1
|
Freches A, Fradinho JC. The biotechnological potential of the Chloroflexota phylum. Appl Environ Microbiol 2024; 90:e0175623. [PMID: 38709098 PMCID: PMC11218635 DOI: 10.1128/aem.01756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
In the next decades, the increasing material and energetic demand to support population growth and higher standards of living will amplify the current pressures on ecosystems and will call for greater investments in infrastructures and modern technologies. A valid approach to overcome such future challenges is the employment of sustainable bio-based technologies that explore the metabolic richness of microorganisms. Collectively, the metabolic capabilities of Chloroflexota, spanning aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthesis, and utilization of toxic compounds as electron acceptors, underscore the phylum's resilience and ecological significance. These diverse metabolic strategies, driven by the interplay between temperature, oxygen availability, and energy metabolism, exemplify the complex adaptations that enabled Chloroflexota to colonize a wide range of ecological niches. In demonstrating the metabolic richness of the Chloroflexota phylum, specific members exemplify the diverse capabilities of these microorganisms: Chloroflexus aurantiacus showcases adaptability through its thermophilic and phototrophic growth, whereas members of the Anaerolineae class are known for their role in the degradation of complex organic compounds, contributing significantly to the carbon cycle in anaerobic environments, highlighting the phylum's potential for biotechnological exploitation in varying environmental conditions. In this context, the metabolic diversity of Chloroflexota must be considered a promising asset for a large range of applications. Currently, this bacterial phylum is organized into eight classes possessing different metabolic strategies to survive and thrive in a wide variety of extreme environments. This review correlates the ecological role of Chloroflexota in such environments with the potential application of their metabolisms in biotechnological approaches.
Collapse
Affiliation(s)
- André Freches
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana Costa Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
2
|
Mazzoni C, Piacentini A, Di Bella L, Aldega L, Perinelli C, Conte AM, Ingrassia M, Ruspandini T, Bonfanti A, Caraba B, Falese FG, Chiocci FL, Fazi S. Carbonate precipitation and phosphate trapping by microbialite isolates from an alkaline insular lake (Bagno dell'Acqua, Pantelleria Island, Italy). Front Microbiol 2024; 15:1391968. [PMID: 38841062 PMCID: PMC11150794 DOI: 10.3389/fmicb.2024.1391968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The Bagno dell'Acqua lake is characterized by CO2 emissions, alkaline waters (pH = 9) and Eh values which indicate strongly oxidizing conditions. A typical feature of the lake is the presence of actively growing microbialites rich in calcium carbonates and silica precipitates. Mineralogy, petrography and morphology analyses of the microbialites were coupled with the analysis of the microbial community, combining molecular and cultivation approaches. The DNA sequencing revealed distinct patterns of microbial diversity, showing pronounced differences between emerged and submerged microbialite, with the upper layer of emerged samples exhibiting the most distinctive composition, both in terms of prokaryotes and eukaryotes. In particular, the most representative phyla in the microbial community were Proteobacteria, Actinobacteriota, and Bacteroidota, while Cyanobacteria were present only with an average of 5%, with the highest concentration in the submerged intermediate layer (12%). The role of microorganisms in carbonate mineral formation was clearly demonstrated as most of the isolates were able to precipitate calcium carbonate and five of them were characterized at molecular level. Interestingly, when microbial isolates were cultivated only in filtered water, the precipitation of hazenite was observed (up to 85%), opening new prospective in P (phosphate) recovery from P depleted environments.
Collapse
Affiliation(s)
- Cristina Mazzoni
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
| | - Agnese Piacentini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
| | - Letizia Di Bella
- Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Aldega
- Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Aida Maria Conte
- Institute of Environmental Geology and Geoengineering, National Research Council (IGAG-CNR), Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | - Michela Ingrassia
- Institute of Environmental Geology and Geoengineering, National Research Council (IGAG-CNR), Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | - Tania Ruspandini
- Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Bonfanti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Benedetta Caraba
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesco Giuseppe Falese
- Institute of Environmental Geology and Geoengineering, National Research Council (IGAG-CNR), Department of Earth Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Stefano Fazi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, Rome, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
3
|
Tomasch J, Kopejtka K, Bílý T, Gardiner AT, Gardian Z, Shivaramu S, Koblížek M, Kaftan D. A photoheterotrophic bacterium from Iceland has adapted its photosynthetic machinery to the long days of polar summer. mSystems 2024; 9:e0131123. [PMID: 38376261 PMCID: PMC10949492 DOI: 10.1128/msystems.01311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
During their long evolution, anoxygenic phototrophic bacteria have inhabited a wide variety of natural habitats and developed specific strategies to cope with the challenges of any particular environment. Expression, assembly, and safe operation of the photosynthetic apparatus must be regulated to prevent reactive oxygen species generation under illumination in the presence of oxygen. Here, we report on the photoheterotrophic Sediminicoccus sp. strain KRV36, which was isolated from a cold stream in north-western Iceland, 30 km south of the Arctic Circle. In contrast to most aerobic anoxygenic phototrophs, which stop pigment synthesis when illuminated, strain KRV36 maintained its bacteriochlorophyll synthesis even under continuous light. Its cells also contained between 100 and 180 chromatophores, each accommodating photosynthetic complexes that exhibit an unusually large carotenoid absorption spectrum. The expression of photosynthesis genes in dark-adapted cells was transiently downregulated in the first 2 hours exposed to light but recovered to the initial level within 24 hours. An excess of membrane-bound carotenoids as well as high, constitutive expression of oxidative stress response genes provided the required potential for scavenging reactive oxygen species, safeguarding bacteriochlorophyll synthesis and photosystem assembly. The unique cellular architecture and an unusual gene expression pattern represent a specific adaptation that allows the maintenance of anoxygenic phototrophy under arctic conditions characterized by long summer days with relatively low irradiance.IMPORTANCEThe photoheterotrophic bacterium Sediminicoccus sp. KRV36 was isolated from a cold stream in Iceland. It expresses its photosynthesis genes, synthesizes bacteriochlorophyll, and assembles functional photosynthetic complexes under continuous light in the presence of oxygen. Unraveling the molecular basis of this ability, which is exceptional among aerobic anoxygenic phototrophic species, will help to understand the evolution of bacterial photosynthesis in response to changing environmental conditions. It might also open new possibilities for genetic engineering of biotechnologically relevant phototrophs, with the aim of increasing photosynthetic activity and their tolerance to reactive oxygen species.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Karel Kopejtka
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Tomáš Bílý
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Alastair T. Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Zdenko Gardian
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Sahana Shivaramu
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - David Kaftan
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
4
|
Thweatt JL, Harman CE, Araújo MN, Marlow JJ, Oliver GC, Sabuda MC, Sevgen S, Wilpiszeki RL. Chapter 6: The Breadth and Limits of Life on Earth. ASTROBIOLOGY 2024; 24:S124-S142. [PMID: 38498824 DOI: 10.1089/ast.2021.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Scientific ideas about the potential existence of life elsewhere in the universe are predominantly informed by knowledge about life on Earth. Over the past ∼4 billion years, life on Earth has evolved into millions of unique species. Life now inhabits nearly every environmental niche on Earth that has been explored. Despite the wide variety of species and diverse biochemistry of modern life, many features, such as energy production mechanisms and nutrient requirements, are conserved across the Tree of Life. Such conserved features help define the operational parameters required by life and therefore help direct the exploration and evaluation of habitability in extraterrestrial environments. As new diversity in the Tree of Life continues to expand, so do the known limits of life on Earth and the range of environments considered habitable elsewhere. The metabolic processes used by organisms living on the edge of habitability provide insights into the types of environments that would be most suitable to hosting extraterrestrial life, crucial for planning and developing future astrobiology missions. This chapter will introduce readers to the breadth and limits of life on Earth and show how the study of life at the extremes can inform the broader field of astrobiology.
Collapse
Affiliation(s)
- Jennifer L Thweatt
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA. (Former)
| | - C E Harman
- Planetary Systems Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - M N Araújo
- Biochemistry Department, University of São Paulo, São Carlos, Brazil
| | - Jeffrey J Marlow
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Gina C Oliver
- Department of Geology, San Bernardino Valley College, San Bernardino, California, USA
| | - Mary C Sabuda
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Biotechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Serhat Sevgen
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin, Turkey
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | |
Collapse
|
5
|
Tsuji JM, Shaw NA, Nagashima S, Venkiteswaran JJ, Schiff SL, Watanabe T, Fukui M, Hanada S, Tank M, Neufeld JD. Anoxygenic phototroph of the Chloroflexota uses a type I reaction centre. Nature 2024; 627:915-922. [PMID: 38480893 PMCID: PMC10972752 DOI: 10.1038/s41586-024-07180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/08/2024] [Indexed: 04/01/2024]
Abstract
Scientific exploration of phototrophic bacteria over nearly 200 years has revealed large phylogenetic gaps between known phototrophic groups that limit understanding of how phototrophy evolved and diversified1,2. Here, through Boreal Shield lake water incubations, we cultivated an anoxygenic phototrophic bacterium from a previously unknown order within the Chloroflexota phylum that represents a highly novel transition form in the evolution of photosynthesis. Unlike all other known phototrophs, this bacterium uses a type I reaction centre (RCI) for light energy conversion yet belongs to the same bacterial phylum as organisms that use a type II reaction centre (RCII) for phototrophy. Using physiological, phylogenomic and environmental metatranscriptomic data, we demonstrate active RCI-utilizing metabolism by the strain alongside usage of chlorosomes3 and bacteriochlorophylls4 related to those of RCII-utilizing Chloroflexota members. Despite using different reaction centres, our phylogenomic data provide strong evidence that RCI-utilizing and RCII-utilizing Chloroflexia members inherited phototrophy from a most recent common phototrophic ancestor. The Chloroflexota phylum preserves an evolutionary record of the use of contrasting phototrophic modes among genetically related bacteria, giving new context for exploring the diversification of phototrophy on Earth.
Collapse
Affiliation(s)
- J M Tsuji
- University of Waterloo, Waterloo, Ontario, Canada.
