1
|
Shi J, Zhang K, Li T, Wu L, Yang Y, Zhang Y, Tu P, Liu W, Song Y. Differentiation of isomeric chalcone and dihydroflavone using liquid chromatography coupled with hydrogen-deuterium exchange tandem mass spectrometry (HDX-MS/MS): An application for flavonoids-focused characterization of Snow chrysanthemum. J Chromatogr A 2024; 1720:464773. [PMID: 38432106 DOI: 10.1016/j.chroma.2024.464773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Although the co-occurrences of isomeric chalcones and dihydroflavones widely appear in medicinal plants, the differentiation of such isomerism seldom succeeds using MS/MS, attributing to totally identical MS/MS spectra. Here, efforts were paid to pursue an eligible tool allowing to address the technical challenge. Being inspired by that one more proton signal is observed in 1H NMR spectrum of isoliquiritigenin than liquiritigenin when employing DMSO‑d6 as solvent, hydrogen-deuterium exchange (HDX)-MS/MS was evaluated towards differentiating isomeric chalcones and dihydroflavones through replacing H2O with D2O to prepare the mobile phase. As a result, differences were observed for either MS1 or MS2 spectrum when comparing two pairs of isomers, such as liquiritigenin vs. isoliquiritigenin and liquiritin vs. isoliquiritin, because the isomeric precursor and fragment ion species owned different amounts of hydroxyl protons and those reactive protons could be partially or completely substituted by deuterium protons at the exposure in D2O to result in n × 1.006 mass increments. Moreover, utmost four hydrogen/deuterium exchanges occurred for a single glucosyl moiety. Thereafter, HDX-MS/MS was applied to characterize the flavonoids of Snow chrysanthemum, a precious edible herbal medicine that is rich in isomeric chalcones and dihydroflavones. Through paying special attention to the deuterium labeling styles of (de)protonated molecules as well as those featured fragment ions, five pairs of isomeric chalcones and dihydroflavones were confirmatively differentiated, in addition to that 28 flavonoids were structurally annotated by applying those well-defined mass fragmentation rules. Hence, this study offered an in-depth insight towards the flavonoids-focused characterization of Snow chrysanthemum, and more importantly, HDX-MS/MS is a superior tool to differentiate, but not limited to, isomeric chalcones and dihydroflavones.
Collapse
Affiliation(s)
- Jingjing Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lijuan Wu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Ding R, Yu L, Wang C, Zhong S, Gu R. Quality assessment of traditional Chinese medicine based on data fusion combined with machine learning: A review. Crit Rev Anal Chem 2023; 54:2618-2635. [PMID: 36966435 DOI: 10.1080/10408347.2023.2189477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The authenticity and quality of traditional Chinese medicine (TCM) directly impact clinical efficacy and safety. Quality assessment of traditional Chinese medicine (QATCM) is a global concern due to increased demand and shortage of resources. Recently, modern analytical technologies have been extensively investigated and utilized to analyze the chemical composition of TCM. However, a single analytical technique has some limitations, and judging the quality of TCM only from the characteristics of the components is not enough to reflect the overall view of TCM. Thus, the development of multi-source information fusion technology and machine learning (ML) has further improved QATCM. Data information from different analytical instruments can better understand the connection between herbal samples from multiple aspects. This review focuses on the use of data fusion (DF) and ML in QATCM, including chromatography, spectroscopy, and other electronic sensors. The common data structures and DF strategies are introduced, followed by ML methods, including fast-growing deep learning. Finally, DF strategies combined with ML methods are discussed and illustrated for research on applications such as source identification, species identification, and content prediction in TCM. This review demonstrates the validity and accuracy of QATCM-based DF and ML strategies and provides a reference for developing and applying QATCM methods.
Collapse
Affiliation(s)
- Rong Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianhui Yu
- Chengdu Pushi Pharmaceutical Technology Co., Ltd, Chengdu, China
| | - Chenghui Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shihong Zhong
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Seo CS, Shin HK. Simultaneous Analysis for Quality Control of Traditional Herbal Medicine, Gungha-Tang, Using Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2022; 27:molecules27041223. [PMID: 35209013 PMCID: PMC8877009 DOI: 10.3390/molecules27041223] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gungha-tang (GHT), a traditional herbal medicine, consists of nine medicinal herbs (Cnidii Rhizoma, Pinelliae Tuber, Poria Sclerotium, Citri Unshius Pericarpium, Citri Unshius Pericarpium Immaturus, Aurantii Fructus Immaturus, Atracylodis Rhizoma Alba, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens). It has been used for various diseases caused by phlegm. This study aimed to develop and verify the simultaneous liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis method, using nine marker components (liquiritin apioside, neoeriocitrin, narirutin, naringin, hesperidin, neohesperidin, liquiritigenin, glycyrrhizin, and 6-shogaol) for quality control of GHT. LC–MS/MS analysis was conducted using a Waters TQ-XS system. All marker analytes were separated on a Waters Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) using gradient elution with a distilled water solution (containing 5 mM ammonium formate and 0.1% [v/v] formic acid)–acetonitrile mobile phase. LC–MS/MS multiple reaction monitoring (MRM) analysis was carried out in negative and positive ion modes of an electrospray ionization source. The developed LC–MS/MS MRM method was validated by examining the linearity, limits of detection and quantification, recovery, and precision. LOD and LOQ values of nine markers were calculated as 0.02–8.33 ng/mL and 0.05–25.00 ng/mL. The recovery was determined to be 89.00–118.08% and precision was assessed with a coefficient of variation value of 1.74–8.64%. In the established LC–MS/MS MRM method, all markers in GHT samples were detected at 0.003–16.157 mg/g. Information gathered during the development and verification of the LC–MS/MS method will be useful for the quality assessment of GHT and other herbal medicines.
