1
|
van Neer RHP, Dranchak PK, Aitha M, Liu L, Carlson EK, Jacobsen IE, Battaile K, Fang Y, Tao D, Rai G, Padia J, Lovell S, Suga H, Inglese J. Active- and Allosteric-Site Cyclic Peptide Inhibitors of Secreted M. tuberculosis Chorismate Mutase. ACS Infect Dis 2025. [PMID: 39903128 DOI: 10.1021/acsinfecdis.4c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The secreted Chorismate mutase enzyme of Mycobacterium tuberculosis (*MtbCM) is an underexplored potential target for the development of new antitubercular agents that are increasingly needed as antibiotic resistance rises in prevalence. As an enzyme suspected to be involved in virulence and host-pathogen interactions, disruption of its function could circumvent the difficulty of treating tuberculosis-infected granulomas. Drug development, however, is limited by novel ligand discovery. Currently, *MtbCM activity is measured by using a low throughput acid/base-mediated product derivatization absorbance assay. Here, we utilized an RNA-display affinity selection approach enabled by the Random Peptides Integrated Discovery (RaPID) system to screen a vast library of macrocyclic peptides (MCP) for novel *MtbCM ligands. Peptides identified from the RaPID selection, and analogs thereof identified by analyzing the selection population dynamics, produced a new class of *MtbCM inhibiting MCPs. Among these were two noteworthy "chorismides", whose binding modes were elucidated by X-ray crystallography. Both were potent inhibitors of the CM enzyme activity. One was identified as an allosteric binding peptide revealing a novel inhibition approach, while the other is an active-site binding peptide that when conjugated to a fluorescent probe allowed for the development of a series of alternative fluorescence-based ligand-displacement assays that can be utilized for the assessment of potential *MtbCM inhibitors.
Collapse
Affiliation(s)
- Renier H P van Neer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Patricia K Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mahesh Aitha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Lijun Liu
- Protein Structure and X-ray Crystallography Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Emma K Carlson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Isabella E Jacobsen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kevin Battaile
- New York Structural Biology Center, NSLS-II, Upton, New York 11973, United States
| | - Yuhong Fang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Janak Padia
- University of Maryland, Rockville, Maryland 20850, United States
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Jing X, Mackay JP, Passioura T. Macrocyclic peptides as a new class of targeted protein degraders. RSC Chem Biol 2025:d4cb00199k. [PMID: 39822773 PMCID: PMC11733494 DOI: 10.1039/d4cb00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025] Open
Abstract
Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics. In particular, existing targeted degrader design is largely only applicable to the same set of protein targets as traditional small molecules (i.e., ∼15% of the human proteome). Here, we consider the potential of macrocyclic peptides to overcome this limitation. Such molecules possess several features that make them well-suited for the role, including the ability to induce the formation of ternary protein complexes that can involve relatively flat surfaces and their structural commonality with E3 ligase-recruiting peptide degrons. For these reasons, macrocyclic peptides provide the opportunity both to broaden the number of targets accessible to degrader activity and to broaden the number of E3 ligases that can be harnessed to mediate that activity.
Collapse
Affiliation(s)
- Xuefei Jing
- School of Life and Environmental Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney Sydney NSW 2006 Australia
| | - Toby Passioura
- School of Chemistry, The University of Sydney Sydney NSW 2006 Australia
- Insamo South Pty Ltd Chippendale NSW 2008 Australia
| |
Collapse
|
3
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Zhai S, Tan Y, Zhu C, Zhang C, Gao Y, Mao Q, Zhang Y, Duan H, Yin Y. PepExplainer: An explainable deep learning model for selection-based macrocyclic peptide bioactivity prediction and optimization. Eur J Med Chem 2024; 275:116628. [PMID: 38944933 DOI: 10.1016/j.ejmech.2024.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Macrocyclic peptides possess unique features, making them highly promising as a drug modality. However, evaluating their bioactivity through wet lab experiments is generally resource-intensive and time-consuming. Despite advancements in artificial intelligence (AI) for bioactivity prediction, challenges remain due to limited data availability and the interpretability issues in deep learning models, often leading to less-than-ideal predictions. To address these challenges, we developed PepExplainer, an explainable graph neural network based on substructure mask explanation (SME). This model excels at deciphering amino acid substructures, translating macrocyclic peptides into detailed molecular graphs at the atomic level, and efficiently handling non-canonical amino acids and complex macrocyclic peptide structures. PepExplainer's effectiveness is enhanced by utilizing the correlation between peptide enrichment data from selection-based focused library and bioactivity data, and employing transfer learning to improve bioactivity predictions of macrocyclic peptides against IL-17C/IL-17 RE interaction. Additionally, PepExplainer underwent further validation for bioactivity prediction using an additional set of thirteen newly synthesized macrocyclic peptides. Moreover, it enabled the optimization of the IC50 of a macrocyclic peptide, reducing it from 15 nM to 5.6 nM based on the contribution score provided by PepExplainer. This achievement underscores PepExplainer's skill in deciphering complex molecular patterns, highlighting its potential to accelerate the discovery and optimization of macrocyclic peptides.
Collapse
Affiliation(s)
- Silong Zhai
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Cheng Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chengyun Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan Gao
- Qilu Institute of Technology, Jinan, 250200, China
| | - Qingyi Mao
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Hongliang Duan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China.
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China; Shandong Research Institute of Industrial Technology, Jinan, 250101, China.
| |
Collapse
|
5
|
Park H, Jin H, Kim D, Lee J. Cell-Free Systems: Ideal Platforms for Accelerating the Discovery and Production of Peptide-Based Antibiotics. Int J Mol Sci 2024; 25:9109. [PMID: 39201795 PMCID: PMC11354240 DOI: 10.3390/ijms25169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peptide-based antibiotics (PBAs), including antimicrobial peptides (AMPs) and their synthetic mimics, have received significant interest due to their diverse and unique bioactivities. The integration of high-throughput sequencing and bioinformatics tools has dramatically enhanced the discovery of enzymes, allowing researchers to identify specific genes and metabolic pathways responsible for producing novel PBAs more precisely. Cell-free systems (CFSs) that allow precise control over transcription and translation in vitro are being adapted, which accelerate the identification, characterization, selection, and production of novel PBAs. Furthermore, these platforms offer an ideal solution for overcoming the limitations of small-molecule antibiotics, which often lack efficacy against a broad spectrum of pathogens and contribute to the development of antibiotic resistance. In this review, we highlight recent examples of how CFSs streamline these processes while expanding our ability to access new antimicrobial agents that are effective against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hyeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Haneul Jin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Dayeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| |
Collapse
|
6
|
You S, McIntyre G, Passioura T. The coming of age of cyclic peptide drugs: an update on discovery technologies. Expert Opin Drug Discov 2024; 19:961-973. [PMID: 38872502 DOI: 10.1080/17460441.2024.2367024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Cyclic peptides are an established class of pharmaceuticals, with the ability to bind to a broader range of protein targets than traditional small molecules while also being capable of oral availability and cell penetration. Historically, cyclic peptide drugs have been discovered almost exclusively through natural product mining approaches; however, the last two decades have seen the development of display screening approaches capable of rapidly identifying de novo (i.e. not natural product derived) cyclic peptide ligands to targets of interest. AREAS COVERED In this review, the authors describe the current clinical landscape for cyclic peptide pharmaceuticals. This article focuses on the discovery approaches that have led to the development of different classes of molecules and how the development of newer technologies, particularly phage and mRNA display, has broadened the clinical applicability of such molecules. EXPERT OPINION The field of de novo cyclic peptide drug discovery is reaching maturity, with the first drugs identified through display screening approaches reaching the market in recent years. Many more are in clinical trials; however, significant technical challenges remain. Technological improvements will be required over the coming years to facilitate the identification of membrane permeable cyclic peptides capable of oral availability and targeting intracellular proteins.
