1
|
Schaub JM, Best QA, Zhao C, Haack RA, Ruan Q. Three sample-sparing techniques to estimate the molar absorption coefficient of luminescent dyes. Biochem Biophys Rep 2025; 42:101971. [PMID: 40124993 PMCID: PMC11929883 DOI: 10.1016/j.bbrep.2025.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Luminescent dyes are commonly modified to improve their solubility, permeability, or spectral properties. However, changing the chemical structure influences the absorption of light and thus the compound-specific molar absorption coefficient (ε), which also confounds the compound's concentration in solution. The accurate determination of the molar absorption coefficient of new luminescent molecules is labor intensive and challenging when a limited amount of material is available for testing. To address this problem, we developed three techniques combined with UV-Vis spectrophotometry to closely approximate the molar absorption coefficient of various light-emitting dyes. The first technique uses Electrospray Mass Spectrometry to obtain a high-resolution incorporation ratio of a dye-labeled protein. The second approach utilizes covalent linking of the unknown dye to a dye with a known absorption coefficient. In the third method, we used fluorescence correlation spectroscopy to determine the fluorophore concentration in solution. We test each method with well-characterized fluorescent dyes and an uncharacterized chemilumiphore. Each technique produced calculated absorption coefficients comparable to the published reference values, although each presented unique limitations that reduced accuracy under certain conditions. Nevertheless, the techniques could be incorporated into current compound evaluation workflows and require only a small amount of sample, two significant advantages over traditional methods for characterizing new luminescent compounds.
Collapse
Affiliation(s)
- Jeffrey M. Schaub
- Applied Research and Technology, Core Diagnostics, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL, 60064-6016, United States
| | - Quinn A. Best
- Applied Research and Technology, Core Diagnostics, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL, 60064-6016, United States
| | - Cheng Zhao
- Applied Research and Technology, Core Diagnostics, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL, 60064-6016, United States
| | - Richard A. Haack
- Applied Research and Technology, Core Diagnostics, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL, 60064-6016, United States
| | - Qiaoqiao Ruan
- Applied Research and Technology, Core Diagnostics, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL, 60064-6016, United States
| |
Collapse
|
2
|
Ding L, Wang X, Wang J, Wang H, Yu L, Liu J, Yu J, Xue T, Yang X, Xue L. Fluorogenic Probes for Real-Time Tracking of Bacterial Cell Wall Dynamics with Nanoscopy. ACS NANO 2025; 19:14389-14403. [PMID: 40173278 DOI: 10.1021/acsnano.5c01930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The bacterial cell wall, an essential structure for maintaining cell morphology and protecting against environmental hazards, is predominantly composed of peptidoglycan (PG). This intricate macromolecule undergoes dynamic synthesis and remodeling throughout the cell cycle. Despite its importance, monitoring PG dynamics in live cells, particularly with detailed spatial distribution, poses significant challenges. To this end, we present a series of rhodamine-based fluorogenic probes specifically optimized for real-time and super-resolution imaging of PG synthesis. By fine-tuning the self-aggregation of the probes through the incorporation of hydrophobic linkers, we achieved a substantial reduction in background fluorescence and significant fluorogenicity after labeling. These advancements have enabled us to attain wash-free labeling across a diverse array of bacterial species. Our approach facilitates the direct visualization of PG synthesis patterns, enabling the quantification of septal PG (sPG) synthesis rates in living bacterial cells. Furthermore, it allows for simultaneous imaging of cell division machinery in living cells via both two-dimensional (2D) and three-dimensional (3D) STED microscopy. This study provides a powerful toolkit for investigating the architecture and dynamics of the bacterial cell wall, paving new paths for research on PG-related cellular processes.
Collapse
Affiliation(s)
- Lihao Ding
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xinci Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiajia Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Basic Discipline Research Center of Artificial Intelligence Biotechnology and Synthetic Biology, Hefei 230027, China
| | - Le Yu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiang Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiangliu Yu
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Ting Xue
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xinxing Yang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Basic Discipline Research Center of Artificial Intelligence Biotechnology and Synthetic Biology, Hefei 230027, China
| | - Lin Xue
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Anhui Basic Discipline Research Center of Artificial Intelligence Biotechnology and Synthetic Biology, Hefei 230027, China
| |
Collapse
|
3
|
El Bakouri O, Johnson MA, Smith JR, Pati AK, Martin MI, Blanchard SC, Ottosson H. Search for improved triplet-state quenchers for fluorescence imaging: a computational framework incorporating excited-state Baird-aromaticity. Chem Sci 2025:d5sc01131k. [PMID: 40201165 PMCID: PMC11974263 DOI: 10.1039/d5sc01131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
Fluorescence imaging is crucial for studying biology. Triplet state quenchers (TSQs), especially cyclooctatetraene (COT), can dramatically improve fluorophore performance, particularly when linked intramolecularly so as to enable "self-healing". Leveraging knowledge revealed through investigations of the self-healing mechanism enabled by COT, we computationally screened for cyclic 8π-electron species, and their annulated derivatives, with efficient triplet-triplet energy transfer potential, high photostability, and strong spin-orbit coupling (SOC) between the lowest triplet state to the singlet ground state. Here, we report theory-based analyses of a broad array of candidates that demonstrate various extents of triplet state Baird-aromaticity, indicating self-healing potential. We identify specific candidates with 7-membered ring structures predicted to exhibit favorable enhancements in fluorophore performance spanning the visible spectrum, with several possessing estimated intersystem crossing (ISC) rates up to 4 × 106 times faster than that of COT, the current benchmark for the self-healing strategy.
Collapse
Affiliation(s)
- Ouissam El Bakouri
- Department of Chemistry -Ångström, Uppsala University Uppsala Sweden
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany 6 17003 Girona Catalonia Spain
| | - Matthew A Johnson
- Department of Chemistry -Ångström, Uppsala University Uppsala Sweden
| | - Joshua R Smith
- Department of Chemistry -Ångström, Uppsala University Uppsala Sweden
- Department of Chemistry & Biochemistry, Cal Poly Humboldt Arcata CA 95501 USA
| | - Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital Memphis USA
- Department of Chemistry, Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital Memphis USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital Memphis USA
| | - Henrik Ottosson
- Department of Chemistry -Ångström, Uppsala University Uppsala Sweden
| |
Collapse
|
4
|
Pieczykolan M, Dancer PA, Klein TW, Piwonski H, Rolbieski H, Maity B, Bruns OT, Cavallo L, Kiessling F, Rueping M, Banala S. Small organic fluorophores with SWIR emission detectable beyond 1300 nm. Chem Commun (Camb) 2025; 61:4820-4823. [PMID: 40033975 DOI: 10.1039/d4cc05248j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
3,6-Dimethylamino fluorenone was functionalized with substituents to achieve an absorption maximum at 1012 nm and emission >1300 nm. TD-DFT calculations confirmed that the substituent orbitals contribute to narrowing the HOMO-LUMO energy gap. Imaging with an InGaAs-based SWIR camera and various longpass filters confirmed detection >1300 nm.
Collapse
Affiliation(s)
- Michal Pieczykolan
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Tjadina-Wencke Klein
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hubert Piwonski
- Biological and Environmental Science Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hannes Rolbieski
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bholanath Maity
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Oliver T Bruns
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Luigi Cavallo
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), University Clinic Aachen, 52074 Aachen, Germany.
| | - Magnus Rueping
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic Aachen, 52074 Aachen, Germany.
| | - Srinivas Banala
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic Aachen, 52074 Aachen, Germany.
| |
Collapse
|
5
|
Martins F, Granja A, Reis S, Gameiro P, Barone G, Neves MGPMS, Silva AMG. Synthesis, fluorescence and theoretical insights into a novel FRET-based dansyl-rhodamine sensor for the in vitro detection of toxic bioaccumulated Hg(II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125534. [PMID: 39662194 DOI: 10.1016/j.saa.2024.125534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
This work describes the successful design and synthesis of a new fluorescence resonance energy transfer (FRET)-based sensor, denoted as RD1. This sensor incorporates a robust dual-fluorophore design, which combines a rhodamine and a dansyl derivative, functionalized with a thiosemicarbazide group that acts as Hg(II) specific recognition site. A synthetic pathway was developed that allowed the efficient synthesis of RD1 with a remarkable overall yield of 44% over four steps, through microwave-assisted protocols. The influence of ethyl, benzyl and phenyl substituents of isothiocyanate in the preparation of the thiosemicarbazide moiety was studied, revealing a crucial dependence of the nature of the isothiocyanate in the formation of the recognition site. Owing to its characteristic ratiometric detection, RD1 exhibited remarkable robustness to external parameters such as pH and solvent composition. The sensor demonstrated a hybrid two-stage response to Hg(II), with an initial quenching of fluorescence followed by an enhancement of emission through a FRET mechanism, both stages being corroborated by DFT (density functional theory) calculations. In vitro studies demonstrated that RD1 presents excellent cytocompatibility and capacity to permeate cellular membranes and be effectively internalized by L929 cell line. Importantly, RD1 retained its sensory ability in a complex cellular environment, affirming its efficacy as a fluorescent sensor for the in vitro detection of bioaccumulated mercury species. These results suggest the potential of RD1 for the detection of toxic bioaccumulated mercury species, aiding in environmental and biomedical research.
