1
|
Ma J, Wang J, Wan Y, Wang S, Jiang C. Probiotic-fermented traditional Chinese herbal medicine, a promising approach to maintaining the intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118815. [PMID: 39270882 DOI: 10.1016/j.jep.2024.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicines (TCHM) have been extensively used in China and other East and Southeast Asian countries. Due to the low content of bioactive components in most TCHM and the potential toxicity of some herbal ingredients to humans, researchers have turned to probiotic fermentation to enhance the efficacy, mitigate the toxic or side effects and improve the taste of TCHM. Both probiotics and certain TCHM benefit the intestinal microbiota and intestinal barrier of human body, demonstrating synergistic effects on in intestinal microecology. AIM OF THE STUDY This review aims to provide an overview of the development of fermentation technology, commonly used probiotic strains for TCHM fermentation, the advantages of probiotic fermentation and the challenges and limitations of probiotic-fermented TCHM. Additionally, it summarises and discusses the impact of probiotic-fermented TCHM on the intestinal barrier and microbiota, as well as the possible mechanisms involved. MATERIALS AND METHODS An extensive search of primary literature was conducted using various databases including PubMed, Google Scholar, Web of Science, Elsevier, SpringerLink, ScienceDirect, CNKI, and others. All the plant names have been checked with World Flora Online (http://www.worldfloraonline.org) on August 7, 2024. RESULTS The literature mentioned above was analyzed and summarized comprehensively. Probiotic-fermented TCHM can improve the intestinal barrier, modulate gut microbiota, and maintain homeostasis of the intestinal microecology. Modulating intestinal microecology by probiotic-fermented TCHM may be a crucial mechanism for its beneficial effects. CONCLUSIONS This article establishes a theoretical basis for further research on the relationship between probiotic-fermented TCHM and the intestinal microecology, with the hope of inspiring innovative concepts for the development of TCHM and exploring the potential of probiotic-fermented TCHM as a promising strategy for maintaining intestinal microecological balance.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, PR China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, 611130, PR China
| | - Shihua Wang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| | - Changqing Jiang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| |
Collapse
|
2
|
Jeyaram K, Lahti L, Tims S, Heilig HGHJ, van Gelder AH, de Vos WM, Smidt H, Zoetendal EG. Fermented foods affect the seasonal stability of gut bacteria in an Indian rural population. Nat Commun 2025; 16:771. [PMID: 39824829 PMCID: PMC11748640 DOI: 10.1038/s41467-025-56014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
The effect of fermented foods on healthy human gut microbiota structure and function, particularly its seasonal preference and frequent long-term consumption, has been largely uncharacterised. Here, we assess the gut microbiota and metabolite composition of 78 healthy Indian agrarian individuals who differ in the intake of fermented milk and soybean products by seasonal sampling during hot-humid summer, autumn and dry winter. Here we show that, seasonal shifts between the Prevotella- and Bifidobacterium/Ruminococcus-driven community types, or ecological states, and associated fatty acid derivatives, with a bimodal change in Bacteroidota community structure during summer, particularly in fermented milk consumers. Our results associate long-term fermented food consumption with reduced gut microbiota diversity and bacterial load. We identify taxonomic groups that drive the seasonal fluctuation and associated shifts between the two ecological states in gut microbiota. This understanding may pave the way towards developing strategies to sustain a healthy and resilient gut microbiota through dietary interventions.
Collapse
Affiliation(s)
- Kumaraswamy Jeyaram
- Biotechnology Research and Innovation Council - Institute of Bioresources and Sustainable Development (BRIC-IBSD), Regional Centre, Tadong, Gangtok, 737102, Sikkim, India.
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands.
| | - Leo Lahti
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Computing, University of Turku, FI-20014, Turku, Finland
| | - Sebastian Tims
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Danone Nutricia Research, 3584, CT, Utrecht, The Netherlands
| | - Hans G H J Heilig
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Antonie H van Gelder
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, The Netherlands
| |
Collapse
|
3
|
Ling Y, Yang Y, Ren N, Xu H, Cheng C, Lu D, Wang Q, Yao X, Ma W. Jinwu Jiangu capsule attenuates rheumatoid arthritis via the SLC7A11/GSH/GPX4 pathway in M1 macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156232. [PMID: 39547097 DOI: 10.1016/j.phymed.2024.156232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND JinWu JianGu capsule (JWJGC) is a Chinese herbal medicine that alleviates the clinical manifestations of rheumatoid arthritis (RA). However, the mechanism of action requires further investigation.. PURPOSE This study aimed to investigate the anti-inflammatory effects of JWJGC on RA via the regulation of reactive oxygen species (ROS) and ferroptosis. MATERIALS AND METHODS JWJGC was administered to rats with collagen-induced arthritis (CIA) via oral gavage for 28 days. In vitro, M1 macrophages were pre-treated with JWJGC-containing serum. After assessing joint swelling and physiologic, the M1/M2 macrophage ratio was detected in CIA rats. The levels of ROS markers were assessed in the serum and cell supernatants. Liquid chromatography-tandem mass spectrometry analyses were employed to check lipid metabolism, and changes in mitochondrial morphology during ferroptosis were detected by transmission electron microscopy. Western blotting, immunofluorescence, immunohistochemistry, and qRT-PCR were performed to validate these results. RESULTS JWJGC ameliorated CIA by reducing ROS levels in rats. It also restored the balance of the M1/M2 macrophage ratio and reduced the levels of macrophage-related inflammatory markers. Additionally, JWJGC affected lipid metabolism to alleviate inflammation by downregulating lipids associated with ferroptosis. It attenuated ferroptosis by modulating glutathione (GSH)/ Glutathione peroxidase 4(GPX4) expression in CIA rats. In vitro, JWJGC targeted M1 macrophages via the solute carrier family 7a member 11 (SLC7A11)/GSH/GPX4 signaling pathway. CONCLUSIONS This study showed that JWJGC improved RA, primarily through the integrated regulation of the SLC7A11/GSH/GPX4 pathway in M1 macrophages. These findings provide an innovative therapeutic basis for RA treatment and expanding the clinical applications of JWJGC.
Collapse
Affiliation(s)
- Yi Ling
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Yuzheng Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Nina Ren
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Hui Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Changming Cheng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Daomin Lu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Qiuyi Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Xueming Yao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China.
| | - Wukai Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China.
| |
Collapse
|
4
|
Liu L, Sun S, Li X. Physcion inhibition of CYP2C9, 2D6 and 3A4 in human liver microsomes. PHARMACEUTICAL BIOLOGY 2024; 62:207-213. [PMID: 38353248 PMCID: PMC10868446 DOI: 10.1080/13880209.2024.2314089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT The effect of the active ingredients in traditional Chinese medicines on the activity of cytochrome P450 enzymes (CYP450s) is a critical factor that should be considered in TCM prescriptions. Physcion, the major active ingredient of Rheum spp. (Polygonaceae), possesses wide pharmacological activities. OBJECTIVES The effect of physcion on CYP450 activity was investigated to provide a theoretical basis for use. MATERIALS AND METHODS The experiments were conducted in pooled human liver microsomes (HLMs). The activity of CYP450 isoforms was evaluated with corresponding substrates and probe reactions. Blank HLMs were set as negative controls, and typical inhibitors were employed as positive controls. The inhibition model was fitted with Lineweaver Burk plots. The concentration (0, 2.5, 5, 10, 25, 50 and 100 μM physcion) and time-dependent (0, 5, 10, 15 and 30 min) effects of physcion were also assessed. RESULTS Physcion suppressed CYP2C9, 2D6 and 3A4 in a concentration-dependent manner with IC50 values of 7.44, 17.84 and 13.50 μM, respectively. The inhibition of CYP2C9 and 2D6 was competitive with the Ki values of 3.69 and 8.66 μM, respectively. The inhibition of CYP3A4 was non-competitive with a Ki value of 6.70 μM. Additionally, only the inhibition of CYP3A4 was time-dependent with the KI and Kinact parameters of 3.10 μM-1 and 0.049 min-1, respectively. CONCLUSIONS The inhibition of CYP450s by physcion should be considered in its clinical prescription, and the study design can be employed to evaluate the interaction of CYP450s with other herbs.
Collapse
Affiliation(s)
- Lu Liu
- Department of Endocrine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Sen Sun
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Shanghai, PR China
| | - Xiaohua Li
- Department of Endocrine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
5
|
Yu Z, Liu G, Li S, Hong Y, Zhao S, Zhou M, Tan X. Effects of Fermented Pomegranate Peel Polyphenols on the Growth Performance, Immune Response, Hepatopancreatic Health, and Disease Resistance in White Shrimp ( Litopenaeus vannamei). AQUACULTURE NUTRITION 2024; 2024:9966772. [PMID: 39633958 PMCID: PMC11617047 DOI: 10.1155/anu/9966772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
This study evaluated the growth performance, immune response, hepatopancreatic health, and disease resistance in Litopenaeus vannamei fed diets supplemented with fermented pomegranate peel polyphenols (FPPP) for 45 days. Five diets were formulated to contain various levels of FPPP: FP0 (no FPPP), FPPP inclusion at 0.015% (FP1), 0.030% (FP2), 0.060% (FP3), and 0.120% (FP4). The results indicated there were no significant variations in weight gain rate (WGR), specific growth rate (SGR), and feed conversion rate (FCR) of shrimp in all treatment groups (p > 0.05), but the survival (SR) of shrimp was significantly higher in all groups with the addition of FPPP (p < 0.05). Compared with FP0 group, the contents of total protein (TP) and globulin (GLB) in serum biochemical indexes of FP3 and FP4 groups were significantly increased, and the content of blood urea nitrogen (BUN) was significantly decreased (p < 0.05). Compared with FP0 group, the activities of superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (AKP), acid phosphatase (ACP), and lysozyme (LZM) in the hepatopancreas and serum of FP3 and FP4 groups were significantly increased (p < 0.05). Similarly, the activities of glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and phenoloxidase (PO) in the hepatopancreas and serum of FP2 group were significantly higher than those of FP0 group (p < 0.05). In addition, the content of malondialdehyde (MDA) in the hepatopancreas and serum of shrimp in FPPP-added groups was decreased (p < 0.05). Compared with FP0 group, the expression levels of SOD, CAT, glutathione S-transferase (GST), LZM, prophenoloxidase (ProPO), penaeidin-3 (Pen3), Crustin, immune deficiency (Imd), Toll, and Relish genes were significantly upregulated in the hepatopancreas of shrimp in FP3 and FP4 groups (p < 0.05). Additionally, increasing the addition level of FPPP resulted in a more compact hepatosomal arrangement of the shrimp's hepatopancreas, a more visible star-shaped lumen structure, and a significantly higher number of B cells. Finally, the cumulative SR of shrimp in FPPP groups was significantly higher than that in FP0 group after 7 days of infection with Vibrio alginolyticus (p < 0.05). In summary, dietary supplementation of FPPP can improve SR, immunity, and hepatopancreatic health and resistance to Vibrio alginolyticus of L. vannamei.
