPY receptors belong to the seven-transmembrane G-protein coupled receptors family (GPCRs; subfamily type I). CGRP, AMY and AM receptors are complexes which include a GPCR (the CT receptor or CTR and calcitonin receptor-like receptor or CRLR) and a single-transmembrane domain protein known as receptor-activity-modifying-proteins (RAMPs) as well as an intracellular protein named receptor-component-protein (RCP). We review here tools that are currently available in order to target each NP, NPY and CT/CGRP receptor subtype and establish their respective pathophysiological relevance.
Collapse
Affiliation(s)
- Yvan Dumont
- Douglas Hospital Research Centre, Department of Psychiatry, Mcgill University, 6875 Boul LaSalle, Montreal, Que., Canada H4H 1R3
| | | | | |
Collapse
|
15
|
Hay DL, Howitt SG, Conner AC, Schindler M, Smith DM, Poyner DR. CL/RAMP2 and CL/RAMP3 produce pharmacologically distinct adrenomedullin receptors: a comparison of effects of adrenomedullin22-52, CGRP8-37 and BIBN4096BS. Br J Pharmacol 2003; 140:477-86. [PMID: 12970090 PMCID: PMC1574059 DOI: 10.1038/sj.bjp.0705472] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Adrenomedullin (AM) has two known receptors formed by the calcitonin receptor-like receptor (CL) and receptor activity-modifying protein (RAMP) 2 or 3: we report the effects of the antagonist fragments of human AM and CGRP (AM22-52 and CGRP8-37) in inhibiting AM at human (h), rat (r) and mixed species CL/RAMP2 and CL/RAMP3 receptors transiently expressed in Cos 7 cells or endogenously expressed as rCL/rRAMP2 complexes by Rat 2 and L6 cells. AM22-52 (10 microM) antagonised AM at all CL/RAMP2 complexes (apparent pA2 values: 7.34+/-0.14 (hCL/hRAMP2), 7.28+/-0.06 (Rat 2), 7.00+/-0.05 (L6), 6.25+/-0.17 (rCL/hRAMP2)). CGRP8-37 (10 microM) resembled AM22-52 except on the rCL/hRAMP2 complex, where it did not antagonise AM (apparent pA2 values: 7.04+/-0.13 (hCL/hRAMP2), 6.72+/-0.06 (Rat2), 7.03+/-0.12 (L6)). On CL/RAMP3 receptors, 10 microM CGRP8-37 was an effective antagonist at all combinations (apparent pA2 values: 6.96+/-0.08 (hCL/hRAMP3), 6.18+/-0.18 (rCL/rRAMP3), 6.48+/-0.20 (rCL/hRAMP3)). However, 10 microM AM22-52 only antagonised AM at the hCL/hRAMP3 receptor (apparent pA2 6.73+/-0.14). BIBN4096BS (10 microM) did not antagonise AM at any of the receptors. Where investigated (all-rat and rat/human combinations), the agonist potency order on the CL/RAMP3 receptor was AM approximately betaCGRP>alphaCGRP. rRAMP3 showed three apparent polymorphisms, none of which altered its coding sequence. This study shows that on CL/RAMP complexes, AM22-52 has significant selectivity for the CL/RAMP2 combination over the CL/RAMP3 combination. On the mixed species receptor, CGRP8-37 showed the opposite selectivity. Thus, depending on the species, it is possible to discriminate pharmacologically between CL/RAMP2 and CL/RAMP3 AM receptors.