Collapse
|
4
|
Lv Y, Zhao P, Pang K, Ma Y, Huang H, Zhou T, Yang X. Antidiabetic effect of a flavonoid-rich extract from Sophora alopecuroides L. in HFD- and STZ- induced diabetic mice through PKC/GLUT4 pathway and regulating PPARα and PPARγ expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113654. [PMID: 33271248 DOI: 10.1016/j.jep.2020.113654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE Sophora alopecuroides L. is a traditional ethnopharmacological plant, which is widely used in traditional Chinese medicine and Mongolian and Uighur medicine to ameliorate "thirst disease". AIM OF THE STUDY This study aimed to investigate the antidiabetic activities and mechanisms of a flavonoid-rich extract from Sophora alopecuroides L. (SA-FRE) both in vivo and vitro. MATERIALS AND METHODS The main six chemical constituents of SA-FRE were elucidated based on an off-line semi-preparative liquid chromatography nuclear magnetic resonance (LC-NMR) protocol. Myc-GLUT4-mOrange-L6 cell models and mouse model with diabetes induced by high-fat diet combined with STZ injection were respectively adopted to investigate the antidiabetic effects of SA-FRE both in vitro and vivo. RESULTS In vivo, 4-week treatment of SA-FRE ameliorated hyperglycemia, dyslipidemia, and insulin resistance in diabetic mice. Mechanically, SA-FRE regulated PPARα and PPARγ expression in white adipose tissue (WAT) and liver, thereby ameliorating dyslipidemia. Moreover, SA-FRE increased the phosphorylation of PKC and further stimulated the GLUT4 expression in WAT and skeletal muscle, thus increasing the glucose utilization in vivo. In vitro, 50 μg/mL SA-FRE increased GLUT4 translocation to about 1.91-fold and glucose uptake to 1.82-fold in L6-myotubes. SA-FRE treatment increased the GLUT4 expression at both gene and protein levels. Furthermore, only Gö6983, a PKC inhibitor, reversed the SA-FRE-induced GLUT4 translocation and expression at the gene and protein levels. CONCLUSIONS Generally, SA-FRE ameliorated hyperglycemia, dyslipidemia, and insulin resistance partly through activating PKC/GLUT4 pathway and regulating PPARα and PPARγ expression.
Collapse
Affiliation(s)
- Yibing Lv
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan, China; Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zhao
- School of Life Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan, China
| | - Kejian Pang
- Hotian Uygur Pharmaceutical Co., Ltd, Hotian, 848200, China
| | - Yuanren Ma
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan, China
| | - Huiqi Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan, China
| | - Tongxi Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan, China
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan, China.
| |
Collapse
|
5
|
Liquid Chromatography Tandem Mass Spectrometry for the Simultaneous Quantification of Eleven Phytochemical Constituents in Traditional Korean Medicine, Sogunjung Decoction. Processes (Basel) 2021. [DOI: 10.3390/pr9010153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Sogunjung decoction (SGJD) is a traditional herbal formula that has been used to treat constipation and improve the constitution of infirm children in Korea. In this study, simultaneous quantification of gallic acid (1), magnoflorine (2), albiflorin (3), paeoniflorin (4), liquiritin apioside (5), liquiritin (6), liquiritigenin (7), coumarin (8), cinnamaldehyde (9), benzoylpaeoniflorin (10), and glycyrrhizin (11) was conducted using fast and sensitive liquid chromatography–tandem mass spectrometry (LC–MS) multiple-reaction monitoring to develop a quality-control protocol for the SGJD. A Waters Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) was used for the chromatographic separation of the 11 marker compounds in the SGJD using two mobile phases (5 mM ammonium acetate in distilled water containing 0.1% (v/v) formic acid, and acetonitrile). The MS parameters for a simultaneous analysis were capillary voltage (3.0 kV), source temperature (150 °C), desolvation temperature (500 °C), desolvation gas flow (700 L/h), and cone gas flow (50 L/h). The developed LC–MS method was validated by the evaluation of linearity, limits of detection, limits of quantification, recovery and precision. By using the developed and validated assay, the 11 marker components in the SGJD were detected in amounts of 0.01–51.83 mg/g.