Collapse
Affiliation(s)
- Zhoulin Yu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guangye Liu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Sijie Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, China
| | - Shuyan Zhao
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaohong Tan
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
6
|
Bai Y, Fang X, Jiang Y, Xu J, Wu L, Li Q, Cao F, Zhao L. Sequential fermentation of Ginkgo biloba seeds by Bacillus subtilis natto and Lactobacillus plantarum enhanced nutrition, flavor and lipid-lowering activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39540367 DOI: 10.1002/jsfa.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/12/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ginkgo biloba seeds (GBS) are rich in flavonoids, proteins and reducing sugar, and have been consumed as food and medicinal nuts for thousands of years. However, the presence of ginkgotoxins and their poor palatability limit people's consumption of them. RESULTS This study used solid-state fermentation with Bacillus subtilis natto and Lactobacillus plantarum to enhance the safety and benefits of GBS. Optimized fermentation conditions increased the content of beneficial components like total flavonoids, soluble protein and reducing sugar while eliminating unpleasant odors (isoamyl aldehyde and hexanal) and reducing the toxin 4'-O-methylpyridoxine by 91.17%. Fermentation of GBS powder can significantly enhance its anti-inflammatory and antioxidant activities in vitro (P < 0.001). Furthermore, it exhibits a dose-dependent effect within a certain concentration range. Mixed fermentation (FBnLp) was evaluated for its effects on obesity and metabolic syndrome in mice fed a high-fat diet. FBnLp significantly reduced body and liver weight gain, prevented dyslipidemia and decreased inflammatory and oxidative stress compared to unfermented GBS. Histological analysis showed that FBnLp improved liver health by reducing fat accumulation and preventing non-alcoholic fatty liver disease. Meanwhile, it was found that feeding FBnLp increased the expression of CPT-1α, which regulates energy expenditure and fat breakdown, and downregulated the expression of SREBP-1c, FAS and ACC, which regulate fat synthesis. CONCLUSION This research provides new insights and technological support for the application and development of FBnLp as a functional product, addressing key issues in its use and industry growth. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Bai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| | - Xianying Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| | - Yunpeng Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jiahui Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lulu Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Xu XX, Li XJ, Pan KW, Deng L, Xia SB, Dong JW. Microbial transformation of geniposide in Gardeniae Fructus under the fermentation with Aspergillus niger DQWM-G11. Nat Prod Res 2024:1-7. [PMID: 39371032 DOI: 10.1080/14786419.2024.2412843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Gardeniae Fructus, the dried fruit of Gardenia jasminoides, was fermented with Aspergillus niger DQWM-G11. The antibacterial activities of the fermented and non-fermented products were measured and the transformation of chemical constituents was detected. The results revealed that A. niger DQWM-G11 fermented Gardeniae Fructus (AFGF) possessed a stronger antibacterial effect with a minimal inhibitory concentration (MIC) value of 256 μg/mL, compared to the raw material (MIC: > 1024 μg/mL). An undescribed microbial transformation reaction was discovered, where geniposide (1) was transformed into 1β-methoxyl-4-epigardendiol (2), which was then verified. The produced component exhibited a stronger antibacterial effect (MIC: 256 μg/mL) than raw geniposide (1) (MIC: >1024 μg/mL), indicating that the increased activity of Gardeniae Fructus was due to the biotransformation. The discovery of this microbial transformation reaction will provide an important theoretical basis for further developing and applying Gardeniae Fructus and geniposide.
Collapse
Affiliation(s)
- Xiao-Xin Xu
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, China
| | - Xue-Jiao Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, China
| | - Ke-Wen Pan
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, China
| | - Liang Deng
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
- Yunnan College of Modern Biomedical Industry, Kunming, China
| | - Shu-Biao Xia
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, China
| | - Jian-Wei Dong
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, China
| |
Collapse
|
8
|
Fan J, Cui H, Mu Z, Yao C, Yang M, Jin Y, Ning C, Zhang H. Non-targeted metabolomics analysis of fermented traditional Chinese medicine and its impact on growth performance, serum biochemistry, and intestinal microbiome of weaned lambs. Sci Rep 2024; 14:20385. [PMID: 39223216 PMCID: PMC11369253 DOI: 10.1038/s41598-024-71516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Fermented traditional Chinese medicines (TCMs) have been identified as a low-cost and promising feed additive to to alleviate weaning stress in young livestock and poultry effectively. This study investigated the impact of probiotic fermentation on the metabolite content of BanQi (Radix Isatidis and Astragalus membranaceus) extract while also examined the effects of both fermented-BanQi (FBQ) and unfermented-BanQi (UBQ) on growth performance, serum biochemistry, intestinal villi, and gut microbiota in weaned lambs. This study demonstrated that compared with UBQ, FBQ contained significantly higher levels of free amino acids (e.g., phenylalanine and isoleucine), short peptides (e.g., Val-Leu-Pro-Val-Pro-Gln and Gly-Leu), and the active ingredients (e.g., vindesine and reserpine) (P < 0.05). The addition of FBQ to the diet significantly increased the final body weight and average daily gain of weaned lambs (P < 0.05). In addition, FBQ significantly increased the total protein level in the serum and the villus length of the jejunum and ileum in lambs, while significantly reduced the levels of aspartate aminotransferase (AST) and urea (P < 0.05). Sequencing of the intestinal flora showed that FBQ improved the diversity of intestinal flora and promoted the enrichment of beneficial bacteria in the lamb intestine, such as Mogibacterium and Butyrivibrio, compared to NC or UBQ groups (P < 0.05). Fermentation with Bacillus subtilis can enhance the content of free amino acids, peptides, and active ingredients in BanQi extract, making it an effective method to improve the efficacy of traditional Chinese medicine. Adding FBQ to the diet can improve the growth performance of weaned lambs, and its mechanism may be related to increasing the height of intestinal villi and increasing the diversity of intestinal flora.
Collapse
Affiliation(s)
- Junyang Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongyan Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiying Mu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chunxiao Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mingfan Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou, 450002, China
- Key Laboratory for Study and Evaluation of Chinese Veterinary Medicine, Zhengzhou, 450002, China
| | - Yue Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongying Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou, 450002, China.
- Key Laboratory for Study and Evaluation of Chinese Veterinary Medicine, Zhengzhou, 450002, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
9
|
Su J, Tan Q, Wu S, Zhou F, Xu C, Zhao H, Lin C, Deng X, Xie L, Lin X, Ye H, Yang M. Administration of turmeric kombucha ameliorates lipopolysaccharide-induced sepsis by attenuating inflammation and modulating gut microbiota. Front Microbiol 2024; 15:1452190. [PMID: 39282561 PMCID: PMC11392888 DOI: 10.3389/fmicb.2024.1452190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Our research team previously reported the immunomodulatory effects of kombucha fermentation liquid. This study investigated the protective effects of turmeric kombucha (TK) against lipopolysaccharide (LPS)-induced sepsis and its impact on the intestinal microbiota of mice. A turmeric culture medium without kombucha served as the control (TW). Non-targeted metabolomics analysis was employed to analyze the compositional differences between TK and TW. Qualitative analysis identified 590 unique metabolites that distinguished TK from TW. TK improved survival from 40 to 90%, enhanced thermoregulation, and reduced pro-inflammatory factor expression and inflammatory cell infiltration in the lung tissue, suppressing the NF-κB signaling pathway. TK also altered the microbiome, promoting Allobaculum growth. Our findings shed light on the protective effects and underlying mechanisms of TK in mitigating LPS-induced sepsis, highlighting TK as a promising anti-inflammatory agent and revealing new functions of kombucha prepared through traditional fermentation methods.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Qingqing Tan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Chen Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Zhao M, Mu F, Lin R, Gao K, Zhang W, Tao X, Xu D, Wang J. Chinese Medicine-Derived Salvianolic Acid B for Disease Therapy: A Scientometric Study. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1359-1396. [PMID: 39212495 DOI: 10.1142/s0192415x2450054x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Salvianolic acid B (SalB), among the most abundant bioactive polyphenolic compounds found in Salvia miltiorrhiza Bge., exerts therapeutic and protective effects against various diseases. Although some summaries of the activities of SalB exist, there is lack of a scientometric and in-depth review regarding disease therapy. In this review, scientometrics was employed to analyze the number of articles, publication trends, countries, institutions, keywords, and highly cited papers pertaining to SalB research. The scientometric findings showed that SalB exerts excellent protective effects on the heart, lungs, liver, bones, and brain, along with significant therapeutic effects against atherosclerosis (AS), Alzheimer's disease (AD), liver fibrosis, diabetes, heart/brain ischemia, and osteoporosis, by regulating signaling pathways and acting on specific molecular targets. Moreover, this review delves into in-depth insights and perspectives, such as the utilization of SalB in combination with other drugs, the validation of molecular mechanisms and targets, and the research and development of novel drug carriers and dosage forms. In conclusion, this review aimed to offer a comprehensive scientometric analysis and in-depth appraisal of SalB research, encompassing both present achievements and future prospects, thereby providing a valuable resource for the clinical application and therapeutic exploitation of SalB.
Collapse
Affiliation(s)
- Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Rui Lin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, P. R. China
| |
Collapse
|
11
|
Luo X, Dong M, Liu J, Guo N, Li J, Shi Y, Yang Y. Fermentation: improvement of pharmacological effects and applications of botanical drugs. Front Pharmacol 2024; 15:1430238. [PMID: 39253373 PMCID: PMC11381286 DOI: 10.3389/fphar.2024.1430238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Fermentation is an important concoction technique for botanical drugs. Fermentation transforms and enhances the active ingredients of botanical drugs through specific microbiological processes, ultimately affecting their pharmacological effects. This review explores the use of fermented botanical drugs in areas such as anti-tumor, hypolipidemic, antioxidant, antimicrobial, cosmetology, and intestinal flora regulation. It elucidates the potential pharmacological mechanisms and discusses the benefits of fermentation technology for botanical drugs, including reducing toxic side effects, enhancing drug efficacy, and creating new active ingredients. This article also discussesdelves into the common strains and factors influencing the fermentation process, which are crucial for the successful transformation and enhancement of these drugs. Taken together, this study aimed to provide a reference point for further research and wider applications of botanical drug fermentation technology.