Collapse
Affiliation(s)
- D L Hay
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN
| | - S G Howitt
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET
| | - A C Conner
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET
| | - M Schindler
- Cardiovascular Research, Boehringer Ingelheim Pharma KG, Biberach 88397, Germany
| | - D M Smith
- AstraZeneca, CVGI, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG
| | - D R Poyner
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET
- Author for correspondence:
| |
Collapse
|
16
|
Smith DD, Saha S, Fang G, Schaffert C, Waugh DJJ, Zeng W, Toth G, Hulce M, Abel PW. Modifications to the N-terminus but not the C-terminus of calcitonin gene-related peptide(8-37) produce antagonists with increased affinity. J Med Chem 2003; 46:2427-35. [PMID: 12773046 DOI: 10.1021/jm020507f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Seventeen novel analogues of human calcitonin gene-related peptide(8-37) (hCGRP(8-37)) were synthesized by solid-phase methods and purified to apparent homogeneity by semipreparative cation exchange and/or reversed-phase high-performance liquid chromatography. The C-terminal Phe was replaced by Gly, cyclohexylalanine (Cha), Tyr, all four isomers of beta-methylphenylalanine (beta-MePhe), and l- and d-tetrahydroisoquinoline carboxylic acid (Tic), resulting in analogues 3-11. For the synthesis of the beta-MePhe-containing analogues 6-9, crystallization was used to separate a mixture of all four isomers of beta-MePhe into the erythro pair of enantiomers (2S,3S, 2R,3R) and the threo pair of enantiomers (2S,3R, 2R,3S), which were then converted to Fmoc derivatives and used in two separate syntheses. Two diastereomeric peptides were obtained from each synthesis and were separated by RP-HPLC to yield enantiomerically pure 6-9. Substitution of Tyr for Phe caused no change in binding affinity at CGRP receptors. All other substitutions for Phe resulted in substantial reductions in binding affinity. Indeed, no binding was observed for analogues 7, 9, and 11, all of which contained a d-amino acid residue in the C-terminal position, and the binding affinities of the remaining analogues were >10-fold lower than that of h-alpha-CGRP(8-37). These data suggest that a conformationally flexible phenyl ring in the C-terminal position of h-alpha-CGRP(8-37) is preferred for high-affinity binding to CGRP receptors. Acetylation, benzoylation, and benzylation of the N-termini of h-alpha-CGRP(8-37) and h-beta-CGRP(8-37) produced analogues 12-14 and 16-18, respectively. A byproduct was isolated by RP-HPLC from the resin-cleaved crude product of each benzylated analogue, which was characterized as the dibenzylated derivative of h-alpha-CGRP(8-37) and h-beta-CGRP(8-37) (analogues 15 and 19, respectively). Amino acid analysis and (1)H NMR showed that the second benzyl group was located on the C4 carbon of the imidazole ring of His(10). Radioligand binding experiments showed that derivatizing the N-termini substantially increased binding affinities at CGRP receptors. The benzoylated and dibenzylated derivatives had the highest affinities, which were approximately 50-fold greater than those of h-alpha-CGRP(8-37). Functional experiments confirmed that the N-terminally derivatized analogues of h-alpha-CGRP(8-37) are antagonists that are more potent than h-alpha-CGRP(8-37). In conclusion, these studies underscore the importance of Phe(37) of h-alpha-CGRP(8-37) for binding to CGRP receptors and have identified the N-terminus and His(10) as two positions that can be used for the design of antagonists with increased affinity for CGRP receptors.