Collapse
Affiliation(s)
- Fábio Martins
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry (DQB), Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Andreia Granja
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry (DQB), Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Maria G P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M G Silva
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry (DQB), Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal.
| |
Collapse
|
6
|
Zhao Q, Qian HL, Yan ZY, Ran XQ, Yan XP. Confining Spirocyclic Fluorescein in an Asymmetric Solid-State Nanochannel: A Simple and Versatile Design Concept for Fabricating Integrated Nanofluidic Diodes with Adjustable Surface Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501424. [PMID: 40079076 DOI: 10.1002/smll.202501424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Using small molecules to integrate multifunctional surfaces within a nanopore is an effective way to endow smart responsibilities of nanofluidic diodes. However, the complex synthesis of the small molecules hinders their further application in achieving multifunctional surfaces. Here, a simple and versatile design concept is reported for fabricating bioinspired integrated nanofluidic diodes with adjustable surface chemistry by confining a spirocyclic fluorescein derivative, 6-aminofluorescein (6-AF), within an asymmetric track-etched nanopore. The pH-dependent open-close of lactone ring in 6-AF allows facile fabrication of a pH-gated nanofluidic diode, confirmed with finite element simulations. This pH-gated nanofluidic diode also shows high specificity for sensing 3-nitropropionic acid (3-NPA), indicating its potential applications in food safety. Moreover, three functional nanofluidic diodes are successfully constructed via a regioselective Vilsmeier reaction between 6-AF and N-methylformanilide, the electrophilic addition reaction between 6-AF and propargyl bromide, and a highly controllable reduction process between 6-AF and NaBH4/I2. The combination of asymmetric nanopores with small molecules not only expands traditional fluorescent spirocyclic molecules to the realm of electrochemistry but also offers valuable insights for the achievement of novel fluorescence-electrochemical coupling detection methods. Besides, the introduction of spirocyclic small molecules to asymmetric nanopores serves as an inspiration source to explore new design concepts for nanofluidic devices.
Collapse
Affiliation(s)
- Qi Zhao
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Long Qian
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhu-Ying Yan
- Analysis and Testing Center, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Analysis and Testing Center, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Streit M, Budiarta M, Jungblut M, Beliu G. Fluorescent labeling strategies for molecular bioimaging. BIOPHYSICAL REPORTS 2025; 5:100200. [PMID: 39947326 PMCID: PMC11914189 DOI: 10.1016/j.bpr.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Super-resolution microscopy (SRM) has transformed biological imaging by circumventing the diffraction limit of light and enabling the visualization of cellular structures and processes at the molecular level. Central to the capabilities of SRM is fluorescent labeling, which ensures the precise attachment of fluorophores to biomolecules and has direct impact on the accuracy and resolution of imaging. Continuous innovation and optimization in fluorescent labeling are essential for the successful application of SRM in cutting-edge biological research. In this review, we discuss recent advances in fluorescent labeling strategies for molecular bioimaging, with a special focus on protein labeling. We compare different approaches, highlight technological breakthroughs, and address challenges such as linkage error and labeling density. By evaluating both established and emerging methods, we aim to guide researchers through all aspects that should be considered before opting for any labeling technique.
Collapse
Affiliation(s)
- Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Made Budiarta
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Marvin Jungblut
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
8
|
Osman EA, Karimi K, Chen Y, Hirka S, Charles RW, McKeague M. Design of Label-Free DNA Light-Up Aptaswitches for Multiplexed Biosensing. ACS Sens 2025; 10:246-253. [PMID: 39705714 DOI: 10.1021/acssensors.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
We present a straightforward design approach to develop DNA-based light-up aptasensors. We performed the first systematic comparison of DNA fluorescent light-up aptamers (FLAPs), revealing key differences in affinity and specificity for their target dyes. Based on our analysis, two light-up aptamers emerged with remarkable specificity, fluorescence enhancement, and functionality in diverse environments. We then established generalizable design rules to couple the DNA FLAPs to small molecule-binding aptamers, creating 13 novel aptaswitches with reliable turn-on or turn-off aptaswitching in a dose-response manner. We developed new aptaswitches for ochratoxin A and ATP biosensing with up to a seven-fold response and low background. Finally, we demonstrated the orthogonal activity of our aptaswitch platforms. As a result, we introduce fluorescent light-up aptaswitches for one-pot detection of different targets in diverse sample matrices.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Kimiya Karimi
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Yuhao Chen
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Serhii Hirka
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Roberto W Charles
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8, Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
9
|
Zheng Y, Cai R, Wang K, Zhang J, Zhuo Y, Dong H, Zhang Y, Wang Y, Deng F, Ji E, Cui Y, Fang S, Zhang X, Zhang K, Wang J, Li G, Miao X, Wang Z, Yang Y, Li S, Grimm J, Johnsson K, Schreiter E, Lavis L, Chen Z, Mu Y, Li Y. In vivo multiplex imaging of dynamic neurochemical networks with designed far-red dopamine sensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629999. [PMID: 39763912 PMCID: PMC11703222 DOI: 10.1101/2024.12.22.629999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Neurochemical signals like dopamine (DA) play a crucial role in a variety of brain functions through intricate interactions with other neuromodulators and intracellular signaling pathways. However, studying these complex networks has been hindered by the challenge of detecting multiple neurochemicals in vivo simultaneously. To overcome this limitation, we developed a single-protein chemigenetic DA sensor, HaloDA1.0, which combines a cpHaloTag-chemical dye approach with the G protein-coupled receptor activation-based (GRAB) strategy, providing high sensitivity for DA, sub-second response kinetics, and an extensive spectral range from far-red to near-infrared. When used together with existing green and red fluorescent neuromodulator sensors, Ca2+ indicators, cAMP sensors, and optogenetic tools, HaloDA1.0 provides high versatility for multiplex imaging in cultured neurons, brain slices, and behaving animals, facilitating in-depth studies of dynamic neurochemical networks.
Collapse
Affiliation(s)
- Yu Zheng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Ruyi Cai
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Kui Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junwei Zhang
- Institute of Molecular Medicine, Peking University College of Future Technology, Beijing 100871, China
| | - Yizhou Zhuo
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Hui Dong
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yuqi Zhang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Yifan Wang
- Neuroscience Institute, New York University Langone Medical Center, New York 10016, USA
| | - Fei Deng
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - En Ji
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yiwen Cui
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Shilin Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kecheng Zhang
- Institute of Molecular Medicine, Peking University College of Future Technology, Beijing 100871, China
| | - Jinxu Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhenghua Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yuqing Yang
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Shaochuang Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Jonathan Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Eric Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Luke Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Zhixing Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- Institute of Molecular Medicine, Peking University College of Future Technology, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yu Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Ceballos-Ávila D, Vázquez-Sandoval I, Ferrusca-Martínez F, Jiménez-Sánchez A. Conceptually innovative fluorophores for functional bioimaging. Biosens Bioelectron 2024; 264:116638. [PMID: 39153261 DOI: 10.1016/j.bios.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fluorophore chemistry is at the forefront of bioimaging, revolutionizing the visualization of biological processes with unparalleled precision. From the serendipitous discovery of mauveine in 1856 to cutting-edge fluorophore engineering, this field has undergone transformative evolution. Today, the synergy of chemistry, biology, and imaging technologies has produced diverse, specialized fluorophores that enhance brightness, photostability, and targeting capabilities. This review delves into the history and innovation of fluorescent probes, showcasing their pivotal role in advancing our understanding of cellular dynamics and disease mechanisms. We highlight groundbreaking molecules and their applications, envisioning future breakthroughs that promise to redefine biomedical research and diagnostics.
Collapse
Affiliation(s)
- Daniela Ceballos-Ávila
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Ixsoyen Vázquez-Sandoval
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Fernanda Ferrusca-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
11
|
Pino NW, Sizemore AR, Cleary L, Liu H, McSwiggen DT, Song D, Beck HP, Cheng K, Hardy M, Hsiung J, Tang Y, Anugula R, Lakshman S, Merneedi RK, Sinha P. Optimized Properties and Synthesis of Photoactivatable Diazoketorhodamines Facilitate and Enhance High-Throughput Single-Molecule Tracking. J Org Chem 2024; 89:14658-14664. [PMID: 38836310 PMCID: PMC11494646 DOI: 10.1021/acs.joc.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Photoactivatable (PA) rhodamine dyes are widely used in single-molecule tracking (SMT) and a variety of other fluorescence-based imaging modalities. One of the most commonly employed scaffolds uses a diazoketone to lock the rhodamine in the nonfluorescent closed form, which can be activated with 405 nm light. However, poor properties of previously reported dyes require significant washing, which can be resource- and cost-intensive, especially when performing microscopy in a large scale and high-throughput fashion. Here, we report improved diazoketorhodamines that perform exceptionally well in single-molecule tracking microscopy. We also report on the optimization of an improved synthetic method for further iteration and tailoring of diazoketorhodamines to the requirements of a specific user.