Collapse
Affiliation(s)
- Xinxin Luo
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Juntong Liu
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Li
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yufeng Yang
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
12
|
Huang J, Wen Y, Yang T, Song H, Meyboom R, Yang X, Teng L, Duez P, Zhang L. Safety and efficacy evaluation of Simo decoction and Arecae semen in herbal medicine practice. Heliyon 2024; 10:e31373. [PMID: 38841513 PMCID: PMC11152707 DOI: 10.1016/j.heliyon.2024.e31373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Objective The traditional Chinese patent medicine (TCPM), Simo decoction (Simo decoction oral solution), with its primary ingredient Arecae semen (Binglang, Areca catechu L.), known for its potential carcinogenic effects, is the subject of this study. The research aims to analyze the effectiveness and potential risks of Simo decoction, particularly as a carcinogen, and to suggest a framework for evaluating the risks and benefits of other herbal medicines. Methods The study is based on post-marketing research of Simo decoction and Arecae semen. It utilized a wide range of sources, including ancient and modern literature, focusing on the efficacy and safety of Simo decoction. The research includes retrospective data on the sources, varieties, and toxicological studies of Arecae semen from databases such as Pubmed, Clinical Trials, Chinese Clinical Trial Registry, China National Knowledge Infrastructure, WHO-UMC Vigibase, and China National Center for ADR Monitoring. Results Common adverse drug reactions (ADRs) associated with Simo decoction include skin rash, nausea, vomiting, abdominal pain, and diarrhea. However, no studies exist reporting the severe ADRs, such as carcinogenic effects. Arecae semen is distributed across approximately 60 varieties in tropical Asia and Australia. According to the WHO-UMC Vigibase and the National Adverse Drug Reaction Monitoring System databases, there are currently no reports of toxicity related to Arecae semen in the International System for Classification of ADRs (ISCR) or clinical studies. Conclusion Risk-benefit analysis in TCPM presents more challenges compared to conventional drugs. The development of a practical pharmacovigilance system and risk-benefit analysis framework is crucial for marketing authorization holders, researchers, and regulatory bodies. This approach is vital for scientific supervision and ensuring the safety and efficacy of drug applications, thus protecting public health.
Collapse
Affiliation(s)
- Jukai Huang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, PR China
| | - Yalu Wen
- Department of Respiratory Medicine, Beijing Hepingli Hospital, PR China
| | - Tianyi Yang
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30329, United States
| | - Haibo Song
- Center for Drug Reevaluation, National Medical Products Administration, Beijing, PR China
| | - Ronald Meyboom
- Department of Pharmacoepidemiology and Clinical Pharmacology, University of Utrecht, the Netherlands
| | - Xiaohui Yang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, PR China
| | - Lida Teng
- Department of Health Economics and Outcomes Research, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Mons, Belgium
| | - Li Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, No. 6, District 1, Fangxingyuan, Fangzhuang, Fengtai District, Beijing, PR China
| |
Collapse
|
13
|
Guo F, Li C, Dou J, Liang J, Chen Z, Xu Z, Wang T. Research progress on pharmacological properties and application of probiotics in the fermentation of Scutellaria baicalensis Georgi. Front Nutr 2024; 11:1407182. [PMID: 38903628 PMCID: PMC11187263 DOI: 10.3389/fnut.2024.1407182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Scutellaria baicalensis Georgi is a medicinal herb with a rich history of use in traditional Chinese medicine. This review concentrates on the chemical constituents of Scutellaria baicalensis Georgi, with a particular emphasis on flavonoids such as baicalin, baicalein, and wogonin. Additionally, it examines the effects of probiotic fermentation on the plant's chemical profile and pharmacological actions. Evidence suggests that probiotic fermentation markedly modifies the bioactive components of Scutellaria baicalensis Georgi, thereby augmenting its medicinal potency. The paper delves into the mechanisms by which the primary active constituents of Scutellaria baicalensis Georgi are altered during fermentation and how these changes influence its pharmacological properties. This review aims to lay a theoretical groundwork for the clinical utilization of Scutellaria baicalensis Georgi and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Chunhai Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
14
|
Vijayaram S, Razafindralambo H, Ghafarifarsani H, Sun YZ, Hoseinifar SH, Van Doan H. Synergetic response on herbal and probiotic applications: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1315-1329. [PMID: 38411877 DOI: 10.1007/s10695-024-01318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024]
Abstract
Herbs and their by-products are important traditional medicines and food supplements; they provide numerous beneficial effects for animals. Consequently, probiotics are living cell organisms, nontoxic, and friendly microbes. Probiotics have numerous beneficial activities such as inhibition of pathogens, enhancement of the immune system, growth, disease resistance, improving water quality, reducing toxic effects, synthesis of vitamins, prevention of cancer, reduction of irritable bowel syndrome, and more positive responses in animals. Herbal and probiotic combinations have more active responses and produce new substances to enhance beneficial responses in animals. Herbal and probiotic mixture report is still limited applications for animals. However, the mechanisms by which they interact with the immune system and gut microbiota in animals are largely unclear. This review provides some information on the effect of herbal and probiotic blend on animals. This review discusses current research advancements to fulfill research gaps and promote effective and healthy animal production.
Collapse
Affiliation(s)
- Seerengaraj Vijayaram
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Hary Razafindralambo
- ProBioLab, Campus Universitaire de La Faculté de Gembloux AgroBio Tech/Université de Liège, B5030, Gembloux, Belgium
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Yun-Zhang Sun
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
15
|
Mailänder LK, Nosrati Gazafroudi K, Greiß M, Lorenz P, Nicolay S, Gründemann C, Stintzing FC, Daniels R, Kammerer DR. Impact of Fermentation on the Phytochemical Profile and Bioactivity Characteristics of Aqueous Matricaria recutita L. Root Extracts. Chem Biodivers 2024; 21:e202400159. [PMID: 38563619 DOI: 10.1002/cbdv.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
While the flowers of Matricaria recutita L., German chamomile, are widely used for medicinal and cosmetic purposes, little is known about its roots, which are used in complementary medicine for the preparation of aqueous fermented extracts for the treatment of cramps and anxiety. To broaden the understanding of the active principles involved, a model fermentation approach was developed and fermentates were compared to commercially manufactured tinctures. Coumarins and hydroxycinnamates were among the major secondary metabolites characterized using HPLC-MSn. After six months of fermentation and storage, low-molecular organic acids were detected by GC-MS. Fermentation contributed to the stabilization of antioxidant and radical scavenging activities, which were in a range of about 8-10 mg gallic acid equivalents/g dry weight and 20-24 mg trolox equivalents/g dry weight, determined by Folin-Ciocalteu and DPPH assays, respectively. In addition, antibacterial activities of the extracts against Gram-positive and -negative bacteria increased during the first week of fermentation. Fermentates were neither cytotoxic nor pro- or anti-inflammatory. Thus, fermentation of chamomile roots is a suitable method for the safe production of biofunctional aqueous chamomile root extracts that remain stable without the addition of synthetic preservatives.
Collapse
Affiliation(s)
- Lilo K Mailänder
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076, Tübingen, Germany
| | - Khadijeh Nosrati Gazafroudi
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076, Tübingen, Germany
| | - Marit Greiß
- Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, DE-70599, Stuttgart, Germany
| | - Peter Lorenz
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Sven Nicolay
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Mattenstraße 22, CH-4058, Basel, Switzerland
| | - Carsten Gründemann
- Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Mattenstraße 22, CH-4058, Basel, Switzerland
| | - Florian C Stintzing
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| | - Rolf Daniels
- Department of Pharmaceutical Technology, University of Tübingen, Auf der Morgenstelle 8, DE-72076, Tübingen, Germany
| | - Dietmar R Kammerer
- Department of Analytical, Development and Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstraße 1, DE-73087, Bad Boll/Eckwälden, Germany
| |
Collapse
|
16
|
Han S, Xu G, Zhang K, Ahmad S, Wang L, Chen F, Liu J, Gu X, Li J, Zhang J. Fermented Astragalus Powder, a New Potential Feed Additive for Broilers to Improve the Growth Performance and Health. Animals (Basel) 2024; 14:1628. [PMID: 38891675 PMCID: PMC11171317 DOI: 10.3390/ani14111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
A total of 320 1-day-old broilers were randomly divided into five groups. The control group (CON) received a basal diet, while the FAP4, FAP2, and FAP1 groups were provided with the basal diet supplemented with 4%, 2%, and 1% fermented Astragalus powder, respectively. The unfermented Astragalus powder (UAP2) group was fed the basal diet supplemented with 2% UAP. Each group contained eight replicates of eight chicks each. The results revealed that the final BW and ADG in the FAP 1 and FAP2 were higher than those in the UAP2 and CON groups, while reducing F/G from day 14 to day 42. On day 42, the thymus index in the UAP and FAP groups as well as the bursa index in the FAP4 group showed significant increases compared to those in the CON group. Supplementation with 2% FAP elevated serum IgA levels in broilers on day 28 and day 42, and it also increased serum IgG levels on day 42. Furthermore, supplementation with 2% FAP elevated serum albumin (ALB) levels in broilers, while supplementation with 4% FAP increased serum (glucose) GLU levels in broilers on day 28. The serum biochemical parameters and pathological observation of the liver and kidney in the groups did not show any adverse effects on broilers' health. In addition, the serum total antioxidant capacity (T-AOC) level significantly increased in the FAP4 and FAP2 groups on day 28, and the malondialdehyde (MDA) level in both serum and liver tissue decreased in the FAP2 group on day 28 and day 42. Compared to the CON group, 2% FAP and 2% UAP supplementation reduced the relative abundance of Bacteroides and supplementation with 2% FAP increased the relative abundance of Alistipes on day 42. In conclusion, the dietary supplementation of FAP can enhance the growth performance, immune function, and antioxidant capacity and regulate microflora in broilers, of which 2% FAP is more effective. It indicates FAP exhibits significant application potential as a promising feed additive for broilers.