Collapse
Affiliation(s)
- D David Smith
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hay DL, Howitt SG, Conner AC, Doods H, Schindler M, Poyner DR. A comparison of the actions of BIBN4096BS and CGRP(8-37) on CGRP and adrenomedullin receptors expressed on SK-N-MC, L6, Col 29 and Rat 2 cells. Br J Pharmacol 2002; 137:80-6. [PMID: 12183333 PMCID: PMC1573470 DOI: 10.1038/sj.bjp.0704844] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The ability of the CGRP antagonist BIBN4096BS to antagonize CGRP and adrenomedullin has been investigated on cell lines endogenously expressing receptors of known composition. 2. On human SK-N-MC cells (expressing human calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1)), BIBN4096BS had a pA(2) of 9.95 although the slope of the Schild plot (1.37 +/- 0.16) was significantly greater than 1. 3. On rat L6 cells (expressing rat CRLR and RAMP1), BIBN4096BS had a pA(2) of 9.25 and a Schild slope of 0.89 +/- 0.05, significantly less than 1. 4. On human Colony (Col) 29 cells, CGRP(8-37) had a significantly lower pA(2) than on SK-N-MC cells (7.34 +/- 0.19 (n = 7) compared to 8.35 +/- 0.18, (n = 6)). BIBN4096BS had a pA(2) of 9.98 and a Schild plot slope of 0.86 +/- 0.19 that was not significantly different from 1. At concentrations in excess of 3 nM, it was less potent on Col 29 cells than on SK-N-MC cells. 5. On Rat 2 cells, expressing rat CRLR and RAMP2, BIBN4096BS was unable to antagonize adrenomedullin at concentrations up to 10 microM. CGRP(8-37) had a pA(2) of 6.72 against adrenomedullin. 6. BIBN4096BS shows selectivity for the human CRLR/RAMP1 combination compared to the rat counterpart. It can discriminate between the CRLR/RAMP1 receptor expressed on SK-N-MC cells and the CGRP-responsive receptor expressed by the Col 29 cells used in this study. Its slow kinetics may explain its apparent 'non-competitive' behaviour. At concentrations of up to 10 micro M, it has no antagonist actions at the adrenomedullin, CRLR/RAMP2 receptor, unlike CGRP(8-37).
Collapse
Affiliation(s)
- Debbie L Hay
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN
| | - Stephen G Howitt
- Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET
| | - Alex C Conner
- Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET
| | - Henri Doods
- Cardiovascular Research, Boehringer Ingelheim Pharma KG, 88397, Biberach, Germany
| | - Marcus Schindler
- Cardiovascular Research, Boehringer Ingelheim Pharma KG, 88397, Biberach, Germany
| | - David R Poyner
- Pharmaceutical Sciences Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET
- Author for correspondence:
| |
Collapse
|
18
|
Choksi T, Hay DL, Legon S, Poyner DR, Hagner S, Bloom SR, Smith DM. Comparison of the expression of calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) with CGRP and adrenomedullin binding in cell lines. Br J Pharmacol 2002; 136:784-92. [PMID: 12086988 PMCID: PMC1573393 DOI: 10.1038/sj.bjp.0704761] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The calcitonin receptor-like receptor (CRLR) and specific receptor activity modifying proteins (RAMPs) together form receptors for calcitonin gene-related peptide (CGRP) and/or adrenomedullin in transfected cells. 2. There is less evidence that innate CGRP and adrenomedullin receptors are formed by CRLR/RAMP combinations. We therefore examined whether CGRP and/or adrenomedullin binding correlated with CRLR and RAMP mRNA expression in human and rat cell lines known to express these receptors. Specific human or rat CRLR antibodies were used to examine the presence of CRLR in these cells. 3. We confirmed CGRP subtype 1 receptor (CGRP(1)) pharmacology in SK-N-MC neuroblastoma cells. L6 myoblast cells expressed both CGRP(1) and adrenomedullin receptors whereas Rat-2 fibroblasts expressed only adrenomedullin receptors. In contrast we could not confirm CGRP(2) receptor pharmacology for Col-29 colonic epithelial cells, which, instead were CGRP(1)-like in this study. 4. L6, SK-N-MC and Col-29 cells expressed mRNA for RAMP1 and RAMP2 but Rat-2 fibroblasts had only RAMP2. No cell line had detectable RAMP3 mRNA. 5. SK-N-MC, Col-29 and Rat-2 fibroblast cells expressed CRLR mRNA. By contrast, CRLR mRNA was undetectable by Northern analysis in one source of L6 cells. Conversely, a different source of L6 cells had mRNA for CRLR. All of the cell lines expressed CRLR protein. Thus, circumstances where CRLR mRNA is apparently absent by Northern analysis do not exclude the presence of this receptor. 6. These data strongly support CRLR, together with appropriate RAMPs as binding sites for CGRP and adrenomedullin in cultured cells.