Collapse
Affiliation(s)
- Sophia You
- Insamo South, Chippendale, NSW, Australia
| | | | - Toby Passioura
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
7
|
Xiang H, Bai L, Zhang X, Dan T, Cheng P, Yang X, Ai H, Li K, Lei X. A facile strategy for the construction of a phage display cyclic peptide library for the selection of functional macrocycles. Chem Sci 2024; 15:11847-11855. [PMID: 39092106 PMCID: PMC11290325 DOI: 10.1039/d4sc03207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 08/04/2024] Open
Abstract
Cyclic peptides represent invaluable scaffolds in biological affinity, providing diverse collections for discovering functional molecules targeting challenging biological entities and protein-protein interactions. The field increasingly focuses on developing cyclization strategies and chemically modified combinatorial libraries in conjunction with M13 phage display, to identify macrocyclic peptide inhibitors for traditionally challenging targets. Here, we introduce a cyclization strategy utilizing ortho-phthalaldehyde (OPA) for the discovery of active macrocycles characterized by asymmetric scaffolds with side-chain cyclization. Through this approach, aldehyde groups attached to free molecules sequentially attack the ε-amine of lysine and the thiol of cysteine, facilitating the rapid cyclization of genetically encoded linear precursor libraries displayed on phage particles. The construction of a 109-member library and subsequent screening successfully identified cyclic peptide binders targeting three therapeutically relevant proteins: PTP1B, NEK7, and hKeap1. The results confirm the efficacy in rapidly obtaining active ligands with micromolar potency. This work provides a fast and efficient operable high-throughput platform for screening functional peptide macrocycles, which hold promise for broad application in therapeutics, chemically biological probes, and disease diagnosis.
Collapse
Affiliation(s)
- Hua Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Liwen Bai
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Xindan Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Ting Dan
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Peng Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Xiaoqin Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Honglian Ai
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Kai Li
- College of Life Sciences, South-Central Minzu University Wuhan 430074 China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
8
|
Lyu Y, Yang F, Sundaresh B, Rosconi F, van Opijnen T, Gao J. Covalent Inhibition of a Host-Pathogen Protein-Protein Interaction Reduces the Infectivity of Streptococcus pneumoniae. JACS AU 2024; 4:2484-2491. [PMID: 39055144 PMCID: PMC11267552 DOI: 10.1021/jacsau.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
The ever-expanding antibiotic resistance urgently calls for novel antibacterial therapeutics, especially those with a new mode of action. We report herein our exploration of protein-protein interaction (PPI) inhibition as a new mechanism to thwart bacterial pathogenesis. Specifically, we describe potent and specific inhibitors of the pneumococcal surface protein PspC, an important virulence factor that facilitates the infection of Streptococcus pneumoniae. Specifically, PspC has been documented to recruit human complement factor H (hFH) to suppress host complement activation and/or promote the bacterial attachment to host tissues. The CCP9 domain of hFH was recombinantly expressed to inhibit the PspC-hFH interaction as demonstrated on live pneumococcal cells. The inhibitor allowed for the first pharmacological intervention of the PspC-hFH interaction. This PPI inhibition reduced pneumococci's attachment to epithelial cells and also resensitized the D39 strain of S. pneumoniae for opsonization. Importantly, we have further devised covalent versions of CCP9, which afforded long-lasting PspC inhibition with low nanomolar potency. Overall, our results showcase the promise of PPI inhibition for combating bacterial infections as well as the power of covalent inhibitors.
Collapse
Affiliation(s)
- Yuhan Lyu
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| | - Fan Yang
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| | - Bharathi Sundaresh
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Federico Rosconi
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tim van Opijnen
- Broad
Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, United States
| | - Jianmin Gao
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| |
Collapse
|
9
|
Alimbarashvili E, Samsonidze N, Grigolava M, Pirtskhalava M. Small Natural Cyclic Peptides from DBAASP Database. Pharmaceuticals (Basel) 2024; 17:845. [PMID: 39065696 PMCID: PMC11279581 DOI: 10.3390/ph17070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are promising tools for combating microbial resistance. However, their therapeutic potential is hindered by two intrinsic drawbacks-low target affinity and poor in vivo stability. Macrocyclization, a process that improves the pharmacological properties and bioactivity of peptides, can address these limitations. As a result, macrocyclic peptides represent attractive drug candidates. Moreover, many drugs are macrocycles that originated from natural product scaffolds, suggesting that nature offers solutions to the challenges faced by AMPs. In this review, we explore natural cyclic peptides from the DBAASP database. DBAASP is a comprehensive repository of data on antimicrobial/cytotoxic activities and structures of peptides. We analyze the data on small (≤25 AA) ribosomal and non-ribosomal cyclic peptides from DBAASP according to their amino acid composition, bonds used for cyclization, targets they act on, and mechanisms of action. This analysis will enhance our understanding of the small cyclic peptides that nature has provided to defend living organisms.
Collapse
Affiliation(s)
- Evgenia Alimbarashvili
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia; (N.S.); (M.G.)
| | | | | | - Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia; (N.S.); (M.G.)
| |
Collapse
|
10
|
Fang X, Zeng Y, Huang Y, Zhu Z, Lin S, Xu W, Zheng C, Hu X, Qiu Y, Ruan Z. Electrochemical synthesis of peptide aldehydes via C‒N bond cleavage of cyclic amines. Nat Commun 2024; 15:5181. [PMID: 38890290 PMCID: PMC11189564 DOI: 10.1038/s41467-024-49223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Peptide aldehydes are crucial biomolecules essential to various biological systems, driving a continuous demand for efficient synthesis methods. Herein, we develop a metal-free, facile, and biocompatible strategy for direct electrochemical synthesis of unnatural peptide aldehydes. This electro-oxidative approach enabled a step- and atom-economical ring-opening via C‒N bond cleavage, allowing for homoproline-specific peptide diversification and expansion of substrate scope to include amides, esters, and cyclic amines of various sizes. The remarkable efficacy of the electro-synthetic protocol set the stage for the efficient modification and assembly of linear and macrocyclic peptides using a concise synthetic sequence with racemization-free conditions. Moreover, the combination of experiments and density functional theory (DFT) calculations indicates that different N-acyl groups play a decisive role in the reaction activity.
Collapse
Affiliation(s)
- Xinyue Fang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yong Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yawen Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China
| | - Shengsheng Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenyan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chengwei Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinwei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China.
| | - Zhixiong Ruan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
11
|
King HR, Bycroft M, Nguyen TB, Kelly G, Vinogradov AA, Rowling PJE, Stott K, Ascher DB, Suga H, Itzhaki LS, Artavanis-Tsakonas K. Targeting the Plasmodium falciparum UCHL3 ubiquitin hydrolase using chemically constrained peptides. Proc Natl Acad Sci U S A 2024; 121:e2322923121. [PMID: 38739798 PMCID: PMC11126973 DOI: 10.1073/pnas.2322923121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 05/16/2024] Open
Abstract
The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.
Collapse
Affiliation(s)
- Harry R. King
- Department of Pathology, University of Cambridge, CambridgeCB2 1QP, United Kingdom
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Mark Bycroft
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Thanh-Binh Nguyen
- School of Chemistry and Molecular Biosciences, University of Queensland, BrisbaneQLD 4067, Australia
| | - Geoff Kelly
- NMR Centre, Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Alexander A. Vinogradov
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo113-0033, Japan
| | - Pamela J. E. Rowling
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, CambridgeCB2 1GA, United Kingdom
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, BrisbaneQLD 4067, Australia
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, Tokyo113-0033, Japan
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, CambridgeCB2 1PD, United Kingdom
| | | |
Collapse
|
12
|
Schauenburg D, Gao B, Rochet LNC, Schüler D, Coelho JAS, Ng DYW, Chudasama V, Kuan SL, Weil T. Macrocyclic Dual-Locked "Turn-On" Drug for Selective and Traceless Release in Cancer Cells. Angew Chem Int Ed Engl 2024; 63:e202314143. [PMID: 38179812 DOI: 10.1002/anie.202314143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Drug safety and efficacy due to premature release into the bloodstream and poor biodistribution remains a problem despite seminal advances in this area. To circumvent these limitations, we report drug cyclization based on dynamic covalent linkages to devise a dual lock for the small-molecule anticancer drug, camptothecin (CPT). Drug activity is "locked" within the cyclic structure by the redox responsive disulfide and pH-responsive boronic acid-salicylhydroxamate and turns on only in the presence of acidic pH, reactive oxygen species and glutathione through traceless release. Notably, the dual-responsive CPT is more active (100-fold) than the non-cleavable (permanently closed) analogue. We further include a bioorthogonal handle in the backbone for functionalization to generate cyclic-locked, cell-targeting peptide- and protein-CPTs, for targeted delivery of the drug and traceless release in triple negative metastatic breast cancer cells to inhibit cell growth at low nanomolar concentrations.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Bingjie Gao
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Léa N C Rochet
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Darijan Schüler
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - David Y W Ng
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Seah Ling Kuan
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| | - Tanja Weil
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
13
|
Starvaggi J, Previti S, Zappalà M, Ettari R. The Inhibition of NS2B/NS3 Protease: A New Therapeutic Opportunity to Treat Dengue and Zika Virus Infection. Int J Mol Sci 2024; 25:4376. [PMID: 38673962 PMCID: PMC11050111 DOI: 10.3390/ijms25084376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level.