Collapse
Affiliation(s)
- Songwei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Guowei Xu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Kang Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Saad Ahmad
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Lei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Fubin Chen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Jiahui Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Xueyan Gu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Jianxi Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Jingyan Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
17
|
Tang X, Zhang T, Wang B, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Biotransformation of Cacumen platycladi Extract by Lactiplantibacillus plantarum CCFM1348 Promotes Hair Growth in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11493-11502. [PMID: 38738816 DOI: 10.1021/acs.jafc.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/β-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated β-catenin, a major factor of the Wnt/β-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/β-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Tongtong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Botao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- Bloomage Biotechnology Co., Ltd, Jinan 250000, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
18
|
Li N, Du X, Qu T, Ren H, Lu W, Cui X, Hu J, Chen Z, Tao H. Pharmacodynamic material basis and pharmacological mechanisms of Cortex Mori against diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117781. [PMID: 38253278 DOI: 10.1016/j.jep.2024.117781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The application of Cortex Mori (CM) in the treatment of diabetes mellitus (DM) has been extensively documented in traditional medicine. In recent years, the chemical composition of CM has been gradually unraveled, and its therapeutic mechanism in treating DM, diabetic nephropathy, diabetic cardiomyopathy, and other related conditions has been highlighted in successive reports. However, there is no systematic study on the treatment of DM based on the chemical composition of CM. AIM OF THE STUDY This study was conducted to systematically explore the hypoglycemic activity mechanism of CM based on its chemical composition. METHODS The material basis of Cortex Mori extract (CME) was investigated through qualitative analyses based on liquid chromatography-mass spectrometry (LC-MS). The possible acting mechanism was simulated using network pharmacology and validated in streptozotocin (STZ) + high fat diet (HFD)-induced diabetic rats and glucosamine-induced IR-HepG2 model with the assistance of molecular docking techniques. RESULTS A total of 39 compounds were identified in CME by the LC-MS-based qualitative analysis. In diabetic rats, it was demonstrated that CME significantly ameliorated insulin resistance, blood lipid levels, and liver injury. The network pharmacology analysis predicted five major targets, including AKT1, PI3K, FoxO1, Gsk-3β, and PPARγ. Additionally, three key compounds (resveratrol, protocatechuic acid, and kaempferol) were selected based on their predicted contributions. The experimental results revealed that CME, resveratrol, protocatechuic acid, and kaempferol could promote the expression of AKT1, PI3K, and PPARγ, while inhibiting the expression of FoxO1 and Gsk-3β. The molecular docking results indicated a strong binding affinity between resveratrol/kaempferol and their respective targets. CONCLUSIONS CME contains a substantial amount of prenylated flavonoids, which may be the focal point of research on the efficacy of CM in the treatment of DM. Besides, CME is effective in controlling blood glucose and insulin resistance, improving lipid levels, and mitigating liver injury in patients with DM. Relevant mechanisms may be associated with the activation of the PI3K/Akt pathway, the inhibition of the expression of FoxO1 and Gsk-3β, and the enhancement of PPARγ activity. This study represents the first report on the role of CME in the treatment of DM through regulating PPARγ, FoxO1, and Gsk-3β.
Collapse
Affiliation(s)
- Ning Li
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xia Du
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Tong Qu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Hui Ren
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Wenjing Lu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Xiaomin Cui
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Jing Hu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China
| | - Zhiyong Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, China.
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
19
|
Lambo MT, Ma H, Liu R, Dai B, Zhang Y, Li Y. Review: Mechanism, effectiveness, and the prospects of medicinal plants and their bioactive compounds in lowering ruminants' enteric methane emission. Animal 2024; 18:101134. [PMID: 38593679 DOI: 10.1016/j.animal.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Animal nutritionists continue to investigate new strategies to combat the challenge of methane emissions from ruminants. Medicinal plants (MPs) are known to be beneficial to animal health and exert functional roles in livestock due to their phytogenic compounds with antimicrobial, immunostimulatory, antioxidative, and anti-inflammatory activities. Some MP has been reported to be anti-methanogenic and can effectively lower ruminants' enteric methane emissions. This review overviews trends in MP utilization in ruminants, their bioactivity and their effectiveness in lowering enteric methane production. It highlights the MP regulatory mechanism and the gaps that must be critically addressed to improve its efficacy. MP could reduce enteric methane production by up to 8-50% by regulating the rumen fermentation pathway, directing hydrogen toward propionogenesis, and modifying rumen diversity, structure, and population of the methanogens and protozoa. Yet, factors such as palatability, extraction techniques, and economic implications must be further considered to exploit their potential fully.
Collapse
Affiliation(s)
- M T Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - H Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - R Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - B Dai
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Y Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Xing L, Lei J, Liu J, Yang Z, Chai Z, Cai W, Zhang M, Meng D, Wang Y, Yin H. Enhancing the quality of fermented plant leaves: the role of metabolite signatures and associated fungi. FRONTIERS IN PLANT SCIENCE 2024; 15:1335850. [PMID: 38571709 PMCID: PMC10987691 DOI: 10.3389/fpls.2024.1335850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Fungi play a pivotal role in fermentation processes, influencing the breakdown and transformation of metabolites. However, studies focusing on the effects of fungal-metabolite correlations on leaf fermentation quality enhancement are limited. This study investigated specific metabolites and fungi associated with high- and low-quality fermented plant leaves. Their changes were monitored over fermentation periods of 0, 8, 16, and 24 days. The results indicated that organoheterocyclic compounds, lipids, lipid-like molecules, organic nitrogen compounds, phenylpropanoids, and polyketides were predominant in high-quality samples. The fungi Saccharomyces (14.8%) and Thermoascus (4.6%) were predominantly found in these samples. These markers exhibited significant changes during the 24-day fermentation period. The critical influence of fungal community equilibrium was demonstrated by interspecies interactions (e.g., between Saccharomyces and Eurotium). A co-occurrence network analysis identified Saccharomyces as the primary contributor to high-quality samples. These markers collectively enhance the quality and sensory characteristics of the final product.
Collapse
Affiliation(s)
- Lei Xing
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinshan Lei
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Jie Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhen Yang
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhishun Chai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Wen Cai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|
21
|
Cui R, Zhang C, Pan ZH, Hu TG, Wu H. Probiotic-fermented edible herbs as functional foods: A review of current status, challenges, and strategies. Compr Rev Food Sci Food Saf 2024; 23:e13305. [PMID: 38379388 DOI: 10.1111/1541-4337.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.
Collapse
Affiliation(s)
- Rui Cui
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Cong Zhang
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Zhen-Hui Pan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
22
|
Chen L, Zhao L, Han J, Xiao P, Zhao M, Zhang S, Duan J. Biosynthesis of Chryseno[2,1,c]oxepin-12-Carboxylic Acid from Glycyrrhizic Acid in Aspergillus terreus TMZ05-2, and Analysis of Its Anti-inflammatory Activity. J Microbiol 2024; 62:113-124. [PMID: 38411880 DOI: 10.1007/s12275-024-00105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024]
Abstract
Glycyrrhizic acid, glycyrrhetinic acid, and their oxo, ester, lactone, and other derivatives, are known for their anti-inflammatory, anti-oxidant, and hypoglycemic pharmacological activities. In this study, chryseno[2,1-c]oxepin-12-carboxylic acid (MG) was first biosynthesized from glycyrrhizic acid through sequential hydrolysis, oxidation, and esterification using Aspergillus terreus TMZ05-2, providing a novel in vitro biosynthetic pathway for glycyrrhizic acid derivatives. Assessing the influence of fermentation conditions and variation of strains during culture under stress-induction strategies enhanced the final molar yield to 88.3% (5 g/L glycyrrhizic acid). CCK8 assays showed no cytotoxicity and good cell proliferation, and anti-inflammatory experiments demonstrated strong inhibition of NO release (36.3%, low-dose MG vs. model), transcriptional downregulation of classical effective cellular factors tumor necrosis factor-α (TNF-α; 72.2%, low-dose MG vs. model), interleukin-6 (IL-6; 58.3%, low-dose MG vs. model) and interleukin-1β (IL-1β; 76.4%, low-dose MG vs. model), and decreased abundance of P-IKK-α, P-IKB-α, and P-P65 proteins, thereby alleviating inflammatory responses through the NF-κB pathway in LPS-induced RAW264.7 cells. The findings provide a reference for the biosynthesis of lactone compounds from medicinal plants.
Collapse
Affiliation(s)
- Liangliang Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Lin Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ju Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Mingzhe Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Sen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Key Laboratory of Chinese Medicinal Resources Recycling Utilization of State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
23
|
Shen F, Wang T, Zhang R, Zhong B, Wu Z. Metabolism and release of characteristic components and their enzymatic mechanisms in Pericarpium Citri Reticulatae co-fermentation. Food Chem 2024; 432:137227. [PMID: 37657346 DOI: 10.1016/j.foodchem.2023.137227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/03/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
A co-fermentation strategy was explored to rapidly improve the characteristic components and quality of Pericarpium Citri Reticulatae (PCR) using Monascus anka and Saccharomyces cerevisiae, and the enzymatic mechanism was investigated. The results showed that the free flavonoid content of fermented PCR was 48.12% higher than that of unfermented PCR after 12 days of co-fermentation, resulting in stronger antioxidant activity. d-Limonene, γ-terpinene, proline (Pro), arginine (Arg), and serine (Ser) contributed the most to the flavors of citrus, herb, and sweet citrus based on odor and taste activity value analysis. Metabolomics and multivariate statistics showed that 55 components were differentially metabolized during co-fermentation, and ten metabolic pathways were closely related to metabolism. Furthermore, five hydrolases participated in the release and conversion of the active ingredients. This study provides an effective processing method for PCR and is conducive to the development of new PCR functional health foods.
Collapse
Affiliation(s)
- Fei Shen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tingyu Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China
| | - Renjie Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bin Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou 510006, China.
| |
Collapse
|
24
|
Liu Z, Li X, Luo Q, Pan H, Shi F. Structural feature-based strategy for the identification of diterpene alkaloids in Aconitum carmichaeli Debeaux. Fitoterapia 2024; 172:105761. [PMID: 38036079 DOI: 10.1016/j.fitote.2023.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/02/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
The taproot of Aconitum carmichaelii Debeaux (AC), a poisonous Traditional Chinese Medicine, has been widely used to treat joint pain, rheumatism and dysmenorrhea. Fermentation is a traditional drug processing method that reduces toxicity or increases efficacy. However, the chemical composition of AC, especially fermented AC, has not been fully elucidated. Therefore, it is necessary to establish a method to characterize the chemical composition of raw and fermented AC. In this study, a structural feature-based comprehensive strategy was employed to identify the chemical components of raw and fermented AC. A highly selective method consisting of mass defect filtering (MDF), ring double bond (RDB), nitrogen rule, and feature MS fragments filtering was established using UPLC-Q-Orbitrap-MS. By the established method, 230 diterpene alkaloids were characterized in raw AC, including 108 amine, 68 monoester, and 54 diester diterpene alkaloids. 145 of them were potential new compounds. Totals of 466 diterpene alkaloids were identified in fermented AC, including 231 amine, 162 monoester, and 73 diester diterpene alkaloids. 397 of them were potential new compounds. Ester hydrolysis, hydroxylation, and demethylation were the major transformation pathways during fermentation. An integrated approach with highly selective based on the structural feature of analytes was established and applied to identify the chemicals in AC. The strategy showed great performance in improving the accuracy and coverage of the identification by using LC-MS.