Collapse
Affiliation(s)
- Tejal Choksi
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN
| | - Debbie L Hay
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN
| | - Stephen Legon
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN
| | - David R Poyner
- School of Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET
| | - Stefanie Hagner
- Institute of Physiology, Philipps-University, Deutschhausstrasse 2, D35037, Marburg, Germany
| | - Stephen R Bloom
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN
| | - David M Smith
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN
- Author for correspondence:
| |
Collapse
|
19
|
Schindler M, Doods HN. Binding properties of the novel, non-peptide CGRP receptor antagonist radioligand, [(3)H]BIBN4096BS. Eur J Pharmacol 2002; 442:187-93. [PMID: 12065071 DOI: 10.1016/s0014-2999(02)01544-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BIBN4096BS [[R-(R,(R*,S*)]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl] pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-Piperidinecarboxamide] is a selective calcitonin gene-related peptide (CGRP) receptor antagonist with a picomolar affinity to the CGRP receptor in human neuroblastoma SK-N-MC cells. Here, we describe the characterisation of the binding properties of the tritiated radioanalogue of BIBN4096BS in SK-N-MC cells as well as in marmoset tissue. [(3)H]BIBN4096BS showed reversible and saturable binding to SK-N-MC cells with a K(D) of 0.045 nM. In competition experiments, [3(H)]BIBN4096BS is concentration-dependently displaced from SK-N-MC cell membranes by BIBN4096BS as well as by the endogenous ligand CGRP and its analogues with the rank order of affinity BIBN4096BS>human alpha-CGRP=human beta-CGRP>[Cys(Et)(2,7)]human alpha-CGRP>adrenomedullin (high affinity site)=human alpha-CGRP-(8-37)=human beta-CGRP-(8-37)>calcitonin=amylin. In the marmoset cortex, saturable [(3)H]BIBN4096BS binding was observed with a K(D) of 0.077 nM. CGRP showed biphasic competition of [(3)H]BIBN4096BS binding, whilst BIBN4096BS monophasically displaced its radioanalogue with a K(i) of 0.099 nM. These data, using [(3)H]BIBN4096BS, confirm the high affinity of this novel antagonist for the primate CGRP receptor and demonstrate furthermore that this radioligand is a useful tool to study CGRP receptor pharmacology.
Collapse
Affiliation(s)
- Marcus Schindler
- Department of Cardiovascular Research I, Boehringer Ingelheim Pharma KG, Birkendorfer Strasse 65, 88397 Biberach, Germany.
| | | |
Collapse
|
20
|
Moreno MJ, Terrón JA, Stanimirovic DB, Doods H, Hamel E. Characterization of calcitonin gene-related peptide (CGRP) receptors and their receptor-activity-modifying proteins (RAMPs) in human brain microvascular and astroglial cells in culture. Neuropharmacology 2002; 42:270-80. [PMID: 11804624 DOI: 10.1016/s0028-3908(01)00176-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. In the present study, we examined the expression of the CGRP receptor-activity-modifying proteins (RAMP1, RAMP2 and RAMP3) and receptor component protein (RCP) in human brain astrocytes (AST), cerebromicrovascular endothelial (EC) and smooth muscle (SMC) cells in culture. Further, we pharmacologically characterized CGRP receptors in these cells by assessing the potency of the CGRP receptor antagonists h-alpha CGRP(8-37) and the new non-peptide compound BIBN4096BS to block the production of cAMP elicited by CGRP(1) and CGRP(2) receptor agonists. 