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.
| | - N A Shaw
- University of Waterloo, Waterloo, Ontario, Canada
| | - S Nagashima
- Tokyo Metropolitan University, Tokyo, Japan
- Kanagawa University, Yokohama, Japan
| | - J J Venkiteswaran
- University of Waterloo, Waterloo, Ontario, Canada
- Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - S L Schiff
- University of Waterloo, Waterloo, Ontario, Canada
| | - T Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - M Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - S Hanada
- Tokyo Metropolitan University, Tokyo, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - M Tank
- Tokyo Metropolitan University, Tokyo, Japan
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - J D Neufeld
- University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
6
|
Ihalainen JA, Dogan B, Kurttila M, Zeng Y, van Elsas JD, Nissinen R. Multifaceted photoreceptor compositions in dual phototrophic systems - A genomic analysis. J Mol Biol 2024; 436:168412. [PMID: 38135178 DOI: 10.1016/j.jmb.2023.168412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
For microbes and their hosts, sensing of external cues is essential for their survival. For example, in the case of plant associated microbes, the light absorbing pigment composition of the plant as well as the ambient light conditions determine the well-being of the microbe. In addition to light sensing, some microbes can utilize xanthorhodopsin based proton pumps and bacterial photosynthetic complexes that work in parallel for energy production. They are called dual phototrophic systems. Light sensing requirements in these type of systems are obviously demanding. In nature, the photosensing machinery follows mainly the same composition in all organisms. However, the specific role of each photosensor in specific light conditions is elusive. In this study, we provide an overall picture of photosensors present in dual phototrophic systems. We compare the genomes of the photosensor proteins from dual phototrophs to those from similar microbes with "single" phototrophicity or microbes without phototrophicity. We find that the dual phototrophic bacteria obtain a larger variety of photosensors than their light inactive counterparts. Their rich domain composition and functional repertoire remains similar across all microbial photosensors. Our study calls further investigations of this particular group of bacteria. This includes protein specific biophysical characterization in vitro, microbiological studies, as well as clarification of the ecological meaning of their host microbial interactions.
Collapse
Affiliation(s)
- Janne A Ihalainen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland.
| | - Batuhan Dogan
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Moona Kurttila
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Yonghui Zeng
- University of Copenhagen, Department of Plant and Environmental Sciences, 2100 Copenhagen, Denmark
| | - Jan Dirk van Elsas
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, 9747 AG Groningen, the Netherlands
| | - Riitta Nissinen
- University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland; University of Turku, Department of Biology, 20500 Turku, Finland
| |
Collapse
|
7
|
Gorlenko V, Savvichev A, Kadnikov V, Rusanov I, Beletsky A, Zakharova E, Kostrikina N, Sigalevich P, Veslopolova E, Pimenov N. A Novel View of the Diversity of Anoxygenic Phototrophic Bacteria Inhabiting the Chemocline of Meromictic Karst Lakes. Microorganisms 2023; 12:13. [PMID: 38276182 PMCID: PMC10820006 DOI: 10.3390/microorganisms12010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
The rates of oxygenic and anoxygenic photosynthesis, the microorganisms responsible for these processes, and the hydrochemical characteristics of the sulfide-containing karst lakes, Black Kichier and Big Kichier (Mari El Republic), were investigated. In these lakes, a plate of anoxygenic phototrophic bacteria (APB) is formed at the upper boundary of sulfide occurrence in the water. The phototrophic community of the chemocline zone was analyzed using a combination of high-throughput sequencing of the 16S rRNA gene fragments and light and electron microscopic techniques. Green-colored Chlorobium clathratiforme were absolutely predominant in both lakes. The minor components included green sulfur bacteria (GSB) Chlorobium spp., symbiotic consortia Chlorochromatium magnum and Pelochromatium roseum, purple sulfur bacteria (PSB) Chromatium okenii, and unidentified phylotypes of the family Chromatiaceae, as well as members of the Chloroflexota: Chloronema sp. and Oscillochloris sp. Based on the results of the molecular analysis, the taxonomic status of Ancalochloris perfilievii and other prosthecate GSB, as well as of the PSB Thiopedia rosea, which were visually revealed in the studied freshwater lakes, is discussed.
Collapse
Affiliation(s)
- Vladimir Gorlenko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Alexander Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Vitaly Kadnikov
- K.G. Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Igor Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Alexey Beletsky
- K.G. Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Elena Zakharova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Nadezhda Kostrikina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Pavel Sigalevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Elena Veslopolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| | - Nikolay Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 117312 Moscow, Russia; (V.G.); (A.S.); (I.R.); (E.Z.); (N.K.); (P.S.); (E.V.); (N.P.)
| |
Collapse
|
8
|
Li L, Huang D, Hu Y, Rudling NM, Canniffe DP, Wang F, Wang Y. Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle. Nat Commun 2023; 14:6450. [PMID: 37833297 PMCID: PMC10576062 DOI: 10.1038/s41467-023-42193-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Photosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction center appears in at least six Myxococcota families from three classes, suggesting vertical inheritance of these genes from an early common ancestor, with multiple independent losses in other lineages. Analysis of metatranscriptomic datasets indicate that the putative myxococcotal photosynthesis genes are actively expressed in various natural environments. Furthermore, heterologous expression of myxococcotal pigment biosynthesis genes in a purple bacterium supports that the genes can drive photosynthetic processes. Given that predatory abilities are thought to be widespread across Myxococcota, our results suggest the intriguing possibility of a chimeric lifestyle (combining predatory and photosynthetic abilities) in members of this phylum.
Collapse
Affiliation(s)
- Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danyue Huang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yaoxun Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nicola M Rudling
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Daniel P Canniffe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Raimi AR, Ezeokoli OT, Adeleke RA. Soil nutrient management influences diversity, community association and functional structure of rhizosphere bacteriome under vegetable crop production. Front Microbiol 2023; 14:1229873. [PMID: 37840710 PMCID: PMC10568080 DOI: 10.3389/fmicb.2023.1229873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Rhizosphere bacterial communities play a crucial role in promoting plant and soil ecosystem health and productivity. They also have great potential as key indicators of soil health in agroecosystems. Various environmental factors affect soil parameters, which have been demonstrated to influence soil microbial growth and activities. Thus, this study investigated how rhizosphere bacterial community structure and functions are affected by agronomic practices such as organic and conventional fertiliser application and plant species types. Methods Rhizosphere soil of vegetable crops cultivated under organic and conventional fertilisers in different farms was analysed using high-throughput sequencing of the 16S rRNA gene and co-occurrence network pattern among bacterial species. The functional structure was analysed with PICRUSt2 pipeline. Results Overall, rhizosphere bacterial communities varied in response to fertiliser type, with soil physicochemical parameters, including NH4, PO4, pH and moisture content largely driving the variations across the farms. Organic farms had a higher diversity richness and more unique amplicon sequence variants than conventional farms. Bacterial community structure in multivariate space was highly differentiated across the farms and between organic and conventional farms. Co-occurrence network patterns showed community segmentation for both farms, with keystone taxa more prevalent in organic than conventional farms. Discussion Module hub composition and identity varied, signifying differences in keystone taxa across the farms and positive correlations between changes in microbial composition and ecosystem functions. The organic farms comprised functionally versatile communities characterised by plant growth-promoting keystone genera, such as Agromyces, Bacillus and Nocardioides. The results revealed that organic fertilisers support high functional diversity and stronger interactions within the rhizosphere bacterial community. This study provided useful information about the overall changes in soil microbial dynamics and how the changes influence ecosystem functioning under different soil nutrient management and agronomic practices.
Collapse
|
10
|
Magnuson E, Altshuler I, Freyria NJ, Leveille RJ, Whyte LG. Sulfur-cycling chemolithoautotrophic microbial community dominates a cold, anoxic, hypersaline Arctic spring. MICROBIOME 2023; 11:203. [PMID: 37697305 PMCID: PMC10494364 DOI: 10.1186/s40168-023-01628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Gypsum Hill Spring, located in Nunavut in the Canadian High Arctic, is a rare example of a cold saline spring arising through thick permafrost. It perennially discharges cold (~ 7 °C), hypersaline (7-8% salinity), anoxic (~ 0.04 ppm O2), and highly reducing (~ - 430 mV) brines rich in sulfate (2.2 g.L-1) and sulfide (9.5 ppm), making Gypsum Hill an analog to putative sulfate-rich briny habitats on extraterrestrial bodies such as Mars. RESULTS Genome-resolved metagenomics and metatranscriptomics were utilized to describe an active microbial community containing novel metagenome-assembled genomes and dominated by sulfur-cycling Desulfobacterota and Gammaproteobacteria. Sulfate reduction was dominated by hydrogen-oxidizing chemolithoautotrophic Desulfovibrionaceae sp. and was identified in phyla not typically associated with sulfate reduction in novel lineages of Spirochaetota and Bacteroidota. Highly abundant and active sulfur-reducing Desulfuromusa sp. highly transcribed non-coding RNAs associated with transcriptional regulation, showing potential evidence of putative metabolic flexibility in response to substrate availability. Despite low oxygen availability, sulfide oxidation was primarily attributed to aerobic chemolithoautotrophic Halothiobacillaceae. Low abundance and transcription of photoautotrophs indicated sulfur-based chemolithoautotrophy drives primary productivity even during periods of constant illumination. CONCLUSIONS We identified a rare surficial chemolithoautotrophic, sulfur-cycling microbial community active in a unique anoxic, cold, hypersaline Arctic spring. We detected Mars-relevant metabolisms including hydrogenotrophic sulfate reduction, sulfur reduction, and sulfide oxidation, which indicate the potential for microbial life in analogous S-rich brines on past and present Mars. Video Abstract.
Collapse
Affiliation(s)
- Elisse Magnuson
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Ianina Altshuler
- MACE Laboratory, ALPOLE, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nastasia J. Freyria
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| | - Richard J. Leveille
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC Canada
- Geosciences Department, John Abbott College, Ste-Anne-de-Bellevue, QC Canada
| | - Lyle G. Whyte
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC Canada
| |
Collapse
|
11
|
Rontani JF, Bonin P. Cellular Damage of Bacteria Attached to Senescent Phytoplankton Cells as a Result of the Transfer of Photochemically Produced Singlet Oxygen: A Review. Microorganisms 2023; 11:1565. [PMID: 37375067 PMCID: PMC10303659 DOI: 10.3390/microorganisms11061565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies set out to explain the presence of high proportions of photooxidation products of cis-vaccenic acid (generally considered to be of bacterial origin) in marine environments. These studies show that these oxidation products result from the transfer of singlet oxygen from senescent phytoplankton cells to the bacteria attached to them in response to irradiation by sunlight. This paper summarizes and reviews the key findings of these studies, i.e., the demonstration of the process at work and the effect of different parameters (intensity of solar irradiance, presence of bacterial carotenoids, and presence of polar matrices such as silica, carbonate, and exopolymeric substances around phytoplankton cells) on this transfer. A large part of this review looks at how this type of alteration of bacteria can affect the preservation of algal material in the marine environment, especially in polar regions where conditions drive increased transfer of singlet oxygen from sympagic algae to bacteria.
