1
|
Hong X, Tang F, Wang L, Chen J. Unsupervised deep learning enables real-time image registration of fast-scanning optical-resolution photoacoustic microscopy. PHOTOACOUSTICS 2024; 38:100632. [PMID: 39100197 PMCID: PMC11296048 DOI: 10.1016/j.pacs.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
A fast scanner of optical-resolution photoacoustic microscopy is inherently vulnerable to perturbation, leading to severe image distortion and significant misalignment among multiple 2D or 3D images. Restoration and registration of these images is critical for accurately quantifying dynamic information in long-term imaging. However, traditional registration algorithms face a great challenge in computational throughput. Here, we develop an unsupervised deep learning based registration network to achieve real-time image restoration and registration. This method can correct artifacts from B-scan distortion and remove misalignment among adjacent and repetitive images in real time. Compared with conventional intensity based registration algorithms, the throughput of the developed algorithm is improved by 50 times. After training, the new deep learning method performs better than conventional feature based image registration algorithms. The results show that the proposed method can accurately restore and register the images of fast-scanning photoacoustic microscopy in real time, offering a powerful tool to extract dynamic vascular structural and functional information.
Collapse
Affiliation(s)
- Xiaobin Hong
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Furong Tang
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong Special Administrative Region of China
| | - Jiangbo Chen
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| |
Collapse
|
2
|
Loc I, Unlu MB. Accelerating photoacoustic microscopy by reconstructing undersampled images using diffusion models. Sci Rep 2024; 14:16996. [PMID: 39043802 PMCID: PMC11266665 DOI: 10.1038/s41598-024-67957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Photoacoustic Microscopy (PAM) integrates optical and acoustic imaging, offering enhanced penetration depth for detecting optical-absorbing components in tissues. Nonetheless, challenges arise in scanning large areas with high spatial resolution. With speed limitations imposed by laser pulse repetition rates, the potential role of computational methods is highlighted in accelerating PAM imaging. We propose a novel and highly adaptable algorithm named DiffPam that utilizes diffusion models to speed up the photoacoustic imaging process. We leveraged a diffusion model trained exclusively on natural images, comparing its performance with an in-domain trained U-Net model using a dataset focused on PAM images of mice brain microvasculature. Our findings indicate that DiffPam performs similarly to a dedicated U-Net model without needing a large dataset. We demonstrate that scanning can be accelerated fivefold with limited information loss. We achieved a 24.70 % increase in peak signal-to-noise ratio and a 27.54 % increase in structural similarity index compared to the baseline bilinear interpolation method. The study also introduces the efficacy of shortened diffusion processes for reducing computing time without compromising accuracy. DiffPam stands out from existing methods as it does not require supervised training or detailed parameter optimization typically needed for other unsupervised methods. This study underscores the significance of DiffPam as a practical algorithm for reconstructing undersampled PAM images, particularly for researchers with limited artificial intelligence expertise and computational resources.
Collapse
Affiliation(s)
- Irem Loc
- Bogazici University Physics Department, Istanbul, Turkey.
| | - M Burcin Unlu
- Faculty of Engineering, Ozyegin University, Istanbul, Turkey
- Faculty of Aviation and Aeronautical Sciences, Ozyegin University, Istanbul, Turkey
| |
Collapse
|
3
|
Li T, Murley GA, Liang X, Chin RL, de la Cerda J, Schuler FW, Pagel MD. Evaluations of an Early Change in Tumor Pathophysiology in Response to Radiotherapy with Oxygen Enhanced Electron Paramagnetic Resonance Imaging (OE EPRI). Mol Imaging Biol 2024; 26:448-458. [PMID: 38869818 DOI: 10.1007/s11307-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Electron Paramagnetic Resonance Imaging (EPRI) can image the partial pressure of oxygen (pO2) within in vivo tumor models. We sought to develop Oxygen Enhanced (OE) EPRI that measures tumor pO2 with breathing gases of 21% O2 (pO221%) and 100% O2 (pO2100%), and the differences in pO2 between breathing gases (ΔpO2). We applied OE EPRI to study the early change in tumor pathophysiology in response to radiotherapy in two tumor models of pancreatic cancer. PROCEDURES We developed a protocol that intraperitoneally administered OX071, a trityl radical contrast agent, and then acquired anatomical MR images to localize the tumor. Subsequently, we acquired two pO221% and two pO2100% maps using the T1 relaxation time of OX071 measured with EPRI and a R1-pO2 calibration of OX071. We studied 4T1 flank tumor model to evaluate the repeatability of OE EPRI. We then applied OE EPRI to study COLO 357 and Su.86.86 flank tumor models treated with 10 Gy radiotherapy. RESULTS The repeatability of mean pO2 for individual tumors was ± 2.6 Torr between successive scans when breathing 21% O2 or 100% O2, representing a precision of 9.6%. Tumor pO221% and pO2100% decreased after radiotherapy for both models, although the decreases were not significant or only moderately significant, and the effect sizes were modest. For comparison, ΔpO2 showed a large, highly significant decrease after radiotherapy, and the effect size was large. MANOVA and analyses of the HF10 hypoxia fraction provided similar results. CONCLUSIONS EPRI can evaluate tumor pO2 with outstanding precision relative to other imaging modalities. The change in ΔpO2 before vs. after treatment was the best parameter for measuring the early change in tumor pathophysiology in response to radiotherapy. Our studies have established ΔpO2 from OE EPRI as a new parameter, and have established that OE EPRI is a valuable new methodology for molecular imaging.
Collapse
Affiliation(s)
- Tianzhe Li
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Grace A Murley
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Xiaofei Liang
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Renee L Chin
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - F William Schuler
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark D Pagel
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Wang Y, Chen Y, Zhao Y, Liu S. Compressed Sensing for Biomedical Photoacoustic Imaging: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2670. [PMID: 38732775 PMCID: PMC11085525 DOI: 10.3390/s24092670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Photoacoustic imaging (PAI) is a rapidly developing emerging non-invasive biomedical imaging technique that combines the strong contrast from optical absorption imaging and the high resolution from acoustic imaging. Abnormal biological tissues (such as tumors and inflammation) generate different levels of thermal expansion after absorbing optical energy, producing distinct acoustic signals from normal tissues. This technique can detect small tissue lesions in biological tissues and has demonstrated significant potential for applications in tumor research, melanoma detection, and cardiovascular disease diagnosis. During the process of collecting photoacoustic signals in a PAI system, various factors can influence the signals, such as absorption, scattering, and attenuation in biological tissues. A single ultrasound transducer cannot provide sufficient information to reconstruct high-precision photoacoustic images. To obtain more accurate and clear image reconstruction results, PAI systems typically use a large number of ultrasound transducers to collect multi-channel signals from different angles and positions, thereby acquiring more information about the photoacoustic signals. Therefore, to reconstruct high-quality photoacoustic images, PAI systems require a significant number of measurement signals, which can result in substantial hardware and time costs. Compressed sensing is an algorithm that breaks through the Nyquist sampling theorem and can reconstruct the original signal with a small number of measurement signals. PAI based on compressed sensing has made breakthroughs over the past decade, enabling the reconstruction of low artifacts and high-quality images with a small number of photoacoustic measurement signals, improving time efficiency, and reducing hardware costs. This article provides a detailed introduction to PAI based on compressed sensing, such as the physical transmission model-based compressed sensing method, two-stage reconstruction-based compressed sensing method, and single-pixel camera-based compressed sensing method. Challenges and future perspectives of compressed sensing-based PAI are also discussed.