2. AST, EC and SMC all expressed mRNAs for RAMP1, RAMP2 and RCP. In contrast, message for RAMP3 was detected in AST, but not in SMC and in only one out of four preparations of EC. 3. h-alpha CGRP, h-beta CGRP and [Cys (Et)(2,7)]-h-alpha CGRP exerted concentration-dependent production of cAMP in all cultures, with a maximal effect at 25-50 nM (20-60-fold increase from basal levels). In contrast, 50 nM [Cys (Acm)(2,7)]-h-alpha CGRP only induced a weak stimulatory effect on cAMP formation, especially in SMC and AST (1.5- and 5-fold increase above baseline, respectively). 4. h-alpha CGRP(8-37) and BIBN4096BS concentration-dependently inhibited cAMP formation evoked by CGRP receptor agonists. Depending on the agonists used, h-alpha CGRP(8-37) distinguished two different CGRP receptors for which it exhibited low (pIC(50)< or =6.4) and high (pIC(50) approximately 7.3) affinity, respectively. BIBN4096BS was much more potent (>2.5 orders of magnitude) than h-alpha CGRP(8-37). Further, BIBN4096BS was able to discriminate three different CGRP receptor sites for which it exhibited low (pIC(50) approximately 9.3-9.9), intermediate (pIC(50) approximately 10.9), and a very high (pIC(50) approximately 13.7) affinity, respectively. Together, these results suggest the presence of CGRP(1) and/or CGRP(2) receptors in human brain AST, EC and SMC, and of an additional population of CGRP receptors in AST, possibly associated to the combined expression of RAMP3 and RCP in these cells, for which BIBN4096BS exhibits an exquisitely high affinity.
Collapse
Affiliation(s)
- Mariá Jesús Moreno
- Laboratory of Cerebrovascular Research, Department of Neurology and Neurosurgery, Montreal Neurological Institute, 3801 University Street, Montréal, QC, Canada H3A 2B4
| | | | | | | | | |
Collapse
|
21
|
Sams A, Knyihár-Csillik E, Engberg J, Szok D, Tajti J, Bodi I, Edvinsson L, Vécsei L, Jansen-Olesen I. CGRP and adrenomedullin receptor populations in human cerebral arteries: in vitro pharmacological and molecular investigations in different artery sizes. Eur J Pharmacol 2000; 408:183-93. [PMID: 11080525 DOI: 10.1016/s0014-2999(00)00781-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to determine functional and molecular characteristics of receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin in three different diameter groups of lenticulostriate arteries. Furthermore, the presence of perivascular neuronal sources of CGRP was evaluated in these arteries. In the functional studies, in vitro pharmacological experiments demonstrated that both CGRP and adrenomedullin induce alpha-CGRP-(8-37) sensitive vasodilation in artery segments of various diameters. The maximal amounts of vasodilation induced by CGRP and adrenomedullin were not different, whereas the potency of CGRP exceeded that of adrenomedullin by 2 orders of magnitude. Significant negative correlations between artery diameters and maximal responses were demonstrated for CGRP and adrenomedullin. In addition, the potency of both peptides tended to increase in decreasing artery diameter. In the molecular experiments, levels of mRNAs encoding CGRP receptors and receptor subunits were compared using reverse transcriptase polymerase chain reactions (RT-PCR). The larger the artery, the more mRNA encoding receptor activity-modifying proteins 1 and 2 (RAMP1 and RAMP2) was detected relative to the amount of mRNA encoding the calcitonin receptor-like receptor. By immunohistochemistry, perivascular CGRP containing nerve fibres were demonstrated in all the investigated artery sizes. In conclusion, both CGRP and adrenomedullin induced vasodilation via CGRP receptors in human lenticulostriate artery of various diameter. The artery responsiveness to the CGRP receptor agonists increased with smaller artery diameter, whereas the receptor-phenotype determining mRNA ratios tended to decrease. No evidence for CGRP and adrenomedullin receptor heterogeneity was present in lenticulostriate arteries of different diameters.