Collapse
Affiliation(s)
- Jean-François Rontani
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France;
| | | |
Collapse
|
12
|
Lerch BA, Smith DA, Koffel T, Bagby SC, Abbott KC. How public can public goods be? Environmental context shapes the evolutionary ecology of partially private goods. PLoS Comput Biol 2022; 18:e1010666. [PMID: 36318525 PMCID: PMC9651594 DOI: 10.1371/journal.pcbi.1010666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/11/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The production of costly public goods (as distinct from metabolic byproducts) has largely been understood through the realization that spatial structure can minimize losses to non-producing "cheaters" by allowing for the positive assortment of producers. In well-mixed systems, where positive assortment is not possible, the stable production of public goods has been proposed to depend on lineages that become indispensable as the sole producers of those goods while their neighbors lose production capacity through genome streamlining (the Black Queen Hypothesis). Here, we develop consumer-resource models motivated by nitrogen-fixing, siderophore-producing bacteria that consider the role of colimitation in shaping eco-evolutionary dynamics. Our models demonstrate that in well-mixed environments, single "public goods" can only be ecologically and evolutionarily stable if they are partially privatized (i.e., if producers reserve a portion of the product pool for private use). Colimitation introduces the possibility of subsidy: strains producing a fully public good can exclude non-producing strains so long as the producing strain derives sufficient benefit from the production of a second partially private good. We derive a lower bound for the degree of privatization necessary for production to be advantageous, which depends on external resource concentrations. Highly privatized, low-investment goods, in environments where the good is limiting, are especially likely to be stably produced. Coexistence emerges more rarely in our mechanistic model of the external environment than in past phenomenological approaches. Broadly, we show that the viability of production depends critically on the environmental context (i.e., external resource concentrations), with production of shared resources favored in environments where a partially-privatized resource is scarce.
Collapse
Affiliation(s)
- Brian A. Lerch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Derek A. Smith
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas Koffel
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
| | - Sarah C. Bagby
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karen C. Abbott
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
13
|
Grouzdev D, Gaisin V, Lunina O, Krutkina M, Krasnova E, Voronov D, Baslerov R, Sigalevich P, Savvichev A, Gorlenko V. Microbial communities of stratified aquatic ecosystems of Kandalaksha Bay (White Sea) shed light on the evolutionary history of green and brown morphotypes of Chlorobiota. FEMS Microbiol Ecol 2022; 98:6693937. [PMID: 36073352 DOI: 10.1093/femsec/fiac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
Anoxygenic photoautotrophic metabolism of green sulfur bacteria of the family Chlorobiaceae played a significant role in establishing the Earth's biosphere. Two known major ecological forms of these phototrophs differ in their pigment composition and, therefore, in color: the green and brown forms. The latter form often occurs in low-light environments and is specialized to harvest blue light, which can penetrate to the greatest depth in the water column. In the present work, metagenomic sequencing was used to investigate the natural population of brown Chl. phaeovibrioides ZM in a marine stratified Zeleny Mys lagoon in the Kandalaksha Bay (the White Sea) to supplement the previously obtained genomes of brown Chlorobiaceae. The genomes of brown and green Chlorobiaceae were investigated using comparative genome analysis and phylogenetic and reconciliation analysis to reconstruct the evolution of these ecological forms. Our results support the suggestion that the last common ancestor of Chlorobiaceae belonged to the brown form, i.e. it was adapted to the conditions of low illumination. However, despite the vertical inheritance of these characteristics, among modern Chlorobiaceae populations, the genes responsible for synthesizing the pigments of the brown form are subject to active horizontal transfer.
Collapse
Affiliation(s)
- Denis Grouzdev
- SciBear OU, 10115 Tallinn, Estonia.,School of Marine and Atmospheric Sciences, Stony Brook University, 11794, Stony Brook, USA
| | - Vasil Gaisin
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.,Current affiliation: Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Olga Lunina
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | | | - Elena Krasnova
- Pertsov White Sea Biological Station, 184042, Republic Karelia, Russia
| | - Dmitry Voronov
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 127051, Moscow, Russia
| | - Roman Baslerov
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Pavel Sigalevich
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Alexander Savvichev
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Vladimir Gorlenko
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
14
|
(Meta)Genomic Analysis Reveals Diverse Energy Conservation Strategies Employed by Globally Distributed Gemmatimonadota. mSystems 2022; 7:e0022822. [PMID: 35913193 PMCID: PMC9426454 DOI: 10.1128/msystems.00228-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Gemmatimonadota is a phylum-level lineage distributed widely but rarely reported. Only six representatives of Gemmatimonadota have so far been isolated and cultured in laboratory. The physiology, ecology, and evolutionary history of this phylum remain unknown. The 16S rRNA gene survey of our salt lake and deep-sea sediments, and Earth Microbiome Project (EMP) samples, reveals that Gemmatimonadota exist in diverse environments globally. In this study, we retrieved 17 metagenome-assembled genomes (MAGs) from salt lake sediments (12 MAGs) and deep-sea sediments (5 MAGs). Analysis of these MAGs and the nonredundant MAGs or genomes from public databases reveals Gemmatimonadota can degrade various complex organic substrates, and mainly employ heterotrophic pathways (e.g., glycolysis and tricarboxylic acid [TCA] cycle) for growth via aerobic respiration. And the processes of sufficient energy being stored in glucose through gluconeogenesis, followed by the synthesis of more complex compounds, are prevalent in Gemmatimonadota. A highly expandable pangenome for Gemmatimonadota has been observed, which presumably results from their adaptation to thriving in diverse environments. The enrichment of the Na+/H+ antiporter in the SG8-23 order represents their adaptation to salty habitats. Notably, we identified a novel lineage of the SG8-23 order, which is potentially anoxygenic phototrophic. This lineage is not closely related to the phototrophs in the order of Gemmatimonadales. The two orders differ distinctly in the gene organization and phylogenetic relationship of their photosynthesis gene clusters, indicating photosystems in Gemmatimonadota have evolved in two independent routes. IMPORTANCE The phylum Gemmatimonadota is widely distributed in various environments. However, their physiology, ecology and evolutionary history remain unknown, primary due to the limited cultured isolates and available genomes. We were intrigued to find out how widespread this phylum is, and how it can thrive under diverse conditions. Our results here expand the knowledge of the genetic and metabolic diversity of Gemmatimonadota, and shed light on the diverse energy conservation strategies (i.e., oxidative phosphorylation, substrate phosphorylation, and photosynthetic phosphorylation) responsible for their global distribution. Moreover, gene organization and phylogenetic analysis of photosynthesis gene clusters in Gemmatimonadota provide a valuable insight into the evolutionary history of photosynthesis.
Collapse
|
15
|
Soulier N, Walters K, Laremore TN, Shen G, Golbeck JH, Bryant DA. Acclimation of the photosynthetic apparatus to low light in a thermophilic Synechococcus sp. strain. PHOTOSYNTHESIS RESEARCH 2022; 153:21-42. [PMID: 35441927 DOI: 10.1007/s11120-022-00918-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Depending upon their growth responses to high and low irradiance, respectively, thermophilic Synechococcus sp. isolates from microbial mats associated with the effluent channels of Mushroom Spring, an alkaline siliceous hot spring in Yellowstone National Park, can be described as either high-light (HL) or low-light (LL) ecotypes. Strains isolated from the bottom of the photic zone grow more rapidly at low irradiance compared to strains isolated from the uppermost layer of the mat, which conversely grow better at high irradiance. The LL-ecotypes develop far-red absorbance and fluorescence emission features after growth in LL. These isolates have a unique gene cluster that encodes a putative cyanobacteriochrome denoted LcyA, a putative sensor histidine kinase; an allophycocyanin (FRL-AP; ApcD4-ApcB3) that absorbs far-red light; and a putative chlorophyll a-binding protein, denoted IsiX, which is homologous to IsiA. The emergence of FRL absorbance in LL-adapted cells of Synechococcus sp. strain A1463 was analyzed in cultures responding to differences in light intensity. The far-red absorbance phenotype arises from expression of a novel antenna complex containing the FRL-AP, ApcD4-ApcB3, which is produced when cells were grown at very low irradiance. Additionally, the two GAF domains of LcyA were shown to bind phycocyanobilin and a [4Fe-4S] cluster, respectively. These ligands potentially enable this photoreceptor to respond to a variety of environmental factors including irradiance, redox potential, and/or oxygen concentration. The products of the gene clusters specific to LL-ecotypes likely facilitate growth in low-light environments through a process called Low-Light Photoacclimation.
Collapse
Affiliation(s)
- Nathan Soulier
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Karim Walters
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tatiana N Laremore
- Proteomics and Mass Spectrometry Core Facility, Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, S-002 Frear Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Bennett AC, Murugapiran SK, Kees ED, Sauer HM, Hamilton TL. Temperature and Geographic Location Impact the Distribution and Diversity of Photoautotrophic Gene Variants in Alkaline Yellowstone Hot Springs. Microbiol Spectr 2022; 10:e0146521. [PMID: 35575591 PMCID: PMC9241655 DOI: 10.1128/spectrum.01465-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Alkaline hot springs in Yellowstone National Park (YNP) provide a framework to study the relationship between photoautotrophs and temperature. Previous work has focused on studying how cyanobacteria (oxygenic phototrophs) vary with temperature, sulfide, and pH, but many questions remain regarding the ecophysiology of anoxygenic photosynthesis due to the taxonomic and metabolic diversity of these taxa. To this end, we examined the distribution of genes involved in phototrophy, carbon fixation, and nitrogen fixation in eight alkaline (pH 7.3-9.4) hot spring sites near the upper temperature limit of photosynthesis (71ºC) in YNP using metagenome sequencing. Based on genes encoding key reaction center proteins, geographic isolation plays a larger role than temperature in selecting for distinct phototrophic Chloroflexi, while genes typically associated with autotrophy in anoxygenic phototrophs, did not have distinct distributions with temperature. Additionally, we recovered Calvin cycle gene variants associated with Chloroflexi, an alternative carbon fixation pathway in anoxygenic photoautotrophs. Lastly, we recovered several abundant nitrogen fixation gene sequences associated with Roseiflexus, providing further evidence that genes involved in nitrogen fixation in Chloroflexi are more common than previously assumed. Together, our results add to the body of work on the distribution and functional potential of phototrophic bacteria in Yellowstone National Park hot springs and support the hypothesis that a combination of abiotic and biotic factors impact the distribution of phototrophic bacteria in hot springs. Future studies of isolates and metagenome assembled genomes (MAGs) from these data and others will further our understanding of the ecology and evolution of hot spring anoxygenic phototrophs. IMPORTANCE Photosynthetic bacteria in hot springs are of great importance to both microbial evolution and ecology. While a large body of work has focused on oxygenic photosynthesis in cyanobacteria in Mushroom and Octopus Springs in Yellowstone National Park, many questions remain regarding the metabolic potential and ecology of hot spring anoxygenic phototrophs. Anoxygenic phototrophs are metabolically and taxonomically diverse, and further investigations into their physiology will lead to a deeper understanding of microbial evolution and ecology of these taxa. Here, we have quantified the distribution of key genes involved in carbon and nitrogen metabolism in both oxygenic and anoxygenic phototrophs. Our results suggest that temperature >68ºC selects for distinct groups of cyanobacteria and that carbon fixation pathways associated with these taxa are likely subject to the same selective pressure. Additionally, our data suggest that phototrophic Chloroflexi genes and carbon fixation genes are largely influenced by local conditions as evidenced by our gene variant analysis. Lastly, we recovered several genes associated with potentially novel phototrophic Chloroflexi. Together, our results add to the body of work on hot springs in Yellowstone National Park and set the stage for future work on metagenome assembled genomes.