Collapse
Affiliation(s)
- Nicholas W. Pino
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | - Anne R. Sizemore
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | - Leah Cleary
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | - Helen Liu
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | | | - Dan Song
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | - Hilary P. Beck
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | - Kylie Cheng
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | - Miki Hardy
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | - Jessica Hsiung
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | - Yangzhong Tang
- Eikon
Therapeutics Inc., Hayward, California 94545, United States
| | | | | | | | | |
Collapse
|
12
|
Shih CP, Tang WC, Chen P, Chen BC. Applications of Lightsheet Fluorescence Microscopy by High Numerical Aperture Detection Lens. J Phys Chem B 2024; 128:8273-8289. [PMID: 39177503 PMCID: PMC11382282 DOI: 10.1021/acs.jpcb.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
This Review explores the evolution, improvements, and recent applications of Light Sheet Fluorescence Microscopy (LSFM) in biological research using a high numerical aperture detection objective (lens) for imaging subcellular structures. The Review begins with an overview of the development of LSFM, tracing its evolution from its inception to its current state and emphasizing key milestones and technological advancements over the years. Subsequently, we will discuss various improvements of LSFM techniques, covering advancements in hardware such as illumination strategies, optical designs, and sample preparation methods that have enhanced imaging capabilities and resolution. The advancements in data acquisition and processing are also included, which provides a brief overview of the recent development of artificial intelligence. Fluorescence probes that were commonly used in LSFM will be highlighted, together with some insights regarding the selection of potential probe candidates for future LSFM development. Furthermore, we also discuss recent advances in the application of LSFM with a focus on high numerical aperture detection objectives for various biological studies. For sample preparation techniques, there are discussions regarding fluorescence probe selection, tissue clearing protocols, and some insights into expansion microscopy. Integrated setups such as adaptive optics, single objective modification, and microfluidics will also be some of the key discussion points in this Review. We hope that this comprehensive Review will provide a holistic perspective on the historical development, technical enhancements, and cutting-edge applications of LSFM, showcasing its pivotal role and future potential in advancing biological research.
Collapse
Affiliation(s)
- Chun-Pei Shih
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Wei-Chun Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Peilin Chen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
13
|
Guo L, Yang M, Dong B, Lewman S, Van Horn A, Jia S. Engineering Central Substitutions in Heptamethine Dyes for Improved Fluorophore Performance. JACS AU 2024; 4:3007-3017. [PMID: 39211623 PMCID: PMC11350720 DOI: 10.1021/jacsau.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
As a major family of red-shifted fluorophores that operate beyond visible light, polymethine dyes are pivotal in light-based biological techniques. However, methods for tuning this kind of fluorophores by structural modification remain restricted to bottom-up synthesis and modification using coupling or nucleophilic substitutions. In this study, we introduce a two-step, late-stage functionalization process for heptamethine dyes. This process enables the substitution of the central chlorine atom in the commonly used 4'-chloro heptamethine scaffold with various aryl groups using aryllithium reagents. This method borrows the building block and designs from the xanthene dye community and offers a mild and convenient way for the diversification of heptamethine fluorophores. Notably, this efficient conversion allows for the synthesis of heptamethine-X, the heptamethine scaffold with two ortho-substituents on the 4'-aryl modification, which brings enhanced stability and reduced aggregation to the fluorophore. We showcase the utility of this method by a facile synthesis of a fluorogenic, membrane-localizing fluorophore that outperforms its commercial counterparts with a significantly higher brightness and contrast. Overall, this method establishes the synthetic similarities between polymethine and xanthene fluorophores and provides a versatile and feasible toolbox for future optimizing heptamethine fluorophores for their biological applications.
Collapse
Affiliation(s)
- Lei Guo
- Department
of Civil Engineering, University of Arkansas,
Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Meek Yang
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Bin Dong
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Seth Lewman
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Alex Van Horn
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Shang Jia
- Department
of Chemistry and Biochemistry, University
of Arkansas, Fayetteville, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
14
|
Lin Z, Schaefer K, Lui I, Yao Z, Fossati A, Swaney DL, Palar A, Sali A, Wells JA. Multiscale photocatalytic proximity labeling reveals cell surface neighbors on and between cells. Science 2024; 385:eadl5763. [PMID: 39024454 DOI: 10.1126/science.adl5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Proximity labeling proteomics (PLP) strategies are powerful approaches to yield snapshots of protein neighborhoods. Here, we describe a multiscale PLP method with adjustable resolution that uses a commercially available photocatalyst, Eosin Y, which upon visible light illumination activates different photo-probes with a range of labeling radii. We applied this platform to profile neighborhoods of the oncogenic epidermal growth factor receptor and orthogonally validated more than 20 neighbors using immunoassays and AlphaFold-Multimer prediction. We further profiled the protein neighborhoods of cell-cell synapses induced by bispecific T cell engagers and chimeric antigen receptor T cells. This integrated multiscale PLP platform maps local and distal protein networks on and between cell surfaces, which will aid in the systematic construction of the cell surface interactome, revealing horizontal signaling partners and reveal new immunotherapeutic opportunities.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kaitlin Schaefer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zi Yao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrea Fossati
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ajikarunia Palar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Brøndsted F, Stains CI. Xanthene-Based Dyes for Photoacoustic Imaging and their Use as Analyte-Responsive Probes. Chemistry 2024; 30:e202400598. [PMID: 38662806 PMCID: PMC11219268 DOI: 10.1002/chem.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 06/15/2024]
Abstract
Developing imaging tools that can report on the presence of disease-relevant analytes in multicellular organisms can provide insight into fundamental disease mechanisms as well as provide diagnostic tools for the clinic. Photoacoustic imaging (PAI) is a light-in, sound-out imaging technique that allows for high resolution, deep-tissue imaging with applications in pre-clinical and point-of-care settings. The continued development of near-infrared (NIR) absorbing small-molecule dyes promises to improve the capabilities of this emerging imaging modality. For example, new dye scaffolds bearing chemoselective functionalities are enabling the detection and quantification of disease-relevant analytes through activity-based sensing (ABS) approaches. Recently described strategies to engineer NIR absorbing xanthenes have enabled development of analyte-responsive PAI probes using this classic dye scaffold. Herein, we present current strategies for red-shifting the spectral properties of xanthenes via bridging heteroatom or auxochrome modifications. Additionally, we explore how these strategies, coupled with chemoselective spiroring-opening approaches, have been employed to create ABS probes for in vivo detection of hypochlorous acid, nitric oxide, copper (II), human NAD(P)H: quinone oxidoreductase isozyme 1, and carbon monoxide. Given the versatility of the xanthene scaffold, we anticipate continued growth and development of analyte-responsive PAI imaging probes based on this dye class.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
16
|
Pati AK, Kilic Z, Martin MI, Terry DS, Borgia A, Bar S, Jockusch S, Kiselev R, Altman RB, Blanchard SC. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. Nat Methods 2024; 21:1222-1230. [PMID: 38877317 PMCID: PMC11239528 DOI: 10.1038/s41592-024-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.
Collapse
Affiliation(s)
- Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sukanta Bar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steffen Jockusch
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Roman Kiselev
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roger B Altman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
17
|
Saucier MA, Kruse NA, Seidel BE, Hammer NI, Tschumper GS, Delcamp JH. Phospha-RosIndolizine Dye with Shortwave Infrared (SWIR) Absorption and Emission. J Org Chem 2024; 89:9092-9097. [PMID: 38841830 DOI: 10.1021/acs.joc.4c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Shortwave infrared (SWIR, 1000-1700 nm) absorbing and emitting dyes are needed for infrared diodes and sensors used in a wide variety of industrial and medical applications. Herein, an electron-withdrawing phosphine oxide (P═O) substituted xanthene is coupled with strong indolizine donors to produce a SWIR absorbing (λabs = 1294 nm in DCM) and emitting (λemis = 1450 nm in DCM) dye called PRos1450. The unique properties of this dye are characterized via photophysical, electrochemical, and computational analyses.