Collapse
Affiliation(s)
| | | | | | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (J.S.); (S.P.); (M.Z.)
| |
Collapse
|
14
|
Mason M, Belvisi L, Pignataro L, Dal Corso A. A Tight Contact: The Expanding Application of Salicylaldehydes in Lysine-Targeting Covalent Drugs. Chembiochem 2024; 25:e202300743. [PMID: 37986243 DOI: 10.1002/cbic.202300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The installation of aldehydes into synthetic protein ligands is an efficient strategy to engage protein lysine residues in remarkably stable imine bonds and augment the compound affinity and selectivity for their biological targets. The high frequency of lysine residues in proteins and the reversibility of the covalent ligand-protein bond support the application of aldehyde-bearing ligands, holding promises for their future use as drugs. This review highlights the increasing exploitation of salicylaldehyde modules in various classes of protein binders, aimed at the reversible-covalent engagement of lysine residues.
Collapse
Affiliation(s)
- Mattia Mason
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| |
Collapse
|
15
|
Zhang XD, Wang YS, Xiang H, Bai LW, Cheng P, Li K, Huang R, Wang X, Lei X. Nucleoside modification-based flexizymes with versatile activity for tRNA aminoacylation. Chem Commun (Camb) 2024; 60:1607-1610. [PMID: 38230513 DOI: 10.1039/d3cc05673b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Extensive research has focused on genetic code reprogramming using flexizymes (Fxs), ribozymes enabling diverse tRNA acylation. Here we describe a nucleoside-modification strategy for the preparation of flexizyme variants derived from 2'-OMe, 2'-F, and 2'-MOE modifications with unique and versatile activities, enabling the charging of tRNAs with a broad range of substrates. This innovative strategy holds promise for synthetic biology applications, offering a robust pathway to expand the genetic code for diverse substrate incorporation.
Collapse
Affiliation(s)
- Xin-Dan Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yi-Shen Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Hua Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Li-Wen Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Peng Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Kai Li
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
17
|
Storek KM, Sun D, Rutherford ST. Inhibitors targeting BamA in gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119609. [PMID: 37852326 DOI: 10.1016/j.bbamcr.2023.119609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Antibiotic resistance has led to an increase in the number of patient hospitalizations and deaths. The situation for gram-negative bacteria is especially dire as the last new class of antibiotics active against these bacteria was introduced to the clinic over 60 years ago, thus there is an immediate unmet need for new antibiotic classes able to overcome resistance. The outer membrane, a unique and essential structure in gram-negative bacteria, contains multiple potential antibacterial targets including BamA, an outer membrane protein that folds and inserts transmembrane β-barrel proteins. BamA is essential and conserved, and its outer membrane location eliminates a barrier that molecules must overcome to access this target. Recently, antibacterial small molecules, natural products, peptides, and antibodies that inhibit BamA activity have been reported, validating the druggability of this target and generating potential leads for antibiotic development. This review will describe these BamA inhibitors, highlight their key attributes, and identify challenges with this potential target.
Collapse
Affiliation(s)
- Kelly M Storek
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Dawei Sun
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
18
|
Lopez-Morales J, Vanella R, Appelt EA, Whillock S, Paulk AM, Shusta EV, Hackel BJ, Liu CC, Nash MA. Protein Engineering and High-Throughput Screening by Yeast Surface Display: Survey of Current Methods. SMALL SCIENCE 2023; 3:2300095. [PMID: 39071103 PMCID: PMC11271970 DOI: 10.1002/smsc.202300095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Yeast surface display (YSD) is a powerful tool in biotechnology that links genotype to phenotype. In this review, the latest advancements in protein engineering and high-throughput screening based on YSD are covered. The focus is on innovative methods for overcoming challenges in YSD in the context of biotherapeutic drug discovery and diagnostics. Topics ranging from titrating avidity in YSD using transcriptional control to the development of serological diagnostic assays relying on serum biopanning and mitigation of unspecific binding are covered. Screening techniques against nontraditional cellular antigens, such as cell lysates, membrane proteins, and extracellular matrices are summarized and techniques are further delved into for expansion of the chemical repertoire, considering protein-small molecule hybrids and noncanonical amino acid incorporation. Additionally, in vivo gene diversification and continuous evolution in yeast is discussed. Collectively, these techniques enhance the diversity and functionality of engineered proteins isolated via YSD, broadening the scope of applications that can be addressed. The review concludes with future perspectives and potential impact of these advancements on protein engineering. The goal is to provide a focused summary of recent progress in the field.
Collapse
Affiliation(s)
- Joanan Lopez-Morales
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland; Swiss Nanoscience Institute, University of Basel, Basel 4056, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Rosario Vanella
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| | - Elizabeth A Appelt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah Whillock
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra M Paulk
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, CA 92697-2280, USA; Center for Synthetic Biology, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin J Hackel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chang C Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Center for Synthetic Biology, University of California, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Michael A Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, Basel 4058, Switzerland; Swiss Nanoscience Institute, University of Basel, Basel 4056, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland
| |
Collapse
|
19
|
Karami Y, Murail S, Giribaldi J, Lefranc B, Defontaine F, Lesouhaitier O, Leprince J, de Vries S, Tufféry P. Exploring a Structural Data Mining Approach to Design Linkers for Head-to-Tail Peptide Cyclization. J Chem Inf Model 2023; 63:6436-6450. [PMID: 37827517 PMCID: PMC10599322 DOI: 10.1021/acs.jcim.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 10/14/2023]
Abstract
Peptides have recently regained interest as therapeutic candidates, but their development remains confronted with several limitations including low bioavailability. Backbone head-to-tail cyclization, i.e., setting a covalent peptide bond linking the last amino acid with the first one, is one effective strategy of peptide-based drug design to stabilize the conformation of bioactive peptides while preserving peptide properties in terms of low toxicity, binding affinity, target selectivity, and preventing enzymatic degradation. Starting from an active peptide, it usually requires the design of a linker of a few amino acids to make it possible to cyclize the peptide, possibly preserving the conformation of the initial peptide and not affecting its activity. However, very little is known about the sequence-structure relationship requirements of designing linkers for peptide cyclization in a rational manner. Recently, we have shown that large-scale data-mining of available protein structures can lead to the precise identification of protein loop conformations, even from remote structural classes. Here, we transpose this approach to linkers, allowing head-to-tail peptide cyclization. First we show that given a linker sequence and the conformation of the linear peptide, it is possible to accurately predict the cyclized peptide conformation. Second, and more importantly, we show that it seems possible to elaborate on the information inferred from protein structures to propose effective candidate linker sequences constrained by length and amino acid composition, providing the first framework for the rational design of head-to-tail cyclization linkers. Finally, we illustrate this for two peptides using a limited set of amino-acids likely not to interfere with peptide function. For a linear peptide derived from Nrf2, the peptide cyclized starting from the experimental structure showed a 26-fold increase in the binding affinity. For urotensin II, a peptide already cyclized by a disulfide bond that exerts a broad array of biological activities, we were able, starting from models of the structure, to design a head-to-tail cyclized peptide, the first synthesized bicyclic 14-residue long urotensin II analogue, showing a retention of in vitro activity. Although preliminary, our results strongly suggest that such an approach has strong potential for cyclic peptide-based drug design.