Collapse
Affiliation(s)
- Yuanmao Wang
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Chen
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongjian Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Siyu Liu
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
- Southwest Institute of Technical Physics, Chengdu 610041, China
| |
Collapse
|
5
|
Mi J, Liu C, Chen H, Qian Y, Zhu J, Zhang Y, Liang Y, Wang L, Ta D. Light on Alzheimer's disease: from basic insights to preclinical studies. Front Aging Neurosci 2024; 16:1363458. [PMID: 38566826 PMCID: PMC10986738 DOI: 10.3389/fnagi.2024.1363458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD), referring to a gradual deterioration in cognitive function, including memory loss and impaired thinking skills, has emerged as a substantial worldwide challenge with profound social and economic implications. As the prevalence of AD continues to rise and the population ages, there is an imperative demand for innovative imaging techniques to help improve our understanding of these complex conditions. Photoacoustic (PA) imaging forms a hybrid imaging modality by integrating the high-contrast of optical imaging and deep-penetration of ultrasound imaging. PA imaging enables the visualization and characterization of tissue structures and multifunctional information at high resolution and, has demonstrated promising preliminary results in the study and diagnosis of AD. This review endeavors to offer a thorough overview of the current applications and potential of PA imaging on AD diagnosis and treatment. Firstly, the structural, functional, molecular parameter changes associated with AD-related brain imaging captured by PA imaging will be summarized, shaping the diagnostic standpoint of this review. Then, the therapeutic methods aimed at AD is discussed further. Lastly, the potential solutions and clinical applications to expand the extent of PA imaging into deeper AD scenarios is proposed. While certain aspects might not be fully covered, this mini-review provides valuable insights into AD diagnosis and treatment through the utilization of innovative tissue photothermal effects. We hope that it will spark further exploration in this field, fostering improved and earlier theranostics for AD.
Collapse
Affiliation(s)
- Jie Mi
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Chao Liu
- Yiwu Research Institute, Fudan University, Yiwu, China
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Honglei Chen
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yan Qian
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Jingyi Zhu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yachao Zhang
- Medical Ultrasound Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, China
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Dean Ta
- Yiwu Research Institute, Fudan University, Yiwu, China
- Department of Electronic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Huang B, Wong TTW. Review of low-cost light sources and miniaturized designs in photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11503. [PMID: 37869479 PMCID: PMC10587694 DOI: 10.1117/1.jbo.29.s1.s11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Significance Photoacoustic microscopy (PAM) is a promising imaging technique to provide structural, functional, and molecular information for preclinical and clinical studies. However, expensive and bulky lasers and motorized stages have limited the broad applications of conventional PAM systems. A recent trend is to use low-cost light sources and miniaturized designs to develop a compact PAM system and expand its applications from benchtop to bedside. Aim We provide (1) an overview of PAM systems and their limitations, (2) a comprehensive review of PAM systems with low-cost light sources and their applications, (3) a comprehensive review of PAM systems with miniaturized and handheld scanning designs, and (4) perspective applications and a summary of the cost-effective and miniaturized PAM systems. Approach Papers published before July 2023 in the area of using low-cost light sources and miniaturized designs in PAM were reviewed. They were categorized into two main parts: (1) low-cost light sources and (2) miniaturized or handheld designs. The first part was classified into two subtypes: pulsed laser diode and continuous-wave laser diode. The second part was also classified into two subtypes: galvanometer scanner and micro-electro-mechanical system scanner. Results Significant progress has been made in the development of PAM systems based on low-cost and compact light sources as well as miniaturized and handheld designs. Conclusions The review highlights the potential of these advancements to revolutionize PAM technology, making it more accessible and practical for various applications in preclinical studies, clinical practice, and long-term monitoring.
Collapse
Affiliation(s)
- Bingxin Huang
- Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Translational and Advanced Bioimaging Laboratory, Hong Kong, China
| | - Terence T. W. Wong
- Hong Kong University of Science and Technology, Department of Chemical and Biological Engineering, Translational and Advanced Bioimaging Laboratory, Hong Kong, China
- Hong Kong University of Science and Technology, Research Center for Medical Imaging and Analysis, Hong Kong, China
| |
Collapse
|
7
|
Lee Y, Rong Q, Song KH, Czaplewski DA, Zhang HF, Yao J, Sun C. Theoretical and experimental study on the detection limit of the micro-ring resonator based ultrasound point detectors. PHOTOACOUSTICS 2023; 34:100574. [PMID: 38126078 PMCID: PMC10731384 DOI: 10.1016/j.pacs.2023.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Combining the diffusive laser excitation and the photoacoustic signals detection, photoacoustic computed tomography (PACT) is uniquely suited for deep tissue imaging. A diffraction-limited ultrasound point detector is highly desirable for maximizing the spatial resolution and the field-of-view of the reconstructed volumetric images. Among all the available ultrasound detectors, micro-ring resonator (MRR) based ultrasound detectors offer the lowest area-normalized limit of detection (nLOD) in a miniature form-factor, making it an ideal candidate as an ultrasound point detector. However, despite their wide adoption for photoacoustic imaging, the underlying signal transduction process has not been systematically studied yet. Here we report a comprehensive theoretical model capturing the transduction of incident acoustic signals into digital data, and the associated noise propagation process, using experimentally calibrated key process parameters. The theoretical model quantifies the signal-to-noise ratio (SNR) and the nLOD under the influence of the key process variables, including the quality factor (Q-factor) of the MRR and the driving wavelength. While asserting the need for higher Q-factors, the theoretical model further quantifies the optimal driving wavelength for optimizing the nLOD. Given the MRR with a Q-factor of 1 × 105, the theoretical model predicts an optimal SNR of 30.1 dB and a corresponding nLOD of 3.75 × 10-2 mPa mm2/Hz1/2, which are in good agreement with the experimental measurements of 31.0 dB and 3.39 × 10-2 mPa mm2/Hz1/2, respectively. The reported theoretical model can be used in guiding the optimization of MRR-based ultrasonic detectors and PA experimental conditions, in attaining higher imaging resolution and contrast. The optimized operating condition has been further validated by performing PACT imaging of a human hair phantom.
Collapse
Affiliation(s)
- Youngseop Lee
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ki-Hee Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - David A Czaplewski
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208, USA
| |
Collapse
|
8
|
Lee Y, Zhang HF, Sun C. Highly sensitive ultrasound detection using nanofabricated polymer micro-ring resonators. NANO CONVERGENCE 2023; 10:30. [PMID: 37338745 DOI: 10.1186/s40580-023-00378-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Photoacoustic (PA) imaging enables noninvasive volumetric imaging of biological tissues by capturing the endogenous optical absorption contrast. Conventional ultrasound detectors using piezoelectric materials have been widely used for transducing ultrasound signals into the electrical signals for PA imaging reconstruction. However, their inherent limitations in detection bandwidth and sensitivity per unit area have unfortunately constrained the performance of PA imaging. Optical based ultrasound detection methods emerge to offer very promising solutions. In particular, polymer micro-ring resonators (MRRs) in the form of integrated photonic circuits (IPC) enable significant reduction for the sensing area to 80 μm in diameter, while maintaining highly sensitive ultrasound detection with noise equivalent pressure (NEP) of 0.49 Pa and a broad detection frequency range up to 250 MHz. The continued engineering innovation has further transformed MRRs to be transparent to the light and thus, opens up a wide range of applications, including multi-modality optical microscope with isometric resolution, PA endoscope, photoacoustic computed tomography (PACT), and more. This review article summarizes and discusses the evolution of polymer MRR design and the associated nanofabrication process for improving the performance of ultrasound detection. The resulting novel imaging applications will also be reviewed and discussed.
Collapse
Affiliation(s)
- Youngseop Lee
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
9
|
Veverka M, Menozzi L, Yao J. The sound of blood: photoacoustic imaging in blood analysis. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023; 18:100219. [PMID: 37538444 PMCID: PMC10399298 DOI: 10.1016/j.medntd.2023.100219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Blood analysis is a ubiquitous and critical aspect of modern medicine. Analyzing blood samples requires invasive techniques, various testing systems, and samples are limited to relatively small volumes. Photoacoustic imaging (PAI) is a novel imaging modality that utilizes non-ionizing energy that shows promise as an alternative to current methods. This paper seeks to review current applications of PAI in blood analysis for clinical use. Furthermore, we discuss obstacles to implementation and future directions to overcome these challenges. Firstly, we discuss three applications to cellular analysis of blood: sickle cell, bacteria, and circulating tumor cell detection. We then discuss applications to the analysis of blood plasma, including glucose detection and anticoagulation quantification. As such, we hope this article will serve as inspiration for PAI's potential application in blood analysis and prompt further studies to ultimately implement PAI into clinical practice.