Collapse
Affiliation(s)
- Zejun Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Xiaoli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Qi Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Hong Pan
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; Department of Clinical Pharmacy, School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
25
|
Jiang MH, Zhang T, Wang QM, Ge JS, Sun LL, Li MQ, Miao QY, Zhu YZ. Effects of enzymolysis and fermentation of Chinese herbal medicines on serum component, egg production, and hormone receptor expression in laying hens. Anim Biosci 2024; 37:95-104. [PMID: 37905322 PMCID: PMC10766462 DOI: 10.5713/ab.23.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE In the present study, we aimed to investigate the effects of enzymolysis fermentation of Chinese herbal medicines (CHMs) on egg production performance, egg quality, lipid metabolism, serum reproductive hormone levels, and the mRNA expression of the ovarian hormone receptor of laying hens in the late-laying stage. METHODS A total of 360 Hy-Line Brown laying hens (age, 390 days) were randomly categorized into four groups. Hens in the control (C) group were fed a basic diet devoid of CHMs, the crushed CHM (CT), fermented CHM (FC), and enzymatically fermented CHM (EFT) groups received diets containing 2% crushed CHM, 2% fermented CHM, and 2% enzymatically fermented CHM, respectively. RESULTS Compared with crushed CHM, the acid detergent fiber, total flavonoids, and total saponins contents of fermented CHM showed improvement (p<0.05); furthermore, the neutral and acid detergent fiber, total flavonoids, and total saponins contents of enzymatically fermented CHM improved (p<0.05). At 5 to 8 weeks, hens in the FC and EFT groups showed increased laying rates, haugh unit, albumin height, yolk color, shell thickness, and shell strength compared with those in the C group (p<0.05). Compared with the FC group, the laying rate, albumin height, and Shell thickness in the EFT group was increased (p<0.05). Compared with the C, CT, and FC groups, the EFT group showed reduced serum total cholesterol and increased serum luteinizing hormone levels and mRNA expressions of follicle stimulating hormone receptor and luteinizing hormone receptor (p<0.05). CONCLUSION These results indicated that the ETF group improved the laying rate and egg quality and regulated the lipid metabolism in aged hens. The mechanism underlying this effect was likely related to cell wall degradation of CHM and increased serum levels of luteinizing hormone and mRNA expression of the ovarian hormone receptor.
Collapse
Affiliation(s)
- Mei Hong Jiang
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Tao Zhang
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Qing Ming Wang
- Shandong Jinghua Agriculture and Animal Husbandry Development Co., Ltd., Zhucheng 262200,
China
| | - Jin Shan Ge
- Shandong Zhongcheng Feed Technology Co., Ltd., Feicheng 271600,
China
| | - Lu Lu Sun
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Meng Qi Li
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Qi Yuan Miao
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Yuan Zhao Zhu
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| |
Collapse
|
26
|
Zhang Y, Wang L, He J, Wang H, Xin W, Wang H, Zhang J. Antioxidation and Hepatoprotection of Selenium Mycelium Polysaccharides Against Alcoholic Liver Diseases from the Cultivated Morel Mushroom Morchella esculenta (Ascomycota). Int J Med Mushrooms 2024; 26:55-66. [PMID: 38305262 DOI: 10.1615/intjmedmushrooms.2023051288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 μg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China; Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| | - Li Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China; Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| | - Jiaqi He
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Haoze Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Wenqi Xin
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Houpeng Wang
- Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| | - Jianjun Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China; Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| |
Collapse
|
27
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023:1-32. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
28
|
Zhang J, Shu Z, Lv S, Zhou Q, Huang Y, Peng Y, Zheng J, Zhou Y, Hu C, Lan S. Fermented Chinese Herbs Improve the Growth and Immunity of Growing Pigs through Regulating Colon Microbiota and Metabolites. Animals (Basel) 2023; 13:3867. [PMID: 38136904 PMCID: PMC10740985 DOI: 10.3390/ani13243867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: the development of new antibiotic substitutes to promote pig growth and health has become an important way to solve the current dilemma and promote the pig industry. (2) Methods: to assess the effects of a fermented Chinese herbal (FCH) formula on the growth and immunity of growing pigs, 100 Duroc × Landrace × Yorshire three-way crossed growing pigs were randomly divided into control and treatment groups that were fed a basal diet, and a basal diet with 1% (group A), 2% (group B), and 3% (group C) FCH formulas, respectively. A sixty-day formal experiment was conducted, and their growth and serum indices, colonic microbiota, and metabolites were analyzed. (3) Results: the daily gain of growing pigs in groups A, B, and C increased by 7.93%, 17.68%, and 19.61%, respectively, and the feed-to-gain ratios decreased by 8.33%, 15.00%, and 14.58%, respectively. Serum immunity and antioxidant activities were significantly increased in all treatment groups. Particularly, adding a 2% FCH formula significantly changed the colon's microbial structure; the Proteobacteria significantly increased and Firmicutes significantly decreased, and the metabolite composition in the colon's contents significantly changed. (4) Conclusions: these results indicate that the FCH formula is a good feed additive for growing pigs, and the recommended addition ratio was 3%.
Collapse
Affiliation(s)
- Junhao Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Zhiheng Shu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Sixiao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Qingwen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yuanhao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yingjie Peng
- Guangdong Chuangzhan Bona Agricultural Technology Co., Ltd., Guangning 526339, China;
| | - Jun Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Chao Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Shile Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| |
Collapse
|
29
|
Li Y, Lei Z, Guo Y, Liu Y, Guo X, Wang X, Che J, Yuan J, Wang C, Li M. Fermentation of Ganoderma lucidum and Raphani Semen with a probiotic mixture attenuates cyclophosphamide-induced immunosuppression through microbiota-dependent or -independent regulation of intestinal mucosal barrier and immune responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155082. [PMID: 37722243 DOI: 10.1016/j.phymed.2023.155082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Probiotic fermentation is a promising strategy for improving the nutritional and functional properties of traditional Chinese medicines (TCMs). Ganoderma lucidum and Raphani Semen are famous TCMs that have been shown to help alleviate immune system disorders. However, few studies have experimentally investigated the effects of probiotic-fermented G.lucidum and Raphani Semen on the immune system. PURPOSE We established the in vitro fermentation of G. lucidum and Raphani Semen with a probiotic mixture (Bifidobacterium longum, Lactobacillus acidophilus, and l. fermentum) (GRFB), investigated its ameliorating effect against cyclophosphamide (CTX)-induced immunosuppression, and explored its possible mechanisms. METHODS First, the different components in GRFB were identified by high-performance liquid chromatography. Second, its immune-stimulatory activities were evaluated in CTX-treated mice. Lastly, its possible in vitro and in vivo mechanisms were studied. RESULTS Probiotic fermentation of G. lucidum and Raphani Semen altered some of its chemical constituents, potentially helping improve the ability of GRFB to alleviate immunosuppression. As expected, GRFB effectively ameliorated CTX-induced immunosuppression by increasing the number of splenic lymphocytes and regulating the secretion of serum and ileum cytokines. GRFB supplementation also effectively improved intestinal integrity in CTX-treated mice by upregulating tight junction proteins. It also protects against CTX-induced intestinal dysbiosis by increasing the abundance of beneficial bacteria and reducing the abundance of harmful bacteria. GRFB could directly promote intestinal immunity but not systemic immunity in vitro, suggesting a microbiota-dependent regulation of GRFB. Interestingly, cohousing CTX-induced immunosuppressed mice with GRFB-treated mice promoted their symptoms recovery. Enhanced CTX-induced immunosuppression by GRFB in vitro depended on the gut microbiota. Remarkably, a Kyoto Encyclopedia of Genes and Genomes analysis showed that the GRFB-reprogrammed microbiota was significantly enriched in DNA damage repair pathways, which contribute to repairing the intestinal mucosal barrier. CONCLUSION This is the first study to suggest that compare with unfermented G. lucidum and Raphani Semen, GRFB can more effectively promote intestinal immunity and manipulate the gut microbiota to promote immunostimulatory activity and repair immunosuppression-induced intestinal barrier damage by biotransforming G.lucidum and Raphani Semen components.
Collapse
Affiliation(s)
- Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Zengjie Lei
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yuling Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yujia Liu
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xiujie Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China
| | - Xiuli Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jian Che
- Aim Honesty Biopharmaceutical Co., Ltd, Dalian, China
| | - Jieli Yuan
- College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, China.
| |
Collapse
|
30
|
Zhang X, Tang B, Wen S, Wang Y, Pan C, Qu L, Yin Y, Wei Y. Advancements in the Biotransformation and Biosynthesis of the Primary Active Flavonoids Derived from Epimedium. Molecules 2023; 28:7173. [PMID: 37894651 PMCID: PMC10609448 DOI: 10.3390/molecules28207173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Epimedium is a classical Chinese herbal medicine, which has been used extensively to treat various diseases, such as sexual dysfunction, osteoporosis, cancer, rheumatoid arthritis, and brain diseases. Flavonoids, such as icariin, baohuoside I, icaritin, and epimedin C, are the main active ingredients with diverse pharmacological activities. Currently, most Epimedium flavonoids are extracted from Epimedium plants, but this method cannot meet the increasing market demand. Biotransformation strategies promised huge potential for increasing the contents of high-value Epimedium flavonoids, which would promote the full use of the Epimedium herb. Complete biosynthesis of major Epimedium flavonoids by microbial cell factories would enable industrial-scale production of Epimedium flavonoids. This review summarizes the structures, pharmacological activities, and biosynthesis pathways in the Epimedium plant, as well as the extraction methods of major Epimedium flavonoids, and advancements in the biotransformation and complete microbial synthesis of Epimedium flavonoids, which would provide valuable insights for future studies on Epimedium herb usage and the production of Epimedium flavonoids.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450003, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijie Wen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yitong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
31
|
Wang C, Bai Y, Li T, Liu J, Wang Y, Ju S, Yao W, Xiong B, Zhou G. Beneficial effects of ginkgetin on improving nonalcoholic steatohepatitis characterized by bulk and single-cell RNA sequencing analysis. Front Pharmacol 2023; 14:1267445. [PMID: 37860111 PMCID: PMC10582714 DOI: 10.3389/fphar.2023.1267445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Background and aims: Nonalcoholic steatohepatitis (NASH) has become one of the major causes of cirrhosis and liver failure. However, there are currently no approved medications for managing NASH. Our study was designed to assess the effects of ginkgetin on NASH and the involved mechanisms. Methods: We constructed a mouse model of NASH by high-fat diet for 24 weeks. The effects of ginkgetin on NASH were evaluated by histological study, Western blot, and biochemical analysis. RNA Sequencing (RNA-Seq) analysis was used to investigate the alteration in gene expression and signaling pathways at bulk and single-cell levels. Results: Administration of ginkgetin resulted in a marked improvement in hepatic lipid accumulation, inflammation, and fibrosis in the NASH model. And these results were supported by bulk RNA-Seq analysis, in which the related signaling pathways and gene expression were markedly downregulated. Furthermore, single-cell RNA-Seq (scRNA-Seq) analysis revealed that the effects of ginkgetin on NASH were associated with the reprogramming of macrophages, hepatic stellate cells, and endothelial cells. Especially, ginkgetin induced a marked decrease in macrophages and a shift from pro-inflammatory to anti-inflammatory phenotype in NASH mice. And the NASH-associated macrophages (NAMs), which emerge during NASH, were also significantly downregulated by ginkgetin. Conclusion: Ginkgetin exhibits beneficial effects on improving NASH, supported by bulk and single-cell RNA-Seq. Our study may promote pharmacological therapy for NASH and raise the existent understanding of NASH.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongqiang Li
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xiong
- Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Yang CM, Chien MY, Wang LY, Chuang CH, Chen CH. Goji Ferment Ameliorated Acetaminophen-Induced Liver Injury in vitro and in vivo. Probiotics Antimicrob Proteins 2023; 15:1102-1112. [PMID: 35796949 DOI: 10.1007/s12602-022-09956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the hepatoprotective effects of lyophilized powder of goji ferment (LPGF) against acetaminophen (APAP)-induced hepatic damage in Hep3B cells and in mice. Eleven strains of lactic acid bacteria (LAB) were selected and their hepatoprotection against APAP-induced cellular damage in Hep3B cell line was evaluated. Four strains of LAB, including BCRC11652 (Leuconostoc mesenteroides subsp. mesenteroides), BCRC14619 (Lactobacillus gasseri), KODA-1 (Pediococcus acidilactici), and KODA-2 (Limosilactobacillus fermentum), have hepatoprotective potential against APAP in vitro. Goji significantly stimulated the growth of individual and combined strains of LAB and the optimal fermented condition was the treatment of goji at 10% (w/w) for 24 h. The prepared lyophilized powder of goji ferment (LPGF) containing fifteen combinations of LAB strains was used to explore their hepatoprotection in vitro. LPGF containing all combinations of LAB strains, except for KODA-2, significantly restored APAP-reduced cell viability and improved APAP-increased cellular levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In mice model, LPGF containing BCRC11652, BCRC14619, and KODA-2 was chosen to evaluate its hepatoprotection against APAP-induced liver injury. LPGF at diverse doses have a tendency but no significant improvement on APAP-reduced body weight gain and liver weight. LPGF significantly decreased APAP-increased serum ALT and AST levels in a dose-dependent manner. At the end of experiment, LPGF significantly and dose-dependently reversed APAP-reduced activities of GSH and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase in hepatic tissue. Overall, LPGF was demonstrated to exhibit hepatoprotection against APAP-induced liver injury in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Min Yang
- Ko Da Pharmaceutical Co. Ltd, Pingzhen Dist, No.20-1, Gongye 3rd Rd, Taoyuan, Taiwan
| | - Mei-Yin Chien
- Ko Da Pharmaceutical Co. Ltd, Pingzhen Dist, No.20-1, Gongye 3rd Rd, Taoyuan, Taiwan
| | - Li-Yu Wang
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, No. 1018 Sec. 6 Taiwan Boulevard, Taichung, 43302, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Hung Chuang
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, No. 1018 Sec. 6 Taiwan Boulevard, Taichung, 43302, Taiwan.
