1
|
Wang L, Qin N, Shi L, Liu R, Zhu T. Gut Microbiota and Tryptophan Metabolism in Pathogenesis of Ischemic Stroke: A Potential Role for Food Homologous Plants. Mol Nutr Food Res 2024; 68:e2400639. [PMID: 39551995 DOI: 10.1002/mnfr.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/15/2024] [Indexed: 11/19/2024]
Abstract
SCOPE The intestinal flora is involved in the maintenance of human health and the development of diseases, and is closely related to the brain. As an essential amino acid, tryptophan (TRP) participates in a variety of physiological functions in the body and affects the growth and health of the human body. TRP catabolites produced by the gut microbiota are important signaling molecules for microbial communities and host-microbe interactions, and play an important role in maintaining health and disease pathogenesis. METHODS AND RESULTS The review first demonstrates the evidence of TRP metabolism in stroke and the relationship between gut microbiota and TRP metabolism. Furthermore, the review reveals that food homologous plants (FHP) bioactive compounds have been shown to regulate various metabolic pathways of the gut microbiota, including the biosynthesis of valine, leucine, isoleucine, and vitamin B6 metabolism. The most notable metabolic alteration is in TRP metabolism. CONCLUSION The interaction between gut microbiota and TRP metabolism offers a plausible explanation for the notable bioactivities of FHP in the treatment of ischemic stroke (IS). This review enhances the comprehension of the underlying mechanisms associated with the bioactivity of FHP on IS.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Na Qin
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Liuliu Shi
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Rujuan Liu
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, PR China
| | - Ting Zhu
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
2
|
Cheng WW, Liu BH, Hou XT, Meng H, Wang D, Zhang CH, Yuan S, Zhang QG. Natural Products on Inflammatory Bowel Disease: Role of Gut Microbes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1275-1301. [PMID: 39192679 DOI: 10.1142/s0192415x24500514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Inflammatory bowel disease (IBD) refers to long-term medical conditions that involve inflammation of the digestive tract, and the global incidence and prevalence of IBD are on the rise. Gut microbes play an important role in maintaining the intestinal health of the host, and the occurrence, development, and therapeutic effects of IBD are closely related to the structural and functional changes of gut microbes. Published studies have shown that the natural products from traditional Chinese medicine have direct or indirect regulatory impacts on the composition and metabolism of the gut microbes. In this review, we summarize the research progress of several groups of natural products, i.e., flavonoids, alkaloids, saponins, polysaccharides, polyphenols, and terpenoids, for the therapeutic activities in relieving IBD symptoms. The role of gut microbes and their intestinal metabolites in managing the IBD is presented, with focusing on the mechanism of action of those natural products. Traditional Chinese medicine alleviated IBD symptoms by regulating gut microbes, providing important theoretical and practical basis for the treatment of variable inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Wen-Wen Cheng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Bao-Hong Liu
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Xiao-Ting Hou
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Huan Meng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Dan Wang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Cheng-Hao Zhang
- Department of Oral Teaching and Research, Yanbian University College of Medicine, Yanji, Jilin Province 133002, P. R. China
| | - Shuo Yuan
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, P. R. China
| | - Qing-Gao Zhang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| |
Collapse
|
3
|
Bai H, Zhang Z, Zhu M, Sun Y, Wang Y, Li B, Wang Q, Kuang H. Research progress of treating hyperuricemia in rats and mice with traditional Chinese medicine. Front Pharmacol 2024; 15:1428558. [PMID: 39101136 PMCID: PMC11294118 DOI: 10.3389/fphar.2024.1428558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Hyperuricemia (HUA) is a common chronic metabolic disease caused by abnormal purine metabolism and uric acid excretion. Despite extensive research on HUA, no clear treatment has been found so far. Improving purine metabolism and promoting uric acid excretion is crucial for the effective treatment of HUA. In recent years, traditional Chinese medicine and traditional Chinese medicine prescriptions have shown good effects in treating HUA. This article summarizes the latest progress in treating HUA in rats and mice using traditional Chinese medicine and prescriptions, elaborates on the pathogenesis of HUA, explores the application of commonly used traditional Chinese medicine treatment methods and prescriptions, and discusses the previous pharmacological mechanisms. In general, our research indicates that traditional Chinese medicine can effectively relieve the symptoms related to elevated uric acid levels in HUA rats and mice. However, further exploration and research are needed to verify its efficacy, safety, and feasibility.