Collapse
|
10
|
Soloukey S, Vincent AJPE, Smits M, De Zeeuw CI, Koekkoek SKE, Dirven CMF, Kruizinga P. Functional imaging of the exposed brain. Front Neurosci 2023; 17:1087912. [PMID: 36845427 PMCID: PMC9947297 DOI: 10.3389/fnins.2023.1087912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
When the brain is exposed, such as after a craniotomy in neurosurgical procedures, we are provided with the unique opportunity for real-time imaging of brain functionality. Real-time functional maps of the exposed brain are vital to ensuring safe and effective navigation during these neurosurgical procedures. However, current neurosurgical practice has yet to fully harness this potential as it pre-dominantly relies on inherently limited techniques such as electrical stimulation to provide functional feedback to guide surgical decision-making. A wealth of especially experimental imaging techniques show unique potential to improve intra-operative decision-making and neurosurgical safety, and as an added bonus, improve our fundamental neuroscientific understanding of human brain function. In this review we compare and contrast close to twenty candidate imaging techniques based on their underlying biological substrate, technical characteristics and ability to meet clinical constraints such as compatibility with surgical workflow. Our review gives insight into the interplay between technical parameters such sampling method, data rate and a technique's real-time imaging potential in the operating room. By the end of the review, the reader will understand why new, real-time volumetric imaging techniques such as functional Ultrasound (fUS) and functional Photoacoustic Computed Tomography (fPACT) hold great clinical potential for procedures in especially highly eloquent areas, despite the higher data rates involved. Finally, we will highlight the neuroscientific perspective on the exposed brain. While different neurosurgical procedures ask for different functional maps to navigate surgical territories, neuroscience potentially benefits from all these maps. In the surgical context we can uniquely combine healthy volunteer studies, lesion studies and even reversible lesion studies in in the same individual. Ultimately, individual cases will build a greater understanding of human brain function in general, which in turn will improve neurosurgeons' future navigational efforts.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
11
|
Xing B, He Z, Zhou F, Zhao Y, Shan T. Automatic force-controlled 3D photoacoustic system for human peripheral vascular imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:987-1002. [PMID: 36874482 PMCID: PMC9979678 DOI: 10.1364/boe.481163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Photoacoustic (PA) imaging provides unique advantages in peripheral vascular imaging due to its high sensitivity to hemoglobin. Nevertheless, limitations associated with handheld or mechanical scanning by stepping motor techniques have precluded photoacoustic vascular imaging from advancing to clinical applications. As clinical applications require flexibility, affordability, and portability of imaging equipment, current photoacoustic imaging systems developed for clinical applications usually use dry coupling. However, it inevitably induces uncontrolled contact force between the probe and the skin. Through 2D and 3D experiments, this study proved that contact forces during the scanning could significantly affect the vascular shape, size, and contrast in PA images, due to the morphology and perfusion alterations of the peripheral blood vessels. However, there is no available PA system that can control forces accurately. This study presented an automatic force-controlled 3D PA imaging system based on a six-degree-of-freedom collaborative robot and a six-dimensional force sensor. It is the first PA system that achieves real-time automatic force monitoring and control. This paper's results, for the first time, demonstrated the ability of an automatic force-controlled system to acquire reliable 3D PA images of peripheral blood vessels. This study provides a powerful tool that will advance PA peripheral vascular imaging to clinical applications in the future.
Collapse
Affiliation(s)
- Baicheng Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhengyan He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Fang Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuan Zhao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- These authors contributed equally to this work
| | - Tianqi Shan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- These authors contributed equally to this work
| |
Collapse
|
12
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
13
|
Schellenberg M, Gröhl J, Dreher KK, Nölke JH, Holzwarth N, Tizabi MD, Seitel A, Maier-Hein L. Photoacoustic image synthesis with generative adversarial networks. PHOTOACOUSTICS 2022; 28:100402. [PMID: 36281320 PMCID: PMC9587371 DOI: 10.1016/j.pacs.2022.100402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties with high spatial resolution. However, previous attempts to solve the optical inverse problem with supervised machine learning were hampered by the absence of labeled reference data. While this bottleneck has been tackled by simulating training data, the domain gap between real and simulated images remains an unsolved challenge. We propose a novel approach to PAT image synthesis that involves subdividing the challenge of generating plausible simulations into two disjoint problems: (1) Probabilistic generation of realistic tissue morphology, and (2) pixel-wise assignment of corresponding optical and acoustic properties. The former is achieved with Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data. According to a validation study on a downstream task our approach yields more realistic synthetic images than the traditional model-based approach and could therefore become a fundamental step for deep learning-based quantitative PAT (qPAT).
Collapse
Affiliation(s)
- Melanie Schellenberg
- Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg, Germany
| | - Janek Gröhl
- Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kris K. Dreher
- Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Jan-Hinrich Nölke
- Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - Niklas Holzwarth
- Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | - Minu D. Tizabi
- Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Seitel
- Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Maier-Hein
- Intelligent Medical Systems (IMSY), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
- HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- HIP Applied Computer Vision Lab, Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Small Animal In Situ Drug Delivery Effects via Transdermal Microneedles Array versus Intravenous Injection: A Pilot Observation Based on Photoacoustic Tomography. Pharmaceutics 2022; 14:pharmaceutics14122689. [PMID: 36559183 PMCID: PMC9788625 DOI: 10.3390/pharmaceutics14122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Intravenous injection is a rapid, low-cost, and direct method that is commonly used to deliver multifarious biotherapeutics and vaccines. However, intravenous injection often causes trauma or tissue injury that requires professional operation. Transdermal drug delivery overcomes the aforementioned defects, and the microneedles (MNs) array is one of the most promising transdermal drug delivery platforms. Timely, precise, and non-invasive monitoring and evaluation of the effects of MNs in transdermal administration is significant to the research of drug efficiency response to specific diseases. In this sense, photoacoustic computed tomography (PACT), which provides wavelength-selective and deep-penetrating optical contrast, could be a promising imaging tool for in situ evaluation of the treatment effects. In this work, we propose the use of PACT to non-invasively assess the effects of real-time drug delivery in glioma tumors through transdermal administration with degradable indocyanine green-loaded hyaluronic acid MNs (ICG-HA-MNs). The outcome is systematically and quantitatively compared with that via intravenous injection. It is found that the photoacoustic signals of ICG in the tumor site express a faster elevation and shorter duration time in the intravenous injection group; by contrast, the photoacoustic signals demonstrate a lower intensity but prolonged duration time in the MNs group. The observed phenomenon indicates faster response but shorter drug duration for intravenous injection, which is in contrast with the lower loading but prolonged performance for transdermal drug delivery with MNs. These results exhibit good consistency with the earlier, common-sense findings reported from other aspects, confirming that PACT can serve as a potential imaging tool to precisely, non-invasively, and quickly evaluate in situ drug delivery effects and provide constructive guidance for the design and fabrication of microneedles.
Collapse
|
15
|
Zou Y, Amidi E, Luo H, Zhu Q. Ultrasound-enhanced Unet model for quantitative photoacoustic tomography of ovarian lesions. PHOTOACOUSTICS 2022; 28:100420. [PMID: 36325304 PMCID: PMC9619170 DOI: 10.1016/j.pacs.2022.100420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 05/17/2023]
Abstract
Quantitative photoacoustic tomography (QPAT) is a valuable tool in characterizing ovarian lesions for accurate diagnosis. However, accurately reconstructing a lesion's optical absorption distributions from photoacoustic signals measured with multiple wavelengths is challenging because it involves an ill-posed inverse problem with three unknowns: the Grüneisen parameter ( Γ ) , the absorption distribution, and the optical fluence ( ϕ ) . Here, we propose a novel ultrasound-enhanced Unet model (US-Unet) that reconstructs optical absorption distribution from PAT data. A pre-trained ResNet-18 extracts the US features typically identified as morphologies of suspicious ovarian lesions, and a Unet is implemented to reconstruct optical absorption coefficient maps, using the initial pressure and US features extracted by ResNet-18. To test this US-Unet model, we calculated the blood oxygenation saturation values and total hemoglobin concentrations from 655 regions of interest (ROIs) (421 benign, 200 malignant, and 34 borderline ROIs) obtained from clinical images of 35 patients with ovarian/adnexal lesions. A logistic regression model was used to compute the ROC, the area under the ROC curve (AUC) was 0.94, and the accuracy was 0.89. To the best of our knowledge, this is the first study to reconstruct quantitative PAT with PA signals and US-based structural features.