Collapse
Affiliation(s)
- Annastacia C. Bennett
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Senthil K. Murugapiran
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Eric D. Kees
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Hailey M. Sauer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Trinity L. Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
17
|
Orlandi VT, Martegani E, Giaroni C, Baj A, Bolognese F. Bacterial pigments: A colorful palette reservoir for biotechnological applications. Biotechnol Appl Biochem 2022; 69:981-1001. [PMID: 33870552 PMCID: PMC9544673 DOI: 10.1002/bab.2170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
Synthetic derivatives are currently used instead of pigments in many applicative fields, from food to feed, from pharmaceutical to diagnostic, from agronomy to industry. Progress in organic chemistry allowed to obtain rather cheap compounds covering the whole color spectrum. However, several concerns arise from this chemical approach, as it is mainly based on nonrenewable resources such as fossil oil, and the toxicity or carcinogenic properties of products and/or precursors may be harmful for personnel involved in the productive processes. In this scenario, microorganisms and their pigments represent a colorful world to discover and reconsider. Each living bacterial strain may be a source of secondary metabolites with peculiar functions. The aim of this review is to link the physiological role of bacterial pigments with their potential use in different biotechnological fields. This enormous potential supports the big challenge for the development of strategies useful to identify, produce, and purify the right pigment for the desired application. At the end of this ideal journey through the world of bacterial pigments, the attention will be focused on melanin compounds, whose production relies upon different techniques ranging from natural producers, heterologous hosts, or isolated enzymes. In a green workflow, the microorganisms represent the starting and final point of pigment production.
Collapse
Affiliation(s)
| | - Eleonora Martegani
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| | - Cristina Giaroni
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Andreina Baj
- Department of Medicine and SurgeryUniversity of InsubriaVareseItaly
| | - Fabrizio Bolognese
- Department of Biotechnologies and Life SciencesUniversity of InsubriaVareseItaly
| |
Collapse
|
18
|
Chen H, Li DH, Jiang AJ, Li XG, Wu SJ, Chen JW, Qu MJ, Qi XQ, Dai J, Zhao R, Zhang WJ, Liu SS, Wu LF. Metagenomic analysis reveals wide distribution of phototrophic bacteria in hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:255-267. [PMID: 37073225 PMCID: PMC10077154 DOI: 10.1007/s42995-021-00121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/31/2021] [Indexed: 05/03/2023]
Abstract
Deep-sea hydrothermal vents are known as chemosynthetic ecosystems. However, high temperature vents emit light that hypothetically can drive photosynthesis in this habitat. Metagenomic studies have sporadically reported the occurrence of phototrophic populations such as cyanobacteria in hydrothermal vents. To determine how geographically and taxonomically widespread phototrophs are in deep-sea hydrothermal vents, we collected samples from three niches in a hydrothermal vent on the Southwest Indian Ridge and carried out an integrated metagenomic analysis. We determined the typical community structures of microorganisms found in active venting fields and identified populations of known potential chlorophototrophs and retinalophototrophs. Complete chlorophyll biosynthetic pathways were identified in all samples. By contrast, proteorhodopsins were only found in active beehive smoker diffusers. Taxonomic groups possessing potential phototrophy dependent on semiconductors present in hydrothermal vents were also found in these samples. This systematic comparative metagenomic study reveals the widespread distribution of phototrophic bacteria in hydrothermal vent fields. Our results support the hypothesis that the ocean is a seed bank of diverse microorganisms. Geothermal vent light may provide energy and confer a competitive advantage on phototrophs to proliferate in hydrothermal vent ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00121-y.
Collapse
Affiliation(s)
- Hong Chen
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- University of Chinese Academy of Sciences, Beijing, 100864 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Deng Hui Li
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Ai Jun Jiang
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Xue Gong Li
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Shi Jun Wu
- Zhejiang University, Hangzhou, 310027 China
| | - Jian Wei Chen
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555 China
| | | | - Xiao Qing Qi
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Jie Dai
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- University of Chinese Academy of Sciences, Beijing, 100864 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Rui Zhao
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- University of Chinese Academy of Sciences, Beijing, 100864 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Wei-Jia Zhang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000 China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
| | - Shan Shan Liu
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, IDSTI-CAS/Hainan Deep-Sea Technology Laboratory, Sanya/Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555 China
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France/Sanya, China
- Aix Marseille University, Centre national de la recherche scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, L’ Institut Microbiologie, Bioénergies et Biotechnologie, 13402 Marseille, France
| |
Collapse
|
19
|
Muramatsu S, Hirose S, Iino T, Ohkuma M, Hanada S, Haruta S. Neotabrizicola shimadae gen. nov., sp. nov., an aerobic anoxygenic phototrophic bacterium harbouring photosynthetic genes in the family Rhodobacteraceae, isolated from a terrestrial hot spring. Antonie van Leeuwenhoek 2022; 115:731-740. [PMID: 35380297 DOI: 10.1007/s10482-022-01728-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/06/2022] [Indexed: 11/27/2022]
Abstract
A bacteriochlorophyll-containing bacterium, designated as strain N10T, was isolated from a terrestrial hot spring in Nagano Prefecture, Japan. Gram-stain-negative, oxidase- and catalase-positive and ovoid to rod-shaped cells showed the features of aerobic anoxygenic phototrophic bacteria, i.e., strain N10T synthesised bacteriochlorophylls under aerobic conditions and could not grow anaerobically even under illumination. Genome analysis found genes for bacteriochlorophyll and carotenoid biosynthesis, light-harvesting complexes and type-2 photosynthetic reaction centre in the chromosome. Phylogenetic analyses based on the 16S rRNA gene sequence and 92 core proteins revealed that strain N10T was located in a distinct lineage near the type species of the genera Tabrizicola and Xinfangfangia and some species in the genus Rhodobacter (e.g., Rhodobacter blasticus). Strain N10T shared < 97.1% 16S rRNA gene sequence identity with those species in the family Rhodobacteraceae. The digital DNA-DNA hybridisation, average nucleotide identity and average amino acid identity values with the relatives, Tabrizicola aquatica RCRI19T (an aerobic anoxygenic phototrophic bacterium), Xinfangfangia soli ZQBWT and R. blasticus ATCC 33485T were 19.9-20.7%, 78.2-79.1% and 69.1-70.1%, respectively. Based on the phenotypic features, major fatty acid and polar lipid compositions, genome sequence and phylogenetic position, a novel genus and species are proposed for strain N10T, to be named Neotabrizicola shimadae (= JCM 34381T = DSM 112087T). Strain N10T which is phylogenetically located among aerobic anoxygenic phototrophic bacteria (Tabrizicola), bacteriochlorophyll-deficient bacteria (Xinfangfangia) and anaerobic anoxygenic phototrophic bacteria (Rhodobacter) has great potential to promote studies on the evolution of photosynthesis in Rhodobacteraceae.
Collapse
Affiliation(s)
- So Muramatsu
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Setsuko Hirose
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takao Iino
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-0856, Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
20
|
Sattley WM, Swingley WD, Burchell BM, Dewey ED, Hayward MK, Renbarger TL, Shaffer KN, Stokes LM, Gurbani SA, Kujawa CM, Nuccio DA, Schladweiler J, Touchman JW, Wang-Otomo ZY, Blankenship RE, Madigan MT. Complete genome of the thermophilic purple sulfur Bacterium Thermochromatium tepidum compared to Allochromatium vinosum and other Chromatiaceae. PHOTOSYNTHESIS RESEARCH 2022; 151:125-142. [PMID: 34669148 DOI: 10.1007/s11120-021-00870-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The complete genome sequence of the thermophilic purple sulfur bacterium Thermochromatium tepidum strain MCT (DSM 3771T) is described and contrasted with that of its mesophilic relative Allochromatium vinosum strain D (DSM 180T) and other Chromatiaceae. The Tch. tepidum genome is a single circular chromosome of 2,958,290 base pairs with no plasmids and is substantially smaller than the genome of Alc. vinosum. The Tch. tepidum genome encodes two forms of RuBisCO and contains nifHDK and several other genes encoding a molybdenum nitrogenase but lacks a gene encoding a protein that assembles the Fe-S cluster required to form a functional nitrogenase molybdenum-iron cofactor, leaving the phototroph phenotypically Nif-. Tch. tepidum contains genes necessary for oxidizing sulfide to sulfate as photosynthetic electron donor but is genetically unequipped to either oxidize thiosulfate as an electron donor or carry out assimilative sulfate reduction, both of which are physiological hallmarks of Alc. vinosum. Also unlike Alc. vinosum, Tch. tepidum is obligately phototrophic and unable to grow chemotrophically in darkness by respiration. Several genes present in the Alc. vinosum genome that are absent from the genome of Tch. tepidum likely contribute to the major physiological differences observed between these related purple sulfur bacteria that inhabit distinct ecological niches.
Collapse
Affiliation(s)
- W Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA.
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Brad M Burchell
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Emma D Dewey
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Mackenzie K Hayward
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Tara L Renbarger
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Kathryn N Shaffer
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Lynn M Stokes
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN, 46953, USA
| | - Sonja A Gurbani
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Catrina M Kujawa
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - D Adam Nuccio
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Jacob Schladweiler
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, USA
| | - Jeffrey W Touchman
- School of Life Sciences, Arizona State University, Tempe, AR, 85287, USA
| | | | - Robert E Blankenship
- Departments of Chemistry and Biology, Washington University, St. Louis, MO, 63130, USA
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
21
|
Saini MK, Yoshida S, Sebastian A, Hara E, Tamaki H, Soulier NT, Albert I, Hanada S, Tank M, Bryant DA. Elioraea tepida, sp. nov., a Moderately Thermophilic Aerobic Anoxygenic Phototrophic Bacterium Isolated from the Mat Community of an Alkaline Siliceous Hot Spring in Yellowstone National Park, WY, USA. Microorganisms 2021; 10:80. [PMID: 35056529 PMCID: PMC8781829 DOI: 10.3390/microorganisms10010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Strain MS-P2T was isolated from microbial mats associated with Mushroom Spring, an alkaline siliceous hot spring in Yellowstone National Park, WY, USA. The isolate grows chemoheterotrophically by oxygen-dependent respiration, and light stimulates photoheterotrophic growth under strictly oxic conditions. Strain MS-P2T synthesizes bacteriochlorophyll a and the carotenoid spirilloxanthin. However, photoautotrophic growth did not occur under oxic or anoxic conditions, suggesting that this strain should be classified as an aerobic anoxygenic phototrophic bacterium. Strain MS-P2T cells are motile, curved rods about 0.5 to 1.0 μm wide and 1.0 to 1.5 μm long. The optimum growth temperature is 45-50 °C, and the optimum pH for growth is circum-neutral (pH 7.0-7.5). Sequence analysis of the 16S rRNA gene revealed that strain MS-P2T is closely related to Elioraea species, members of the class Alphaproteobacteria, with a sequence identity of 96.58 to 98%. The genome of strain MS-P2T is a single circular DNA molecule of 3,367,643 bp with a mol% guanine-plus-cytosine content of 70.6%. Based on phylogenetic, physiological, biochemical, and genomic characteristics, we propose this bacteriochlorophyll a-containing isolate is a new species belonging to the genus Elioraea, with the suggested name Elioraeatepida. The type-strain is strain MS-P2T (= JCM33060T = ATCC TSD-174T).