| | - Chao-Hsiang Chen
- Ko Da Pharmaceutical Co. Ltd, Pingzhen Dist, No.20-1, Gongye 3rd Rd, Taoyuan, Taiwan.
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
33
|
Su J, Tan Q, Wu S, Abbas B, Yang M. Application of Kombucha Fermentation Broth for Antibacterial, Antioxidant, and Anti-Inflammatory Processes. Int J Mol Sci 2023; 24:13984. [PMID: 37762292 PMCID: PMC10530541 DOI: 10.3390/ijms241813984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Treatment for sepsis and its complications in the clinic is primarily in the forms of antibiotics, anti-inflammatory agents, and antioxidant drugs. Kombucha, a traditional fermented beverage rich in tea polyphenols and organic acids, offers several benefits including bacteriostasis, anti-inflammation ability, and boosting the immune system. Currently, research on kombucha is primarily focused on its antibacterial and antioxidant properties; however, in-depth exploration of the involved mechanisms is lacking. Herein, turmeric, Paeoniae alba, and black tea were used as fermentation substrates to detect the bacteriostatic and antioxidant activities of the fermentation broth and evaluate its anti-inflammatory effects on RAW264.7 cells stimulated by lipopolysaccharides (LPSs). The results showed that fermentation enhanced the antibacterial activity of turmeric against E. coli and S. aureus and that of Paeoniae alba against S. aureus. Turmeric black tea exhibited the highest antioxidant activity. The fermentation broth of turmeric and turmeric black tea significantly reduced the expression of inflammatory cytokines induced by LPSs. Our results showed that using turmeric and Paeoniae alba culture media as substrates can enhance the anti-inflammatory effects of fermentation broth and provide a new strategy for developing anti-inflammatory substances.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Qingqing Tan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bilal Abbas
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China; (Q.T.); (S.W.); (B.A.)
- Fujian Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
34
|
Cheng Y, Huang X, Li L, Liu L, Zhang C, Fan X, Xie Y, Zou Y, Geng Z, Huang C. Effects of Solid Fermentation on Polygonatum cyrtonema Polysaccharides: Isolation, Characterization and Bioactivities. Molecules 2023; 28:5498. [PMID: 37513370 PMCID: PMC10384955 DOI: 10.3390/molecules28145498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Polygonati Rhizoma is a widely used traditional Chinese medicine (TCM) with complex pre-processing steps. Fermentation is a common method for processing TCM to reduce herb toxicity and enhance their properties and/or produce new effects. Here, in this study, using Bacillus subtilis and Saccharomyces cerevisiae, we aimed to evaluate the potential application of solid fermentation in isolating different functional polysaccharides from Polygonatum cyrtonema Hua. With hot water extraction, ethanol precipitation, DEAE anion exchange chromatography and gel filtration, multiple neutral and acidic polysaccharides were obtained, showing different yields, content, compositions and functional groups after fermentation. Combining in vitro experiments and in vivo aging and immunosuppressed mouse models, we further compared the antioxidant and immunomodulating bioactivities of these polysaccharides and found a prominent role of a natural polysaccharide (BNP) from fermented P. cyrtonema via Bacillus subtilis in regulating intestinal antioxidant defense and immune function, which may be a consequence of the ability of BNP to modulate the homeostasis of gut microbiota. Thus, this work provides evidence for the further development and utilization of P. cyrtonema with fermentation, and reveals the potential values of BNP in the treatment of intestinal disorders.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Xueyuan Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Liu
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Chunsheng Zhang
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Xiang Fan
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Yu Xie
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Yuanfeng Zou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhe Geng
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 611130, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
35
|
Wan P, Liu H, Zhu Y, Xin H, Ma Y, Chen Z. Effects of Polygonatum sibiricum on Physicochemical Properties, Biological Compounds, and Functionality of Fermented Soymilk. Foods 2023; 12:2715. [PMID: 37509807 PMCID: PMC10379452 DOI: 10.3390/foods12142715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this study was to investigate the effects of Polygonatum sibiricum (P. sibiricum) on microbial fermentation, physicochemical properties, and functional properties of fermented soymilk. Three types of fermented soymilk were prepared. The first type was fermented directly from regular soymilk (fermented soymilk, FSM), and the other two were fermented after adding P. sibiricum (P. sibiricum fermented soymilk, P-FSM) or P. sibiricum polysaccharides (P. sibiricum polysaccharides fermented soymilk, PP-FSM). The differences in physical and chemical indexes such as pH value, acidity, and water-holding capacity were mainly compared, and the differences in the contents of functional components such as total phenols, total flavonoids, soy isoflavones, γ-aminobutyric acid, and organic acids were compared. The functionalities of the three samples in terms of antioxidant activity were evaluated, and the relevance of each active substance was explored. Compared with the FSM group, the addition of P. sibiricum and P. sibiricum polysaccharides could not only significantly promote the fermentation of Lactobacillus but also significantly improve the stability of the finished products during storage and prolong the shelf life of the finished product. The conversion rates of glycoside soybean isoflavones in the PP-FSM and P-FSM groups were 73% and 69%, respectively, which were significantly higher than those in the FSM group (64%). At the end of fermentation, the γ-aminobutyric acid contents of the PP-FSM and P-FSM groups were 383.66 ± 1.41 mg/L and 386.27 ± 3.43 mg/L, respectively, while that of the FSM group was only 288.66 ± 3.94 mg/L. There were also great differences in the content and types of organic acids among the three samples, especially lactic acid and acetic acid. By comparing the antioxidant capacity of DPPH (1,1-Diphenyl-2-picrylhydrazyl free radical), AB-TS (2,2'-Azinobis-3-ethylbenzthiazoline-6-sulphonate), and iron chelation, it was found that both PP-FSM and P-FSM were superior to FSM, and the antioxidant capacity had a certain correlation with the contents of total phenols and total flavonoids.