Collapse
|
6
|
Phytochemical Analysis of Twelve Marker Analytes in Sogunjung-tang Using a High-Performance Liquid Chromatography Method. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sogunjung-tang (SGJT) is a traditional herbal prescription that has been used in Korea for the treatment of abdominal pain since ancient times. In this study, an analytical method for the simultaneous quantification of 12 marker analytes (gallic acid (GA), albiflorin (ALB), paeoniflorin (PAE), liquiritin apioside (LIAP), liquiritin (PIQ), benzoic acid (BA), coumarin (COU), liquiritigenin (LIQG), cinnamic acid (CINA), benzoylpaeoniflorin (BPAE), cinnamaldehyde (CINAD), and glycyrrhizinic acid (GLYA)) for quality evaluation of SGJT was developed based on high-performance liquid chromatography (HPLC) combined with a photodiode array detector. A Waters SunFire reverse-phased C18 column was used for the chromatographic separation of the 12 marker analytes in SGJT using a two-mobile phases system consisting of 0.1% (v/v) aqueous formic acid and 0.1% (v/v) formic acid in acetonitrile. The developed analytical method was validated by assessment of linearity, limit of detection, limit of quantification, recovery, and precision. Using the developed and validated HPLC method, the 12 marker analytes were determined to be present in 0.10–32.83 mg/g in SGJT.
Collapse
|
7
|
Simultaneous Determination of 12 Marker Components in Yeonkyopaedok-san Using HPLC–PDA and LC–MS/MS. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Yeonkyopaedok-san is a traditional Korean medicine used in the early treatment of boils. In the present study, its 12 marker components for quality control were determined using high-performance liquid chromatography (HPLC) with photodiode array detection and ultra-performance liquid chromatography–mass spectrometry with tandem mass spectrometry (UPLC–MS/MS). The investigated 12 marker components of Yeonkyopaedok-san were as follows: 3-caffeoylquinic acid, cimifugin 7-glucoside, liquiritin apioside, ferulic acid, narirutin, 5-O-methylvisammioside, naringin, neohesperidin, oxypeucedanin hydrate, arctigenin, glycyrrhizic acid, and 6-gingerol. The analytical column used for the separation of the 12 marker analytes in Yeonkyopaedok-san was a Waters SunFire C18 column (4.6 mm × 250 mm, 5 μm). The two mobile phases used were 0.1% (v/v) aqueous formic acid and 0.1% (v/v) formic acid in acetonitrile. In the UPLC–MS/MS analysis, all components were separated using a Waters ACQUITY UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm). The two mobile phases used were 0.1% (v/v) aqueous formic acid and acetonitrile. The coefficient of determination of the calibration curves in both analysis systems showed good linearity (>0.99). The amounts of the 12 marker components in Yeonkyopaedok-san determined using HPLC–photodiode array detection and UPLC–MS/MS analyses were found to be 0.14–9.00 mg/g and 2.35–853.11 μg/g, respectively.
Collapse
|
8
|
Seo CS, Shin HK. Quality assessment of traditional herbal formula, Hyeonggaeyeongyo-tang through simultaneous determination of twenty marker components by HPLC-PDA and LC-MS/MS. Saudi Pharm J 2020; 28:427-439. [PMID: 32273801 PMCID: PMC7132628 DOI: 10.1016/j.jsps.2020.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/08/2020] [Indexed: 12/15/2022] Open
Abstract
Simultaneous analysis of 20 marker components (gallic acid, cimifugin, geniposide, paeoniflorin, ferulic acid, nodakenin, narirutin, naringin, neohesperidin, arctiin, baicalin, oxypeucedanin hydrate, wogonoside, baicalein, arctigenin, glycyrrhizin, wogonin, pulegone, decursin, and decursinol angelate) for quality assessment of the traditional herbal formula, Hyeonggaeyeongyo-tang (HYT) was carried out by using high-performance liquid chromatography (HPLC) with photodiode array detection (PDA) and liquid chromatography–mass spectrometry with tandem mass spectrometry (LC–MS/MS). The coefficient of determination showed excellent linearity of more than 0.9999 for all analytes. The recovery of 20 marker components was 93.92 to 102.66% with relative standard deviation (RSD) < 3.00% and RSD value of precision was ≤ 3.44%. The amounts of 20 marker components using HPLC–PDA and LC–MS/MS were determined to be 0.18–14.60 and 0.01–1.76 mg/freeze-dried g, respectively.
Collapse
Affiliation(s)
- Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
9
|
Yu X, Bao Y, Meng X, Wang S, Li T, Chang X, Xu W, Yang G, Bo T. Multi-pathway integrated adjustment mechanism of licorice flavonoids presenting anti-inflammatory activity. Oncol Lett 2019; 18:4956-4963. [PMID: 31612007 DOI: 10.3892/ol.2019.10793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/08/2017] [Indexed: 12/29/2022] Open
Abstract
Glycyrrhiza, commonly known as licorice, is a herbal medicine that has been used for thousands of years. Licorice contains multiple flavonoids, which possess a variety of biological activities. On the basis of the anti-inflammatory effects of licorice flavonoids, the potential mechanism of action was investigated via a plasma metabolomics approach. A total of 9 differential endogenous metabolites associated with the therapeutic effect of licorice flavonoids were identified, including linoleic acid, sphingosine, tryptophanamide, corticosterone and leukotriene B4. Besides classical arachidonic acid metabolism, metabolism of sphingolipids, tryptophan and fatty acids, phospholipids synthesis, and other pathways were also involved. The multi-pathway integrated adjustment mechanism of licorice flavonoid action may reduce side effects in patients, along with any anti-inflammatory functions, which provides a foundation for identifying and developing novel, high-potential natural drugs with fewer side effects for clinical application.