Collapse
Affiliation(s)
- Mohit Kumar Saini
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; (M.K.S.); (S.Y.); (S.H.)
| | - Shohei Yoshida
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; (M.K.S.); (S.Y.); (S.H.)
| | - Aswathy Sebastian
- The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (A.S.); (I.A.)
| | - Eri Hara
- Bioproduction Research Institute—National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba 305-8566, Japan; (E.H.); (H.T.)
| | - Hideyuki Tamaki
- Bioproduction Research Institute—National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba 305-8566, Japan; (E.H.); (H.T.)
| | - Nathan T. Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Istvan Albert
- The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (A.S.); (I.A.)
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; (M.K.S.); (S.Y.); (S.H.)
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan; (M.K.S.); (S.Y.); (S.H.)
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
- DSMZ-German Culture Collection of Microorganisms and Cell Cultures, GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
22
|
Ward LM, Li-Hau F, Kakegawa T, McGlynn SE. Complex History of Aerobic Respiration and Phototrophy in the Chloroflexota Class Anaerolineae Revealed by High-Quality Draft Genome of Ca. Roseilinea mizusawaensis AA3_104. Microbes Environ 2021; 36. [PMID: 34470945 PMCID: PMC8446752 DOI: 10.1264/jsme2.me21020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Roseilinea is a novel lineage of Chloroflexota known only from incomplete metagenome-assembled genomes (MAGs) and preliminary enrichments. Roseilinea is notable for appearing capable of anoxygenic photoheterotrophy despite being only distantly related to well-known phototrophs in the Chloroflexia class such as Chloroflexus and Roseiflexus. Here, we present a high-quality MAG of a member of Roseilinea, improving our understanding of the metabolic capacity and phylogeny of this genus, and resolving the multiple instances of horizontal gene transfer that have led to its metabolic potential. These data allow us to propose a candidate family for these organisms, Roseilineaceae, within the Anaerolineae class.
Collapse
Affiliation(s)
- Lewis M Ward
- Department of Earth and Planetary Sciences, Harvard University.,Earth-Life Science Institute, Tokyo Institute of Technology
| | - Fátima Li-Hau
- Earth-Life Science Institute, Tokyo Institute of Technology
| | | | | |
Collapse
|
23
|
Bryantseva IA, Grouzdev DS, Krutkina MS, Ashikhmin AA, Kostrikina NA, Koziaeva VV, Gorlenko VM. 'Candidatus Chloroploca mongolica' sp. nov. a new mesophilic filamentous anoxygenic phototrophic bacterium. FEMS Microbiol Lett 2021; 368:6352337. [PMID: 34390245 DOI: 10.1093/femsle/fnab107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
A mesophilic filamentous anoxygenic phototrophic bacterium, designated M50-1, was isolated from a microbial mat of the Chukhyn Nur soda lake (northeastern Mongolia) with salinity of 5-14 g/L and pH 8.0-9.3. The organism is a strictly anaerobic phototrophic bacterium, which required sulfide for phototrophic growth. The cells formed short undulate trichomes surrounded by a thin sheath and containing gas vesicles. Motility of the trichomes was not observed. The cells contained chlorosomes. The antenna pigments were bacteriochlorophyll d and β- and γ-carotenes. Analysis of the genome assembled from the metagenome of the enrichment culture revealed all the enzymes of the 3-hydroxypropionate bi-cycle for autotrophic CO2 assimilation. The genome also contained the genes encoding a type IV sulfide:quinone oxidoreductase (sqrX). The organism had no nifHDBK genes, encoding the proteins of the nitrogenase complex responsible for dinitrogen fixation. The DNA G + C content was 58.6%. The values for in silico DNA‒DNA hybridization and average nucleotide identity between M50-1 and a closely related bacterium 'Ca. Chloroploca asiatica' B7-9 containing bacteriochlorophyll c were 53.4% and 94.0%, respectively, which corresponds to interspecies differences. Classification of the filamentous anoxygenic phototrophic bacterium M50-1 as a new 'Ca. Chloroploca' species was proposed, with the species name 'Candidatus Chloroploca mongolica' sp. nov.
Collapse
Affiliation(s)
- Irina A Bryantseva
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2, Moscow 119071, Russian Federation
| | - Denis S Grouzdev
- SciBear LLC, Tartu mnt 67/1-13b, Kesklinna linnaosa, Tallin 10115, Estonia
| | - Maria S Krutkina
- SciBear LLC, Tartu mnt 67/1-13b, Kesklinna linnaosa, Tallin 10115, Estonia
| | - Aleksandr A Ashikhmin
- Institute of Basic Biological Problems of Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of Russian Academy of Sciences', Institutskaya ave. 2, Pushchino 142290, Russian Federation
| | - Nadezda A Kostrikina
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2, Moscow 119071, Russian Federation
| | - Veronika V Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2, Moscow 119071, Russian Federation
| | - Vladimir M Gorlenko
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky ave. 33, bld. 2, Moscow 119071, Russian Federation
| |
Collapse
|
24
|
Sakaguchi K, Kishi M, Tamiaki H. Self-aggregation of Synthetic 20- O-Substituted Bacteriochlorophyll- d Analogs. CHEM LETT 2021. [DOI: 10.1246/cl.210216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kana Sakaguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masashi Kishi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
25
|
Saini MK, Sebastian A, Shirotori Y, Soulier NT, Garcia Costas AM, Drautz-Moses DI, Schuster SC, Albert I, Haruta S, Hanada S, Thiel V, Tank M, Bryant DA. Genomic and Phenotypic Characterization of Chloracidobacterium Isolates Provides Evidence for Multiple Species. Front Microbiol 2021; 12:704168. [PMID: 34220789 PMCID: PMC8245765 DOI: 10.3389/fmicb.2021.704168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Chloracidobacterium is the first and until now the sole genus in the phylum Acidobacteriota (formerly Acidobacteria) whose members perform chlorophyll-dependent phototrophy (i.e., chlorophototrophy). An axenic isolate of Chloracidobacterium thermophilum (strain B T ) was previously obtained by using the inferred genome sequence from an enrichment culture and diel metatranscriptomic profiling analyses in situ to direct adjustments to the growth medium and incubation conditions, and thereby a defined growth medium for Chloracidobacterium thermophilum was developed. These advances allowed eight additional strains of Chloracidobacterium spp. to be isolated from microbial mat samples collected from Mushroom Spring, Yellowstone National Park, United States, at temperatures of 41, 52, and 60°C; an axenic strain was also isolated from Rupite hot spring in Bulgaria. All isolates are obligately photoheterotrophic, microaerophilic, non-motile, thermophilic, rod-shaped bacteria. Chloracidobacterium spp. synthesize multiple types of (bacterio-)chlorophylls and have type-1 reaction centers like those of green sulfur bacteria. Light harvesting is accomplished by the bacteriochlorophyll a-binding, Fenna-Matthews-Olson protein and chlorosomes containing bacteriochlorophyll c. Their genomes are approximately 3.7 Mbp in size and comprise two circular chromosomes with sizes of approximately 2.7 Mbp and 1.0 Mbp. Comparative genomic studies and phenotypic properties indicate that the nine isolates represent three species within the genus Chloracidobacterium. In addition to C. thermophilum, the microbial mats at Mushroom Spring contain a second species, tentatively named Chloracidobacterium aggregatum, which grows as aggregates in liquid cultures. The Bulgarian isolate, tentatively named Chloracidobacterium validum, will be proposed as the type species of the genus, Chloracidobacterium. Additionally, Chloracidobacterium will be proposed as the type genus of a new family, Chloracidobacteriaceae, within the order Blastocatellales, the class Blastocatellia, and the phylum Acidobacteriota.
Collapse
Affiliation(s)
- Mohit Kumar Saini
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Aswathy Sebastian
- The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Yoshiki Shirotori
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Nathan T. Soulier
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amaya M. Garcia Costas
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Biology, Colorado State University-Pueblo, Pueblo, CO, United States
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Stephan C. Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Istvan Albert
- The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- DSMZ – German Culture Collection of Microorganisms and Cell Cultures, GmbH, Braunschweig, Germany
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- DSMZ – German Culture Collection of Microorganisms and Cell Cultures, GmbH, Braunschweig, Germany
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
26
|
Hirose M, Harada J, Tamiaki H. Detection of 13 2-carboxy-chlorin produced by the in vitro BciC enzymatic hydrolysis of zinc chlorophyllide. Bioorg Med Chem Lett 2021; 40:127931. [PMID: 33705911 DOI: 10.1016/j.bmcl.2021.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Green photosynthetic bacteria with an efficient light-harvesting system contain special chlorophyll molecules, called bacteriochlorophylls c, d, e, in their main antennae. In the biosynthetic pathway, a BciC enzyme is proposed to catalyze the hydrolysis of the C132-methoxycarbonyl group of chlorophyllide a, but the resulting C132-carboxy group has not been detected yet because it is spontaneously removed due to the instability of the β-keto-carboxylic acid. In this study, the in vitro BciC enzymatic reactions of zinc methyl (131R/S)-hydroxy-mesochlorophyllides a were examined and a carboxylic acid possessing the C132S-OH was first observed as the hydrolyzed product of the C132-COOCH3.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
27
|
Chen YH, Yang SH, Tandon K, Lu CY, Chen HJ, Shih CJ, Tang SL. Potential syntrophic relationship between coral-associated Prosthecochloris and its companion sulfate-reducing bacterium unveiled by genomic analysis. Microb Genom 2021; 7:000574. [PMID: 33952388 PMCID: PMC8209720 DOI: 10.1099/mgen.0.000574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/31/2021] [Indexed: 11/21/2022] Open
Abstract
Endolithic microbial symbionts in the coral skeleton may play a pivotal role in maintaining coral health. However, compared to aerobic micro-organisms, research on the roles of endolithic anaerobic micro-organisms and microbe-microbe interactions in the coral skeleton are still in their infancy. In our previous study, we showed that a group of coral-associated Prosthecochloris (CAP), a genus of anaerobic green sulphur bacteria, was dominant in the skeleton of the coral Isopora palifera. Though CAP is diverse, the 16S rRNA phylogeny presents it as a distinct clade separate from other free-living Prosthecochloris. In this study, we build on previous research and further characterize the genomic and metabolic traits of CAP by recovering two new high-quality CAP genomes - Candidatus Prosthecochloris isoporae and Candidatus Prosthecochloris sp. N1 - from the coral I. palifera endolithic cultures. Genomic analysis revealed that these two CAP genomes have high genomic similarities compared with other Prosthecochloris and harbour several CAP-unique genes. Interestingly, different CAP species harbour various pigment synthesis and sulphur metabolism genes, indicating that individual CAPs can adapt to a diversity of coral microenvironments. A novel high-quality genome of sulfate-reducing bacterium (SRB)- Candidatus Halodesulfovibrio lyudaonia - was also recovered from the same culture. The fact that CAP and various SRB co-exist in coral endolithic cultures and coral skeleton highlights the importance of SRB in the coral endolithic community. Based on functional genomic analysis of Ca. P. sp. N1, Ca. P. isoporae and Ca. H. lyudaonia, we also propose a syntrophic relationship between the SRB and CAP in the coral skeleton.