Collapse
Affiliation(s)
- A Sams
- Department of Pharmacology, The Royal Danish School of Pharmacy, Universitetsparken 2, 2100 O, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu D, Eberlein W, Rudolf K, Engel W, Hallermayer G, Doods H. Characterisation of calcitonin gene-related peptide receptors in rat atrium and vas deferens: evidence for a [Cys(Et)(2, 7)]hCGRP-preferring receptor. Eur J Pharmacol 2000; 400:313-9. [PMID: 10988349 DOI: 10.1016/s0014-2999(00)00407-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study was performed in order to characterise calcitonin gene-related peptide (CGRP) receptor subtypes in rat left atrium and vas deferens by using [R-(R*, S*)]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl ]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1, 4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-Piperidinecarboxamide (BIBN4096BS), a novel CGRP receptor antagonist. When CGRP was used as an agonist, BIBN4096BS exhibited an almost 10-fold higher affinity for CGRP receptors in rat left atrium compared to those in the vas deferens, indicating that CGRP acts through different CGRP receptor subtypes in these two tissues. In addition, BIBN4096BS was almost 10-fold more potent in antagonizing [Cys(Et)(2,7)]hCGRPalpha and human adrenomedullin-induced responses than CGRP-induced responses in rat vas deferens. This might indicate receptor heterogeneity in rat vas deferens. Accordingly, the present work provides first experimental evidence that the rat vas deferens contains two CGRP-like receptor subtypes. Namely, the CGRP(2) receptor and a "novel" receptor that possesses low efficacy for CGRP and that is selectively stimulated by [Cys(Et)(2,7)]hCGRP or adrenomedullin and which can be blocked with high affinity by BIBN4096BS.
Collapse
Affiliation(s)
- D Wu
- Biological and Chemical Research, Boehringer Ingelheim Pharma KG, 88397, Biberach, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Esfandyari T, Macnaughton WK, Quirion R, Pierre SS, Junien J, Sharkey KA. A novel receptor for calcitonin gene‐related peptide (CGRP) mediates secretion in the rat colon: implications for secretory function in colitis. FASEB J 2000. [DOI: 10.1096/fasebj.14.10.1439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tuba Esfandyari
- Neuroscience and Gastrointestinal Research GroupsDepartment of Physiology and BiophysicsUniversity of Calgary Calgary Alberta T2N 4N1 Canada
| | - Wallace K. Macnaughton
- Neuroscience and Gastrointestinal Research GroupsDepartment of Physiology and BiophysicsUniversity of Calgary Calgary Alberta T2N 4N1 Canada
| | - Rémi Quirion
- Neuroscience and Gastrointestinal Research GroupsDepartment of Physiology and BiophysicsUniversity of Calgary Calgary Alberta T2N 4N1 Canada
| | - Serge St. Pierre
- Douglas Hospital Research CentreDepartment of PsychiatryMcGill University Montreal Quebec H4H 1R3 Canada
| | - Jean‐Louis Junien
- Department of ChemistryUniversity of Quebec in Montreal Montreal Quebec H3C 3P8 Canada
| | | |
Collapse
|
24
|
Sams A, Yenidunya A, Engberg J, Jansen-Olesen I. Equipotent in vitro actions of alpha- and beta-CGRP on guinea pig basilar artery are likely to be mediated via CRLR derived CGRP receptors. REGULATORY PEPTIDES 1999; 85:67-75. [PMID: 10651059 DOI: 10.1016/s0167-0115(99)00072-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of the present study was to investigate and compare specific in vitro pharmacological actions of human alpha- and beta-CGRP applied as single concentrations to prostaglandin F2alpha precontracted segments of guinea pig basilar artery. To support the suggestion of a possible link between the pharmacological actions of alpha- and beta-CGRP and a specific receptor, we wished to determine whether mRNAs required for the expression of calcitonin receptor-like receptor (CRLR) derived CGRP receptors were present in the guinea pig basilar artery. In the pharmacological experiments we demonstrated an increase in the cAMP content by 2.5-fold and a concomitant significant vasorelaxation of the precontracted basilar artery segments following 1 min of stimulation by 10(-7) M alpha- or beta-CGRP. In another set of experiments, the time course of alpha- and beta-CGRP induced vasodilatation was investigated and concentration dependent responses of the two peptides were demonstrated. No significant differences between the actions of alpha- and beta-CGRP regarding induction of cAMP formation, amount of vasodilatation, time course of vasodilatation and mode of inhibition by the CGRP receptor antagonist, human alpha-CGRP(8-37), could be detected. The presence of mRNA encoding the guinea pig CRLR and the guinea pig CGRP receptor component protein (RCP) in the guinea pig basilar artery was demonstrated by RT-PCR methods. Furthermore, a partial sequence of mRNA encoding the guinea pig CRLR was determined. The expression in this tissue of a CRLR derived CGRP receptor and a functional RCP is therefore likely, and the equipotent pharmacological actions of alpha- and beta-CGRP might be mediated via CRLR derived CGRP receptors.