Collapse
Affiliation(s)
- Yasaman Karami
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Samuel Murail
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Julien Giribaldi
- Institut
des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier-CNRS, 34293 Montpellier, France
| | - Benjamin Lefranc
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Florian Defontaine
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Université
de Rouen Normandie, UR CBSA, Research Unit
Bacterial Communication and Anti-infectious Strategies, 27000 Evreux, France
| | - Jérôme Leprince
- Université
de Rouen Normandie, INSERM U1239 NorDiC, Neuroendocrine, Endocrine and Germinal Differentiation and Communication,
INSERM US51 HeRacLeS, F-76000 Rouen, France
| | - Sjoerd de Vries
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| | - Pierre Tufféry
- Université
Paris Cité, CNRS UMR 8251,
INSERM ERL U1133, 75013 Paris, France
| |
Collapse
|
20
|
Yu Z, Kreitler DF, Chiu YTT, Xu R, Bruchs AT, Bingman CA, Gellman SH. Harnessing Aromatic-Histidine Interactions through Synergistic Backbone Extension and Side Chain Modification. Angew Chem Int Ed Engl 2023; 62:e202308100. [PMID: 37587780 PMCID: PMC10668598 DOI: 10.1002/anie.202308100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Peptide engineering efforts have delivered drugs for diverse human diseases. Side chain alteration is among the most common approaches to designing new peptides for specific applications. The peptide backbone can be modified as well, but this strategy has received relatively little attention. Here we show that new and favorable contacts between a His side chain on a target protein and an aromatic side chain on a synthetic peptide ligand can be engineered by rational and coordinated side chain modification and backbone extension. Side chain modification alone was unsuccessful. Binding measurements, high-resolution structural studies and pharmacological outcomes all support the synergy between backbone and side chain modification in engineered ligands of the parathyroid hormone receptor-1, which is targeted by osteoporosis drugs. These results should motivate other structure-based designs featuring coordinated side chain modification and backbone extension to enhance the engagement of peptide ligands with target proteins.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Yin Ting T Chiu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Ruiwen Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Austin T Bruchs
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
21
|
Liu XY, Ji X, Heinis C, Waser J. Peptide-Hypervalent Iodine Reagent Chimeras: Enabling Peptide Functionalization and Macrocyclization. Angew Chem Int Ed Engl 2023; 62:e202306036. [PMID: 37311172 DOI: 10.1002/anie.202306036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Herein, we report a novel strategy for the modification of peptides based on the introduction of highly reactive hypervalent iodine reagents-ethynylbenziodoxolones (EBXs)-onto peptides. These peptide-EBXs can be readily accessed, by both solution- and solid-phase peptide synthesis (SPPS). They can be used to couple the peptide to other peptides or a protein through reaction with Cys, leading to thioalkynes in organic solvents and hypervalent iodine adducts in water buffer. Furthermore, a photocatalytic decarboxylative coupling to the C-terminus of peptides was developed using an organic dye and was also successful in an intramolecular fashion, leading to macrocyclic peptides with unprecedented crosslinking. A rigid linear aryl alkyne linker was essential to achieve high affinity for Keap1 at the Nrf2 binding site with potential protein-protein interaction inhibition.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Xinjian Ji
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
22
|
Miura T, Malla TR, Owen CD, Tumber A, Brewitz L, McDonough MA, Salah E, Terasaka N, Katoh T, Lukacik P, Strain-Damerell C, Mikolajek H, Walsh MA, Kawamura A, Schofield CJ, Suga H. In vitro selection of macrocyclic peptide inhibitors containing cyclic γ 2,4-amino acids targeting the SARS-CoV-2 main protease. Nat Chem 2023; 15:998-1005. [PMID: 37217786 PMCID: PMC10322702 DOI: 10.1038/s41557-023-01205-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1' catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.
Collapse
Affiliation(s)
- Takashi Miura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tika R Malla
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - C David Owen
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Anthony Tumber
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Michael A McDonough
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Eidarus Salah
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Petra Lukacik
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Claire Strain-Damerell
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Halina Mikolajek
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, UK
| | - Akane Kawamura
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
23
|
Reja RM, Chau B, Gao J. Diazaborine-Mediated Bicyclization of Native Peptides with Inducible Reversibility. Org Lett 2023; 25:4489-4492. [PMID: 37306633 PMCID: PMC10330595 DOI: 10.1021/acs.orglett.3c01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multicyclic peptides are appealing candidates for peptide-based drug discovery. While various methods are developed for peptide cyclization, few allow multicyclization of native peptides. Herein we report a novel cross-linker DCA-RMR1, which elicits facile bicyclization of native peptides via N-terminus Cys-Cys cross-linking. The bicyclization is fast, affords quantitative conversion, and tolerates various side chain functionalities. Importantly, the resulting diazaborine linkage, while stable at a neutral pH, can readily reverse upon mild acidification to give pH-responsive peptides.
Collapse
Affiliation(s)
- Rahi M. Reja
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| | - Brittney Chau
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| | - Jianmin Gao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| |
Collapse
|
24
|
Lee ML, Farag S, Del Cid JS, Bashore C, Hallenbeck KK, Gobbi A, Cunningham CN. Identification of Macrocyclic Peptide Families from Combinatorial Libraries Containing Noncanonical Amino Acids Using Cheminformatics and Bioinformatics Inspired Clustering. ACS Chem Biol 2023; 18:1425-1434. [PMID: 37220419 PMCID: PMC10278063 DOI: 10.1021/acschembio.3c00159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
In the past decade, macrocyclic peptides gained increasing interest as a new therapeutic modality to tackle intracellular and extracellular therapeutic targets that had been previously classified as "undruggable". Several technological advances have made discovering macrocyclic peptides against these targets possible: 1) the inclusion of noncanonical amino acids (NCAAs) into mRNA display, 2) increased availability of next generation sequencing (NGS), and 3) improvements in rapid peptide synthesis platforms. This type of directed-evolution based screening can produce large numbers of potential hit sequences given that DNA sequencing is the functional output of this platform. The current standard for selecting hit peptides from these selections for downstream follow-up relies on the frequency counting and sorting of unique peptide sequences which can result in the generation of false negatives due to technical reasons including low translation efficiency or other experimental factors. To overcome our inability to detect weakly enriched peptide sequences among our large data sets, we wanted to develop a clustering method that would enable the identification of peptide families. Unfortunately, utilizing traditional clustering algorithms, such as ClustalW, is not possible for this technology due to the incorporation of NCAAs in these libraries. Therefore, we developed a new atomistic clustering method with a Pairwise Aligned Peptide (PAP) chemical similarity metric to perform sequence alignments and identify macrocyclic peptide families. With this method, low enriched peptides, including isolated sequences (singletons), can now be clustered into families providing a comprehensive analysis of NGS data resulting from macrocycle discovery selections. Additionally, upon identification of a hit peptide with the desired activity, this clustering algorithm can be used to identify derivatives from the initial data set for structure-activity relationship (SAR) analysis without requiring additional selection experiments.
Collapse
Affiliation(s)
- Man-Ling Lee
- Discovery
Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sherif Farag
- Discovery
Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joselyn S. Del Cid
- Peptide
Therapeutics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Charlene Bashore
- Biological
Chemistry, Genentech Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Kenneth K. Hallenbeck
- Peptide
Therapeutics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alberto Gobbi
- Discovery
Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Peptide
Therapeutics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
25
|
Ismail M, Martin SR, George R, Houghton F, Kelly G, Chaleil RAG, Anastasiou P, Wang X, O'Reilly N, Federico S, Joshi D, Nagaraj H, Cooley R, Hui NS, Molina-Arcas M, Hancock DC, Tavassoli A, Downward J. Characterisation of a cyclic peptide that binds to the RAS binding domain of phosphoinositide 3-kinase p110α. Sci Rep 2023; 13:1889. [PMID: 36732563 PMCID: PMC9894841 DOI: 10.1038/s41598-023-28756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
P110α is a member of the phosphoinositide 3-kinase (PI3K) enzyme family that functions downstream of RAS. RAS proteins contribute to the activation of p110α by interacting directly with its RAS binding domain (RBD), resulting in the promotion of many cellular functions such as cell growth, proliferation and survival. Previous work from our lab has highlighted the importance of the p110α/RAS interaction in tumour initiation and growth. Here we report the discovery and characterisation of a cyclic peptide inhibitor (cyclo-CRVLIR) that interacts with the p110α-RBD and blocks its interaction with KRAS. cyclo-CRVLIR was discovered by screening a "split-intein cyclisation of peptides and proteins" (SICLOPPS) cyclic peptide library. The primary cyclic peptide hit from the screen initially showed a weak affinity for the p110α-RBD (Kd about 360 µM). However, two rounds of amino acid substitution led to cyclo-CRVLIR, with an improved affinity for p110α-RBD in the low µM (Kd 3 µM). We show that cyclo-CRVLIR binds selectively to the p110α-RBD but not to KRAS or the structurally-related RAF-RBD. Further, using biophysical, biochemical and cellular assays, we show that cyclo-CRVLIR effectively blocks the p110α/KRAS interaction in a dose dependent manner and reduces phospho-AKT levels in several oncogenic KRAS cell lines.