Collapse
Affiliation(s)
- Xiaomeng Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Yongrui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Xiansheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Tianjiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, Liaoning 116600, P.R. China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, Liaoning 116600, P.R. China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Xin Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Weifeng Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Guanlin Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| | - Tao Bo
- Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Laboratory, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, P.R. China
| |
Collapse
|
10
|
Luan F, Han K, Li M, Zhang T, Liu D, Yu L, Lv H. Ethnomedicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Species from the GenusAjugaL.: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:959-1003. [PMID: 31416340 DOI: 10.1142/s0192415x19500502] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present review is aimed at providing a comprehensive summary of the botanical characteristics, ethnomedicinal uses, phytochemical, pharmacological, and toxicological studies of the genus Ajuga L. The extensive literature survey revealed Ajuga L. species to be a group of important medicinal plants used for the ethnomedical treatment of rheumatism, fever, gout, sclerosis, analgesia, inflammation, hypertension, hyperglycemia, joint pain, palsy, amenorrhea, etc., although only a few reports address the clinical use and toxicity of these plants. Currently, more than 280 chemical constituents have been isolated and characterized from these plants. Among these constituents, neo-clerodane diterpenes and diterpenoids, phytoecdysteroids, flavonoids, and iridoids are the major bioactive compounds, possessing wide-reaching biological activities both in vivo and in vitro, including anti-inflammatory, antinociceptive, antitumor, anti-oxidant, antidiabetic, antimicrobial, antifeedant, antidiarrhoeal, hypolipidemic, diuretic, hypoglycaemic, immunomodulatory, vasorelaxant, larvicidal, antimutagenic, and neuroprotective activity. This review is aimed at summarizing the current knowledge of the ethnomedicinal uses, phytochemistry, biological activities, and toxicities of the genus Ajuga L. to reveal its therapeutic potentials, offering opportunities for future researches. Therefore, more focus should be paid to gathering information about their toxicology data, quality-control measures, and the clinical application of the bioactive ingredients from Ajuga L. species.
Collapse
Affiliation(s)
- Fei Luan
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Keqing Han
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Maoxing Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Lanzhou 730050, P. R. China
| | - Ting Zhang
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Daoheng Liu
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Linhong Yu
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| | - Haizhen Lv
- Department of Pharmacy, Shaanxi Provincial Hospital of Tuberculosis Prevention and Treatment, Xi’an 710100, P. R. China
| |
Collapse
|
11
|
Chen J, Wei F, Ma SC. Application of analytical chemistry in the quality evaluation of Glycyrrhiza Spp. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1531293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jia Chen
- National Institute for Food and Drug Control, State Food and Drug Administration, Beijing, China
| | - Feng Wei
- National Institute for Food and Drug Control, State Food and Drug Administration, Beijing, China
| | - Shuang-Cheng Ma
- National Institute for Food and Drug Control, State Food and Drug Administration, Beijing, China
| |
Collapse
|
12
|
Jang S, Lee AY, Lee AR, Choi G, Kim HK. Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology. Integr Med Res 2017; 6:388-394. [PMID: 29296565 PMCID: PMC5741391 DOI: 10.1016/j.imr.2017.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The present study optimized ultrasound-assisted extraction conditions to maximize extraction yields of glycyrrhizic acid from licorice. METHODS The optimal extraction temperature (X1), extraction time (X2), and methanol concentration (X3) were identified using response surface methodology (RSM). A central composite design (CCD) was used for experimental design and analysis of the results to obtain the optimal processing parameters. RESULTS Statistical analyses revealed that three variables and the quadratic of X1, X2, and X3 had significant effects on the yields and were followed by significant interaction effects between the variables of X2 and X3 (p < 0.01). A 3D response surface plot and contour plots derived from the mathematical models were applied to determine the optimal conditions. The optimum ultrasound-assisted extraction conditions were as follows: extraction temperature, 69 °C; extraction time, 34 min; and methanol concentration, 57%. Under these conditions, the experimental yield of glycyrrhizic acid was 3.414%, which agreed closely with the predicted value (3.406%). CONCLUSION The experimental values agreed with those predicted by RSM models, thus indicating the suitability of the model employed and the success of RSM in optimizing the extraction conditions.