Collapse
Affiliation(s)
- Yu-Hsiang Chen
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan, ROC
- Bioinformatics Program, Institute of Information Science,Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Shan-Hua Yang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Kshitij Tandon
- Bioinformatics Program, Institute of Information Science,Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
- Molecular and Biological Agricultural Sciences, Program Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan, ROC
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hsing-Ju Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Sen-Lin Tang
- Bioinformatics Program, Institute of Information Science,Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
- Molecular and Biological Agricultural Sciences, Program Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
28
|
Hirose M, Harada J, Maeda H, Tamiaki H. Physicochemical and biochemical properties of synthetic zinc 131-(un)substituted chlorophyll-a derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
The Role of Selected Wavelengths of Light in the Activity of Photosystem II in Gloeobacter violaceus. Int J Mol Sci 2021; 22:ijms22084021. [PMID: 33924720 PMCID: PMC8069770 DOI: 10.3390/ijms22084021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.
Collapse
|
30
|
Ward LM, Fischer WW, McGlynn SE. Candidatus Anthektikosiphon siderophilum OHK22, a New Member of the Chloroflexi Family Herpetosiphonaceae from Oku-okuhachikurou Onsen. Microbes Environ 2021; 35. [PMID: 32727976 PMCID: PMC7511795 DOI: 10.1264/jsme2.me20030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report the draft metagenome-assembled genome of a member of the Chloroflexi family Herpetosiphonaceae from microbial biofilms developed in a circumneutral, iron-rich hot spring in Japan. This taxon represents a novel genus and species—here proposed as Candidatus Anthektikosiphon siderophilum—that expands the known taxonomic and genetic diversity of the Herpetosiphonaceae and helps orient the evolutionary history of key traits like photosynthesis and aerobic respiration in the Chloroflexi.
Collapse
Affiliation(s)
- Lewis M Ward
- Department of Earth & Planetary Sciences, Harvard University.,Earth-Life Science Institute, Tokyo Institute of Technology
| | - Woodward W Fischer
- Division of Geological & Planetary Sciences, California Institute of Technology
| | | |
Collapse
|
31
|
A Review of Bacteriochlorophyllides: Chemical Structures and Applications. Molecules 2021; 26:molecules26051293. [PMID: 33673610 PMCID: PMC7957641 DOI: 10.3390/molecules26051293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Generally, bacteriochlorophyllides were responsible for the photosynthesis in bacteria. Seven types of bacteriochlorophyllides have been disclosed. Bacteriochlorophyllides a/b/g could be synthesized from divinyl chlorophyllide a. The other bacteriochlorophyllides c/d/e/f could be synthesized from chlorophyllide a. The chemical structure and synthetic route of bacteriochlorophyllides were summarized in this review. Furthermore, the potential applications of bacteriochlorophyllides in photosensitizers, immunosensors, influence on bacteriochlorophyll aggregation, dye-sensitized solar cell, heme synthesis and for light energy harvesting simulation were discussed.
Collapse
|
32
|
Anoxic chlorophyll maximum enhances local organic matter remineralization and nitrogen loss in Lake Tanganyika. Nat Commun 2021; 12:830. [PMID: 33547297 PMCID: PMC7864930 DOI: 10.1038/s41467-021-21115-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023] Open
Abstract
In marine and freshwater oxygen-deficient zones, the remineralization of sinking organic matter from the photic zone is central to driving nitrogen loss. Deep blooms of photosynthetic bacteria, which form the suboxic/anoxic chlorophyll maximum (ACM), widespread in aquatic ecosystems, may also contribute to the local input of organic matter. Yet, the influence of the ACM on nitrogen and carbon cycling remains poorly understood. Using a suite of stable isotope tracer experiments, we examined the transformation of nitrogen and carbon under an ACM (comprising of Chlorobiaceae and Synechococcales) and a non-ACM scenario in the anoxic zone of Lake Tanganyika. We find that the ACM hosts a tight coupling of photo/litho-autotrophic and heterotrophic processes. In particular, the ACM was a hotspot of organic matter remineralization that controlled an important supply of ammonium driving a nitrification-anammox coupling, and thereby played a key role in regulating nitrogen loss in the oxygen-deficient zone. Enigmatic blooms of phytoplankton in aquatic oxygen-deficient zones could exacerbate depletion of nitrogen. Here the authors perform stable isotope experiments on the oxygen-deficient waters of Lake Tanganyika in Africa, finding that blooms drive down fixed nitrogen and could expand as a result of climate change.
Collapse
|
33
|
Chen MY, Teng WK, Zhao L, Hu CX, Zhou YK, Han BP, Song LR, Shu WS. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. THE ISME JOURNAL 2021; 15:211-227. [PMID: 32943748 PMCID: PMC7852516 DOI: 10.1038/s41396-020-00775-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes that inhabit diverse aquatic and terrestrial environments. However, the evolutionary mechanisms involved in the cyanobacterial habitat adaptation remain poorly understood. Here, based on phylogenetic and comparative genomic analyses of 650 cyanobacterial genomes, we investigated the genetic basis of cyanobacterial habitat adaptation (marine, freshwater, and terrestrial). We show: (1) the expansion of gene families is a common strategy whereby terrestrial cyanobacteria cope with fluctuating environments, whereas the genomes of many marine strains have undergone contraction to adapt to nutrient-poor conditions. (2) Hundreds of genes are strongly associated with specific habitats. Genes that are differentially abundant in genomes of marine, freshwater, and terrestrial cyanobacteria were found to be involved in light sensing and absorption, chemotaxis, nutrient transporters, responses to osmotic stress, etc., indicating the importance of these genes in the survival and adaptation of organisms in specific habitats. (3) A substantial fraction of genes that facilitate the adaptation of Cyanobacteria to specific habitats are contributed by horizontal gene transfer, and such genetic exchanges are more frequent in terrestrial cyanobacteria. Collectively, our results further our understandings of the adaptations of Cyanobacteria to different environments, highlighting the importance of ecological constraints imposed by the environment in shaping the evolution of Cyanobacteria.
Collapse
Affiliation(s)
- Meng-Yun Chen
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Wen-Kai Teng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Liang Zhao
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Chun-Xiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, 430072, Hubei, PR China
| | - Yang-Kai Zhou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, 518055, PR China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, 510632, PR China.
| | - Li-Rong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Science, 430072, Hubei, PR China.
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
34
|
Saini MK, ChihChe W, Soulier N, Sebastian A, Albert I, Thiel V, Bryant DA, Hanada S, Tank M. Caldichromatium japonicum gen. nov., sp. nov., a novel thermophilic phototrophic purple sulphur bacterium of the Chromatiaceae isolated from Nakabusa hot springs, Japan. Int J Syst Evol Microbiol 2020; 70:5701-5710. [PMID: 32931408 DOI: 10.1099/ijsem.0.004465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A novel thermophilic phototrophic purple sulphur bacterium was isolated from microbial mats (56 °C) at Nakabusa hot springs, Nagano prefecture, Japan. Cells were motile, rod-shaped, stain Gram-negative and stored sulphur globules intracellularly. Bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series were the major pigments. Dense liquid cultures were red in colour. Strain No.7T was able to grow photoautotrophically using sulfide, thiosulfate, sulfite and hydrogen (in the presence of sulfide) as electron donors and bicarbonate as the sole carbon source. Optimum growth occurred under anaerobic conditions in the light at 50 °C (range, 40-56 °C) and pH 7.2 (range, pH 7-8). Major fatty acids were C16 : 0 (46.8 %), C16 : 1 ω7c (19.9 %), C18 : 1 ω7c (21.1 %), C14 : 0 (4.6 %) and C18 : 0 (2.4 %). The polar lipid profile showed phosphatidylglycerol and unidentified aminophospholipids to be the major lipids. The only quinone detected was ubiquinone-8. 16S rRNA gene sequence comparisons indicated that the novel bacterium is only distantly related to Thermochromatium tepidum with a nucleotide identity of 90.4 %. The phylogenetic analysis supported the high novelty of strain No.7T with a long-branching phylogenetic position within the Chromatiaceae next to Thermochromatium tepidum. The genome comprised a circular chromosome of 2.99 Mbp (2 989 870 bp), included no plasmids and had a DNA G+C content of 61.2 mol%. Polyphasic taxonomic analyses of the isolate suggested strain No.7T is a novel genus within the Chromatiaceae. The proposed genus name of the second truly thermophilic purple sulphur bacterium is Caldichromatium gen. nov. with the type species Caldichromatium japonicum sp. nov. (DSM 110881=JCM 39101).