Collapse
Affiliation(s)
- Mohamed Ismail
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stephen R Martin
- Structural Biology, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Roger George
- Structural Biology, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Francesca Houghton
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Geoff Kelly
- Structural Biology, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Raphaël A G Chaleil
- Biomolecular Modelling Lab, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Panayiotis Anastasiou
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Xinyue Wang
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicola O'Reilly
- Peptide Chemistry, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stefania Federico
- Peptide Chemistry, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dhira Joshi
- Peptide Chemistry, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Hemavathi Nagaraj
- Peptide Chemistry, Science Technology Platforms, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rachel Cooley
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ning Sze Hui
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Molina-Arcas
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - David C Hancock
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julian Downward
- Oncogene Biology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
26
|
Iskandar SE, Pelton JM, Wick ET, Bolhuis DL, Baldwin AS, Emanuele MJ, Brown NG, Bowers AA. Enabling Genetic Code Expansion and Peptide Macrocyclization in mRNA Display via a Promiscuous Orthogonal Aminoacyl-tRNA Synthetase. J Am Chem Soc 2023; 145:1512-1517. [PMID: 36630539 PMCID: PMC10411329 DOI: 10.1021/jacs.2c11294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
mRNA display is revolutionizing peptide drug discovery through its ability to quickly identify potent peptide binders of therapeutic protein targets. Methods to expand the chemical diversity of display libraries are continually needed to increase the likelihood of identifying clinically relevant peptide ligands. Orthogonal aminoacyl-tRNA synthetases (ORSs) have proven utility in cellular genetic code expansion, but are relatively underexplored for in vitro translation (IVT) and mRNA display. Herein, we demonstrate that the promiscuous ORS p-CNF-RS can incorporate noncanonical amino acids at amber codons in IVT, including the novel substrate p-cyanopyridylalanine (p-CNpyrA), to enable a pyridine-thiazoline (pyr-thn) macrocyclization in mRNA display. Pyr-thn-based selections against the deubiquitinase USP15 yielded a potent macrocyclic binder that exhibits good selectivity for USP15 and close homologues over other ubiquitin-specific proteases (USPs). Overall, this work exemplifies how promiscuous ORSs can both expand side chain diversity and provide structural novelty in mRNA display libraries through a heterocycle forming macrocyclization.
Collapse
Affiliation(s)
- Sabrina E. Iskandar
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jarrett M. Pelton
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elizaveta T. Wick
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Derek L. Bolhuis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michael J. Emanuele
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicholas G. Brown
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
27
|
Frolov AI, Chankeshwara SV, Abdulkarim Z, Ghiandoni GM. pIChemiSt ─ Free Tool for the Calculation of Isoelectric Points of Modified Peptides. J Chem Inf Model 2023; 63:187-196. [PMID: 36573842 PMCID: PMC9832473 DOI: 10.1021/acs.jcim.2c01261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The isoelectric point (pI) is a fundamental physicochemical property of peptides and proteins. It is widely used to steer design away from low solubility and aggregation and guide peptide separation and purification. Experimental measurements of pI can be replaced by calculations knowing the ionizable groups of peptides and their corresponding pKa values. Different pKa sets are published in the literature for natural amino acids, however, they are insufficient to describe synthetically modified peptides, complex peptides of natural origin, and peptides conjugated with structures of other modalities. Noncanonical modifications (nCAAs) are ignored in the conventional sequence-based pI calculations, therefore producing large errors in their pI predictions. In this work, we describe a pI calculation method that uses the chemical structure as an input, automatically identifies ionizable groups of nCAAs and other fragments, and performs pKa predictions for them. The method is validated on a curated set of experimental measures on 29 modified and 119093 natural peptides, providing an improvement of R2 from 0.74 to 0.95 and 0.96 against the conventional sequence-based approach for modified peptides for the two studied pKa prediction tools, ACDlabs and pKaMatcher, correspondingly. The method is available in the form of an open source Python library at https://github.com/AstraZeneca/peptide-tools, which can be integrated into other proprietary and free software packages. We anticipate that the pI calculation tool may facilitate optimization and purification activities across various application domains of peptides, including the development of biopharmaceuticals.
Collapse
Affiliation(s)
- Andrey I. Frolov
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden,
| | - Sunay V. Chankeshwara
- Medicinal
Chemistry, Research and Early Development, Cardiovascular, Renal and
Metabolism (CVRM), BioPharmaceuticals R&D,
AstraZeneca, Gothenburg, Sweden
| | - Zeyed Abdulkarim
- Early
Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
28
|
Abstract
In the design and development of therapeutic agents, macromolecules with restricted structures have stronger competitive edges than linear biological entities since cyclization can overcome the limitations of linear structures. The common issues of linear peptides include susceptibility to degradation of the peptidase enzyme, off-target effects, and necessity of routine dosing, leading to instability and ineffectiveness. The unique conformational constraint of cyclic peptides provides a larger surface area to interact with the target at the same time, improving the membrane permeability and in vivo stability compared to their linear counterparts. Currently, cyclic peptides have been reported to possess various activities, such as antifungal, antiviral and antimicrobial activities. To date, there is emerging interest in cyclic peptide therapeutics, and increasing numbers of clinically approved cyclic peptide drugs are available on the market. In this review, the medical significance of cyclic peptides in the defence against viral infections will be highlighted. Except for chikungunya virus, which lacks specific antiviral treatment, all the viral diseases targeted in this review are those with effective treatments yet with certain limitations to date. Thus, strategies and approaches to optimise the antiviral effect of cyclic peptides will be discussed along with their respective outcomes. Apart from isolated naturally occurring cyclic peptides, chemically synthesized or modified cyclic peptides with antiviral activities targeting coronavirus, herpes simplex viruses, human immunodeficiency virus, Ebola virus, influenza virus, dengue virus, five main hepatitis viruses, termed as type A, B, C, D and E and chikungunya virus will be reviewed herein. Graphical Abstract
Collapse
|
29
|
Kusumoto Y, Hayashi K, Sato S, Yamada T, Kozono I, Nakata Z, Asada N, Mitsuki S, Watanabe A, Wakasa-Morimoto C, Uemura K, Arita S, Miki S, Mizutare T, Mikamiyama H. Highly Potent and Oral Macrocyclic Peptides as a HIV-1 Protease Inhibitor: mRNA Display-Derived Hit-to-Lead Optimization. ACS Med Chem Lett 2022; 13:1634-1641. [PMID: 36262395 PMCID: PMC9575168 DOI: 10.1021/acsmedchemlett.2c00310] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) protease is essential for viral propagation, and its inhibitors are key anti-HIV-1 drug candidates. In this study, we discovered a novel HIV-1 protease inhibitor (compound 16) with potent antiviral activity and oral bioavailability using a structure-based drug design approach via X-ray crystal structure analysis and improved metabolic stability, starting from hit macrocyclic peptides identified by mRNA display against HIV-1 protease. We found that the improvement of the proteolytic stability of macrocyclic peptides by introducing a methyl group to the α-position of amino acid is crucial to exhibit strong antiviral activity. In addition, macrocyclic peptides, which have moderate metabolic stability and solubility in solutions containing taurocholic acid, exhibited desirable plasma total clearance and oral bioavailability. These approaches may contribute to the successful discovery and development of orally bioavailable peptide drugs.