Collapse
Affiliation(s)
- Seol Jang
- Mibyeong Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - A. Yeong Lee
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - A. Reum Lee
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Goya Choi
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Ho Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| |
Collapse
|
13
|
Wang S, Bao YR, Li TJ, Yu T, Chang X, Yang GL, Meng XS. Mechanism of Fructus Aurantii Flavonoids Promoting Gastrointestinal Motility: From Organic and Inorganic Endogenous Substances Combination Point of View. Pharmacogn Mag 2017; 13:372-377. [PMID: 28839359 PMCID: PMC5551352 DOI: 10.4103/pm.pm_179_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/17/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fructus Aurantii (FA) derived from the dried, and unripe fruit of Citrus aurantium L. is one of the commonly used traditional Chinese medicines to treat gastrointestinal motility dysfunction diseases. According to the literature research, FA flavonoids (FAF) are important active ingredients of FA promoting gastrointestinal motility, but the exact material basis and mechanism of action are still not very clear. OBJECTIVE This experiment was designed to illustrate the material basis of FAF promoting gastrointestinal motility and explore the mechanism of action from an organic and inorganic combination point of view. MATERIALS AND METHODS In this experiment, high-performance liquid chromatography (HPLC) method was used to analyze the composition and content of FAF. Based on the prominent prokinetic effect of FAF on mice, the mechanism of action was speculated through a combination of HPLC coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) and inductively coupled plasma mass spectrometry (ICP-MS). RESULTS With the method of HPLC, ten dominating components of FAF including neoeriocitrin, narirutin, rhoifolin, naringin, hesperidin, neohesperidin, neoponcirin, naringenin, hesperetin, and nobiletin accounting for more than 86% of FAF were identified. Combined HPLC-QTOF-MS with ICP-MS, the endogenous substances with difference in the blood of mice were analyzed, in which 4-dimethylallyltryptophan, corticosterone, phytosphingosine, sphinganine, LysoPC (20:4(5Z, 8Z, 11Z, 14Z)), LysoPC(18:2 (9Z, 12Z)), and Ca2+, Mg2+, Zn2+ metal ions had significant changes, involving tryptophan metabolism, corticosterone metabolism, sphingolipid metabolism, and other pathways. CONCLUSION The results preliminarily elaborated the mechanism of FAF promoting gastrointestinal motility from an organic and inorganic point of view, which provide valuable information for researching and developing new multi-component Chinese medicine curing gastrointestinal underpower associated diseases. SUMMARY Fructus Aurantii flavonoids are one of the main components of Fructus Aurantii that possess prominent gastrointestinal motility promoting efficacyThe mainly material basis of Fructus Aurantii flavonoids promoting gastrointestinal motility were neoeriocitrin, narirutin, rhoifolin, naringin, hesperidin, neohesperidin, neoponcirin, naringenin, hesperetin, and nobiletinFructus Aurantii flavonoids can regulate the content of 4-dimethylallyltryptophan, corticosterone, phytosphingosine, sphinganine, LysoPC (20:4(5Z, 8Z, 11Z, 14Z)), LysoPC.(18:2(9Z, 12Z)) and Ca2+, Mg2+, Zn2+-metal ions, through tryptophan metabolism, corticosterone metabolism, sphingolipid metabolism, and other pathways to present its gastrointestinal motility promoting efficacy. Abbreviations used: FA: Fructus Aurantii; FAF: Fructus Aurantii flavonoids; HPLC: High performance liquid chromatography; HPLC-QTOF-MS: High performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry; ICP-MS: Inductively coupled plasma mass spectrometry; PCA: Principal components analysis; CG: Control group; FAFLG: Low-dosage group of Fructus Aurantii flavonoids; FAFMG: Middle-dosage group of Fructus Aurantii flavonoids; FAFHG: High-dosage group of Fructus Aurantii flavonoids; DPG: Domperidone group.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-Omics Research Collaboration Lab, Dalian 116600, China
| | - Yong-Rui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-Omics Research Collaboration Lab, Dalian 116600, China
| | - Tian-Jiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-Omics Research Collaboration Lab, Dalian 116600, China
| | - Ting Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xin Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Guan-Lin Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xian-Sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China.,Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-Omics Research Collaboration Lab, Dalian 116600, China
| |
Collapse
|
14
|
He X, Luan F, Zhao Z, Ning N, Li M, Jin L, Chang Y, Zhang Q, Wu N, Huang L. The Genus Patrinia: A Review of Traditional Uses, Phytochemical and Pharmacological Studies. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:637-666. [PMID: 28595500 DOI: 10.1142/s0192415x17500379] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of the present review is to comprehensively outline the botanical description, traditional uses, phytochemistry, pharmacology and toxicology of Patrinia, and to discuss possible trends for the further study of medicinal plants from the genus Patrinia. The genus Patrinia plays an important role in Asian medicine for the treatment of erysipelas, conjunctival congestion with swelling and pain, peri-appendicular abscesses, lung carbuncle, dysentery, leucorrhea, and postpartum disease. More than 210 chemical constituents have been isolated and identified from Patrinia plants, especially P. scabiosaefolia Fisch., P. scabra Bunge, P. villosa Juss., P. heterophylla Bunge and P. rupestris(Pall.) Juss[Formula: see text] Of these compounds, triterpenoids and saponins, iridoids, flavonoids, and lignans are the major or active constituents. Both in vitro and in vivo studies have indicated that some monomer compounds and crude extracts from the genus Patrinia possess wide pharmacological activities, including antitumor, anti-inflammatory, antibacterial, and antiviral effects. In addition, they have been shown to have valuable and positive effects on the immune and nervous system in experimental animals. There are also some reports on the clinical uses and toxicity of these species. However, few reports have been published concerning the material identification or quality control of Patrinia species, and the clinical uses and toxic effects of these plants are relatively sparse. More attention must be given to these issues.