Collapse
Affiliation(s)
- Matthew A Saucier
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Nicholas A Kruse
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Brennan E Seidel
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| |
Collapse
|
18
|
Shen L, Li J, Wen C, Wang H, Liu N, Su X, Chen J, Li X. A firm-push-to-open and light-push-to-lock strategy for a general chemical platform to develop activatable dual-modality NIR-II probes. SCIENCE ADVANCES 2024; 10:eado2037. [PMID: 38875326 PMCID: PMC11177897 DOI: 10.1126/sciadv.ado2037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Activatable near-infrared (NIR) imaging in the NIR-II range is crucial for deep tissue bioanalyte tracking. However, designing such probes remains challenging due to the limited availability of general chemical strategies. Here, we introduced a foundational platform for activatable probes, using analyte-triggered smart modulation of the π-conjugation system of a NIR-II-emitting rhodamine hybrid. By tuning the nucleophilicity of the ortho-carboxy moiety, we achieved an electronic effect termed "firm-push-to-open and light-push-to-lock," which enables complete spirocyclization of the probe before sensing and allows for efficient zwitterion formation when the light-pushing aniline carbamate trigger is transformed into a firm-pushing aniline. This platform produces dual-modality NIR-II imaging probes with ~50-fold fluorogenic and activatable photoacoustic signals in live mice, surpassing reported probes with generally below 10-fold activatable signals. Demonstrating generality, we successfully designed probes for hydrogen peroxide (H2O2) and hydrogen sulfide (H2S). We envision a widespread adoption of the chemical platform for designing activatable NIR-II probes across diverse applications.
Collapse
Affiliation(s)
- Lili Shen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
| | - Jian Li
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenglong Wen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
| | - Nian Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Street, Hangzhou 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Dong XX, Liu JG, Zhang HX, Zhang B. A Practical and Modular Method for Direct C-H Functionalization of the BODIPY Core via Thianthrenium Salts. Chemistry 2024:e202401929. [PMID: 38818768 DOI: 10.1002/chem.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Direct structural modification of small-molecule fluorophores represents a straightforward and appealing strategy for accessing new fluorescent dyes with desired functionalities. We report herein a general and efficient visible-light-mediated method for the direct C-H functionalization of BODIPY, an important fluorescent chromophore, using readily accessible and bench-stable aryl and alkenylthianthrenium salts. This practical approach operates at room temperature with extraordinary site-selectivity, providing a step-economical means to construct various valuable aryl- and alkenyl-substituted BODIPY dyes. Remarkably, this protocol encompasses a broad substrate scope and excellent functional-group tolerance, and allows for the modular synthesis of sophisticated symmetrical and asymmetrical disubstituted BODIPYs by simply employing different combinations of thianthrenium salts. Moreover, the late-stage BODIPY modification of complex drug molecules further highlights the potential of this novel methodology in the synthesis of fluorophore-drug conjugates.
Collapse
Affiliation(s)
- Xin-Xin Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing-Guo Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Xiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
20
|
Zhang Y, Xu Z, Xiao Y, Jiang H, Zuo X, Li X, Fang X. Structural mechanisms for binding and activation of a contact-quenched fluorophore by RhoBAST. Nat Commun 2024; 15:4206. [PMID: 38760339 PMCID: PMC11101630 DOI: 10.1038/s41467-024-48478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
The fluorescent light-up aptamer RhoBAST, which binds and activates the fluorophore-quencher conjugate tetramethylrhodamine-dinitroaniline with high affinity, super high brightness, remarkable photostability, and fast exchange kinetics, exhibits excellent performance in super-resolution RNA imaging. Here we determine the co-crystal structure of RhoBAST in complex with tetramethylrhodamine-dinitroaniline to elucidate the molecular basis for ligand binding and fluorescence activation. The structure exhibits an asymmetric "A"-like architecture for RhoBAST with a semi-open binding pocket harboring the xanthene of tetramethylrhodamine at the tip, while the dinitroaniline quencher stacks over the phenyl of tetramethylrhodamine instead of being fully released. Molecular dynamics simulations show highly heterogeneous conformational ensembles with the contact-but-unstacked fluorophore-quencher conformation for both free and bound tetramethylrhodamine-dinitroaniline being predominant. The simulations also show that, upon RNA binding, the fraction of xanthene-dinitroaniline stacked conformation significantly decreases in free tetramethylrhodamine-dinitroaniline. This highlights the importance of releasing dinitroaniline from xanthene tetramethylrhodamine to unquench the RhoBAST-tetramethylrhodamine-dinitroaniline complex. Using SAXS and ITC, we characterized the magnesium dependency of the folding and binding mode of RhoBAST in solution and indicated its strong structural robustness. The structures and binding modes of relevant fluorescent light-up aptamers are compared, providing mechanistic insights for rational design and optimization of this important fluorescent light-up aptamer-ligand system.
Collapse
Affiliation(s)
- Yufan Zhang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| | - Zhonghe Xu
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Xiao
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haodong Jiang
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Xing Li
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Xianyang Fang
- Key Laboratory of RNA Science and Engineering, Institute of Biophysics Chinese Academy of Sciences, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
21
|
Wu W, Yan K, He Z, Zhang L, Dong Y, Wu B, Liu H, Wang S, Zhang F. 2X-Rhodamine: A Bright and Fluorogenic Scaffold for Developing Near-Infrared Chemigenetic Indicators. J Am Chem Soc 2024. [PMID: 38605649 DOI: 10.1021/jacs.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chemigenetic fusion of synthetic dyes with genetically encoded protein tags presents a promising avenue for in vivo imaging. However, its full potential has been hindered by the lack of bright and fluorogenic dyes operating in the "tissue transparency" near-infrared window (NIR, 700-1700 nm). Here, we report 2X-rhodamine (2XR), a novel bright scaffold that allows for the development of live-cell-compatible, NIR-excited variants with strong fluorogenicity beyond 1000 nm. 2XR utilizes a rigidified π-skeleton featuring dual atomic bridges and functions via a spiro-based fluorogenic mechanism. This design affords longer wavelengths, higher quantum yield (ΦF = 0.11), and enhanced fluorogenicity in water when compared to the phosphine oxide-cored, or sulfone-cored rhodamine, the NIR fluorogenic benchmarks currently used. We showcase their bright performance in video-rate dynamic imaging and targeted deep-tissue molecular imaging in vivo. Notably, we develop a 2XR variant, 2XR715-HTL, an NIR fluorogenic ligand for the HaloTag protein, enabling NIR genetically encoded calcium sensing and the first demonstration of in vivo chemigenetic labeling beyond 1000 nm. Our work expands the library of NIR fluorogenic tools, paving the way for in vivo imaging and sensing with the chemigenetic approach.
Collapse
Affiliation(s)
- Wenxiao Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Lu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Yuyao Dong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Hongyue Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| |
Collapse
|
22
|
Dunlop D, Horváth P, Klán P, Slanina T, Šebej P. Central Ring Puckering Enhances the Stokes Shift of Xanthene Dyes. Chemistry 2024; 30:e202400024. [PMID: 38197554 DOI: 10.1002/chem.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Small-molecule dyes are generally designed based on well-understood electronic effects. However, steric hindrance can promote excited-state geometric relaxation, increasing the difference between the positions of absorption and emission bands (the Stokes shift). Accordingly, we hypothesized that sterically induced central ring puckering in xanthene dyes could be used to systematically increase their Stokes shift. Through a combined experimental/quantum-chemical approach, we screened a group of (9-acylimino)-pyronin dyes with a perturbed central ring geometry. Our results showed that an atom with sp3 hybridization in position 10 of (9-acylimino)-pyronins induces central ring puckering and facilitates excited-state geometric relaxation, thereby markedly enhancing their Stokes shifts (by up to ~2000 cm-1). Thus, we prepared fluorescent (9-acylimino)-pyronin pH sensors, which showed a Stokes shift disparity between acid and base forms of up to ~8700 cm-1. Moreover, the concept of ring puckering-enhanced Stokes shift can be applied to a wide range of xanthene analogues found in the literature. Therefore, central ring puckering may be reliably used as a strategy for enhancing Stokes shifts in the rational design of dyes.
Collapse
Affiliation(s)
- David Dunlop
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic
| | - Peter Horváth
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
| | - Peter Šebej
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
23
|
Turnbull JL, Miller EW. An open and shut case? Chemistry to control xanthene dyes. TRENDS IN CHEMISTRY 2024; 6:164-172. [PMID: 39036609 PMCID: PMC11257214 DOI: 10.1016/j.trechm.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Fluorescent dyes are an indispensable part of the scientific enterprise. Xanthene-based fluorophores, like fluorescein and rhodamine, have been in continual use across numerous fields since their invention in the late 19th century. Modern methods to synthesize and expand the scope of xanthene dye chemistry have enabled new colors, enhanced stability, and improved brightness. Modifications to the 3-position of xanthene dyes have been, until recently, less well-explored. Here, we discuss how small changes to the identity of the substituent at the 3-position of fluoresceins and rhodamines can profoundly alter the properties of xanthene dyes, with the potential to unlock new applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Joshua L. Turnbull
- Department of Chemistry, University of California, Berkeley, CA 94720, United States of America
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, CA 94720, United States of America
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, United States of America
- Helen Wills Neuroscience Institute University of California, Berkeley, CA 94720, United States of America
| |
Collapse
|
24
|
Zhou Y, Wang Q, Chanmungkalakul S, Wu X, Xiao H, Miao R, Liu X, Fang Y. Fluorogenic Rhodamine Probes with Pyrrole Substitution Enables STED and Lifetime Imaging of Lysosomes in Live Cells. Chemistry 2024; 30:e202303707. [PMID: 38221317 DOI: 10.1002/chem.202303707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Fluorogenic dyes with high brightness, large turn-on ratios, excellent photostability, favorable specificity, low cytotoxicity, and high membrane permeability are essential for high-resolution fluorescence imaging in live cells. In this study, we endowed these desirable properties to a rhodamine derivative by simply replacing the N, N-diethyl group with a pyrrole substituent. The resulting dye, Rh-NH, exhibited doubled Stokes shifts (54 nm) and a red-shift of more than 50 nm in fluorescence spectra compared to Rhodamine B. Rh-NH preferentially exists in a non-emissive but highly permeable spirolactone form. Upon binding to lysosomes, the collective effects of low pH, low polarity, and high viscosity endow Rh-NH with significant fluorescence turn-on, making it a suitable candidate for wash-free, high-contrast lysosome tracking. Consequently, Rh-NH enabled us to successfully explore stimulated emission depletion (STED) super-resolution imaging of lysosome dynamics, as well as fluorescence lifetime imaging of lysosomes in live cells.