Collapse
Affiliation(s)
- Yoshifumi Kusumoto
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kyohei Hayashi
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Soichiro Sato
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Toru Yamada
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Iori Kozono
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Zenzaburo Nakata
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Naoya Asada
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shungo Mitsuki
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Ayahisa Watanabe
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Chiaki Wakasa-Morimoto
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Kentaro Uemura
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shuhei Arita
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Shinobu Miki
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Tohru Mizutare
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| | - Hidenori Mikamiyama
- Shionogi Pharmaceutical
Research Center, Shionogi & Co., Ltd. 1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
30
|
Zheng M, Chen FJ, Li K, Reja RM, Haeffner F, Gao J. Lysine-Targeted Reversible Covalent Ligand Discovery for Proteins via Phage Display. J Am Chem Soc 2022; 144:15885-15893. [PMID: 35976695 PMCID: PMC9440474 DOI: 10.1021/jacs.2c07375] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding via reversible covalent bond formation presents a novel and powerful mechanism to enhance the potency of synthetic inhibitors for therapeutically important proteins. Work on this front has yielded the anticancer drug bortezomib as well as the antisickling drug voxelotor. However, the rational design of reversible covalent inhibitors remains difficult even when noncovalent inhibitors are available as a scaffold. Herein, we report chemically modified phage libraries, both linear and cyclic, that incorporate 2-acetylphenylboronic acid (APBA) as a warhead to bind lysines via reversible iminoboronate formation. To demonstrate their utility, these APBA-presenting phage libraries were screened against sortase A of Staphylococcus aureus, as well as the spike protein of SARS-CoV-2. For both protein targets, peptide ligands were readily identified with single-digit micromolar potency and excellent specificity, enabling live-cell sortase inhibition and highly sensitive spike protein detection, respectively. Furthermore, our structure-activity studies unambiguously demonstrate the benefit of the APBA warhead for protein binding. Overall, this contribution shows for the first time that reversible covalent inhibitors can be developed via phage display for a protein of interest. The phage display platform should be widely applicable to proteins including those involved in protein-protein interactions.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Fa-Jie Chen
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Kaicheng Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Rahi M. Reja
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Fredrik Haeffner
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
31
|
van Neer RHP, Dranchak PK, Liu L, Aitha M, Queme B, Kimura H, Katoh T, Battaile KP, Lovell S, Inglese J, Suga H. Serum-Stable and Selective Backbone-N-Methylated Cyclic Peptides That Inhibit Prokaryotic Glycolytic Mutases. ACS Chem Biol 2022; 17:2284-2295. [PMID: 35904259 PMCID: PMC9900472 DOI: 10.1021/acschembio.2c00403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-Methylated amino acids (N-MeAAs) are privileged residues of naturally occurring peptides critical to bioactivity. However, de novo discovery from ribosome display is limited by poor incorporation of N-methylated amino acids into the nascent peptide chain attributed to a poor EF-Tu affinity for the N-methyl-aminoacyl-tRNA. By reconfiguring the tRNA's T-stem region to compensate and tune the EF-Tu affinity, we conducted Random nonstandard Peptides Integrated Discovery (RaPID) display of a macrocyclic peptide (MCP) library containing six different N-MeAAs. We have here devised a "pool-and-split" enrichment strategy using the RaPID display and identified N-methylated MCPs against three species of prokaryotic metal-ion-dependent phosphoglycerate mutases. The enriched MCPs reached 57% N-methylation with up to three consecutively incorporated N-MeAAs, rivaling natural products. Potent nanomolar inhibitors ranging in ortholog selectivity, strongly mediated by N-methylation, were identified. Co-crystal structures reveal an architecturally related Ce-2 Ipglycermide active-site metal-ion-coordinating Cys lariat MCP, functionally dependent on two cis N-MeAAs with broadened iPGM species selectivity over the original nematode-selective MCPs. Furthermore, the isolation of a novel metal-ion-independent Staphylococcus aureus iPGM inhibitor utilizing a phosphoglycerate mimetic mechanism illustrates the diversity of possible chemotypes encoded by the N-MeAA MCP library.
Collapse
Affiliation(s)
- R H P van Neer
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - P K Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - L Liu
- Protein Structure and X-ray Crystallography Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66045, United States
| | - M Aitha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - B Queme
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - H Kimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - T Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - K P Battaile
- New York Structural Biology Center, NSLS-II, Upton, New York 11973, United States
| | - S Lovell
- Protein Structure and X-ray Crystallography Laboratory, Structural Biology Center, University of Kansas, Lawrence, Kansas 66045, United States
| | - J Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - H Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Zheng M, Haeffner F, Gao J. N-Terminal cysteine mediated backbone-side chain cyclization for chemically enhanced phage display. Chem Sci 2022; 13:8349-8354. [PMID: 35919713 PMCID: PMC9297441 DOI: 10.1039/d2sc03241d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Phage display, an ingenious invention for evaluating peptide libraries, has been limited to natural peptides that are ribosomally assembled with proteinogenic amino acids. Recently, there has been growing interest in chemically modifying phage libraries to create nonnatural cyclic and multicyclic peptides, which are appealing for use as inhibitors of protein-protein interactions. While earlier reports largely focused on side-chain side-chain cyclization, we report herein a novel strategy for creating backbone-side chain cyclized peptide libraries on phage. Our strategy capitalizes on the unique reactivity of an N-terminal cysteine (NCys) with 2-cyanobenzothiazole (CBT) which, in conjugation with another thiol-reactive group, can elicit rapid cyclization between an NCys and an internal cysteine. The resulting library was screened against two model proteins, namely Keap1 and Sortase A. The screening readily revealed potent inhibitors for both proteins with certain Keap1 ligands reaching low nanomolar potency. The backbone-side chain cyclization strategy described herein presents a significant addition to the toolkit of creating nonnatural macrocyclic peptide libraries for phage display.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| | - Fredrik Haeffner
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
33
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
34
|
Abstract
Peptides have traditionally been perceived as poor drug candidates due to unfavorable characteristics mainly regarding their pharmacokinetic behavior, including plasma stability, membrane permeability and circulation half-life. Nonetheless, in recent years, general strategies to tackle those shortcomings have been established, and peptides are subsequently gaining increasing interest as drugs due to their unique ability to combine the advantages of antibodies and small molecules. Macrocyclic peptides are a special focus of drug development efforts due to their ability to address so called ‘undruggable’ targets characterized by large and flat protein surfaces lacking binding pockets. Here, the main strategies developed to date for adapting peptides for clinical use are summarized, which may soon help usher in an age highly shaped by peptide-based therapeutics. Nonetheless, limited membrane permeability is still to overcome before peptide therapeutics will be broadly accepted.
Collapse
|
35
|
Kimoto M, Hirao I. Genetic Code Engineering by Natural and Unnatural Base Pair Systems for the Site-Specific Incorporation of Non-Standard Amino Acids Into Proteins. Front Mol Biosci 2022; 9:851646. [PMID: 35685243 PMCID: PMC9171071 DOI: 10.3389/fmolb.2022.851646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Amino acid sequences of proteins are encoded in nucleic acids composed of four letters, A, G, C, and T(U). However, this four-letter alphabet coding system limits further functionalities of proteins by the twenty letters of amino acids. If we expand the genetic code or develop alternative codes, we could create novel biological systems and biotechnologies by the site-specific incorporation of non-standard amino acids (or unnatural amino acids, unAAs) into proteins. To this end, new codons and their complementary anticodons are required for unAAs. In this review, we introduce the current status of methods to incorporate new amino acids into proteins by in vitro and in vivo translation systems, by focusing on the creation of new codon-anticodon interactions, including unnatural base pair systems for genetic alphabet expansion.
Collapse
Affiliation(s)
| | - Ichiro Hirao
- *Correspondence: Michiko Kimoto, ; Ichiro Hirao,
| |
Collapse
|
36
|
Abstract
Being able to effectively target RNA with potent ligands will open up a large number of potential therapeutic options. The knowledge on how to achieve this is ever expanding but an important question that remains open is what chemical matter is suitable to achieve this goal. The high flexibility of an RNA as well as its more limited chemical diversity and featureless binding sites can be difficult to target selectively but can be addressed by well-designed cyclic peptides. In this review we will provide an overview of reported cyclic peptide ligands for therapeutically relevant RNA targets and discuss the methods used to discover them. We will also provide critical insights into the properties required for potent and selective interaction and suggestions on how to assess these parameters. The use of cyclic peptides to target RNA is still in its infancy but the lessons learned from past examples can be adopted for the development of novel potent and selective ligands.