Collapse
Affiliation(s)
- Yun Zou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Eghbal Amidi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongbo Luo
- Department of Electrical and System Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Tong G, Luzgin A, Xia J, Xu L, Zhang H, Dong C, Wu Z, Wu J, Zhang Y, Qin P. Improved photoacoustic images via wavefront shaping modulation based on the scattering structure. OPTICS EXPRESS 2022; 30:36489-36499. [PMID: 36258576 DOI: 10.1364/oe.470330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Multispectral optoacoustic tomography (MSOT) has become the dominant technical solution for photoacoustic imaging (PAI). However, the laser source of fiber output in the current MSOT method is typically a TEM00 Gaussian beam, which is prone to artifacts and incomplete due to the uneven distribution of the irradiated light intensity. Here, we propose a novel method to improve the quality of photoacoustic image reconstruction by modulating the wavefront shaping of the incident laser beam based on the designed scattering structure. In the experiment, we add the designed scattering structure to the current hemispherical photoacoustic transducer array device. Through experiments and simulations, we investigate and compare the effects of different scattering structures on laser intensity modulation. The results show that an ED1-C20 diffusion structure with a scattering angle of 20 degrees has the most effective modulation of the beam intensity distribution. And we choose gold nanoparticles of 50-100 nanometers (nm) diameters and index finger capillary vessels respectively as the medium of PAI. We obtain the highest ratio of PAI area increases of gold nanoparticles and index finger to devices compare without scattering structure is 29.69% and 634.94%, respectively. Experimental results demonstrate that our method is significantly higher quality than traditional methods, which has great potential for theoretical application in medical PAI.
Collapse
|
17
|
Ren D, Li C, Shi J, Chen R. A Review of High-Frequency Ultrasonic Transducers for Photoacoustic Imaging Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1848-1858. [PMID: 34941509 DOI: 10.1109/tuffc.2021.3138158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoacoustic imaging (PAI) is a new and rapidly growing hybrid biomedical imaging modality that combines the virtues of both optical and ultrasonic (US) imaging. The nature of the interaction between light and ultrasound waves allows PAI to make good use of the rich contrast produced by optics while retaining the imaging depths in US imaging. High-frequency US transducers are an important part of the PAI systems, used to detect the high-frequency and broad-bandwidth photoacoustic signals excited by the target tissues irradiated by short laser pulses. Advancement in high-frequency US transducer technology has influenced the boost of PAI to broad applications. Here, we present a review on high-frequency US transducer technologies for PAI applications, including advanced piezoelectric materials and representative transducers. In addition, we discuss the new challenges and directions facing the development of high-frequency US transducers for PAI applications.
Collapse
|
18
|
Sivasubramanian M, Lo LW. Assessment of Nanoparticle-Mediated Tumor Oxygen Modulation by Photoacoustic Imaging. BIOSENSORS 2022; 12:336. [PMID: 35624636 PMCID: PMC9138624 DOI: 10.3390/bios12050336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Photoacoustic imaging (PAI) is an invaluable tool in biomedical imaging, as it provides anatomical and functional information in real time. Its ability to image at clinically relevant depths with high spatial resolution using endogenous tissues as contrast agents constitutes its major advantage. One of the most important applications of PAI is to quantify tissue oxygen saturation by measuring the differential absorption characteristics of oxy and deoxy Hb. Consequently, PAI can be utilized to monitor tumor-related hypoxia, which is a crucial factor in tumor microenvironments that has a strong influence on tumor invasiveness. Reactive oxygen species (ROS)-based therapies, such as photodynamic therapy, radiotherapy, and sonodynamic therapy, are oxygen-consuming, and tumor hypoxia is detrimental to their efficacy. Therefore, a persistent demand exists for agents that can supply oxygen to tumors for better ROS-based therapeutic outcomes. Among the various strategies, NP-mediated supplemental tumor oxygenation is especially encouraging due to its physio-chemical, tumor targeting, and theranostic properties. Here, we focus on NP-based tumor oxygenation, which includes NP as oxygen carriers and oxygen-generating strategies to alleviate hypoxia monitored by PAI. The information obtained from quantitative tumor oxygenation by PAI not only supports optimal therapeutic design but also serves as a highly effective tool to predict therapeutic outcomes.
Collapse
Affiliation(s)
| | - Leu-Wei Lo
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan;
| |
Collapse
|
19
|
Abstract
Acoustic biosensors are widely used in physical, chemical, and biosensing applications. One of the major concerns in acoustic biosensing is the delicacy of the medium through which acoustic waves propagate and reach acoustic sensors. Even a small airgap diminishes acoustic signal strengths due to high acoustic impedance mismatch. Therefore, the presence of a coupling medium to create a pathway for an efficient propagation of acoustic waves is essential. Here, we have reviewed the chemical, physical, and acoustic characteristics of various coupling material (liquid, gel-based, semi-dry, and dry) and present a guide to determine a suitable application-specific coupling medium.
Collapse
|
20
|
Photoacoustic Imaging in Biomedicine and Life Sciences. Life (Basel) 2022; 12:life12040588. [PMID: 35455079 PMCID: PMC9028050 DOI: 10.3390/life12040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022] Open
Abstract
Photo-acoustic imaging, also known as opto-acoustic imaging, has become a widely popular modality for biomedical applications. This hybrid technique possesses the advantages of high optical contrast and high ultrasonic resolution. Due to the distinct optical absorption properties of tissue compartments and main chromophores, photo-acoustics is able to non-invasively observe structural and functional variations within biological tissues including oxygenation and deoxygenation, blood vessels and spatial melanin distribution. The detection of acoustic waves produced by a pulsed laser source yields a high scaling range, from organ level photo-acoustic tomography to sub-cellular or even molecular imaging. This review discusses significant novel technical solutions utilising photo-acoustics and their applications in the fields of biomedicine and life sciences.
Collapse
|
21
|
Zhong Y, Ye M, Huang L, Hu L, Li F, Ni Q, Zhong J, Wu H, Xu F, Xu J, He X, Wang Z, Ran H, Wu Y, Guo D, Liang XJ. A Fibrin Site-Specific Nanoprobe for Imaging Fibrin-Rich Thrombi and Preventing Thrombus Formation in Venous Vessels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109955. [PMID: 35194836 DOI: 10.1002/adma.202109955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Venous thromboembolism (VTE) is a prevalent public health issue worldwide. Before treatment, spatiotemporally accurate thrombus detection is essential. However, with the currently available imaging technologies, this is challenging. Herein, the development of a novel fibrin-specific nanoprobe (NP) based on the conjugation of poly(lactic-co-glycolic acid) with the pentapeptide Cys-Arg-Glu-Lys-Ala (CREKA) for selective and semiquantitative imaging in vivo is presented. By integrating Fe3 O4 and NIR fluorochrome (IR780), the NP can function as a highly sensitive sensor for the direct analysis of thrombi in vivo. The fibrin-specific NP distinguishes fibrin-rich thrombi from collagen-rich or erythrocyte-rich thrombi, which can be beneficial for future individually tailored therapeutic strategy. Furthermore, loading NPs with the ketotifen fumarate results in mast cell degranulation inhibition, and hence, NPs can prevent thrombosis without the risk of excessive bleeding. Thus, the use of fibrin-specific NPs may serve as a safe alternative approach for the detection and prevention of VTEs in susceptible populations in the future.