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiuping Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Supphachok Chanmungkalakul
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Xia Wu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Hui Xiao
- Colledge of Life Science, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
25
|
Brøndsted F, Fang Y, Li L, Zhou X, Grant S, Stains CI. Single Atom Stabilization of Phosphinate Ester-Containing Rhodamines Yields Cell Permeable Probes for Turn-On Photoacoustic Imaging. Chemistry 2024; 30:e202303038. [PMID: 37852935 PMCID: PMC10926271 DOI: 10.1002/chem.202303038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging technique that uses pulsed laser excitation with near-infrared (NIR) light to elicit local temperature increases through non-radiative relaxation events, ultimately leading to the production of ultrasound waves. The classical xanthene dye scaffold has found numerous applications in fluorescence imaging, however, xanthenes are rarely utilized for PAI since they do not typically display NIR absorbance. Herein, we report the ability of Nebraska Red (NR) xanthene dyes to produce photoacoustic (PA) signal and provide a rational design approach to reduce the hydrolysis rate of ester containing dyes, affording cell permeable probes. To demonstrate the utility of this approach, we construct the first cell permeable rhodamine-based, turn-on PAI imaging probe for hypochlorous acid (HOCl) with maximal absorbance within the range of commercial PA instrumentation. This probe, termed SNR700 -HOCl, is capable of detecting exogenous HOCl in mice. This work provides a new set of rhodamine-based PAI agents as well as a rational design approach to stabilize esterified versions of NR dyes with desirable properties for PAI. In the long term, the reagents described herein could be utilized to enable non-invasive imaging of HOCl in disease-relevant model systems.
Collapse
Affiliation(s)
- Frederik Brøndsted
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Yuan Fang
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska-Lincoln, 68588, Lincoln, NE, USA
- Current Address: Department of Chemistry, University of California, 94720, Berkeley, CA, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, 23298, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, 23298, Richmond, VA, USA
| | - Cliff I Stains
- Department of Chemistry, University of Virginia, 22904, Charlottesville, VA, USA
- University of Virginia Cancer Center, University of Virginia, 22908, Charlottesville, VA, USA
- Virginia Drug Discovery Consortium, 24061, Blacksburg, VA, USA
| |
Collapse
|
26
|
Martin A, Rivera-Fuentes P. A general strategy to develop fluorogenic polymethine dyes for bioimaging. Nat Chem 2024; 16:28-35. [PMID: 38012391 PMCID: PMC10774129 DOI: 10.1038/s41557-023-01367-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Fluorescence imaging is an invaluable tool to study biological processes and further progress depends on the development of advanced fluorogenic probes that reach intracellular targets and label them with high specificity. Excellent fluorogenic rhodamine dyes have been reported, but they often require long and low-yielding syntheses, and are spectrally limited to the visible range. Here we present a general strategy to transform polymethine compounds into fluorogenic dyes using an intramolecular ring-closure approach. We illustrate the generality of this method by creating both spontaneously blinking and no-wash, turn-on polymethine dyes with emissions across the visible and near-infrared spectrum. These probes are compatible with self-labelling proteins and small-molecule targeting ligands, and can be combined with rhodamine-based dyes for multicolour and fluorescence lifetime multiplexing imaging. This strategy provides access to bright, fluorogenic dyes that emit at wavelengths that are more red-shifted compared with those of existing rhodamine-based dyes.
Collapse
Affiliation(s)
- Annabell Martin
- Department of Chemistry, University of Zurich, Zurich, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | | |
Collapse
|
27
|
Wilson QD, Sletten EM. Engineering cyanine cyclizations for new fluorogenic probes. Nat Chem 2024; 16:3-5. [PMID: 38110476 DOI: 10.1038/s41557-023-01408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Affiliation(s)
- Quintashia D Wilson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Ye C, Huang R, Chiou MF, Wang B, Li D, Bao H. Synthesis of a new fluorophore: wavelength-tunable bisbenzo[ f]isoindolylidenes. Chem Sci 2023; 14:13151-13158. [PMID: 38023512 PMCID: PMC10664550 DOI: 10.1039/d3sc04445a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The creation of new functional molecules is a central task in chemical synthesis. Herein, we report the synthesis of a new type of fluorophore, bisbenzo[f]isoindolylidenes, from easily accessible dipropargyl benzenesulfonamides. Wavelength-tunable fluorophores emitting strong fluorescence of green to red light were obtained in this reaction. Late-stage modifications and incorporation of bioactive molecules into these fluorophores give rise to potential applications in biological studies. Detailed computational and experimental studies were conducted to elucidate the mechanism, and suggest a reaction sequence involving Garratt-Braverman type cyclization, isomerization, fragmentation, dimerization and oxidation.
Collapse
Affiliation(s)
- Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Rui Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Bo Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
29
|
Si D, Li Q, Bao Y, Zhang J, Wang L. Fluorogenic and Cell-Permeable Rhodamine Dyes for High-Contrast Live-Cell Protein Labeling in Bioimaging and Biosensing. Angew Chem Int Ed Engl 2023; 62:e202307641. [PMID: 37483077 DOI: 10.1002/anie.202307641] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
The advancement of fluorescence microscopy techniques has opened up new opportunities for visualizing proteins and unraveling their functions in living biological systems. Small-molecule organic dyes, which possess exceptional photophysical properties, small size, and high photostability, serve as powerful fluorescent reporters in protein imaging. However, achieving high-contrast live-cell labeling of target proteins with conventional organic dyes remains a considerable challenge in bioimaging and biosensing due to their inadequate cell permeability and high background signal. Over the past decade, a novel generation of fluorogenic and cell-permeable dyes has been developed, which have substantially improved live-cell protein labeling by fine-tuning the reversible equilibrium between a cell-permeable, nonfluorescent spirocyclic state (unbound) and a fluorescent zwitterion (protein-bound) of rhodamines. In this review, we present the mechanism and design strategies of these fluorogenic and cell-permeable rhodamines, as well as their applications in bioimaging and biosensing.
Collapse
Affiliation(s)
- Dongjuan Si
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Quanlin Li
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Yifan Bao
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Jingye Zhang
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| | - Lu Wang
- School of Pharmacy, Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Zhangheng Road 826, Shanghai, China
| |
Collapse
|
30
|
He T, Cui PL, Zhang S, Fan YH, Jin QS, Wang JP. Development of a receptor based signal amplified fluorescence polarization assay for multi-detection of 35 sulfonamides in pork. Food Chem X 2023; 19:100867. [PMID: 37780256 PMCID: PMC10534214 DOI: 10.1016/j.fochx.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
With the increasing focus on food security, a screening method with high-throughput, ultra-sensitivity, and user-friendly operation is urgently needed for monitoring of sulfonamides residues in animal-derived foods. In this study, the sulfonamides' receptor dihydropteroate synthase of Staphylococcus aureus was subjected to saturate mutation, and a mutant with higher affinities for sulfonamides was obtained. The mutant was then used as recognition material to establish a fluorescence polarization assay for determination of 35 sulfonamides in pork. Due to the use of an enhanced fluorescent tracer containing two fluorophore molecules, the sensitivities for the 35 sulfonamides were improved for 2.8-8.6 folds (LODs 0.03-1.16 ng/mL) in comparison with using conventional fluorescent tracer. The present method outperformed all previous fluorescence polarization (immuno)assays for sulfonamides due to its broader spectrum, higher sensitivity, and shorter assay time. Furthermore, this is the first study reporting an enhanced fluorescence polarization assay for determination of small molecule substance.