Collapse
Affiliation(s)
- Haodong Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Zidong Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Yimeng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Biao Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Qiuhong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Zhang W, Yu L, Yang Q, Zhang J, Wang W, Hu X, Li J, Zheng G. Smilax China L. polysaccharide prevents HFD induced-NAFLD by regulating hepatic fat metabolism and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155478. [PMID: 38452696 DOI: 10.1016/j.phymed.2024.155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The increasing incidence of nonalcoholic fatty liver disease (NAFLD) has urged the development of new therapeutics. NAFLD is intimately linked to gut microbiota due to the hepatic portal system, and utilizing natural polysaccharides as prebiotics has become a prospective strategy for preventing NAFLD. Smilax china L. polysaccharide (SCP) possesses excellent hepatoprotective and anti-inflammatory activity. However, its protective effects on NAFLD remains unclear. PURPOSE The goal of this study was to explore the protective effects of SCP on high-fat diet (HFD)-induced NAFLD mice by regulating hepatic fat metabolism and gut microbiota. METHODS Extraction and isolation from Smilax china L. rhizome to obtain SCP. C57BL/6 J mice were distributed to six groups: Control (normal chow diet), HFD-fed mice were assigned to HFD, simvastatin (SVT), and low-, medium-, high-doses of SCP for 12 weeks. The body, liver, and different adipose tissues weights were detected, and lipids in serum and liver were assessed. RT-PCR and Western blot were used to detect the hepatic fat metabolism-related genes and proteins. Gut microbiota of cecum contents was profiled through 16S rRNA gene sequencing. RESULTS SCP effectively reversed HFD-induced increase weights of body, liver, and different adipose tissues. Lipid levels of serum and liver were also significantly reduced after SCP intervention. According to the results of RT-PCR and western blot analysis, SCP treatment up-regulated the genes and proteins related to lipolysis were up-regulated, while lipogenesis-related genes and proteins were down-regulated. Furthermore, the HFD-induced dysbiosis of intestinal microbiota was similarly repaired by SCP intervention, including enriching beneficial bacteria and depleting harmful bacteria. CONCLUSION SCP could effectively prevent HFD-induced NAFLD, might be considered as a prebiotic agent due to its excellent effects on altering hepatic fat metabolism and maintaining gut microbiota homeostasis.
Collapse
Affiliation(s)
- Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Longhui Yu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinru Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jinfeng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Wenjing Wang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xinru Hu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jingen Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
5
|
Shi G, Tai T, Miao Y, Yan L, Han T, Dong H, Liu Z, Cheng T, Liu Y, Yang Y, Fei S, Pang B, Chen T. The antagonism mechanism of astilbin against cadmium-induced injury in chicken lungs via Treg/Th1 balance signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116364. [PMID: 38657461 DOI: 10.1016/j.ecoenv.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The purpose of this study was to investigate the effect of Treg/Th1 imbalance in cadmium-induced lung injury and the potential protective effect of astilbin against cadmium-induced lung injury in chicken. Cadmium exposure significantly decreased T-AOC and GSH-Px levels and SOD activity in the chicken lung tissues. In contrast, it significantly increased the MDA and NO levels. These results indicate that cadmium triggers oxidative stress in lungs. Histopathological analysis revealed that cadmium exposure further induced infiltration of lymphocytes in the chicken lungs, indicating that cadmium causes pulmonary damage. Further analysis revealed that cadmium decreased the expression of IL-4 and IL-10 but increased those of IL-17, Foxp3, TNF-α, and TGF-β, indicating that the exposure of cadmium induced the imbalance of Treg/Th1. Moreover, cadmium adversely affected chicken lung function by activating the NF-kB pathway and inducing expression of genes downstream to these pathways (COX-2, iNOS), associated with inflammatory injury in the lung tissue. Astilbin reduced cadmium-induced oxidative stress and inflammation in the lungs by increasing antioxidant enzyme activities and restoring Treg/Th1 balance. In conclusion, our results suggest that astilbin treatment alleviated the effects of cadmium-mediated lung injury in chickens by restoring the Treg/Th1 balance.