Collapse
Affiliation(s)
- Sunit Pal
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
37
|
Bouayad‐Gervais S, St‐Cyr DJ, Courcelles M, Bonneil É, Gohard FH, Thibault P, Earnshaw WC, Tyers M. Head-to-tail cyclization of side chain-protected linear peptides to recapitulate genetically-encoded cyclized peptides. Pept Sci (Hoboken) 2022; 114:e24254. [PMID: 35864841 PMCID: PMC9286623 DOI: 10.1002/pep2.24254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Genetically-encoded cyclic peptide libraries allow rapid in vivo screens for inhibitors of any target protein of interest. In particular, the Split Intein Circular Ligation of Protein and Peptides (SICLOPPS) system exploits spontaneous protein splicing of inteins to produce intracellular cyclic peptides. A previous SICLOPPS screen against Aurora B kinase, which plays a critical role during chromosome segregation, identified several candidate inhibitors that we sought to recapitulate by chemical synthesis. We describe the syntheses of cyclic peptide hits and analogs via solution-phase macrocyclization of side chain-protected linear peptides obtained from standard solid-phase peptide synthesis. Cyclic peptide targets, including cyclo-[CTWAR], were designed to match both the variable portions and conserved cysteine residue of their genetically-encoded counterparts. Synthetic products were characterized by tandem high-resolution mass spectrometry to analyze a combination of exact mass, isotopic pattern, and collisional dissociation-induced fragmentation pattern. The latter analyses facilitated the distinction between targets and oligomeric side products, and served to confirm peptidic sequences in a manner that can be readily extended to analyses of complex biological samples. This alternative chemical synthesis approach for cyclic peptides allows cost-effective validation and facile chemical elaboration of hit candidates from SICLOPPS screens.
Collapse
Affiliation(s)
- Samir Bouayad‐Gervais
- Department of Medicine, Institute for Research in Immunology and CancerUniversité de MontréalMontréalCanada
| | - Daniel J. St‐Cyr
- Department of Medicine, Institute for Research in Immunology and CancerUniversité de MontréalMontréalCanada
- Present address:
X‐Chem Inc., 7171 Frederick‐BantingMontréal, Québec H4S 1Z9Canada
| | - Mathieu Courcelles
- Department of Medicine, Institute for Research in Immunology and CancerUniversité de MontréalMontréalCanada
| | - Éric Bonneil
- Department of Medicine, Institute for Research in Immunology and CancerUniversité de MontréalMontréalCanada
| | - Florence H. Gohard
- Wellcome Trust Centre for Cell Biology, Institute of Cell BiologyUniversity of EdinburghEdinburghUK
| | - Pierre Thibault
- Department of Medicine, Institute for Research in Immunology and CancerUniversité de MontréalMontréalCanada
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, Institute of Cell BiologyUniversity of EdinburghEdinburghUK
| | - Mike Tyers
- Department of Medicine, Institute for Research in Immunology and CancerUniversité de MontréalMontréalCanada
| |
Collapse
|
38
|
Oppewal T, Jansen ID, Hekelaar J, Mayer C. A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display. J Am Chem Soc 2022; 144:3644-3652. [PMID: 35171585 PMCID: PMC8895403 DOI: 10.1021/jacs.1c12822] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Macrocyclic peptides (MPs) have positioned themselves as a privileged class of compounds for the discovery of therapeutics and development of chemical probes. Aided by the development of powerful selection strategies, high-affinity binders against biomolecular targets can readily be elicited from massive, genetically encoded libraries by affinity selection. For example, in phage display, MPs are accessed on the surface of whole bacteriophages via disulfide formation, the use of (symmetric) crosslinkers, or the incorporation of non-canonical amino acids. To facilitate a straightforward cyclization of linear precursors with asymmetric molecular scaffolds, which are often found at the core of naturally occurring MPs, we report an efficient two-step strategy to access MPs via the programmed modification of a unique cysteine residue and an N-terminal amine. We demonstrate that this approach yields MPs featuring asymmetric cyclization units from both synthetic peptides and when linear precursors are appended onto a phage-coat protein. Finally, we showcase that our cyclization strategy is compatible with traditional phage-display protocols and enables the selection of MP binders against a model target protein from naïve libraries. By enabling the incorporation of non-peptidic moieties that (1) can serve as cyclization units, (2) provide interactions for binding, and/or (3) tailor pharmacological properties, our head-to-side-chain cyclization strategy provides access to a currently under-explored chemical space for the development of chemical probes and therapeutics.
Collapse
Affiliation(s)
- Titia
Rixt Oppewal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| | - Ivar D. Jansen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| | - Johan Hekelaar
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| | - Clemens Mayer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| |
Collapse
|
39
|
He X, Zhang H, Zhang Y, Ye Y, Wang S, Bai R, Xie T, Ye XY. Drug discovery of histone lysine demethylases (KDMs) inhibitors (progress from 2018 to present). Eur J Med Chem 2022; 231:114143. [DOI: 10.1016/j.ejmech.2022.114143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
|
40
|
Tamura T, Inoue M, Yoshimitsu Y, Hashimoto I, Ohashi N, Tsumura K, Suzuki K, Watanabe T, Hohsaka T. Chemical Synthesis and Cell-Free Expression of Thiazoline Ring-Bridged Cyclic Peptides and Their Properties on Biomembrane Permeability. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Takashi Tamura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Masaaki Inoue
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yuji Yoshimitsu
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Ichihiko Hashimoto
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Noriyuki Ohashi
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Kyosuke Tsumura
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Koo Suzuki
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Takayoshi Watanabe
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| |
Collapse
|
41
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 658] [Impact Index Per Article: 219.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
42
|
Mukai H, Ogawa K, Kato N, Kawakami S. Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metab Pharmacokinet 2022; 44:100450. [PMID: 35381574 PMCID: PMC9363157 DOI: 10.1016/j.dmpk.2022.100450] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/26/2022]
Abstract
Lipid nanoparticles (LNPs) are becoming popular as a means of delivering therapeutics, including those based on nucleic acids and mRNA. The mRNA-based coronavirus disease 2019 vaccines are perfect examples to highlight the role played by drug delivery systems in advancing human health. The fundamentals of LNPs for the delivery of nucleic acid- and mRNA-based therapeutics, are well established. Thus, future research on LNPs will focus on addressing the following: expanding the scope of drug delivery to different constituents of the human body, expanding the number of diseases that can be targeted, and studying the change in the pharmacokinetics of LNPs under physiological and pathological conditions. This review article provides an overview of recent advances aimed at expanding the application of LNPs, focusing on the pharmacokinetics and advantages of LNPs. In addition, analytical techniques, library construction and screening, rational design, active targeting, and applicability to gene editing therapy have also been discussed.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan; Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Koki Ogawa
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan
| | - Naoya Kato
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki, 852-8588, Japan.
| |
Collapse
|
43
|
Voss S, Rademann J, Nitsche C. Peptide–Bismuth Bicycles: In Situ Access to Stable Constrained Peptides with Superior Bioactivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Saan Voss
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
- Department of Biology, Chemistry and Pharmacy Institute of Pharmacy, Medicinal Chemistry Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy Institute of Pharmacy, Medicinal Chemistry Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| | - Christoph Nitsche
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
44
|
Delivoria DC, Skretas G. The Discovery of Peptide Macrocycle Rescuers of Pathogenic Protein Misfolding and Aggregation by Integrating SICLOPPS Technology and Ultrahigh-Throughput Screening in Bacteria. Methods Mol Biol 2022; 2371:215-246. [PMID: 34596851 DOI: 10.1007/978-1-0716-1689-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The phenomenon of protein misfolding and aggregation has been widely associated with numerous human diseases, such as Alzheimer's disease, systemic amyloidosis and type 2 diabetes, the vast majority of which remain incurable. To advance early stage drug discovery against these diseases, investigation of molecular libraries with expanded diversities and ultrahigh-throughput screening methodologies that allow deeper investigation of chemical space are urgently required. Toward this, we describe how Escherichia coli can be engineered so as to enable (1) the production of expanded combinatorial libraries of short, drug-like, head-to-tail cyclic peptides and (2) their simultaneous functional screening for identifying effective inhibitors of protein misfolding and aggregation using a genetic assay that links protein folding and misfolding to cell fluorescence. In this manner, cyclic peptides with the ability to inhibit pathogenic protein misfolding and/or aggregation can be readily selected by flow cytometric cell sorting in an ultrahigh-throughput fashion. This biotechnological approach accelerates significantly the identification of hit/lead molecules with potentially therapeutic properties against devastating diseases.