Collapse
Affiliation(s)
- Tong He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Peng Lei Cui
- College of Science, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuai Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yu Hang Fan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qiu Shi Jin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
31
|
Lin Z, Schaefer K, Lui I, Yao Z, Fossati A, Swaney DL, Palar A, Sali A, Wells JA. Multi-scale photocatalytic proximity labeling reveals cell surface neighbors on and between cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564055. [PMID: 37961561 PMCID: PMC10634877 DOI: 10.1101/2023.10.28.564055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The cell membrane proteome is the primary biohub for cell communication, yet we are only beginning to understand the dynamic protein neighborhoods that form on the cell surface and between cells. Proximity labeling proteomics (PLP) strategies using chemically reactive probes are powerful approaches to yield snapshots of protein neighborhoods but are currently limited to one single resolution based on the probe labeling radius. Here, we describe a multi-scale PLP method with tunable resolution using a commercially available histological dye, Eosin Y, which upon visible light illumination, activates three different photo-probes with labeling radii ranging from ∼100 to 3000 Å. We applied this platform to profile neighborhoods of the oncogenic epidermal growth factor receptor (EGFR) and orthogonally validated >20 neighbors using immuno-assays and AlphaFold-Multimer prediction that generated plausible binary interaction models. We further profiled the protein neighborhoods of cell-cell synapses induced by bi-specific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)T cells at longer length scales. This integrated multi-scale PLP platform maps local and distal protein networks on cell surfaces and between cells. We believe this information will aid in the systematic construction of the cell surface interactome and reveal new opportunities for immunotherapeutics.
Collapse
|
32
|
Xia WQ, Liu J, Wang JP. Evolution of a natural TetR protein and development of a Fe 3O 4 assisted semi-homogeneous fluorescent method for determination of tetracyclines in milk. Anal Chim Acta 2023; 1276:341609. [PMID: 37573105 DOI: 10.1016/j.aca.2023.341609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 08/14/2023]
Abstract
Compared with antibody, the recognition spectrum of a receptor is broader, and its recognition ability can be improved using simple mutagenesis technique. Compared with conventional immunoassay, the magnetic bead based immunoassay is simpler and can be recycled. Compared with colorimetric and luminescent immunoassays, fluoroimmunoassay is simpler because it does not require a substrate. So a method combines these merits is desirable. In this study, two amino acids in the binding pocket of a natural Escherichia coli TetR protein were mutated to produce a mutant, and the molecular docking showed the binding energies and the numbers of contact acid for 10 tetracyclines all increased. The mutant was coupled with Fe3O4 to synthesize a magnetic complex, and a fluorescent tracer was synthesized by coupling quantum dot and minocycline with bovine serum albumin. Under the assistance of 96-well bottom magnet, a semi-homogeneous method based on the two materials was developed on conventional microplate for determination of the 10 tetracyclines in milk. Results showed once assay was finished within 20 min, the limits of detection (drug concentration showing 10% inhibition) for the 10 drugs were in the range of 0.32-0.94 ng/mL, and the magnetic complex could be regenerated for 6 times. Furthermore, the sensitivities were improved for 4-6 folds in comparison with the use of natural TetR. Therefore, this method is simple, sensitive, time-saving and recyclable, and it can be used for routine screening of the 10 tetracyclines in milk.
Collapse
Affiliation(s)
- Wan Qiu Xia
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jing Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jian Ping Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
33
|
Adair LD, New EJ. Molecular fluorescent sensors for in vivo imaging. Curr Opin Biotechnol 2023; 83:102973. [PMID: 37531801 DOI: 10.1016/j.copbio.2023.102973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Small-molecule fluorophores are powerful tools for biological research. They have enabled researchers to study cellular architecture and decipher biological processes. Responsive fluorescent sensors have enabled the study of a wide range of analytes and their effects on biological phenomena in situ. The application of fluorescent sensors to studies in living organisms is complicated by challenges such as biocompatibility, chemostability, photostability and sufficient penetration of light through living tissues. Translation to in vivo imaging is therefore not straightforward and requires innovative approaches. Recent advances in the design of fluorophores with improved photophysical properties and the development of long-wavelength-emitting fluorophore scaffolds that can be modularly functionalised with targeting and sensing groups have allowed the application of fluorogenic, ratiometric and reversible sensors in vivo.
Collapse
Affiliation(s)
- Liam D Adair
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
34
|
Hua L, Wang D, Wang K, Wang Y, Gu J, Zhang Q, You Q, Wang L. Design of Tracers in Fluorescence Polarization Assay for Extensive Application in Small Molecule Drug Discovery. J Med Chem 2023; 66:10934-10958. [PMID: 37561645 DOI: 10.1021/acs.jmedchem.3c00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Development of fluorescence polarization (FP) assays, especially in a competitive manner, is a potent and mature tool for measuring the binding affinities of small molecules. This approach is suitable for high-throughput screening (HTS) for initial ligands and is also applicable for further study of the structure-activity relationships (SARs) of candidate compounds for drug discovery. Buffer and tracer, especially rational design of the tracer, play a vital role in an FP assay system. In this perspective, we provided different kinds of approaches for tracer design based on successful cases in recent years. We classified these tracers by different types of ligands in tracers, including peptide, nucleic acid, natural product, and small molecule. To make this technology accessible for more targets, we briefly described the basic theory and workflow, followed by highlighting the design and application of typical FP tracers from a perspective of medicinal chemistry.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danni Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keran Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
35
|
Englert D, Burger EM, Grün F, Verma MS, Lackner J, Lampe M, Bühler B, Schokolowski J, Nienhaus GU, Jäschke A, Sunbul M. Fast-exchanging spirocyclic rhodamine probes for aptamer-based super-resolution RNA imaging. Nat Commun 2023; 14:3879. [PMID: 37391423 PMCID: PMC10313827 DOI: 10.1038/s41467-023-39611-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Live-cell RNA imaging with high spatial and temporal resolution remains a major challenge. Here we report the development of RhoBAST:SpyRho, a fluorescent light-up aptamer (FLAP) system ideally suited for visualizing RNAs in live or fixed cells with various advanced fluorescence microscopy modalities. Overcoming problems associated with low cell permeability, brightness, fluorogenicity, and signal-to-background ratio of previous fluorophores, we design a novel probe, SpyRho (Spirocyclic Rhodamine), which tightly binds to the RhoBAST aptamer. High brightness and fluorogenicity is achieved by shifting the equilibrium between spirolactam and quinoid. With its high affinity and fast ligand exchange, RhoBAST:SpyRho is a superb system for both super-resolution SMLM and STED imaging. Its excellent performance in SMLM and the first reported super-resolved STED images of specifically labeled RNA in live mammalian cells represent significant advances over other FLAPs. The versatility of RhoBAST:SpyRho is further demonstrated by imaging endogenous chromosomal loci and proteins.
Collapse
Affiliation(s)
- Daniel Englert
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Eva-Maria Burger
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Franziska Grün
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Mrigank S Verma
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jens Lackner
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bastian Bühler
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Janin Schokolowski
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
- Institute of Biological and Chemical Systems (IBCS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany.
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
36
|
Wang LG, Montaño AR, Combs JR, McMahon NP, Solanki A, Gomes MM, Tao K, Bisson WH, Szafran DA, Samkoe KS, Tichauer KM, Gibbs SL. OregonFluor enables quantitative intracellular paired agent imaging to assess drug target availability in live cells and tissues. Nat Chem 2023; 15:729-739. [PMID: 36997700 DOI: 10.1038/s41557-023-01173-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/27/2023] [Indexed: 04/30/2023]
Abstract
Non-destructive fluorophore diffusion across cell membranes to provide an unbiased fluorescence intensity readout is critical for quantitative imaging applications in live cells and tissues. Commercially available small-molecule fluorophores have been engineered for biological compatibility, imparting high water solubility by modifying rhodamine and cyanine dye scaffolds with multiple sulfonate groups. The resulting net negative charge, however, often renders these fluorophores cell-membrane-impermeant. Here we report the design and development of our biologically compatible, water-soluble and cell-membrane-permeable fluorophores, termed OregonFluor (ORFluor). By adapting previously established ratiometric imaging methodology using bio-affinity agents, it is now possible to use small-molecule ORFluor-labelled therapeutic inhibitors to quantitatively visualize their intracellular distribution and protein target-specific binding, providing a chemical toolkit for quantifying drug target availability in live cells and tissues.