Collapse
Affiliation(s)
- A Sams
- Department of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen O.
| | | | | | | |
Collapse
|
25
|
Mazzocchi G, Albertin G, Andreis PG, Neri G, Malendowicz LK, Champion HC, Bahçelioglu M, Kadowitz PJ, Nussdorfer GG. Distribution, functional role, and signaling mechanism of adrenomedullin receptors in the rat adrenal gland. Peptides 1999; 20:1479-87. [PMID: 10698124 DOI: 10.1016/s0196-9781(99)00159-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adrenomedullin (ADM) is a hypotensive peptide, highly expressed in the mammalian adrenal medulla, which belongs to a peptide superfamily including calcitonin gene-related peptide (CGRP) and amylin. Quantitative autoradiography demonstrated the presence of abundant [125I]ADM binding sites in both zona glomerulosa (ZG) and adrenal medulla. ADM binding was selectively displaced by ADM(22-52), a putative ADM-receptor antagonist, and CGRP(8-37), a ligand that preferentially antagonizes the CGRP1-receptor subtype. ADM concentration-dependently inhibited K+-induced aldosterone secretion of dispersed rat ZG cells, without affecting basal hormone production. Both ADM(22-52) and CGRP(8-37) reversed the ADM effect in a concentration-dependent manner. ADM counteracted the aldosterone secretagogue action of the voltage-gated Ca2+-channel activator BAYK-8644, and blocked K+- and BAYK-8644-evoked rise in the intracellular Ca2+ concentration of dispersed ZG cells. ADM concentration-dependently raised basal catecholamine (epinephrine and norepinephrine) release by rat adrenomedullary fragments, and again the response was blocked by both ADM(22-52) and CGRP(8-37). ADM increased cyclic-AMP release by adrenal-medulla fragments, but not capsule-ZG preparations, and the catecholamine response to ADM was abolished by the PKA inhibitor H-89. Collectively, the present findings allow us to draw the following conclusions: (1) ADM modulates rat adrenal secretion, acting through ADM(22-52)-sensitive CGRP1 receptors, which are coupled with different signaling mechanisms in the cortex and medulla; (2) ADM selectively inhibits agonist-stimulated aldosterone secretion, through a mechanism probably involving the blockade of the Ca2+ channel-mediated Ca2+ influx; (3) ADM raises catecholamine secretion, through the activation of the adenylate cyclase/PKA signaling pathway.