Collapse
Affiliation(s)
- Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Ultrasound Molecular Imaging & Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Man Ye
- Department of Radiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Rd, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Liandi Huang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Ultrasound Molecular Imaging & Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Liu Hu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiankun Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongyun Wu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Xiaojing He
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Zhigang Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Ultrasound Molecular Imaging & Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Haitao Ran
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Ultrasound Molecular Imaging & Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Yunzhu Wu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Zhang Y, Fang Q. BlenderPhotonics: an integrated open-source software environment for three-dimensional meshing and photon simulations in complex tissues. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:083014. [PMID: 35429155 PMCID: PMC9010662 DOI: 10.1117/1.jbo.27.8.083014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Rapid advances in biophotonics techniques require quantitative, model-based computational approaches to obtain functional and structural information from increasingly complex and multiscaled anatomies. The lack of efficient tools to accurately model tissue structures and subsequently perform quantitative multiphysics modeling greatly impedes the clinical translation of these modalities. AIM Although the mesh-based Monte Carlo (MMC) method expands our capabilities in simulating complex tissues using tetrahedral meshes, the generation of such domains often requires specialized meshing tools, such as Iso2Mesh. Creating a simplified and intuitive interface for tissue anatomical modeling and optical simulations is essential toward making these advanced modeling techniques broadly accessible to the user community. APPROACH We responded to the above challenge by combining the powerful, open-source three-dimensional (3D) modeling software, Blender, with state-of-the-art 3D mesh generation and MC simulation tools, utilizing the interactive graphical user interface in Blender as the front-end to allow users to create complex tissue mesh models and subsequently launch MMC light simulations. RESULTS Here, we present a tutorial to our Python-based Blender add-on-BlenderPhotonics-to interface with Iso2Mesh and MMC, which allows users to create, configure and refine complex simulation domains and run hardware-accelerated 3D light simulations with only a few clicks. We provide a comprehensive introduction to this tool and walk readers through five examples, ranging from simple shapes to sophisticated realistic tissue models. CONCLUSIONS BlenderPhotonics is user friendly and open source, and it leverages the vastly rich ecosystem of Blender. It wraps advanced modeling capabilities within an easy-to-use and interactive interface. The latest software can be downloaded at http://mcx.space/bp.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| |
Collapse
|
23
|
Zhao T, Ma MT, Ourselin S, Vercauteren T, Xia W. Video-rate dual-modal photoacoustic and fluorescence imaging through a multimode fibre towards forward-viewing endomicroscopy. PHOTOACOUSTICS 2022; 25:100323. [PMID: 35028288 PMCID: PMC8741494 DOI: 10.1016/j.pacs.2021.100323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Multimode fibres (MMFs) are becoming increasingly attractive in optical endoscopy as they promise to enable unparallelled miniaturisation, spatial resolution and cost. However, high-speed imaging with wavefront shaping has been challenging. Here, we report the development of a video-rate dual-modal photoacoustic (PA) and fluorescence microscopy probe with a high-speed digital micromirror device (DMD) towards forward-viewing endomicroscopy. Optimal DMD patterns were obtained using a real-valued intensity transmission matrix algorithm to raster-scan a 1.5 μ m-diameter focused beam at the distal fibre tip for imaging. The PA imaging speed and spatial resolution were varied from ∼ 2 to 57 frames per second and from 1.7 to 3 μ m, respectively. Further, high-fidelity PA images of carbon fibres and mouse red blood cells were acquired at unprecedented speed. The capability of dual-modal imaging was demonstrated with phantoms. We anticipate that with further miniaturisation of the ultrasound detector, this probe could be integrated into medical needles to guide minimally invasive procedures.
Collapse
|
24
|
Sun A, Ji Y, Li Y, Xie W, Liu Z, Li T, Jin T, Qi W, Li K, Wu C, Xi L. Multicolor Photoacoustic Volumetric Imaging of Subcellular Structures. ACS NANO 2022; 16:3231-3238. [PMID: 35080378 DOI: 10.1021/acsnano.1c11103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoacoustic imaging (PAI) has been widely used in multiscale and multicontrast imaging of biological structures and functions. Optical resolution photoacoustic microscopy (OR-PAM), an emerging submodality of PAI, features high lateral resolution and rich optical contrast, indicating great potential in visualizing cellular and subcellular structures. However, three-dimensional (3D) imaging of subcellular structures using OR-PAM has remained a challenge due to the limited axial resolution. In this study, we propose a multicolor 3D photoacoustic microscopy with high lateral/axial resolutions of 0.42/2 and 0.5/2.5 μm at 532 and 780 nm excitation, respectively. Owing to the significantly increased axial resolution, we could visualize the volumetric subcellular structures of melanoma cells using intrinsic contrast. In addition, we carried out multicolor imaging of labeled microtubules/clathrin-coated pits (CCP) and microtubules/mitochondria, respectively, with one scanning by using two different excitation wavelengths. The internal connections between different subcellular structures are revealed by quantitatively comparing the spatial distributions of microtubules/CCP and microtubules/mitochondria in a single cell. Current results suggest that the proposed OR-PAM may serve as an efficient tool for subcellular and cytophysiological studies.
Collapse
Affiliation(s)
- Aihui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaoyao Ji
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaxi Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Xie
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Hatamimoslehabadi M, Frenette M, Bag S, Gilligan GE, La J, Yelleswarapu C, Rochford J. Characterization of Triphenylamine and Ferrocenyl Donor-π-donor Vinyl BODIPY Derivatives as Photoacoustic Contrast Agents. Photochem Photobiol 2022; 98:62-72. [PMID: 33811760 DOI: 10.1111/php.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
The photophysical and electrochemical properties for a series of BODIPY dyes with incremental 3- and 3,5-vinyl conjugation, as well as incremental electron-donating groups (anisole < triphenylamine < ferrocenyl), are presented. Insight into the influence of each vinyl-conjugated electron-donating group on both vis-NIR absorption and fluorescence emission properties is provided. These trends are further corroborated by density functional theory computational analysis. Two of this series containing the 3,5-bis(vinyltriphenylamine) and 3,5-bis(vinylferrocenyl) substituents exhibit significant absorption cross sections in the biological transparency window justifying further investigation of their photoacoustic emission properties via both optical photoacoustic z-scan and photoacoustic tomography experiments. Both the 3,5-bis(vinyltriphenylamine) and 3,5-bis(vinylferrocenyl) substituted BODIPY dyes exhibit quantitative photoacoustic quantum yields. Relative to the commercially available methylene blue and indocyanine green molecular photoacoustic contrast agents, the 3,5-bis(vinyltriphenylamine)-derived BODIPY exhibits the greatest photoacoustic emission and contrast upon excited-state absorption at 685 nm excitation at a low power laser fluence (<20 mJ cm-2 ).
Collapse
Affiliation(s)
| | - Mathieu Frenette
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Seema Bag
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Gerald E Gilligan
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Jeffrey La
- Department of Physics, University of Massachusetts Boston, Boston, MA, USA
| | | | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
26
|
Yongyue Z, Yang S, Li Z, Rongjin Z, Shumin W. Functional Brain Imaging Based on the Neurovascular Unit for Evaluating Neural Networks after Strok. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2022. [DOI: 10.37015/audt.2022.210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
27
|
Foster KR, Garrett DC, Ziskin MC. Can the Microwave Auditory Effect Be "Weaponized"? Front Public Health 2021; 9:788613. [PMID: 35004589 PMCID: PMC8733248 DOI: 10.3389/fpubh.2021.788613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/30/2021] [Indexed: 01/27/2023] Open
Affiliation(s)
- Kenneth R. Foster
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Kenneth R. Foster
| | - David C. Garrett
- Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Marvin C. Ziskin
- Department of Radiology, Temple University Medical School, Philadelphia, PA, United States
| |
Collapse
|
28
|
Chen T, Liu L, Ma X, Zhang Y, Liu H, Zheng R, Ren J, Zhou H, Ren Y, Gao R, Chen N, Zheng H, Song L, Liu C. Dedicated photoacoustic imaging instrument for human periphery blood vessels: A new paradigm for understanding the vascular health. IEEE Trans Biomed Eng 2021; 69:1093-1100. [PMID: 34543187 DOI: 10.1109/tbme.2021.3113764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel photoacoustic imaging system based on a semi-ring transducer array is proposed to imageperipheralbloodvessels. The system's penetration depth is deep (~15 mm) with high spatial (~200 m) and temporal resolution. In a clinical study, volumetric photoacoustic data of limbs were obtained within the 50s (for a FOV of 15 cm4 cm) with the volunteers in the standing and sitting posture. Compared to the previous studies, our system has many advantages, including (1) Larger field of view; (2) Finer elevational and in-plane resolutions; (3) Enhanced 3D visualization of peripheralvascular networks; (4) Compact size and better portability. The 3D visualization and cross-sectional images of five healthy volunteers clearly show the vascular network and the system's ability to image submillimeter blood vessels. This high-resolution PA system has great potential for imaging human periphery vasculatures noninvasively in clinical research.