Collapse
Affiliation(s)
- Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Antonio R Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Jason R Combs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Nathan P McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Allison Solanki
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Michelle M Gomes
- Cancer Early Detection Advanced Research Center (CEDAR), Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kai Tao
- Cancer Early Detection Advanced Research Center (CEDAR), Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - William H Bisson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Dani A Szafran
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Surgery, Dartmouth Health, Lebanon, NH, USA
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
37
|
Dahal L, Walther N, Tjian R, Darzacq X, Graham TG. Single-molecule tracking (SMT): a window into live-cell transcription biochemistry. Biochem Soc Trans 2023; 51:557-569. [PMID: 36876879 PMCID: PMC10212543 DOI: 10.1042/bst20221242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
How molecules interact governs how they move. Single-molecule tracking (SMT) thus provides a unique window into the dynamic interactions of biomolecules within live cells. Using transcription regulation as a case study, we describe how SMT works, what it can tell us about molecular biology, and how it has changed our perspective on the inner workings of the nucleus. We also describe what SMT cannot yet tell us and how new technical advances seek to overcome its limitations. This ongoing progress will be imperative to address outstanding questions about how dynamic molecular machines function in live cells.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Nike Walther
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| | - Thomas G.W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, U.S.A
- Li Ka Shing Center for Biomedical & Health Sciences, University of California, Berkeley, Berkeley, U.S.A
| |
Collapse
|
38
|
Zhang J, Xu W, Ma J, Jia Q. Design of reversibly charge-changeable rhodamine B modified magnetic nanoparticles to enrich phosphopeptides. J Chromatogr A 2023; 1697:463992. [PMID: 37080009 DOI: 10.1016/j.chroma.2023.463992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
In the present study, by employing ethylenediaminetetraacetic acid (EDTA), tetraethylene pentaamine (TEPA), and rhodamine B (Rb), we designed and synthesized a magnetic adsorbent (Fe3O4@EDTA@TEPA@Rb) on the basis of reversible charge change of Rb and applied to capture phosphopeptides. Rb existing in open planarized zwitterion form when stimulated by acidic loading buffer adsorbs negative phosphopeptides via electrostatic interaction. Under the stimulation of alkalic eluent, ring-closed structure of Rb is formed to elute the enriched phosphopeptides. TEPA containing rich amino groups is used as a crosslinking agent, which is also protonated in acidic loading buffer to bond phosphopeptides. Then phosphopeptides are eluted when TEPA deprotonates in alkalic eluent. Coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) detection, phosphopeptide signals originated from 0.4 fmol/μL β-casein digests were successfully detected. In addition, Fe3O4@EDTA@TEPA@Rb can also efficiently enrich phosphopeptides from skimmed milk, human serum and saliva samples (26, 4, 39 phosphopeptides, respectively), opening a new gallery for phosphopeptides-related analysis. In general, the developed adsorbent has the great potential for further application in the near future.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenhui Xu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
39
|
Zhang Y, Zheng Y, Tomassini A, Singh AK, Raymo FM. Photoactivatable Fluorophores for Bioimaging Applications. ACS APPLIED OPTICAL MATERIALS 2023; 1:640-651. [PMID: 37601830 PMCID: PMC10437147 DOI: 10.1021/acsaom.3c00025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Photoactivatable fluorophores provide the opportunity to switch fluorescence on exclusively in a selected area within a sample of interest at a precise interval of time. Such a level of spatiotemporal fluorescence control enables the implementation of imaging schemes to monitor dynamic events in real time and visualize structural features with nanometer resolution. These transformative imaging methods are contributing fundamental insights on diverse cellular processes with profound implications in biology and medicine. Current photoactivatable fluorophores, however, become emissive only after the activation event, preventing the acquisition of fluorescence images and, hence, the visualization of the sample prior to activation. We developed a family of photoactivatable fluorophores capable of interconverting between emissive states with spectrally resolved fluorescence, instead of switching from a nonemissive state to an emissive one. We demonstrated that our compounds allow the real-time monitoring of molecules diffusing across the cellular blastoderm of developing embryos as well as of polymer beads translocating along the intestinal tract of live nematodes. Additionally, they also permit the tracking of single molecules in the lysosomal compartments of live cells and the visualization of these organelles with nanometer resolution. Indeed, our photoactivatable fluorophores may evolve into invaluable analytical tools for the investigation of the fundamental factors regulating the functions and structures of cells at the molecular level.
Collapse
Affiliation(s)
- Yang Zhang
- Program of Polymer and Color Chemistry, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Yeting Zheng
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Andrea Tomassini
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Ambarish Kumar Singh
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
40
|
Kamino S, Uchiyama M. Xanthene-based functional dyes: towards new molecules operating in the near-infrared region. Org Biomol Chem 2023; 21:2458-2471. [PMID: 36661341 DOI: 10.1039/d2ob02208g] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Xanthene-based functional dyes have diverse applications in life science and materials science. A current challenge is to develop new dyes with suitable physicochemical properties, including near-infrared (NIR) operation, for advanced biological applications such as medical diagnostics and molecular imaging. In this review, we first present an overview of xanthene-based functional dyes and then focus on synthetic strategies for modulating the absorption and fluorescence of dyes that operate in the NIR wavelength region with bright emission and good photostability. We also introduce our work on aminobenzopyranoxanthenes (ABPXs) and bridged tetra-aryl-p-quinodimethanes (BTAQs) as new xanthene-based far-red (FR)/NIR absorbing/emitting molecules whose absorption/fluorescence wavelengths change in response to external stimuli.
Collapse
Affiliation(s)
- Shinichiro Kamino
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokita, Ueda, Japan
| |
Collapse
|
41
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
42
|
Zhang Y, Zheng Y, Tomassini A, Singh AK, Raymo FM. Photoactivatable BODIPYs for Live-Cell PALM. Molecules 2023; 28:molecules28062447. [PMID: 36985424 PMCID: PMC10057988 DOI: 10.3390/molecules28062447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Photoactivated localization microscopy (PALM) relies on fluorescence photoactivation and single-molecule localization to overcome optical diffraction and reconstruct images of biological samples with spatial resolution at the nanoscale. The implementation of this subdiffraction imaging method, however, requires fluorescent probes with photochemical and photophysical properties specifically engineered to enable the localization of single photoactivated molecules with nanometer precision. The synthetic versatility and outstanding photophysical properties of the borondipyrromethene (BODIPY) chromophore are ideally suited to satisfy these stringent requirements. Specifically, synthetic manipulations of the BODIPY scaffold can be invoked to install photolabile functional groups and photoactivate fluorescence under photochemical control. Additionally, targeting ligands can be incorporated in the resulting photoactivatable fluorophores (PAFs) to label selected subcellular components in live cells. Indeed, photoactivatable BODIPYs have already allowed the sub-diffraction imaging of diverse cellular substructures in live cells using PALM and can evolve into invaluable analytical probes for bioimaging applications.
Collapse
Affiliation(s)
- Yang Zhang
- Program of Polymer and Color Chemistry, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27606, USA
- Correspondence: (Y.Z.); (F.M.R.)
| | - Yeting Zheng
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Andrea Tomassini
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Ambarish Kumar Singh
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
- Correspondence: (Y.Z.); (F.M.R.)
| |
Collapse
|
43
|
Remmel M, Scheiderer L, Butkevich AN, Bossi ML, Hell SW. Accelerated MINFLUX Nanoscopy, through Spontaneously Fast-Blinking Fluorophores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206026. [PMID: 36642798 DOI: 10.1002/smll.202206026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The introduction of MINFLUX nanoscopy allows single molecules to be localized with one nanometer precision in as little as one millisecond. However, current applications have so far focused on increasing this precision by optimizing photon collection, rather than minimizing the localization time. Concurrently, commonly used fluorescent switches are specifically designed for stochastic methods (e.g., STORM), optimized for a high photon yield and rather long on-times (tens of milliseconds). Here, accelerated MINFLUX nanoscopy with up to a 30-fold gain in localization speed is presented. The improvement is attained by designing spontaneously blinking fluorescent markers with remarkably fast on-times, down to 1-3 ms, matching the iterative localization process used in a MINFLUX microscope. This design utilizes a silicon rhodamine amide core, shifting the spirocyclization equilibrium toward an uncharged closed form at physiological conditions and imparting intact live cell permeability, modified with a fused (benzo)thiophene spirolactam fragment. The best candidate for MINFLUX microscopy (also suitable for STORM imaging) is selected through detailed characterization of the blinking behavior of single fluorophores, bound to different protein tags. Finally, optimization of the localization routines, customized to the fast blinking times, renders a significant speed improvement on a commercial MINFLUX microscope.