Collapse
Affiliation(s)
- G Mazzocchi
- Department of Human Anatomy and Physiology, University of Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lu JT, Son YJ, Lee J, Jetton TL, Shiota M, Moscoso L, Niswender KD, Loewy AD, Magnuson MA, Sanes JR, Emeson RB. Mice lacking alpha-calcitonin gene-related peptide exhibit normal cardiovascular regulation and neuromuscular development. Mol Cell Neurosci 1999; 14:99-120. [PMID: 10532808 DOI: 10.1006/mcne.1999.0767] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
alpha-Calcitonin gene-related peptide (alphaCGRP) is a pleiotropic peptide neuromodulator that is widely expressed throughout the Central and peripheral nervous systems. CGRP has been implicated in a variety of physiological processes including peripheral vasodilation, cardiac acceleration nicotinic acetylcholine receptor (AChR) synthesis and function, testicular descent, nociception, carbohydrate metabolism, gastrointestinal motility, neurogenic inflammation, and gastric acid secretion. To provide a better understanding of the physiological role(s) mediated by this peptide neurotransmitter, we have generated alphaCGRP-null mice by targeted modification in embryonic stem cells. Mice lacking alpha CGRP expression demonstrate no obvious phenotypic differences from their wild-type littermates. Detailed analysis of systemic cardiovascular function revealed no differences between control and mutant mice regarding heart rate and blood pressure under basal or exercise-induced conditions and subsequent to pharmacological manipulation. Characterization of neuromuscular junction in morphology including nicotinic receptor localization, terminal sprouting in response to denervation, developmental regulation of AChR subunit expression, and synapse elimination also revealed no differences in alphaCGRP-deficient animals. These results suggest that alphaCGRP is not required for the systemic regulation of cardiovascular hemodynamics or development of the neuromuscular junction.
Collapse
Affiliation(s)
- J T Lu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sams A, Jansen-Olesen I. Expression of calcitonin receptor-like receptor and receptor-activity-modifying proteins in human cranial arteries. Neurosci Lett 1998; 258:41-4. [PMID: 9876047 DOI: 10.1016/s0304-3940(98)00844-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently a new type of proteins modulating the pharmacological profile of the calcitonin receptor-like receptor (CRLR) were identified. The receptor-activity-modifying proteins (RAMPs) were shown to be essential for the expression of a functional CRLR and furthermore the RAMPs seemed to modify ligand selectivity of CRLR: coexpression of CRLR and RAMP1 resulted in a CGRP1 type of receptor while an adrenomedullin receptor resulted when CRLR and RAMP2 were coexpressed. In the present study significant molecular expression of CRLR concomitant with RAMP1, 2 and 3 were demonstrated in human meningeal, cerebral and temporal arteries by use of reverse transcriptase polymerase chain reactions (RT-PCR). These findings support previous studies demonstrating functional CGRP1 receptors in human cranial arteries. Furthermore the present study suggests the potential for functional adrenomedullin receptors in human cranial arteries.
Collapse
Affiliation(s)
- A Sams
- Department of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen.
| | | |
Collapse
|
28
|
Nakamura Y, Shimatsu A, Murabe H, Mizuta H, Ihara C, Nakao K. Calcitonin gene-related peptide as a GH secretagogue in human and rat pituitary somatotrophs. Brain Res 1998; 807:203-7. [PMID: 9757038 DOI: 10.1016/s0006-8993(98)00776-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To elucidate the role of calcitonin gene-related peptide (CGRP) in regulating pituitary function, we investigated the effects of CGRP and the related peptide adrenomedullin (AdM) on the secretion of growth hormone (GH) in vitro from human pituitary adenoma cells, rat pituitary tumor (GH3) cells, and normal rat pituitary cells. In 3 of 5 human somatotroph adenomas, GH secretion was stimulated by CGRP (1-100 nM). In one case of somatotroph adenoma, GH release was observed following the addition of 10 nM GHRH and 10 nM CGRP. The addition of CGRP or AdM (1 pM-10 nM) evoked GH secretion from GH3 cells with a bell-shaped distribution curve. CGRP (100 pM) caused the maximum increase of GH secretion (172+/-14 (mean+/-S.D.)% of control). The addition of CGRP8-37, an antagonist of CGRP type 1 receptors, inhibited the stimulatory effect of AdM but did not inhibit the effect of CGRP. The addition of CGRP and AdM evoked moderate GH secretion from normal rat pituitary cells. These results suggested that CGRP is a new GH secretagogue in human and rat pituitary tumor cells.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|