Collapse
|
29
|
Markicevic M, Savvateev I, Grimm C, Zerbi V. Emerging imaging methods to study whole-brain function in rodent models. Transl Psychiatry 2021; 11:457. [PMID: 34482367 PMCID: PMC8418612 DOI: 10.1038/s41398-021-01575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Iurii Savvateev
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Decision Neuroscience Lab, HEST, ETH Zürich, Zürich, Switzerland
| | - Christina Grimm
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
30
|
Thréard T, de Lima Savi E, Avanesyan S, Chigarev N, Hua Z, Tournat V, Gusev VE, Hurley DH, Raetz S. Photoacoustic 3-D imaging of polycrystalline microstructure improved with transverse acoustic waves. PHOTOACOUSTICS 2021; 23:100286. [PMID: 34430200 PMCID: PMC8371231 DOI: 10.1016/j.pacs.2021.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 05/04/2023]
Abstract
Non-invasive fast imaging of grain microstructure of polycrystalline ceria with sub-micrometric spatial resolution is performed via time-domain Brillouin scattering. The propagation of a nanoacoustic pulse is monitored down to 8 μm deep in a 30 × 30 μm2 area. Grains boundaries are reconstructed in three-dimensions via a two-step processing method, relying on the wavelet synchro-squeezed transform and the alphashape algorithm. Imaging contrast is improved by taking advantage of stronger sensitivity to anisotropy of transverse acoustic waves, compared with longitudinal waves. Utilization of transverse waves in the image processing reveals additional boundaries, confirmed by an electron backscattering diffraction pattern but not discerned using longitudinal waves. A buried inclined interface between differently oriented grains is identified by monitoring changes in amplitude (phase) of the portion of the signal associated with transverse (longitudinal) waves. Estimates of the inclination angle of this interface prove the sensitivity of our laser ultrasonic method to image inclined boundaries.
Collapse
Affiliation(s)
- Théo Thréard
- Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, France
| | - Elton de Lima Savi
- Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, France
| | - Sergey Avanesyan
- Departement of Life and Physical Sciences, Fisk University, Nashville, USA
| | - Nikolay Chigarev
- Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, France
| | - Zilong Hua
- Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA
| | - Vincent Tournat
- Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, France
| | - Vitalyi E. Gusev
- Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, France
| | - David H. Hurley
- Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA
| | - Samuel Raetz
- Laboratoire d’Acoustique de l’Université du Mans (LAUM), UMR 6613, Institut d’Acoustique – Graduate School (IA-GS), CNRS, Le Mans Université, France
| |
Collapse
|
31
|
Ülgen O, Shnaiderman R, Zakian C, Ntziachristos V. Interferometric optical fiber sensor for optoacoustic endomicroscopy. JOURNAL OF BIOPHOTONICS 2021; 14:e202000501. [PMID: 33773073 DOI: 10.1002/jbio.202000501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Optical fiber sensors can offer robust and miniaturized detection of wideband ultrasound, yielding high sensitivity and immunity to electromagnetic interference. However, the lack of cost-effective manufacturing methods prevents the disseminated use of these sensors in biomedical applications. In this study, we developed and optimized a simple method to create optical cavities with high-quality mirrors for acoustic sensing based on micro-manipulation of UV-curable optical adhesives and electroless chemical silver deposition. This approach enables the manufacturing of ultrasound sensors based on Fabry-Pérot interferometers on optical fiber tips with minimal production costs. Characterization and high-resolution optoacoustic imaging experiments show that the manufacturing process yielded a fiber sensor with a small NEP ( 11mPa/Hz ) over a broad detection bandwidth (25 MHz), generally outperforming conventional piezoelectric based transducers. We discuss how the new manufacturing process leads to a high-performance acoustic detector that, due to low cost, can be used as a disposable sensor.
Collapse
Affiliation(s)
- Okan Ülgen
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rami Shnaiderman
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Zakian
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
32
|
Gröhl J, Schellenberg M, Dreher K, Maier-Hein L. Deep learning for biomedical photoacoustic imaging: A review. PHOTOACOUSTICS 2021; 22:100241. [PMID: 33717977 PMCID: PMC7932894 DOI: 10.1016/j.pacs.2021.100241] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging (PAI) is a promising emerging imaging modality that enables spatially resolved imaging of optical tissue properties up to several centimeters deep in tissue, creating the potential for numerous exciting clinical applications. However, extraction of relevant tissue parameters from the raw data requires the solving of inverse image reconstruction problems, which have proven extremely difficult to solve. The application of deep learning methods has recently exploded in popularity, leading to impressive successes in the context of medical imaging and also finding first use in the field of PAI. Deep learning methods possess unique advantages that can facilitate the clinical translation of PAI, such as extremely fast computation times and the fact that they can be adapted to any given problem. In this review, we examine the current state of the art regarding deep learning in PAI and identify potential directions of research that will help to reach the goal of clinical applicability.
Collapse
Affiliation(s)
- Janek Gröhl
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Melanie Schellenberg
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
| | - Kris Dreher
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Lena Maier-Hein
- German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
- Heidelberg University, Faculty of Mathematics and Computer Science, Heidelberg, Germany
| |
Collapse
|
33
|
Chen Q, Qin W, Qi W, Xi L. Progress of clinical translation of handheld and semi-handheld photoacoustic imaging. PHOTOACOUSTICS 2021; 22:100264. [PMID: 33868921 PMCID: PMC8040335 DOI: 10.1016/j.pacs.2021.100264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Photoacoustic imaging (PAI), featuring rich contrast, high spatial/temporal resolution and deep penetration, is one of the fastest-growing biomedical imaging technology over the last decade. To date, numbers of handheld and semi-handheld photoacoustic imaging devices have been reported with corresponding potential clinical applications. Here, we summarize emerged handheld and semi-handheld systems in terms of photoacoustic computed tomography (PACT), optoacoustic mesoscopy (OAMes), and photoacoustic microscopy (PAM). We will discuss each modality in three aspects: laser delivery, scanning protocol, and acoustic detection. Besides new technical developments, we also review the associated clinical studies, and the advantages/disadvantages of these new techniques. In the end, we propose the challenges and perspectives of miniaturized PAI in the future.
Collapse
Affiliation(s)
- Qian Chen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wei Qin
- School of Physics, University of Electronics Science and Technology of China, Chengdu, 610054, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
34
|
Qiu T, Lan Y, Gao W, Zhou M, Liu S, Huang W, Zeng S, Pathak JL, Yang B, Zhang J. Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases. Quant Imaging Med Surg 2021; 11:2169-2186. [PMID: 33936997 DOI: 10.21037/qims-20-845] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging strategy with a unique combination of rich optical contrasts, high ultrasound spatial resolution, and deep penetration depth without ionizing radiation. Taking advantage of the features mentioned above, PAI has been widely applied to preclinical studies in diverse fields, such as vascular biology, cardiology, neurology, ophthalmology, dermatology, gastroenterology, and oncology. Among various biomedical applications, photoacoustic brain imaging has great importance due to the brain's complex anatomy and the variability of brain disease. In this review, we aimed to introduce a novel and effective imaging modality for diagnosing brain diseases. Firstly, a brief overview of two major types of PAI system was provided. Then, PAI's major preclinical applications in brain diseases were introduced, including early diagnosis of brain tumors, subtle changes in the chemotherapy response, epileptic activity and brain injury, foreign body, and brain plaque. Finally, a perspective of the remaining challenges of PAI was given for future advancements.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yintao Lan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mengyu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiqi Liu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wenyan Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Sujuan Zeng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Bin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
35
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
36
|
Gupta M, Mishra RK, Roy S. Sparsity-based nonlinear reconstruction of optical parameters in two-photon photoacoustic computed tomography. INVERSE PROBLEMS 2021; 37:044001. [PMID: 35368616 PMCID: PMC8974639 DOI: 10.1088/1361-6420/abdd0f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present a new nonlinear optimization approach for the sparse reconstruction of single-photon absorption and two-photon absorption coefficients in the photoacoustic computed tomography (PACT). This framework comprises of minimizing an objective functional involving a least squares fit of the interior pressure field data corresponding to two boundary source functions, where the absorption coefficients and the photon density are related through a semi-linear elliptic partial differential equation (PDE) arising in PAT. Further, the objective functional consists of an L 1 regularization term that promotes sparsity patterns in absorption coefficients. The motivation for this framework primarily comes from some recent works related to solving inverse problems in acousto-electric tomography and current density impedance tomography. We provide a new proof of existence and uniqueness of a solution to the semi-linear PDE. Further, a proximal method, involving a Picard solver for the semi-linear PDE and its adjoint, is used to solve the optimization problem. Several numerical experiments are presented to demonstrate the effectiveness of the proposed framework.