Collapse
Affiliation(s)
- Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Miao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Liangchun Yan
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Tianyu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Han Dong
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Zhaoyang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yiding Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Shanshan Fei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Pang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tiezhu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu 610041, China.
| |
Collapse
|
6
|
Zou M, Liang Q, Zhang W, Liang J, Zhu Y, Xu Y. Diet-derived circulating antioxidants and risk of inflammatory bowel disease: a Mendelian randomization study and meta-analysis. Front Immunol 2024; 15:1334395. [PMID: 38449867 PMCID: PMC10915022 DOI: 10.3389/fimmu.2024.1334395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Background Previous studies have shown conflicting results regarding the impact of circulating antioxidants on the risk of inflammatory bowel disease (IBD). In this study, our intent was to investigate the causal relationship between circulating antioxidants and IBD using Mendelian randomization (MR). Methods Instrumental variables for absolute circulating antioxidants (ascorbate, retinol, lycopene, and β-carotene) and circulating antioxidant metabolites (α-tocopherol, γ-tocopherol, ascorbate, and retinol) were screened from published studies. We obtained outcome data from two genome-wide association study (GWAS) databases, including the international inflammatory bowel disease genetics consortium (IIBDGC, 14,927 controls and 5,956 cases for Crohn's disease (CD), 20,464 controls and 6,968 cases for ulcerative colitis (UC), and 21,770 controls and 12,882 cases for IBD) and the FinnGen study (375,445 controls and 1,665 cases for CD, 371,530 controls and 5,034 cases for UC, and 369,652 controls and 7,625 cases for IBD). MR analysis was performed in each of the two databases and those results were pooled using meta-analysis to assess the overall effect of exposure on each phenotype. In order to confirm the strength of the findings, we additionally conducted a replication analysis using the UK Biobank. Results In the meta-analysis of the IIBDGC and FinnGen, we found that each unit increase in absolute circulating level of retinol was associated with a 72% reduction in the risk of UC (OR: 0.28, 95% CI: 0.10 to 0.78, P=0.015). The UC GWAS data from the UK Biobank also confirmed this causal relationship (OR: 0.99, 95% CI: 0.97 to 1.00, P=0.016). In addition, there was suggestive evidence that absolute retinol level was negatively associated with IBD (OR: 0.41, 95% CI: 0.18 to 0.92, P=0.031). No other causal relationship was found. Conclusion Our results provide strong evidence that the absolute circulating level of retinol is associated with a reduction in the risk of UC. Further MR studies with more instrumental variables on circulating antioxidants, especially absolute circulating antioxidants, are needed to confirm our results.
Collapse
Affiliation(s)
- Menglong Zou
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qiaoli Liang
- Department of Oncology, Doumen Qiaoli Hospital of Traditional Chinese Medicine, Zhuhai, China
| | - Wei Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junyao Liang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
7
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Kong L, Xu M, Yang L, Liu S, Zheng G. Smilax china Polyphenols Stimulate Browning via [Formula: see text]3-Adrenergic Receptor/AMP-Activated Protein Kinase [Formula: see text] Signaling Pathway in 3T3-L1 Adipocytes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1315-1329. [PMID: 35642460 DOI: 10.1142/s0192415x22500550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of this study is to investigate the molecular mechanism of Smilax china L. polyphenols (SCLPs) in enhancing lipid metabolism and stimulating browning to reduce lipid accumulation in 3T3-L1 adipocytes. SCLP treatment obviously decreased lipid content in a dose-dependent manner (10-40 μg/mL) in adipocytes. SCLP treatment cooperated with noradrenalin to increase lipolysis. SCLPs reduced the gene expressions of C/EBP[Formula: see text] and Ap2 and enhanced the expressions of ACO, CPT, pHSL/HSL, ATGL, and PKA in adipocytes. Furthermore, SCLPs increased mRNA and protein expressions of brown adipocyte-specific factors (UCP-1, PRDM16, PGC-1α, and PPARγ) and mRNA expressions of beige adipocyte-specific markers (CD137, Tbx1, and Tmem26) in 3T3-L1 adipocytes, as well as mitochondrial biogenesis genes (Nrf1 and Tfam). In addition, according to the immunofluorescence staining, the mitochondria number was increased by SCLP. Moreover, β3-AR or AMPK agonist synergistic SCLPs enhanced the expressions of UCP-1, PRDM16, and PGC-1α. While β3-AR or AMPK antagonist significantly decreased the expressions of these brown adipocyte-specific factors, SCLP treatment inhibited the effect of antagonist to improve the expression of UCP-1, PRDM16, and PGC-1α. These results indicated that SCLPs may regulate lipid metabolism and stimulate browning via the β3-AR/AMPKα signaling pathway. Thus, SCLPs likely have potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Li Kong
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Meng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Licong Yang
- School of Biological Science and Engineering, Fuzhou University, 2 North Wulongjiang Avenue, Fuzhou, Fujian 350108, P. R. China
| | - Shanshan Liu
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| |
Collapse
|