Collapse
Affiliation(s)
- Peng Wan
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Han Liu
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yuanyuan Zhu
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Haitao Xin
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473000, China
| | - Zhizhou Chen
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
36
|
Liu S, Li K, Zhao Y, Wang W, Bao J, Wang X, Shi L, Zhou L, Fu Q. Fermented Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer alleviates diabetic erectile dysfunction by attenuating oxidative stress and regulating PI3K/Akt/eNOS pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116249. [PMID: 36775080 DOI: 10.1016/j.jep.2023.116249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Gynochthodes officinalis (F.C.How) Razafim. & B.Bremer (G. officinalis) has been historically as tonics to treat impotence. Fermentation is an ancient processing method for traditional Chinese medicine. Whether fermentation affects the therapeutic effects of G. officinalis on diabetic erectile dysfunction has so far remained unknown. AIMS OF THE STUDY In this research, we aim to determine the effect of fermented or unfermented G. officinalis root extract on diabetes mellitus-induced erectile dysfunction (DMED) and the potential mechanisms. MATERIALS AND METHODS Candida sp. B5, Lactobacillus sp. Y5 and Lactobacillus sp. R2 are applied for the fermentation of G. officinalis. The optimum fermentation conditions of G. officinalis are investigated. Sprague-Dawley rats were used to establish a diabetic erectile dysfunction model, treated with different concentrations of fermented or unfermented G. officinalis, to compare the effect of fermented or unfermented G. officinalis on DMED and explore underlying mechanisms by assessment of intracavernous pressure, ELISA, Western blot, Masson's trichrome staining, and immunofluorescence. The corpus cavernosum smooth muscle cells (CCSMCs) and Schwann cells were isolated and used to investigate the effect of fermented or unfermented G. officinalis on hydrogen peroxide (H2O2)-induced apoptosis. RESULTS The results reveal the optimum fermentation conditions of G. officinalis using Lactobacillus sp. Y5 were determined to be 35 °C, the ratio of solid to liquid 1:10, and six days of fermentation. The fermentation increases the abundance of major active ingredients within G. officinalis. After fermented or unfermented G. officinalis treatment for eight weeks by oral gavage at a dose of 100 mg kg-1 or 300 mg kg-1, the results show that the fermentation enhances the effect of G. officinalis on diabetic erectile dysfunction detected by intracavernous pressure. The protein expressions of the PI3K/Akt/eNOS pathway were upregulated in diabetic rats after fermented or unfermented G. officinalis treatment, while the level of oxidative stress was significantly reduced. Meanwhile, Masson's trichrome staining also displayed an improvement in the ratio of smooth muscle to collagen. In vitro experiments confirmed that fermented or unfermented G. officinalis protected CCSMCs and Schwann cells from apoptosis. In contrast, fermented G. officinalis showed a fortified protective effect over unfermented G. officinalis. CONCLUSION Our findings suggest that fermentation can increase the composition of main active ingredients in G. officinalis and enhance its role in diabetic erectile dysfunction. It augurs the potential therapeutic application of fermented G. officinalis well for treating diabetic erectile dysfunction.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Kefan Li
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Yanfen Zhao
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Wenbo Wang
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Xinxin Wang
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China
| | - Liwen Shi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Lei Zhou
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
37
|
Zhang X, Miao Q, Pan C, Yin J, Wang L, Qu L, Yin Y, Wei Y. Research advances in probiotic fermentation of Chinese herbal medicines. IMETA 2023; 2:e93. [PMID: 38868438 PMCID: PMC10989925 DOI: 10.1002/imt2.93] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
Chinese herbal medicines (CHM) have been used to cure diseases for thousands of years. However, the bioactive ingredients of CHM are complex, and some CHM natural products cannot be directly absorbed by humans and animals. Moreover, the contents of most bioactive ingredients in CHM are low, and some natural products are toxic to humans and animals. Fermentation of CHM could enhance CHM bioactivities and decrease the potential toxicities. The compositions and functions of the microorganisms play essential roles in CHM fermentation, which can affect the fermentation metabolites and pharmaceutical activities of the final fermentation products. During CHM fermentation, probiotics not only increase the contents of bioactive natural products, but also are beneficial for the host gut microbiota and immune system. This review summarizes the advantages of fermentation of CHM using probiotics, fermentation techniques, probiotic strains, and future development for CHM fermentation. Cutting-edge microbiome and synthetic biology tools would harness microbial cell factories to produce large amounts of bioactive natural products derived from CHM with low-cost, which would help speed up modern CHM biomanufacturing.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Qin Miao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- College of ChemistryZhengzhou UniversityZhengzhouChina
| | - Yulong Yin
- Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of EducationZhengzhou UniversityZhengzhouChina
- Laboratory of Synthetic Biology, Food Laboratory of ZhongyuanZhengzhou UniversityZhengzhouChina
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
38
|
Dong W, Fan Z, Li P, Liu J, Sun G, Peng N, Liang Y, Zhao S. Optimizing the scale-up production of fermented astragalus and its benefits to the performance and egg quality of laying hens. Front Microbiol 2023; 14:1165644. [PMID: 37180273 PMCID: PMC10169715 DOI: 10.3389/fmicb.2023.1165644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Astragalus is a homologous medicine and food that benefits human beings and poultry rearing. Fermented astragalus (FA) is a valuable product obtained by fermentation, but its scale-up production requires optimization and expansion of solid-state fermentation (SSF). In this study, Lactobacillus pentosus Stm was screened as the most suitable LAB strain for fermenting astragalus due to its excellent capacity. After optimization and expansion of SSF, LAB count and lactic acid content reached 206 × 108 cfu/g and 15.0%, respectively. Meanwhile, the content of bioactive compounds in FA was significantly enhanced. Feeding experiments with laying hens indicated that supplementing FA in the diet significantly improved the performance and egg quality, as evidenced by reduced feed-to-egg ratio and egg cholesterol. This was due to the promotion of intestinal health by shifting intestinal microbiota. Therefore, this is a systematical endeavor of producing scaled-up FA with promising potential as a feed additive in the poultry breeding industry.
Collapse
Affiliation(s)
- Weiwei Dong
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhanlei Fan
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Panxian Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Liu
- Hubei Poder Biotechnology Co., Ltd., Huangshi, China
| | - Guoping Sun
- Hubei Poder Biotechnology Co., Ltd., Huangshi, China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shumiao Zhao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
39
|
Ma Q, Chen M, Liu Y, Tong Y, Liu T, Wu L, Wang J, Han B, Zhou L, Hu X. Lactobacillus acidophilus Fermented Dandelion Improves Hyperuricemia and Regulates Gut Microbiota. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Foodborne prevention and treatment of hyperuricemia (HUA) has received widespread attention. Lactic acid bacteria (LAB) can improve intestinal function, while traditional medicine dandelion has the functions of detoxification and detumescence. Whether LAB fermented dandelion has any effects on HUA and the underlying mechanism is not clear. To address these questions, Lactobacillus acidophilus was selected or maximal xanthine oxidase activity. The effect of Lactobacillus acidophilus fermented dandelion (LAFD) on uric acid metabolism was evaluated by the HUA mouse model. Expression levels of UA, BUN, CRE, XOD, and inflammatory factors in serum were detected. Paraffin sections and staining were used to observe the kidney and small intestine, and mRNA expression of GLUT9, URAT1, OAT1, and ABCG2 related to uric acid metabolism were investigated. Furthermore, the intestinal flora was studied by contents of the cecum and high throughput 16S rRNA sequencing. The results showed that LAFD had a significant inhibitory effect on XOD in vitro (p < 0.01). LAFD could reduce the levels of UA, BUN, CRE, XOD, IL-1 β, IL-6, and TNF- α in serum (p < 0.05), thus inhibiting inflammatory reaction, and reducing UA by decreasing the mRNA expression of GLUT9, URAT1 in kidney and increasing the mRNA expression of OAT1 and ABCG2 in kidney and small intestine (p < 0.05). In addition, the 16S rRNA gene sequencing analysis demonstrated that LAFD treatment can help restore the imbalance of the intestinal microbial ecosystem and reverse the changes in Bacterodietes/Firmicutes, Muribaculaceae, Lachnospiraceae in mice with HUA. It is suggested that the mechanism of LAFD in treating HUA may be related to the regulation of the mRNA expressions of GLUT9, URAT1, OAT1, and ABCG2 in the kidney and small intestine, as well as the regulation of intestinal flora, which provides the experimental basis for the development of new plant fermented products.
Collapse
Affiliation(s)
- Qianwen Ma
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingju Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Tong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianfeng Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lele Wu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiliang Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bin Han
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuguang Hu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
40
|
Han GY, Wu XL, Li DM, Cai HR, Zhou JJ, He XB. Chinese Medicine Plaster as A New Treatment for Surgical Site Infection in Patients with Cesarean Delivery: A Randomized, Double-Blind, Controlled Trial. Chin J Integr Med 2023; 29:483-489. [DOI: 10.1007/s11655-023-3730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 03/29/2023]
|
41
|
Aging-Accelerated Mouse Prone 8 (SAMP8) Mice Experiment and Network Pharmacological Analysis of Aged Liupao Tea Aqueous Extract in Delaying the Decline Changes of the Body. Antioxidants (Basel) 2023; 12:antiox12030685. [PMID: 36978933 PMCID: PMC10045736 DOI: 10.3390/antiox12030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Aging and metabolic disorders feedback and promote each other and are closely related to the occurrence and development of cardiovascular disease, type 2 diabetes, neurodegeneration and other degenerative diseases. Liupao tea is a geographical indication product of Chinese dark tea, with a “red, concentrated, aged and mellow” flavor quality. In this study, the aqueous extract of aged Liupao tea (ALPT) administered by continuous gavage significantly inhibited the increase of visceral fat and damage to the intestinal–liver–microbial axis in high-fat modeling of SAMP8 (P8+HFD) mice. Its potential mechanism is that ALPT significantly inhibited the inflammation and aggregation formation pathway caused by P8+HFD, increased the abundance of short-chain fatty acid producing bacteria Alistipes, Alloprevotella and Bacteroides, and had a calorie restriction effect. The results of the whole target metabolome network pharmacological analysis showed that there were 139 potential active components in the ALPT aqueous extract, and the core targets of their actions were SRC, TP53, AKT1, MAPK3, VEGFA, EP300, EGFR, HSP90AA1, CASP3, etc. These target genes were mainly enriched in cancer, neurodegenerative diseases, glucose and lipid metabolism and other pathways of degenerative changes. Molecular docking further verified the reliability of network pharmacology. The above results indicate that Liupao tea can effectively delay the body’s degenerative changes through various mechanisms and multi-target effects. This study revealed that dark tea such as Liupao tea has significant drinking value in a modern and aging society.
Collapse
|
42
|
Fermented Chinese Herbal Medicine Promoted Growth Performance, Intestinal Health, and Regulated Bacterial Microbiota of Weaned Piglets. Animals (Basel) 2023; 13:ani13030476. [PMID: 36766365 PMCID: PMC9913397 DOI: 10.3390/ani13030476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
To investigate the effects of fermented Chinese herbal medicine on growth performance, diarrhea rate, nutrient digestibility, and intestinal health of weaned piglets, and to provide the theoretical basis for applying fermented Chinese herbal medicines to weaned piglet production, a total of 162 weaned and castrated piglets at 25 days of age (Duroc × Landrace × Yorkshire, half male and half female) with an initial body weight of 7.77 ± 0.03 kg were randomly divided into the following three groups according to the principle of similar body weight: basal diet (CON) group, basal diet + 3 kg/t fermented Chinese herbal medicine (LFHM) group, and basal diet + 5 g/kg fermented Chinese herbal medicine (HFHM) group. Each group underwent six replicates and there were nine piglets in each replicate. The experiment lasted 24 days, i.e., 3 days for preliminary feeding, and 21 days for the experiment. From Day 1 of the experiment, the piglets were observed and recorded for diarrhea each day. As compared with the CON group, the results indicated: Following the addition of fermented Chinese herbal medicine, the piglets in the LFHM and HFHM groups increased final weight (FW); average daily feed intake (ADFI); average daily gain (ADG) (p < 0.01); apparent digestibility of crude protein (CP) (p < 0.05); as well as chymotrypsin, α-amylase, and lipase activities (p < 0.01). In addition, α-amylase activity in the LFHM group was higher than that in the HFHM group (p < 0.05); chymotrypsin activity in the LFHM group was lower than that in the HFHM group (p < 0.05); as compared with the CON group, the LFHM and the HFHM increased villus height (VH) and crypt depth (CD) in piglet jejunum; isovaleric acid concentration with the HFHM was higher than those with the CON and the LFHM (p < 0.05), but butyrate concentration with the HFFM was lower than those with the CON and the LFHM (p < 0.05). The high-throughput 16S rRNA sequencing of intestinal microbiota results showed that the LFHM and the HFHM affected the microbial α diversity index in weaned piglet colon (p < 0.01). In conclusion, fermented Chinese herbs can improve the growth performance of weaned piglets by promoting the secretion of intestinal digestive enzymes, changing intestinal microbial diversity, regulating the contents of intestinal short chain fatty acids (SCFAs), promoting intestinal health, and improving nutrients digestibility.