Collapse
Affiliation(s)
- Madhu Gupta
- Department of Mathematics, University of Texas at Arlington, TX 76019, USA
| | - Rohit Kumar Mishra
- Department of Mathematics, University of Texas at Arlington, TX 76019, USA
| | - Souvik Roy
- Department of Mathematics, University of Texas at Arlington, TX 76019, USA
| |
Collapse
|
37
|
Tordera Mora J, Feng X, Nyayapathi N, Xia J, Gao L. Generalized spatial coherence reconstruction for photoacoustic computed tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210008R. [PMID: 33880892 PMCID: PMC8056071 DOI: 10.1117/1.jbo.26.4.046002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Coherence, a fundamental property of waves and fields, plays a key role in photoacoustic image reconstruction. Previously, techniques such as short-lag spatial coherence (SLSC) and filtered delay, multiply, and sum (FDMAS) have utilized spatial coherence to improve the reconstructed resolution and contrast with respect to delay-and-sum (DAS). While SLSC uses spatial coherence directly as the imaging contrast, FDMAS employs spatial coherence implicitly. Despite being more robust against noise, both techniques have their own drawbacks: SLSC does not preserve a relative signal magnitude, and FDMAS shows a reduced contrast-to-noise ratio. AIM To overcome these limitations, our aim is to develop a beamforming algorithm-generalized spatial coherence (GSC)-that unifies SLSC and FDMAS into a single equation and outperforms both beamformers. APPROACH We demonstrated the application of GSC in photoacoustic computed tomography (PACT) through simulation and experiments and compared it to previous beamformers: DAS, FDMAS, and SLSC. RESULTS GSC outperforms the imaging metrics of previous state-of-the-art coherence-based beamformers in both simulation and experiments. CONCLUSIONS GSC is an innovative reconstruction algorithm for PACT, which combines the strengths of FDMAS and SLSC expanding PACT's applications.
Collapse
Affiliation(s)
- Jorge Tordera Mora
- University of California Los Angeles, Samueli School of Engineering, Department of Bioengineering, California, United States
| | - Xiaohua Feng
- University of California Los Angeles, Samueli School of Engineering, Department of Bioengineering, California, United States
| | - Nikhila Nyayapathi
- University at Buffalo, School of Engineering and Applied Sciences, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Jun Xia
- University at Buffalo, School of Engineering and Applied Sciences, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Liang Gao
- University of California Los Angeles, Samueli School of Engineering, Department of Bioengineering, California, United States
| |
Collapse
|
38
|
Zhou J, Wang W, Jing L, Chen SL. Dual-modal imaging with non-contact photoacoustic microscopy and fluorescence microscopy. OPTICS LETTERS 2021; 46:997-1000. [PMID: 33649646 DOI: 10.1364/ol.417273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Simultaneous imaging of complementary absorption and fluorescence contrasts with high spatial resolution is useful for biomedical studies. However, conventional dual-modal photoacoustic (PA) and fluorescence imaging systems require the use of acoustic coupling media due to the contact operation of PA imaging, which causes issues and complicates the procedure in certain applications such as cell imaging and ophthalmic imaging. We present a novel dual-modal imaging system which combines non-contact PA microscopy (PAM) based on PA remote sensing and fluorescence microscopy (FLM) into one platform. The system enables high lateral resolution of 2 and 2.7 µm for PAM and FLM modes, respectively. In vivo imaging of a zebrafish larva injected with a rhodamine B solution is demonstrated, with PAM visualizing the pigment and FLM revealing the injected rhodamine B.
Collapse
|
39
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
40
|
Balasundaram G, Krafft C, Zhang R, Dev K, Bi R, Moothanchery M, Popp J, Olivo M. Biophotonic technologies for assessment of breast tumor surgical margins-A review. JOURNAL OF BIOPHOTONICS 2021; 14:e202000280. [PMID: 32951321 DOI: 10.1002/jbio.202000280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Breast conserving surgery (BCS) offering similar surgical outcomes as mastectomy while retaining breast cosmesis is becoming increasingly popular for the management of early stage breast cancers. However, its association with reoperation rates of 20% to 40% following incomplete tumor removal warrants the need for a fast and accurate intraoperative surgical margin assessment tool that offers cellular, structural and molecular information of the whole specimen surface to a clinically relevant depth. Biophotonic technologies are evolving to qualify as such an intraoperative tool for clinical assessment of breast cancer surgical margins at the microscopic and macroscopic scale. Herein, we review the current research in the application of biophotonic technologies such as photoacoustic imaging, Raman spectroscopy, multimodal multiphoton imaging, diffuse optical imaging and fluorescence imaging using medically approved dyes for breast cancer detection and/or tumor subtype differentiation toward intraoperative assessment of surgical margins in BCS specimens, and possible challenges in their route to clinical translation.
Collapse
Affiliation(s)
- Ghayathri Balasundaram
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Ruochong Zhang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kapil Dev
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Renzhe Bi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mohesh Moothanchery
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University Jena, Jena, Germany
| | - Malini Olivo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
41
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
42
|
Guo H, Li Y, Qi W, Xi L. Photoacoustic endoscopy: A progress review. JOURNAL OF BIOPHOTONICS 2020; 13:e202000217. [PMID: 32935920 DOI: 10.1002/jbio.202000217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Endoscopy has been widely used in biomedical imaging and integrated with various optical and acoustic imaging modalities. Photoacoustic imaging (PAI), one of the fastest growing biomedical imaging modalities, is a noninvasive and nonionizing method that owns rich optical contrast, deep acoustic penetration depth, multiscale and multiparametric imaging capability. Hence, it is preferred to miniaturize the volume of PAI and develop an emerged endoscopic imaging modality referred to as photoacoustic endoscopy (PAE). It has been developed for more than one decade since the first report of PAE. Unfortunately, until now, there is no mature photoacoustic endoscopic technique recognized in clinic due to various technical limitations. To address this concern, recent development of new scanning mechanisms, adoption of novel optical/acoustic devices, utilization of superior computation methods and exploration of multimodality strategies have significantly promoted the progress of PAE toward clinic. In this review, we comprehensively reviewed recent progresses in single- and multimodality PAE with new physics, mechanisms and strategies to achieve practical devices for potential applicable scenarios including esophageal, gastrointestinal, urogenital and intravascular imaging. We ended this review with challenges and prospects for future development of PAE.
Collapse
Affiliation(s)
- Heng Guo
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
43
|
Zhang K, Sun Y, Wu S, Zhou M, Zhang X, Zhou R, Zhang T, Gao Y, Chen T, Chen Y, Yao X, Watanabe Y, Tian M, Zhang H. Systematic imaging in medicine: a comprehensive review. Eur J Nucl Med Mol Imaging 2020; 48:1736-1758. [PMID: 33210241 DOI: 10.1007/s00259-020-05107-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
Abstract
Systematic imaging can be broadly defined as the systematic identification and characterization of biological processes at multiple scales and levels. In contrast to "classical" diagnostic imaging, systematic imaging emphasizes on detecting the overall abnormalities including molecular, functional, and structural alterations occurring during disease course in a systematic manner, rather than just one aspect in a partial manner. Concomitant efforts including improvement of imaging instruments, development of novel imaging agents, and advancement of artificial intelligence are warranted for achievement of systematic imaging. It is undeniable that scientists and radiologists will play a predominant role in directing this burgeoning field. This article introduces several recent developments in imaging modalities and nanoparticles-based imaging agents, and discusses how systematic imaging can be achieved. In the near future, systematic imaging which combines multiple imaging modalities with multimodal imaging agents will pave a new avenue for comprehensive characterization of diseases, successful achievement of image-guided therapy, precise evaluation of therapeutic effects, and rapid development of novel pharmaceuticals, with the final goal of improving human health-related outcomes.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Min Zhou
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Tingting Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuanxue Gao
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ting Chen
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yao Chen
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xin Yao
- Department of Gastroenterology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Mei Tian
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET center, The Second Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. .,The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, China.
| |
Collapse
|
44
|
von Knorring T, Mogensen M. Photoacoustic tomography for assessment and quantification of cutaneous and metastatic malignant melanoma - A systematic review. Photodiagnosis Photodyn Ther 2020; 33:102095. [PMID: 33188938 DOI: 10.1016/j.pdpdt.2020.102095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Photoacoustic tomography (PAT) is an emerging noninvasive imaging technique combining high sensitivity optical absorption contrast, such as melanin, with high-resolution ultrasound for deep tissue imaging. The ability of PAT to provide real-time images of skin structures at depth has been studied for diagnosis of primary and metastatic malignant melanoma (MM). OBJECTIVE To provide an overview of the rapidly expanding clinical use of PAT for determination of melanoma thickness and architecture, visualization of metastases in lymph nodes and detection of circulating melanoma cells. METHODS Medline, PubMed, EMBASE, Web of Science, Google Scholar, and Cochrane Library were searched for papers using PAT to assess cutaneous malignant melanoma and melanoma metastases in humans or human specimens. RESULTS The research resulted in 14 articles which met the search criteria. CONCLUSIONS Results from current studies suggest that PAT is a promising tool for assessing both primary and metastatic malignant melanoma in the clinic. The potential of PAT to noninvasively visualize tumour boundaries, as well as assist in the evaluation of metastatic status, could facilitate more effective treatment, resulting in better clearance and reducing the need for additional biopsies. However, larger and methodologically sound studies are warranted.