Collapse
Affiliation(s)
- Dafni C Delivoria
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
45
|
Gu Y, Iannuzzelli JA, Fasan R. MOrPH-PhD: A Phage Display System for the Functional Selection of Genetically Encoded Macrocyclic Peptides. Methods Mol Biol 2022; 2371:261-286. [PMID: 34596853 PMCID: PMC8493807 DOI: 10.1007/978-1-0716-1689-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Macrocyclic peptides represent promising scaffolds for targeting biomolecules with high affinity and selectivity, making methods for the diversification and functional selection of these macrocycles highly valuable for drug discovery purposes. We recently reported a novel phage display platform (called MOrPH-PhD) for the creation and functional exploration of combinatorial libraries of genetically encoded cyclic peptides. In this system, spontaneous, posttranslational peptide cyclization by means of a cysteine-reactive non-canonical amino acid is integrated with M13 bacteriophage display, enabling the creation of genetically encoded macrocyclic peptide libraries displayed on phage particles. Using this system, it is possible to rapidly generate and screen large libraries of phage-displayed macrocyclic peptides (up to 108 to 1010 members) in order to identify high-affinity binders of a target protein of interest. Herein, we describe step-by-step protocols for the production of MOrPH-PhD libraries, the screening of these libraries against an immobilized protein target, and the isolation and characterization of functional macrocyclic peptides from these genetically encoded libraries.
Collapse
Affiliation(s)
- Yu Gu
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | | | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
46
|
Vanjari R, Eid E, Vamisetti GB, Mandal S, Brik A. Highly Efficient Cyclization Approach of Propargylated Peptides via Gold(I)-Mediated Sequential C-N, C-O, and C-C Bond Formation. ACS CENTRAL SCIENCE 2021; 7:2021-2028. [PMID: 34966846 PMCID: PMC8711126 DOI: 10.1021/acscentsci.1c00969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 05/02/2023]
Abstract
A rapid and efficient cyclization of unprotected N-propargylated peptides using the Au(I) organometallic complex is reported. The method relies on the activation of the propargyl functionality using gold(I) to produce a new linkage with the N-terminus amine at the cyclization site. The presented method features a fast reaction rate (within 20 min), mild conditions, chemoselectivity, wide sequence scope, and high yields (up to 87%). The strategy was successfully tested on a wide variety of 30 unprotected peptides having various sequences and lengths, thus providing access to structurally distinct cyclic peptides. The practical usefulness of this method was demonstrated in producing peptides that bind efficiently to Lys48-linked di- and tetra-ubiquitin chains. The new cyclic peptide modulators exhibited high permeability to living cells and promoted apoptosis via binding with the endogenous Lys48-linked ubiquitin chains.
Collapse
|
47
|
Xu W, Brown LE, Porco JA. Divergent, C-C Bond Forming Macrocyclizations Using Modular Sulfonylhydrazone and Derived Substrates. J Org Chem 2021; 86:16485-16510. [PMID: 34730970 PMCID: PMC8783553 DOI: 10.1021/acs.joc.1c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A divergent approach to C-C bond forming macrocycle construction is described. Modular sulfonylhydrazone and derived pyridotriazole substrates with three key building blocks have been constructed and cyclized to afford diverse macrocyclic frameworks. Broad substrate scope and functional group tolerance have been demonstrated. In addition, site-selective postfunctionalization allowed for further diversification of macrocyclic cores.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
48
|
Voss S, Rademann J, Nitsche C. Peptide-Bismuth Bicycles: In Situ Access to Stable Constrained Peptides with Superior Bioactivity. Angew Chem Int Ed Engl 2021; 61:e202113857. [PMID: 34825756 DOI: 10.1002/anie.202113857] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Constrained peptides are promising next-generation therapeutics. We report here a fundamentally new strategy for the facile generation of bicyclic peptides using linear precursor peptides with three cysteine residues and a non-toxic trivalent bismuth(III) salt. Peptide-bismuth bicycles form instantaneously at physiological pH, are stable in aqueous solution for many weeks, and much more resistant to proteolysis than their linear precursors. The strategy allows the in situ generation of bicyclic ligands for biochemical screening assays. We demonstrate this for two screening campaigns targeting the proteases from Zika and West Nile viruses, revealing a new lead compound that displayed inhibition constants of 23 and 150 nM, respectively. Bicyclic peptides are up to 130 times more active and 19 times more proteolytically stable than their linear analogs without bismuth.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Jörg Rademann
- Department of Biology, Chemistry and Pharmacy, Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
49
|
Goto Y, Suga H. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides. Acc Chem Res 2021; 54:3604-3617. [PMID: 34505781 DOI: 10.1021/acs.accounts.1c00391] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although macrocyclic peptides bearing exotic building blocks have proven their utility as pharmaceuticals, the sources of macrocyclic peptide drugs have been largely limited to mimetics of native peptides or natural product peptides. However, the recent emergence of technologies for discovering de novo bioactive peptides has led to their reconceptualization as a promising therapeutic modality. For the construction and screening of libraries of such macrocyclic peptides, our group has devised a platform to conduct affinity-based selection of massive libraries (>1012 unique sequences) of in vitro expressed macrocyclic peptides, which is referred to as the random nonstandard peptides integrated discovery (RaPID) system. The RaPID system integrates genetic code reprogramming using the FIT (flexible in vitro translation) system, which is largely facilitated by flexizymes (flexible tRNA-aminoacylating ribozymes), with mRNA display technology.We have demonstrated that the RaPID system enables rapid discovery of various de novo pseudo-natural peptide ligands for protein targets of interest. Many examples discussed in this Account prove that thioether-closed macrocyclic peptides (teMPs) obtained by the RaPID system generally exhibit remarkably high affinity and specificity, thereby potently inhibiting or activating a specific function(s) of the target. Moreover, such teMPs are used for a wide range of biochemical applications, for example, as crystallization chaperones for intractable transmembrane proteins and for in vivo recognition of specific cell types. Furthermore, recent studies demonstrate that some teMPs exhibit pharmacological activities in animal models and that even intracellular proteins can be inhibited by teMPs, illustrating the potential of this class of peptides as drug leads.Besides the ring-closing thioether linkage in the teMPs, genetic code reprogramming by the FIT system allows for incorporation of a variety of other exotic building blocks. For instance, diverse nonproteinogenic amino acids, hydroxy acids (ester linkage), amino carbothioic acid (thioamide linkage), and abiotic foldamer units have been successfully incorporated into ribosomally synthesized peptides. Despite such enormous successes in the conventional FIT system, multiple or consecutive incorporation of highly exotic amino acids, such as d- and β-amino acids, is yet challenging, and particularly the synthesis of peptides bearing non-carbonyl backbone structures remains a demanding task. To upgrade the RaPID system to the next generation, we have engaged in intensive manipulation of the FIT system to expand the structural diversity of peptides accessible by our in vitro biosynthesis strategy. Semilogical engineering of tRNA body sequences led to a new suppressor tRNA (tRNAPro1E2) capable of effectively recruiting translation factors, particularly EF-Tu and EF-P. The use of tRNAPro1E2 in the FIT system allows for not only single but also consecutive and multiple elongation of exotic amino acids, such as d-, β-, and γ-amino acids as well as aminobenzoic acids. Moreover, the integration of the FIT system with various chemical or enzymatic posttranslational modifications enables us to expand the range of accessible backbone structures to non-carbonyl moieties prominent in natural products and peptidomimetics. In such systems, FIT-expressed peptides undergo multistep backbone conversions in a one-pot manner to yield designer peptides composed of modified backbones such as azolines, azoles, and ring-closing pyridines. Our current research endeavors focus on applying such in vitro biosynthesis systems for the discovery of bioactive de novo pseudo-natural products.
Collapse
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
50
|
Miao X, Paikar A, Lerner B, Diskin‐Posner Y, Shmul G, Semenov SN. Kinetic Selection in the Out‐of‐Equilibrium Autocatalytic Reaction Networks that Produce Macrocyclic Peptides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoming Miao
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Arpita Paikar
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Yael Diskin‐Posner
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
| | - Guy Shmul
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
| | - Sergey N. Semenov
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|