Collapse
Affiliation(s)
- Xirui He
- Honghui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710054, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, 710069, P. R. China
| | - Fei Luan
- Department of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pharmacy, Xi’an Weiyang District Hospital of Traditional Chinese Medicine, Xi’an, 710016, P. R. China
| | - Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, 710069, P. R. China
| | - Ning Ning
- Honghui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710054, P. R. China
| | - Maoxing Li
- Department of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China
- Department of Pharmacy, Lanzhou General Hospital of PLA, Key Laboratory of the Prevention and Treatment for Injury in Plateau of PLA, Lanzhou 730050, P. R. China
| | - Ling Jin
- Department of Pharmacy, Xi’an Weiyang District Hospital of Traditional Chinese Medicine, Xi’an, 710016, P. R. China
| | - Yu Chang
- Honghui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710054, P. R. China
| | - Qiang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, 710069, P. R. China
| | - Ni Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, 710069, P. R. China
| | - Linhong Huang
- Honghui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710054, P. R. China
| |
Collapse
|
15
|
Du Y, He B, Li Q, He J, Wang D, Bi K. Simultaneous determination of multiple active components in rat plasma using ultra-fast liquid chromatography with tandem mass spectrometry and application to a comparative pharmacokinetic study after oral administration of Suan-Zao-Ren decoction and Suan. J Sep Sci 2017; 40:2097-2106. [PMID: 28345817 DOI: 10.1002/jssc.201601383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/16/2017] [Accepted: 03/11/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yiyang Du
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Bosai He
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Qing Li
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Jiao He
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Di Wang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| | - Kaishun Bi
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
- National and Local United Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
16
|
Yang Y, Wang S, Bao YR, Li TJ, Yang GL, Chang X, Meng XS. Anti-ulcer effect and potential mechanism of licoflavone by regulating inflammation mediators and amino acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2017; 199:175-182. [PMID: 28159726 DOI: 10.1016/j.jep.2017.01.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/21/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glycyrrhiza is the dry root and rhizome of the leguminous plant, Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat. or Glycyrrhiza glabra L., which was firstly cited in Shennong's Herbal Classic in Han dynasty and was officially listed in the Chinese Pharmacopoeia, has been widely used in China during the past millennia. Licoflavone is the major component of Glycyrrhiza with anti-ulcer activity. The present study is based on clarifying the anti-ulcer effect of licoflavone, aiming at elucidating the possible molecule mechanisms of its action for treating gastric ulcer rats induced by acetic acid. MATERIALS AND METHODS Rats were divided into 7 groups, and drugs were administered from on the day after the onset of gastric ulcer (day 3) until day 11 of the experiment once daily continuously. The plasma were analyzed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS), significant different metabolites were investigated to explain its therapeutic mechanism. Furthermore, quantitative real time polymerase chain reaction (RT-PCR) analysis was performed to detect the expression of RNA in stomach tissue for verifying the above results. RESULTS Licoflavone can effectively cure the gastric ulcer, particularly the middle dose group. According to the statistical analysis of the plasma different metabolites from each groups and the expression of genes in tissues, sixteen significant different metabolites, including histamine, tryptophan, arachidonic acid, phingosine-1-phosphate etc., contributing to the treatment of gastric ulcer were discovered and identified. In RT-PCR analysis, the results of the expression of RNA were corresponded with what we discovered. CONCLUSIONS Our study indicated licoflavone plays the role of treating gastric ulcer by regulating inflammation mediators and amino acid metabolism. We demonstrated that metabolomics technology combined with gene technology is a useful tool to search different metabolites and to dissect the potential mechanisms of traditional Chinese medicine (TCM) in treating gastric ulcer.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China.
| | - Yong-Rui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China.
| | - Tian-Jiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China.
| | - Guan-Lin Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Xin Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Xian-Sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China; Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China; Liaoning University of Traditional Chinese Medicine-Agilent Technologies Modern TCM and Multi-omics Research Collaboration Lab, Dalian, PR China.
| |
Collapse
|
17
|
Jiang Z, Wang Y, Zheng Y, Yang J, Zhang L. Ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry and chemometric analysis of licorice based on the simultaneous determination of saponins and flavonoids. J Sep Sci 2016; 39:2928-40. [DOI: 10.1002/jssc.201600246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Zhenzuo Jiang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Research and Development Center of TCM; Tianjin International Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Research and Development Center of TCM; Tianjin International Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Yunfeng Zheng
- School of Pharmacy; Nanjing University of Chinese Medicine; Nanjing P. R. China
| | - Jing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Research and Development Center of TCM; Tianjin International Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| | - Lei Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Research and Development Center of TCM; Tianjin International Joint Academy of Biotechnology and Medicine; Tianjin P. R. China
| |
Collapse
|
18
|
Kim JH, Ha WR, Park JH, Lee G, Choi G, Lee SH, Kim YS. Influence of herbal combinations on the extraction efficiencies of chemical compounds from Cinnamomum cassia, Paeonia lactiflora, and Glycyrrhiza uralensis, the herbal components of Gyeji-tang, evaluated by HPLC method. J Pharm Biomed Anal 2016; 129:50-59. [PMID: 27399342 DOI: 10.1016/j.jpba.2016.06.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 11/25/2022]
Abstract
During decoction process, the ingredients of herbal formula interact with each other, such that therapeutic properties and chemical extraction characteristics are altered. The crude drugs, Cinnamomum cassia (CC), Paeonia lactiflora (PL), and Glycyrrhiza uralensis (GU), are the main herbal constituents of Gyeji-tang, a traditional herbal formula. To evaluate the chemical interaction between CC, PL, and GU during the course of decoction, quantification of 16 marker compounds in the herbal decoction, performed using a Box-Behnken experimental design, was carried out by HPLC-diode array detection using validated method. Correlations between the amounts of marker compounds from CC, PL, and GU were assessed by multiple regression analysis. The results obtained showed that amounts of single herb marker compounds significantly changed (usually decreased) by decoction in the presence of other herbs and that these changes depended on the chemical natures of the markers and the herbal medicines present. Results also demonstrated that the extraction efficiencies of marker compounds increased when the proportion of the herb containing them was increased and decreased in proportion to amounts of herbs added. In conclusion, chemical interactions between compositional herbal medicines may occur when herbs are co-decocted. This study provides insight of understanding the herbal interactions in herbal formulae.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, 50612, Republic of Korea.