Collapse
Affiliation(s)
- Mohit Kumar Saini
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan
| | - Weng ChihChe
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan
| | - Nathan Soulier
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, PA 16802, USA
| | - Aswathy Sebastian
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, PA 16802, USA
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan
| | - Donald A Bryant
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.,Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, PA 16802, USA
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 1920397, Japan.,DSMZ - German Culture Collection of Microorganisms and Cell Cultures, GmbH Inhoffenstraße 7B 38124 Braunschweig, Germany
| |
Collapse
|
35
|
Hirose M, Harada J, Tamiaki H. In Vitro Hydrolysis of Zinc Chlorophyllide a Homologues by a BciC Enzyme. Biochemistry 2020; 59:4622-4626. [PMID: 33258578 DOI: 10.1021/acs.biochem.0c00850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chlorosomes in green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, or e molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, the in vitro enzymatic reactions of chlorophyllide a analogues, C132-methylene- and ethylene-inserted zinc complexes, were examined using a BciC protein from Chlorobaculum tepidum. As the products, their hydrolyzed free carboxylic acids were observed without the corresponding demethoxycarbonylated compounds. The results showed that the in vivo demethoxycarbonylation of chlorophyllide a by an action of the BciC enzyme would occur via two steps: (1) an enzymatic hydrolysis of a methyl ester at the C132-position, followed by (2) a spontaneous (nonenzymatic) decarboxylation in the resulting carboxylic acid.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
36
|
Funakoshi D, Nomura Y, Shoji S, Tamiaki H. Zinc 7,8-Dihydroxylated Chlorophyll-a Derivative as a Synthetic Model of Natural Bacteriochlorophyll-a. CHEM LETT 2020. [DOI: 10.1246/cl.200585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Daichi Funakoshi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yosaku Nomura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
37
|
Tsuji JM, Tran N, Schiff SL, Venkiteswaran JJ, Molot LA, Tank M, Hanada S, Neufeld JD. Anoxygenic photosynthesis and iron-sulfur metabolic potential of Chlorobia populations from seasonally anoxic Boreal Shield lakes. THE ISME JOURNAL 2020; 14:2732-2747. [PMID: 32747714 PMCID: PMC7784702 DOI: 10.1038/s41396-020-0725-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Aquatic environments with high levels of dissolved ferrous iron and low levels of sulfate serve as an important systems for exploring biogeochemical processes relevant to the early Earth. Boreal Shield lakes, which number in the tens of millions globally, commonly develop seasonally anoxic waters that become iron rich and sulfate poor, yet the iron-sulfur microbiology of these systems has been poorly examined. Here we use genome-resolved metagenomics and enrichment cultivation to explore the metabolic diversity and ecology of anoxygenic photosynthesis and iron/sulfur cycling in the anoxic water columns of three Boreal Shield lakes. We recovered four high-completeness and low-contamination draft genome bins assigned to the class Chlorobia (formerly phylum Chlorobi) from environmental metagenome data and enriched two novel sulfide-oxidizing species, also from the Chlorobia. The sequenced genomes of both enriched species, including the novel "Candidatus Chlorobium canadense", encoded the cyc2 gene that is associated with photoferrotrophy among cultured Chlorobia members, along with genes for phototrophic sulfide oxidation. One environmental genome bin also encoded cyc2. Despite the presence of cyc2 in the corresponding draft genome, we were unable to induce photoferrotrophy in "Ca. Chlorobium canadense". Genomic potential for phototrophic sulfide oxidation was more commonly detected than cyc2 among environmental genome bins of Chlorobia, and metagenome and cultivation data suggested the potential for cryptic sulfur cycling to fuel sulfide-based growth. Overall, our results provide an important basis for further probing the functional role of cyc2 and indicate that anoxygenic photoautotrophs in Boreal Shield lakes could have underexplored photophysiology pertinent to understanding Earth's early microbial communities.
Collapse
Affiliation(s)
- J M Tsuji
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - N Tran
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - S L Schiff
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - J J Venkiteswaran
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - L A Molot
- York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - M Tank
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7B, 38124, Braunschweig, Germany
- Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - S Hanada
- Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - J D Neufeld
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
38
|
Bennett AC, Murugapiran SK, Hamilton TL. Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:503-513. [PMID: 32613733 PMCID: PMC7540483 DOI: 10.1111/1758-2229.12863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/23/2020] [Indexed: 05/14/2023]
Abstract
Photosynthetic bacteria are abundant in alkaline, terrestrial hot springs and there is a long history of research on phototrophs in Yellowstone National Park (YNP). Hot springs provide a framework to examine the ecophysiology of phototrophs in situ because they provide natural gradients of geochemistry, pH and temperature. Phototrophs within the Cyanobacteria and Chloroflexi groups are frequently observed in alkaline hot springs. Decades of research has determined that temperature constrains Cyanobacteria in alkaline hot springs, but factors that constrain the distribution of phototrophic Chloroflexi remain unresolved. Using a combination of 16S rRNA gene sequencing and photoassimilation microcosms, we tested the hypothesis that temperature would constrain the activity and composition of phototrophic Cyanobacteria and Chloroflexi. We expected diversity and rates of photoassimilation to decrease with increasing temperature. We report 16S rRNA amplicon sequencing along with carbon isotope signatures and photoassimilation from 45 to 72°C in two alkaline hot springs. We find that Roseiflexus, Chloroflexus (Chloroflexi) and Leptococcus (Cyanobacteria) operational taxonomic units (OTUs) have distinct distributions with temperature. This distribution suggests that, like phototrophic Cyanobacteria, temperature selects for specific phototrophic Chloroflexi taxa. The richness of phototrophic Cyanobacteria decreased with increasing temperature along with a decrease in oxygenic photosynthesis, whereas Chloroflexi richness and rates of anoxygenic photosynthesis did not decrease with increasing temperature, even at temperatures approaching the upper limit of photosynthesis (~72-73°C). Our carbon isotopic data suggest an increasing prevalence of the 3-hydroxypropionate pathway with decreasing temperature coincident with photoautotrophic Chloroflexi. Together these results indicate temperature plays a role in defining the niche space of phototrophic Chloroflexi (as has been observed for Cyanobacteria), but other factors such as morphology, geochemistry, or metabolic diversity of Chloroflexi, in addition to temperature, could determine the niche space of this highly versatile group.
Collapse
Affiliation(s)
- Annastacia C. Bennett
- Department of Plant and Microbial Biology and The Biotechnology InstituteUniversity of MinnesotaSt. PaulMN55108USA
| | - Senthil K. Murugapiran
- Department of Plant and Microbial Biology and The Biotechnology InstituteUniversity of MinnesotaSt. PaulMN55108USA
| | - Trinity L. Hamilton
- Department of Plant and Microbial Biology and The Biotechnology InstituteUniversity of MinnesotaSt. PaulMN55108USA
| |
Collapse
|
39
|
Kishi M, Nakamura Y, Tamiaki H. Effect of additional hydroxy group on self-aggregation of synthetic zinc bacteriochlorophyll-c analogs. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Panwar P, Allen MA, Williams TJ, Hancock AM, Brazendale S, Bevington J, Roux S, Páez-Espino D, Nayfach S, Berg M, Schulz F, Chen IMA, Huntemann M, Shapiro N, Kyrpides NC, Woyke T, Eloe-Fadrosh EA, Cavicchioli R. Influence of the polar light cycle on seasonal dynamics of an Antarctic lake microbial community. MICROBIOME 2020; 8:116. [PMID: 32772914 PMCID: PMC7416419 DOI: 10.1186/s40168-020-00889-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Cold environments dominate the Earth's biosphere and microbial activity drives ecosystem processes thereby contributing greatly to global biogeochemical cycles. Polar environments differ to all other cold environments by experiencing 24-h sunlight in summer and no sunlight in winter. The Vestfold Hills in East Antarctica contains hundreds of lakes that have evolved from a marine origin only 3000-7000 years ago. Ace Lake is a meromictic (stratified) lake from this region that has been intensively studied since the 1970s. Here, a total of 120 metagenomes representing a seasonal cycle and four summers spanning a 10-year period were analyzed to determine the effects of the polar light cycle on microbial-driven nutrient cycles. RESULTS The lake system is characterized by complex sulfur and hydrogen cycling, especially in the anoxic layers, with multiple mechanisms for the breakdown of biopolymers present throughout the water column. The two most abundant taxa are phototrophs (green sulfur bacteria and cyanobacteria) that are highly influenced by the seasonal availability of sunlight. The extent of the Chlorobium biomass thriving at the interface in summer was captured in underwater video footage. The Chlorobium abundance dropped from up to 83% in summer to 6% in winter and 1% in spring, before rebounding to high levels. Predicted Chlorobium viruses and cyanophage were also abundant, but their levels did not negatively correlate with their hosts. CONCLUSION Over-wintering expeditions in Antarctica are logistically challenging, meaning insight into winter processes has been inferred from limited data. Here, we found that in contrast to chemolithoautotrophic carbon fixation potential of Southern Ocean Thaumarchaeota, this marine-derived lake evolved a reliance on photosynthesis. While viruses associated with phototrophs also have high seasonal abundance, the negative impact of viral infection on host growth appeared to be limited. The microbial community as a whole appears to have developed a capacity to generate biomass and remineralize nutrients, sufficient to sustain itself between two rounds of sunlight-driven summer-activity. In addition, this unique metagenome dataset provides considerable opportunity for future interrogation of eukaryotes and their viruses, abundant uncharacterized taxa (i.e. dark matter), and for testing hypotheses about endemic species in polar aquatic ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- , 476 Lancaster Rd, Pegarah, Australia
| | - James Bevington
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Simon Roux
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - David Páez-Espino
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Mammoth BioSciences, 279 East Grand Ave, South San Francisco, CA, USA
| | - Stephen Nayfach
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Maureen Berg
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I-Min A Chen
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Nicole Shapiro
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Tanja Woyke
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
41
|
Hirose M, Teramura M, Harada J, Ogasawara S, Tamiaki H. In vitro C13 2-dealkoxycarbonylations of zinc chlorophyll a derivatives including C13 2-substitutes by a BciC enzyme. Bioorg Chem 2020; 102:104111. [PMID: 32738567 DOI: 10.1016/j.bioorg.2020.104111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023]
Abstract
Chlorosomes in the green photosynthetic bacteria are the largest and most efficient light-harvesting antenna systems of all phototrophs. The core part of chlorosomes consists of bacteriochlorophyll c, d, e, or f molecules. In their biosynthetic pathway, a BciC enzyme catalyzes the removal of the C132-methoxycarbonyl group of chlorophyllide a. In this study, in vitro C132-dealkoxycarbonylations of zinc chlorophyll a derivatives bearing a methyl-, ethyl- or propyl-esterifying group and its methyl ester analogs with additional alkyl and hydroxy groups at the C132-position were examined using the BciC enzyme. The BciC-catalyzed reaction activity for the C132-methoxycarbonylated substrate was comparable to that for the ethoxycarbonylated compound; however, depropoxycarbonylation did not proceed. The BciC enzymatic demethoxycarbonylation of zinc methyl C132-alkylated pheophorbides a was gradually suppressed with the elongation of the alkyl chain and finally became inactive for the propyl substrate. The reaction of the C132-hydroxylated substrate (allomer) was accelerated compared to that of the C132-methyl analog possessing a similar steric size, and gave the corresponding C132-oxo product via further air-oxidation. All of the abovementioned enzymatic reactions occurred for one of the C132-epimers with the same configuration as in chlorophyllide a. The above substrate specificities and product distributions indicated the stereochemistry and size of the BciC enzymatic active site (pocket).