Collapse
|
43
|
Zhou X, Zhao Y, Dai L, Xu G. Bacillus subtilis and Bifidobacteria bifidum Fermentation Effects on Various Active Ingredient Contents in Cornus officinalis Fruit. Molecules 2023; 28:molecules28031032. [PMID: 36770698 PMCID: PMC9920020 DOI: 10.3390/molecules28031032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Microbial fermentation has been widely used to improve the quality and functional composition of food and edibles; however, the approach has rarely been applied to traditional Chinese medicines. In this study, to understand the effect of microbial fermentation on the active ingredients of traditional Chinese medicines, we used Bifidobacterium bifidum and Bacillus subtilis to ferment the traditional Chinese medicine, Cornus officinalis fruit (COF), and determined the levels of active ingredients using HPLC (high-performance liquid chromatography). According to the results, both B. subtilis and B. bifidum substantially increased the amount of gallic acid in the COF culture broth after fermentation; however, the two species of bacteria had no effect on the loganin content. Moreover, the B. subtilis fermentation reduced the contents of ursolic acid and oleanolic acid in the COF broth, whereas the B. bifidum fermentation did not. This study contributes to a better understanding of the mechanism by which microbial fermentation alters the active ingredient levels of traditional Chinese medicines, and suggests that fermentation may potentially improve their functional ingredients.
Collapse
Affiliation(s)
- Xiuren Zhou
- Department of Biotechnology, School of Life Science and Technology, Henan Institute of Science and Technology, Hualan Road 90#, Xinxiang 453002, China
- Correspondence: ; Tel.: +86-373-3040337
| | - Yimin Zhao
- Guangxi Botanical Garden of Medicinal Plants, Changgang Road 189#, Nanning 530010, China
| | - Lei Dai
- Department of Biotechnology, School of Life Science and Technology, Henan Institute of Science and Technology, Hualan Road 90#, Xinxiang 453002, China
| | - Guifang Xu
- Department of Biotechnology, School of Life Science and Technology, Henan Institute of Science and Technology, Hualan Road 90#, Xinxiang 453002, China
| |
Collapse
|
44
|
Lv W, Ma Y, Zhang Y, Wang T, Huang J, He S, Du H, Guo S. Effects of Lactobacillus plantarum fermented Shenling Baizhu San on gut microbiota, antioxidant capacity, and intestinal barrier function of yellow-plumed broilers. Front Vet Sci 2023; 10:1103023. [PMID: 36908522 PMCID: PMC9992544 DOI: 10.3389/fvets.2023.1103023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The current study focused on the effects of Shenling Baizhu San (SLBZS) fermented by Lactobacillus plantarum (L. plantarum) on gut microbiota, antioxidant capacity, and intestinal barrier function of yellow-plumed broilers. Our results showed that the content of ginsenoside Rb1 was the highest when SLBZS were inoculated with 3% L. plantarum and fermented at 28°C for 24 h. One-day-old male broilers were divided into five treatment groups. Treatment consisted of a basal diet as a control (Con), 0.1% unfermented SLBZS (U-SLBZS), 0.05% fermented SLBZS (F-SLBZS-L), 0.1% fermented SLBZS (F-SLBZS-M), and 0.2% fermented SLBZS (F-SLBZS-H). On days 14, 28, and 42, six chickens from each group were randomly selected for blood collection and tissue sampling. The results showed that the addition of 0.1% fermented SLBZS could significantly increase average daily feed intake (ADFI) and average daily gain (ADG), and decrease feed conversion ratio (FCR) of broilers. The addition of 0.1 and 0.2% fermented SLBZS significantly increased the lymphoid organ index of broilers on day 28 and 42. The addition of 0.1 and 0.2% fermented SLBZS could improve the antioxidant capacity of broilers. Moreover, the addition of 0.1 and 0.2% fermented SLBZS could significantly increase the villus height/crypt depth of the ileum, and significantly increase the expression of tight junction. In addition, fermentation of SLBZS increase the abundance of Coprococcus, Bifidobacterium and Bilophila in the gut of broilers. These results indicate that the supplementation of fermented SLBZS in the diet could improve the growth performance, lymphoid organ index, antioxidant capacity, and positively affect the intestinal health of broilers.
Collapse
Affiliation(s)
- Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shiqi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongliang Du
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China
| |
Collapse
|
45
|
Wang R, Lin F, Ye C, Aihemaitijiang S, Halimulati M, Huang X, Jiang Z, Li L, Zhang Z. Multi-omics analysis reveals therapeutic effects of Bacillus subtilis-fermented Astragalus membranaceus in hyperuricemia via modulation of gut microbiota. Food Chem 2023; 399:133993. [DOI: 10.1016/j.foodchem.2022.133993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/23/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
46
|
Xie L, Zhang J, Yan H, Cai Y, Xu L. β-elemene induced apoptosis and senescence of triple-negative breast cancer cells through IGF1/IGF1R pathway. Tissue Cell 2022; 79:101914. [DOI: 10.1016/j.tice.2022.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/24/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
47
|
Wang T, Tian XL, Xu XB, Li H, Tian Y, Ma YH, Li XF, Li N, Zhang TT, Sheng YD, Tang QX, Zhang L, Wang CF, Siddiquid SA, Wang LX, Shan XF, Qian AD, Zhang DX. Dietary supplementation of probiotics fermented Chinese herbal medicine Sanguisorba officinalis cultures enhanced immune response and disease resistance of crucian carp (Carassius auratus) against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2022; 131:682-696. [PMID: 36341871 DOI: 10.1016/j.fsi.2022.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Aeromonas hydrophila, a Gram-negative bacterium, is one of the major pathogens causing bacterial sepsis in aquatic animals due to drug resistance and pathogenicity, which could cause high mortality and serious economic losses to the aquaculture. Sanguisorba officinalis (called DiYu in Chinese, DY) is well known as herbal medicine, which could inhibit the growth of pathogenic bacteria, hemostasis and regulate the immune response. Moreover, the active ingredients in DY could remarkably reduce drug resistance. In this study, we investigated the effects of probiotic fermentation cultures on A. hydrophila through in vitro and in vivo experiments. Three lactic acid bacteria, including Lactobacillus rhamnosus (LGG), Lactobacillus casei (LC) and Lactobacillus plantarum (LP), were selected to ferment the Chinese herbal medicine DY. The assays of antagonism showed that all three fermented cultures could influence the ability of A. hydrophila growth, among which L. rhamnosus fermented DY cultures appeared to be the strongest inhibitory effect. In addition, the biofilm determination revealed that L. rhamnosus fermented DY cultures could significantly inhibit the biofilm formation of A. hydrophila compared to the other groups. Furthermore, protease, lecithinase and urease activities were found in the three fermentation cultures. Three probiotics fermented DY cultures were orally administration with crucian carp to evaluate the growth performance, immunological parameters and pathogen resistance. The results showed that the three fermentation cultures could promote the growth performance of crucian carp, and the immunoglobulins, antioxidant-related enzymes and immune-related genes were significantly enhanced. Besides, the results showed that crucian carp received L. rhamnosus (60.87%), L. casei (56.09%) and L. plantarum (41.46%) fermented DY cultures had higher survival rates compared with the control group after infection with A. hydrophila. Meanwhile, the pathological tissue results revealed that the probiotic fermented cultures could largely improve the tissues damage caused by the pathogenic bacteria. In conclusion, this study proved that the fermentation cultures of three probiotics could effectively inhibit the growth of A. hydrophila, regulate the level of immune response and improve the survival rate against A. hydrophila in crucian carp. The present data suggest that probiotic fermented Sanguisorba officinalis act as a potential gut-targeted therapy regimens to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xin-Lei Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xue-Bin Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Ting-Ting Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qian-Xi Tang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Li-Xia Wang
- Animal Disease Prevention and Control Center of Nong'an County, Jilin Province, 130200, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
48
|
Gao S, Shan L, Shi Y, Zhao Y, Mu Q, Cui Y, Chai X, Wang Y. Exploration of the variations of amino acids in Massa Medicata Fermentata and their effects on gastrointestinal diseases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Li R, Zhang Z, Su X, Yu J, Lu L, Liu T. Nontargeted metabolomics study and pharmacodynamic evaluation of bidirectional fermentation for Ganoderma lucidum with Marsdenia tenacissima. Front Pharmacol 2022; 13:1012063. [PMID: 36386222 PMCID: PMC9643841 DOI: 10.3389/fphar.2022.1012063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is one of the malignant tumors with the fastest incidence rate and mortality growth and the greatest threat to human health and life. Marsdenia tenacissima is an antitumor of Chinese medicine. However, Marsdenia tenacissima has low bioavailability in the human body and most of its main active substances are aglycones, such as Tenacigenin A, Tenacigenin B. This study aims to produce biotransformation products rich in pungent saponins by using Marsdenia tenacissima as a fermentation medium of Ganoderma lucidum. Non-targeted metabolomics analysis was carried out on the fermentation products after the optimization process. A total of 249 differential metabolites were detected, and the content of saponins increased from 0.1% to 0.41% and most of them were tenacigenin. Furthermore, the biotransformation of C21 steroidal glycosides in Marsdenia tenacissima was the central reaction in this fermentation process. Pharmacodynamics resewed that the anticancer effect of Marsdenia tenacissima was significantly enhanced after fermentation, mainly through inhibiting the growth and apoptosis of cancer cells.
Collapse
Affiliation(s)
- Runtian Li
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Zhiguang Zhang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Xinxin Su
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Jiaoneng Yu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Lin Lu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- *Correspondence: Tongxiang Liu,
| |
Collapse
|
50
|
Luo S, Zhou L, Jiang X, Xia Y, Huang L, Ling R, Tang S, Zou Z, Chen C, Qiu J. Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice. Front Pharmacol 2022; 13:1015005. [PMID: 36313282 PMCID: PMC9616603 DOI: 10.3389/fphar.2022.1015005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Asparagus cochinchinensis is a valuable traditional Chinese medicine that has anti-inflammatory ability and effectively regulates the dysbiosis within the body. Obesity is usually characterized by chronic low-grade inflammation with aberrant gut microbiota. However, the role of Asparagus cochinchinensis against obesity remains unknown. Therefore, a high-fat diet (HFD)-induced obese mouse model with or without aqueous extract from Asparagus cochinchinensis root (ACE) treatment was established herein to determine whether ACE alleviated obesity and its involved mechanisms. Our results showed that ACE administration significantly decreased the weight gain and relieved dyslipidemia induced by HFD Treatment of ACE also improved glucose tolerance and insulin resistance in obese animal model, and remarkably decreased inflammation and lipogenesis in the liver and adipose. Moreover, administration of ACE significantly reshaped the gut microbiota of obese mice. These findings together suggest that ACE has beneficial effect against HFD-induced obesity and will provide valuable insights for the therapeutic potential of ACE against obesity and may aid in strategy-making for weight loss.
Collapse
Affiliation(s)
- Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yinyin Xia
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lishuang Huang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Run Ling
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhen Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|