| | - Woo-Ram Ha
- Division of Pharmacology, School of Korean Medicine, Pusan National University, 50612, Republic of Korea
| | - Jin-Hyung Park
- Division of Pharmacology, School of Korean Medicine, Pusan National University, 50612, Republic of Korea
| | - Guemsan Lee
- Department of Herbology, College of Korean Medicine, Wonkwang University, 54538, Republic of Korea
| | - Goya Choi
- Korea Institute of Oriental Medicine, 34054, Republic of Korea
| | - Seung-Ho Lee
- Korea Institute of Oriental Medicine, 34054, Republic of Korea
| | - Young-Sik Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Republic of Korea
| |
Collapse
|
19
|
Chen XJ, Tang ZH, Li XW, Xie CX, Lu JJ, Wang YT. Chemical Constituents, Quality Control, and Bioactivity of Epimedii Folium (Yinyanghuo). THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:783-834. [DOI: 10.1142/s0192415x15500494] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epimedii Folium (Yinyanghuo in Chinese) is one of the most commonly used traditional Chinese medicines. Its main active components are flavonoids, which exhibit multiple biological activities, such as promotion of bone formation and sexual function, protection of the nervous system, and prevention of cardiovascular diseases. Flavonoids also show anti-inflammatory and anticancer effects. Various effective methods, including genetic and chemical approaches, have been developed for the quality control of Yinyanghuo. In this review, the studies conducted in the last decade about the chemical constituents, quality control, and bioactivity of Yinyanghuo are summarized and discussed.
Collapse
Affiliation(s)
- Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xi-Wen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cai-Xiang Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
20
|
Li MX, He XR, Tao R, Cao X. Phytochemistry and pharmacology of the genus pedicularis used in traditional Chinese medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 42:1071-98. [PMID: 25242078 DOI: 10.1142/s0192415x14500670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present review, the literature data on the chemical constituents and biological investigations of the genus Pedicularis are summarized. Some species of Pedicularis have been widely applied in traditional Chinese medicine. A wide range of chemical components including iridoid glycosides, phenylpropanoid glycosides (PhGs), lignans glycosides, flavonoids, alkaloids and other compounds have been isolated and identified from the genus Pedicularis. In vitro and in vivo studies indicated some monomer compounds and extracts from the genus Pedicularis have been found to possess antitumor, hepatoprotective, anti-oxidative, antihaemolysis, antibacterial activity, fatigue relief of skeletal muscle, nootropic effect and other activities.
Collapse
Affiliation(s)
- Mao-Xing Li
- Department of Pharmacy, Lanzhou General Hospital of PLA, Lanzhou 730050, P. R. China , School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | | | | | | |
Collapse
|
21
|
Kim JH, Shin HK, Seo CS. Chemical interaction between Paeonia lactiflora and Glycyrrhiza uralensis, the components of Jakyakgamcho-tang, using a validated high-performance liquid chromatography method: herbal combination and chemical interaction in a decoction. J Sep Sci 2014; 37:2704-15. [PMID: 25044951 PMCID: PMC4285307 DOI: 10.1002/jssc.201400522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 11/25/2022]
Abstract
The herbal combination is the basic unit of a herbal formula that affects the chemical characteristics of individual herbs. In the present study, a method of simultaneous determination of the 11 marker compounds in Jakyakgamcho-tang was developed using high-performance liquid chromatography with photodiode array detection. The validated analytical method was successfully applied to approach the chemical interaction between Paeonia lactiflora and Glycyrrhiza uralensis in co-decoction. In P. lactiflora, the contents of gallic acid, oxypaeoniflorin, (+)-catechin, paeoniflorin, and benzoylpaeoniflorin were decreased, while those of albiflorin and benzoic acid were increased; in G. uralensis, the contents of liquiritin, isoliquiritin, ononin, and glycyrrhizin were decreased, when decocting two herbs together. Moreover, as the ratio between P. lactiflora and G. uralensis was increased, the contents of chemical contents from each herb were proportionally increased. However, each content of marker compound per the gram of herbal medicine was decreased as the ratio of combinative herbs increased. The results showed that P. lactiflora and G. uralensis affect the extraction efficiency of chemical compounds in a Jakyakgamcho-tang decoction. Overall, the method established in this study was simple, rapid, and accurate, and would be useful for the determination of marker compounds and for the investigation of the chemical interaction between herbal medicines.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental MedicineDaejeon, Republic of Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental MedicineDaejeon, Republic of Korea
| | - Chang-Seob Seo
- Herbal Medicine Formulation Research Group, Korea Institute of Oriental MedicineDaejeon, Republic of Korea
| |
Collapse
|
22
|