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
42
|
Antonov IV. Two Cobalt Chelatase Subunits Can Be Generated from a Single chlD Gene via Programed Frameshifting. Mol Biol Evol 2020; 37:2268-2278. [PMID: 32211852 DOI: 10.1093/molbev/msaa081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium chelatase chlIDH and cobalt chelatase cobNST enzymes are required for biosynthesis of (bacterio)chlorophyll and cobalamin (vitamin B12), respectively. Each enzyme consists of large, medium, and small subunits. Structural and primary sequence similarities indicate common evolutionary origin of the corresponding subunits. It has been reported earlier that some of vitamin B12 synthesizing organisms utilized unusual cobalt chelatase enzyme consisting of a large cobalt chelatase subunit (cobN) along with a medium (chlD) and a small (chlI) subunits of magnesium chelatase. In attempt to understand the nature of this phenomenon, we analyzed >1,200 diverse genomes of cobalamin and/or chlorophyll producing prokaryotes. We found that, surprisingly, genomes of many cobalamin producers contained cobN and chlD genes only; a small subunit gene was absent. Further on, we have discovered a diverse group of chlD genes with functional programed ribosomal frameshifting signals. Given a high similarity between the small subunit and the N-terminal part of the medium subunit, we proposed that programed translational frameshifting may allow chlD mRNA to produce both subunits. Indeed, in genomes where genes for small subunits were absent, we observed statistically significant enrichment of programed frameshifting signals in chlD genes. Interestingly, the details of the frameshifting mechanisms producing small and medium subunits from a single chlD gene could be prokaryotic taxa specific. All over, this programed frameshifting phenomenon was observed to be highly conserved and present in both bacteria and archaea.
Collapse
Affiliation(s)
- Ivan V Antonov
- Institute of Bioengineering, Federal Research Centre Fundamentals of Biotechnology, Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
43
|
Wang X, Wang M, Xie X, Guo S, Zhou Y, Zhang X, Yu N, Wang E. An amplification-selection model for quantified rhizosphere microbiota assembly. Sci Bull (Beijing) 2020; 65:983-986. [PMID: 36659026 DOI: 10.1016/j.scib.2020.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 03/01/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xingguang Xie
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Siyi Guo
- Center for Multi-Omics Research, Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yun Zhou
- Center for Multi-Omics Research, Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Xuebin Zhang
- Center for Multi-Omics Research, Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China.
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
44
|
Gaisin VA, Kooger R, Grouzdev DS, Gorlenko VM, Pilhofer M. Cryo-Electron Tomography Reveals the Complex Ultrastructural Organization of Multicellular Filamentous Chloroflexota ( Chloroflexi) Bacteria. Front Microbiol 2020; 11:1373. [PMID: 32670237 PMCID: PMC7332563 DOI: 10.3389/fmicb.2020.01373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
The cell biology of Chloroflexota is poorly studied. We applied cryo-focused ion beam milling and cryo-electron tomography to study the ultrastructural organization of thermophilic Roseiflexus castenholzii and Chloroflexus aggregans, and mesophilic “Ca. Viridilinea mediisalina.” These species represent the three main lineages within a group of multicellular filamentous anoxygenic phototrophic Chloroflexota bacteria belonging to the Chloroflexales order. We found surprising structural complexity in the Chloroflexales. As with filamentous cyanobacteria, cells of C. aggregans and “Ca. Viridilinea mediisalina” share the outer membrane-like layers of their intricate multilayer cell envelope. Additionally, cells of R. castenholzii and “Ca. Viridilinea mediisalina” are connected by septal channels that resemble cyanobacterial septal junctions. All three strains possess long pili anchored close to cell-to-cell junctions, a morphological feature comparable to that observed in cyanobacteria. The cytoplasm of the Chloroflexales bacteria is crowded with intracellular organelles such as different types of storage granules, membrane vesicles, chlorosomes, gas vesicles, chemoreceptor-like arrays, and cytoplasmic filaments. We observed a higher level of complexity in the mesophilic strain compared to the thermophilic strains with regards to the composition of intracellular bodies and the organization of the cell envelope. The ultrastructural details that we describe in these Chloroflexales bacteria will motivate further cell biological studies, given that the function and evolution of the many discovered morphological traits remain enigmatic in this diverse and widespread bacterial group.
Collapse
Affiliation(s)
- Vasil A Gaisin
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.,Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Romain Kooger
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Denis S Grouzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir M Gorlenko
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| |
Collapse
|
45
|
Hirose M, Teramura M, Harada J, Tamiaki H. BciC-Catalyzed C13 2 -Demethoxycarbonylation of Metal Pheophorbide a Alkyl Esters. Chembiochem 2020; 21:1473-1480. [PMID: 31900999 DOI: 10.1002/cbic.201900745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/10/2022]
Abstract
Bacteriochlorophyll c molecules self-aggregate to form large oligomers in the core part of chlorosomes, which are the main light-harvesting antenna systems of green photosynthetic bacteria. In the biosynthetic pathway of bacteriochlorophyll c, a BciC enzyme catalyzes the removal of the C132 -methoxycarbonyl group of chlorophyllide a, which possesses a free propionate residue at the C17-position and a magnesium ion as the central metal. The in vitro C132 -demethoxycarbonylations of chlorophyll a derivatives with various alkyl propionate residues and central metals were examined by using the BciC enzyme derived from one green sulfur bacteria species, Chlorobaculum tepidum. The BciC enzymatic reactions of zinc pheophorbide a alkyl esters were gradually suppressed with an increase of the alkyl chain length in the C17-propionate residue (from methyl to pentyl esters) and finally the hexyl ester became inactive for the BciC reaction. Although not only the zinc but also nickel and copper complexes were demethoxycarbonylated by the BciC enzyme, the reactions were largely dependent on the coordination ability of the central metals: Zn>Ni>Cu. The above substrate specificity indicates that the BciC enzyme would not bind directly to the carboxy group of chlorophyllide a, but would bind to its central magnesium to form the stereospecific complex of BciC with chlorophyllide a, giving pyrochlorophyllide a, which lacks the (132 R)-methoxycarbonyl group.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Misato Teramura
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Jiro Harada
- Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
46
|
Ward LM, Lingappa UF, Grotzinger JP, Fischer WW. Microbial mats in the Turks and Caicos Islands reveal diversity and evolution of phototrophy in the Chloroflexota order Aggregatilineales. ENVIRONMENTAL MICROBIOME 2020; 15:9. [PMID: 33902735 PMCID: PMC8067394 DOI: 10.1186/s40793-020-00357-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/19/2020] [Indexed: 05/03/2023]
Abstract
Genome-resolved metagenomic sequencing approaches have led to a substantial increase in the recognized diversity of microorganisms; this included the discovery of novel metabolic pathways in previously recognized clades, and has enabled a more accurate determination of the extant distribution of key metabolisms and how they evolved over Earth history. Here, we present metagenome-assembled genomes of members of the Chloroflexota (formerly Chloroflexi or Green Nonsulfur Bacteria) order Aggregatilineales (formerly SBR1031 or Thermofonsia) discovered from sequencing of thick and expansive microbial mats present in an intertidal lagoon on Little Ambergris Cay in the Turks and Caicos Islands. These taxa included multiple new lineages of Type 2 reaction center-containing phototrophs that were not closely related to previously described phototrophic Chloroflexota-revealing a rich and intricate history of horizontal gene transfer and the evolution of phototrophy and other core metabolic pathways within this widespread phylum.
Collapse
Affiliation(s)
- Lewis M Ward
- Department of Earth & Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Usha F Lingappa
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - John P Grotzinger
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Woodward W Fischer
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
47
|
Steinke L, Slysz GW, Lipton MS, Klatt C, Moran JJ, Romine MF, Wood JM, Anderson G, Bryant DA, Ward DM. Short-Term Stable Isotope Probing of Proteins Reveals Taxa Incorporating Inorganic Carbon in a Hot Spring Microbial Mat. Appl Environ Microbiol 2020; 86:e01829-19. [PMID: 31953342 PMCID: PMC7082580 DOI: 10.1128/aem.01829-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation.IMPORTANCE Yellowstone hot spring mats have been studied as natural models for understanding microbial community ecology and as modern analogs of stromatolites, the earliest community fossils on Earth. Stable-isotope probing of proteins (Pro-SIP) permitted short-term interrogation of the taxa that are involved in the important process of light-driven Ci fixation in this highly active community and will be useful in linking other metabolic processes to mat taxa. Here, evidence is presented that Roseiflexus spp., which use the 3-hydroxypropionate bi-cycle, are active in Ci fixation. Because this pathway imparts a lower degree of selection of isotopically heavy Ci than does the Calvin-Benson-Bassham cycle, the results suggest a mechanism to explain why the natural abundance of 13C in mat biomass is greater than expected if only the latter pathway were involved. Understanding how mat community members influence the 13C/12C ratios of mat biomass will help geochemists interpret the 13C/12C ratios of organic carbon in the fossil record.
Collapse
Affiliation(s)
- Laurey Steinke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gordon W Slysz
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christian Klatt
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - James J Moran
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Margie F Romine
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason M Wood
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Gordon Anderson
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, Pennsylvania, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
48
|
Larkum AWD, Grossman AR, Raven JA. Recent Advances in the Photosynthesis of Cyanobacteria and Eukaryotic Algae. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Ivanovsky RN, Lebedeva NV, Keppen OI, Chudnovskaya AV. Release of Photosynthetically Fixed Carbon as Dissolved Organic Matter by Anoxygenic Phototrophic Bacteria. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Charles P, Kalendra V, He Z, Khatami MH, Golbeck JH, van der Est A, Lakshmi KV, Bryant DA. Two-dimensional 67Zn HYSCORE spectroscopy reveals that a Zn-bacteriochlorophyll aP′ dimer is the primary donor (P840) in the type-1 reaction centers of Chloracidobacterium thermophilum. Phys Chem Chem Phys 2020; 22:6457-6467. [DOI: 10.1039/c9cp06556c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Using pulsed EPR spectroscopy and isotopic labeling we demonstrate that reaction centers of Chloracidobacterium thermophilum have an unusual primary donor that is a dimer of Zn-bacteriochlorophyll aP′ molecules.
Collapse
Affiliation(s)
- Philip Charles
- Departments of Chemistry and Physics and The Baruch ’60 Center for Biochemical Solar Energy Research
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Vidmantas Kalendra
- Departments of Chemistry and Physics and The Baruch ’60 Center for Biochemical Solar Energy Research
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Zhihui He
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- State College
- USA
| | | | - John H. Golbeck
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- State College
- USA
- Department of Chemistry
| | | | - K. V. Lakshmi
- Departments of Chemistry and Physics and The Baruch ’60 Center for Biochemical Solar Energy Research
- Rensselaer Polytechnic Institute
- Troy
- USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology
- The Pennsylvania State University
- State College
- USA
- Department of Chemistry and Biochemistry
| |
Collapse
|