Collapse
Affiliation(s)
- Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Lukas Scheiderer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Alexey N Butkevich
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
44
|
Zhang J, Shi H, Huang C, Mei L, Guo Q, Cheng K, Wu P, Su D, Chen Q, Gan S, Wing Chan CK, Shi J, Chen JL, Jonathan Choi CH, Yao SQ, Chen XK, Tang BZ, He J, Sun H. De Novo Designed Self-Assembling Rhodamine Probe for Real-Time, Long-Term and Quantitative Live-Cell Nanoscopy. ACS NANO 2023; 17:3632-3644. [PMID: 36744992 DOI: 10.1021/acsnano.2c10467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Super-resolution imaging provides a powerful approach to image dynamic biomolecule events at nanoscale resolution. An ingenious method involving tuning intramolecular spirocyclization in rhodamine offers an appealing strategy to design cell-permeable fluorogenic probes for super-resolution imaging. Nevertheless, precise control of rhodamine spirocyclization presents a significant challenge. Through detailed study of the structure-activity relationship, we identified that multiple key factors control rhodamime spirocyclization. The findings provide opportunities to create fluorogenic probes with tailored properties. On the basis of our findings, we constructed self-assembling rhodamine probes for no-wash live-cell confocal and super-resolution imaging. The designed self-assembling probe Rho-2CF3 specifically labeled its target proteins and displayed high ring-opening ability, fast labeling kinetics (<1 min), and large turn-on fold (>80 folds), which is very difficult to be realized by the existing methods. Using the probe, we achieved high-contrast super-resolution imaging of nuclei and mitochondria with a spatial resolution of up to 42 nm. The probe also showed excellent photostability and proved ideal for real-time and long-term tracking of mitochondrial fission and fusion events with high spatiotemporal resolution. Furthermore, Rho-2CF3 could resolve the ultrastructure of mitochondrial cristae and quantify their morphological changes under drug treatment at nanoscale. Our strategy thus demonstrates its usefulness in designing self-assembling probes for super-resolution imaging.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, 999077, China
| | - Heng Shi
- Departments of Neuroscience and Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong Province 510530, China
| | - Chen Huang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Le Mei
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qiang Guo
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Hong Kong SAR, 999077, China
| | - Ke Cheng
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pingzhou Wu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Dan Su
- Departments of Neuroscience and Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Cecilia Ka Wing Chan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Jiahai Shi
- Departments of Neuroscience and Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jian Lin Chen
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Good Shepherd Street, Ho Man Tin, Hong Kong SAR, 999077, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xian-Kai Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jufang He
- Departments of Neuroscience and Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
45
|
Yuan Y, Yan J, Liu J, Wang Y, Chen Y. Ex_g-C 3N 4 as a novel fluorescent probe for sensitive detecting ClO - in water samples with portable test strip. Anal Chim Acta 2023; 1239:340715. [PMID: 36628719 DOI: 10.1016/j.aca.2022.340715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Excessive hypochlorite (ClO-) is easy to form residues in water, which will seriously endanger human health and environmental pollution. Therefore, it is essential to develop a sensitive fluorescent sensor to detect ClO- in water. Herein, a simple and economical fluorescent probe for the detection of ClO- was designed by highly exfoliated graphite-like carbon nitride (Ex_g-C3N4). The results showed that Ex_g-C3N4 had obvious fluorescence quenching effect on ClO- with high selectivity and anti-interference ability, which was feasible for making probes for detecting ClO- in water. Sensing experiments showed that the Ex_g-C3N4 probe had the detection limit of 5.56 nM while the detection range was 0-62 mM in water. Moreover, the fast response time of Ex_g-C3N4 was less than 30 s, illustrating the superior sensitivity. Besides, the fluorescence sensing experiment was carried out in various liquid conditions, which demonstrated that Ex_g-C3N4 probe had outstanding detecting application in natural environment. A portable fluorescent test strip for rapid detecting ClO- was successfully developed. The response of the probe on test strip towards ClO- was investigated, and the detection limit (0.1 μM) is low enough to meet the safety requirements in tap water. Furthermore, the quenching mechanism of Ex_g-C3N4 probe was also discussed.
Collapse
Affiliation(s)
- Yi Yuan
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Jun Yan
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Jianfei Liu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Yaru Wang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Yunlin Chen
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| |
Collapse
|
46
|
Jain A, Broichhagen J. Make it stick: Fixable ligands for tissue imaging. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Skorotetcky MS, Surin NM, Svidchenko EA, Pisarev SA, Fedorov YV, Borshchev OV, Kuleshov BS, Shaposhnik PA, Maloshitskaya OA, Ponomarenko SA. Synthesis and Photophysical Properties of Novel Meta-Conjugated Organic Molecules with 1,3,5-Benzene Branching Units. J Phys Chem B 2022; 126:10893-10906. [PMID: 36519926 DOI: 10.1021/acs.jpcb.2c05868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis and photophysical investigation of three novel meta-conjugated molecules based on 3,1,2-benzothiadiazole and thiophene-2,5-diyl derivatives linked through 1,3,5-benzene branching units are described. Each of them is a symmetrical molecule with two branching units, four identical lateral thiophene-containing fragments, and one central benzothiadiazole-containing fragment. To study the effect of the chemical structure on their photophysical properties, the molecules with different linearly conjugated lateral and central fragments due to incorporation of additional thiophene rings were synthesized and compared. It was shown that absorption spectra of the meta-conjugated molecules can be represented as a sum of absorption bands of model compounds for their peripheral and central fragments containing a common benzene ring being branched at the 1,3,5-benzene unit in the meta-conjugated molecules. Therefore, they cannot be considered simply as isolated π-conjugated systems of their peripheral and central fragments. Instead, DFT calculations showed that several transitions between the orbitals located in different regions of the meta-conjugated molecule are responsible for the formation of their absorption spectra, and they strongly depend on the degree of their overlapping. Theoretical absorption spectra reconstructed from the DFT data demonstrated a good agreement with the experimental results: the transitions with larger oscillator strength correspond to the bands with higher molar extinction coefficients and vice versa. It was shown that luminescence spectral maxima of the meta-conjugated molecules monotonically shift to the lower energy from 489 to 540 and 613 nm with increasing the number of thiophene rings in the peripheral and central fragments, respectively. However, luminescence quantum yield of the meta-conjugated molecules critically depends on the length of linearly conjugated fragments in its structure decreasing from 24% to 1.3% with increasing the number of thiophene rings in the lateral fragments but increasing to 90% in the molecule with more thiophene rings in both types of the fragments. The results obtained are well correlated to the ratio of radiative and nonradiative deactivation rate constants of the meta-conjugated molecules that indicates a high rate of internal conversion between the excited states corresponding to different fragments of the molecule. The CV measurements allowed estimating the HOMO, LUMO, and bandgap values of the target and model compounds, which confirm the presence of meta-conjugation within the molecules investigated. Thus, connection of linearly conjugated fragments through meta-positions (meta-conjugation) of a benzene ring leads to an intermediate option between fully conjugated and nonconjugated molecules due to partial delocalization of electron density through the 1,3,5-substituted benzene branching center.
Collapse
Affiliation(s)
- Maxim S Skorotetcky
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow117393, Russia
| | - Nikolay M Surin
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow117393, Russia
| | - Evgeniya A Svidchenko
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow117393, Russia
| | - Sergey A Pisarev
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow117393, Russia.,Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow119991, Russia
| | - Yury V Fedorov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow119991, Russia
| | - Oleg V Borshchev
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow117393, Russia
| | - Bogdan S Kuleshov
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow117393, Russia
| | - Polina A Shaposhnik
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow117393, Russia
| | - Olga A Maloshitskaya
- Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow119991, Russia
| | - Sergey A Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya St. 70, Moscow117393, Russia.,Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow119991, Russia
| |
Collapse
|
48
|
Ashworth EK, Langeland J, Stockett MH, Lindkvist TT, Kjær C, Bull JN, Nielsen SB. Cryogenic Fluorescence Spectroscopy of Ionic Fluorones in Gaseous and Condensed Phases: New Light on Their Intrinsic Photophysics. J Phys Chem A 2022; 126:9553-9563. [PMID: 36529970 DOI: 10.1021/acs.jpca.2c07231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescence spectroscopy of gas-phase ions generated through electrospray ionization is an emerging technique able to probe intrinsic molecular photophysics directly without perturbations from solvent interactions. While there is ample scope for the ongoing development of gas-phase fluorescence techniques, the recent expansion into low-temperature operating conditions accesses a wealth of data on intrinsic fluorophore photophysics, offering enhanced spectral resolution compared with room-temperature measurements, without matrix effects hindering the excited-state dynamics. This perspective reviews current progress on understanding the photophysics of anionic fluorone dyes, which exhibit an unusually large Stokes shift in the gas phase, and discusses how comparison of gas- and condensed-phase fluorescence spectra can fingerprint structural dynamics. The capacity for temperature-dependent measurements of both fluorescence emission and excitation spectra helps establish the foundation for the use of fluorone dyes as fluorescent tags in macromolecular structure determination. We suggest ideas for technique development.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691Stockholm, Sweden
| | | | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - James N Bull
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | | |
Collapse
|
49
|
Trumpp M, Oliveras A, Gonschior H, Ast J, Hodson DJ, Knaus P, Lehmann M, Birol M, Broichhagen J. Enzyme self-label-bound ATTO700 in single-molecule and super-resolution microscopy. Chem Commun (Camb) 2022; 58:13724-13727. [PMID: 36427021 DOI: 10.1039/d2cc04823j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we evaluate near-infrared ATTO700 as an acceptor in SNAP- and Halo-tag protein labelling for Förster Resonance Energy Transfer (FRET) by ensemble and single molecule measurements. Microscopy of cell surface proteins in live cells is perfomed including super-resolution stimulated emission by depletion (STED) nanoscopy.
Collapse
Affiliation(s)
- Michael Trumpp
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany. .,Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Anna Oliveras
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany.
| | - Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Petra Knaus
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Thielallee 63, 14195 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | - Melissa Birol
- Berlin Institute of Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany.
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
50
|
Fluorescent probes in stomatology. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|