Simmler C, Jones T, Anderson JR, Nikolić DC, van Breemen RB, Soejarto DD, Chen SN, Pauli GF. Species-specific Standardisation of Licorice by Metabolomic Profiling of Flavanones and Chalcones. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:378-88. [PMID: 25859589 PMCID: PMC4391967 DOI: 10.1002/pca.2472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Major phenolics from licorice roots (Glycyrrhiza sp.) are glycosides of the flavanone liquiritigenin (F) and its 2′-hydroxychalcone isomer, isoliquiritigenin (C). As the F and C contents fluctuate between batches of licorice, both quality control and standardisation of its preparations become complex tasks. OBJECTIVE To characterise the F and C metabolome in extracts from Glycyrrhiza glabra L. and Glycyrrhiza uralensis Fisch. ex DC. by addressing their composition in major F–C pairs and defining the total F:C proportion. MATERIAL AND METHODS Three types of extracts from DNA-authenticated samples were analysed by a validated UHPLC/UV method to quantify major F and C glycosides. Each extract was characterised by the identity of major F–C pairs and the proportion of Fs among all quantified Fs:Cs. RESULTS The F and C compositions and proportions were found to be constant for all extracts from a Glycyrrhiza species. All G. uralensis extracts contained up to 2.5 more Fs than G. glabra extracts. Major F–C pairs were B-ring glycosidated in G. uralensis, and A-/B-ring apiosyl-glucosidated in the G. glabra extracts. The F:C proportion was found to be linked to the glycosidation site: the more B-ring F-C glycosides were present, the higher was the final F:C proportion in the extract. These results enable the chemical differentiation of extracts from G. uralensis and G. glabra, which are characterised by total F:C proportions of 8.37:1.63 and 7.18:2.82, respectively. CONCLUSION Extracts from G. glabra and G. uralensis can be differentiated by their respective F and C compositions and proportions, which are both useful for further standardisation of licorice botanicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guido F. Pauli
- Correspondence to: G. F. Pauli, UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, 833 S. Wood Street, Chicago, Illinois, 60612, USA.
| |
Collapse
|
23
|
An K, Jin-rui G, Zhen Z, Xiao-long W. Simultaneous Quantification of Ten Active Components in Traditional Chinese Formula Sijunzi Decoction Using a UPLC-PDA Method. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:570359. [PMID: 24963442 PMCID: PMC4054979 DOI: 10.1155/2014/570359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/17/2014] [Indexed: 05/29/2023]
Abstract
Sijunzi decoction (SJZT), a traditional Chinese formula (TCMF) consisting of four herbs, has been widely used for the treatment of various gastrointestinal symptoms. However, its modernization process is hindered by the lack of a powerful quality control method that covers the major active components in the formula. The aim of this study was to establish a UPLC method for the quantitative determination of ten active components in Sijunzi decoction including ginsenoside Rg1, Re, Rb1, liquiritin, liquiritigenin, glycyrrhizic acid, atractylenolide I, atractylenolide II, atractylenolide III, and pachymic acid. Separation was achieved using an ACQUITY UPLC BEHC18 column (2.1 mm × 100 mm, 1.7 μ m) with a gradient elution program consisting of acetonitrile and 0.1% phosphoric acid solution. The detection wavelengths were set at 203, 254, 222, and 267 nm. The method was validated for linearity, accuracy, precision, limit of detection, and limit of quantification. The validated method was successfully applied to the simultaneous quantification of ten active compounds from several finished batches of SJZT. This validated that UPLC method is expected to provide a new basis for the quality control of SJZT.
Collapse
Affiliation(s)
- Kang An
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
- Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guo Jin-rui
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
| | - Zhang Zhen
- Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
| | - Wang Xiao-long
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
| |
Collapse
|
24
|
Fujii S, Morinaga O, Uto T, Nomura S, Shoyama Y. Development of a monoclonal antibody-based immunochemical assay for liquiritin and its application to the quality control of licorice products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3377-3383. [PMID: 24621071 DOI: 10.1021/jf404731z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Liquiritin was reacted with a keyhole limpet hemocyanin (KLH) to synthesize a liquiritin-KLH conjugate as an immunogen for mice. A hybridoma cell line named 2F8 secreted a monoclonal antibody (mAb) against liquiritin, which was applied to an enzyme-linked immunosorbent assay (ELISA) for liquiritin. ELISA showed a good linear range from 0.39 to 25 μg/mL of liquiritin. The maximum relative standard deviation (RSD) values for the intra-assay and interassay were approximately 5%. The recovery rates of liquiritin were in the range of 100.9-103.7%, and the concentrations of liquiritin in various licorice roots, as determined by ELISA, showed a good correlation with those analyzed by high-performance liquid chromatography (HPLC; R² = 0.948). These results suggested that ELISA with anti-liquiritin mAb could be a simple, rapid, convenient, and accurate method for the high-throughput analysis of liquiritin in various licorice products including liqueurs, sweets, and food supplements.
Collapse
Affiliation(s)
- Shunsuke Fujii
- Department of Health and Nutrition, Faculty of Health Management, and ‡Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University , 2825-7 Huis Ten Bosch, Sasebo 859-3298 Japan
| | | | | | | | | |
Collapse
|