Collapse
Affiliation(s)
- Terese von Knorring
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen, 2400, NV, Denmark.
| | - Mette Mogensen
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen, 2400, NV, Denmark
| |
Collapse
|
45
|
Najafzadeh E, Farnia P, Lavasani SN, Basij M, Yan Y, Ghadiri H, Ahmadian A, Mehrmohammadi M. Photoacoustic image improvement based on a combination of sparse coding and filtering. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200164RR. [PMID: 33029991 PMCID: PMC7540346 DOI: 10.1117/1.jbo.25.10.106001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) has been greatly developed in a broad range of diagnostic applications. The efficiency of light to sound conversion in PAI is limited by the ubiquitous noise arising from the tissue background, leading to a low signal-to-noise ratio (SNR), and thus a poor quality of images. Frame averaging has been widely used to reduce the noise; however, it compromises the temporal resolution of PAI. AIM We propose an approach for photoacoustic (PA) signal denoising based on a combination of low-pass filtering and sparse coding (LPFSC). APPROACH LPFSC method is based on the fact that PA signal can be modeled as the sum of low frequency and sparse components, which allows for the reduction of noise levels using a hybrid alternating direction method of multipliers in an optimization process. RESULTS LPFSC method was evaluated using in-silico and experimental phantoms. The results show a 26% improvement in the peak SNR of PA signal compared to the averaging method for in-silico data. On average, LPFSC method offers a 63% improvement in the image contrast-to-noise ratio and a 33% improvement in the structural similarity index compared to the averaging method for objects located at three different depths, ranging from 10 to 20 mm, in a porcine tissue phantom. CONCLUSIONS The proposed method is an effective tool for PA signal denoising, whereas it ultimately improves the quality of reconstructed images, especially at higher depths, without limiting the image acquisition speed.
Collapse
Affiliation(s)
- Ebrahim Najafzadeh
- Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran, Iran
- Tehran University of Medical Sciences, Research Centre of Biomedical Technology and Robotics, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Parastoo Farnia
- Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran, Iran
- Tehran University of Medical Sciences, Research Centre of Biomedical Technology and Robotics, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Saeedeh N. Lavasani
- Tehran University of Medical Sciences, Research Centre of Biomedical Technology and Robotics, Imam Khomeini Hospital Complex, Tehran, Iran
- Shahid Beheshti University of Medical Sciences, Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Tehran, Iran
| | - Maryam Basij
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Yan Yan
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Hossein Ghadiri
- Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran, Iran
- Tehran University of Medical Sciences, Research Center for Molecular and Cellular Imaging, Tehran, Iran
| | - Alireza Ahmadian
- Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran, Iran
- Tehran University of Medical Sciences, Research Centre of Biomedical Technology and Robotics, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Mohammad Mehrmohammadi
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
- Wayne State University, Department of Electrical and Computer Engineering, Detroit, Michigan, United States
| |
Collapse
|
46
|
Acker CD, Yan P, Loew LM. Recent progress in optical voltage-sensor technology and applications to cardiac research: from single cells to whole hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:3-10. [PMID: 31474387 PMCID: PMC7048644 DOI: 10.1016/j.pbiomolbio.2019.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
The first workshop on Novel Optics-based approaches for Cardiac Electrophysiology (NOtiCE) was held in Florence Italy in 2018. Here, we learned how optical approaches have shaped our basic understanding of cardiac electrophysiology and how new technologies and approaches are being developed and validated to advance the field. Several technologies are being developed that may one day allow for new clinical approaches for diagnosing cardiac disorders and possibly intervening to treat human patients. In this review, we discuss several technologies and approaches to optical voltage imaging with voltage-sensitive dyes. We highlight the development and application of fluorinated and long wavelength voltage-sensitive dyes. These optical voltage sensors have now been applied and well validated in several different assays from cultured human stem cell-derived cardiomyocytes to whole hearts in-vivo. Imaging concepts such as dual wavelength ratiometric techniques, which are crucial to maximizing the information from optical sensors by increasing the useful signal and eliminating noise and artifacts, are presented. Finally, novel voltage sensors including photoacoustic voltage-sensitive dyes, their current capabilities and potential advantages, are introduced.
Collapse
Affiliation(s)
- Corey D Acker
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
47
|
Farnia P, Mohammadi M, Najafzadeh E, Alimohamadi M, Makkiabadi B, Ahmadian A. High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging. Biomed Phys Eng Express 2020; 6:045019. [PMID: 33444279 DOI: 10.1088/2057-1976/ab9a10] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of intra-operative imaging system as an intervention solution to provide more accurate localization of complicated structures has become a necessity during the neurosurgery. However, due to the limitations of conventional imaging systems, high-quality real-time intra-operative imaging remains as a challenging problem. Meanwhile, photoacoustic imaging has appeared so promising to provide images of crucial structures such as blood vessels and microvasculature of tumors. To achieve high-quality photoacoustic images of vessels regarding the artifacts caused by the incomplete data, we proposed an approach based on the combination of time-reversal (TR) and deep learning methods. The proposed method applies a TR method in the first layer of the network which is followed by the convolutional neural network with weights adjusted to a set of simulated training data for the other layers to estimate artifact-free photoacoustic images. It was evaluated using a generated synthetic database of vessels. The mean of signal to noise ratio (SNR), peak SNR, structural similarity index, and edge preservation index for the test data were reached 14.6 dB, 35.3 dB, 0.97 and 0.90, respectively. As our results proved, by using the lower number of detectors and consequently the lower data acquisition time, our approach outperforms the TR algorithm in all criteria in a computational time compatible with clinical use.
Collapse
Affiliation(s)
- Parastoo Farnia
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran. Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Malvehy J, Pérez-Anker J, Toll A, Pigem R, Garcia A, Alos LL, Puig S. Ex vivo confocal microscopy: revolution in fast pathology in dermatology. Br J Dermatol 2020; 183:1011-1025. [PMID: 32134506 DOI: 10.1111/bjd.19017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Confocal microscopy with in vivo and ex vivo modalities has been used in the evaluation of skin cancer and other dermatological disorders. Recent developments in ex vivo confocal microscopy allow for faster pathology assessment with greater accuracy by the visualization of cellular and architectural details, similarly to standard pathology, in either paraffin-embedded or frozen samples. They include the possibility of multimodal confocal microscopy using different lasers and fusion images. New staining protocols including immunostaining, with no damage to conventional histopathology preparation, have been recently described in melanocytic tumours and inflammatory skin diseases. Digital staining with haematoxylin and eosin is also incorporated in the new devices. In this review the applications of ex vivo confocal microscopy will be presented with the description of the technique and the technology, clinical evidence in dermatology and other fields, and further applications.
Collapse
Affiliation(s)
- J Malvehy
- Dermatology Department, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - J Pérez-Anker
- Dermatology Department, University of Barcelona, Barcelona, Spain
| | - A Toll
- Dermatology Department, University of Barcelona, Barcelona, Spain
| | - R Pigem
- Dermatology Department, University of Barcelona, Barcelona, Spain
| | - A Garcia
- Pathology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - L L Alos
- Pathology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - S Puig
- Dermatology Department, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
49
|
Wu J, Lee HJ, You L, Luo X, Hasegawa T, Huang KC, Lin P, Ratliff T, Ashizawa M, Mei J, Cheng JX. Functionalized NIR-II Semiconducting Polymer Nanoparticles for Single-cell to Whole-Organ Imaging of PSMA-Positive Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001215. [PMID: 32307923 DOI: 10.1002/smll.202001215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Development of molecular probes holds great promise for early diagnosis of aggressive prostate cancer. Here, 2-[3-(1,3-dicarboxypropyl) ureido] pentanedioic acid (DUPA)-conjugated ligand and bis-isoindigo-based polymer (BTII) are synthesized to formulate semiconducting polymer nanoparticles (BTII-DUPA SPN) as a prostate-specific membrane antigen (PSMA)-targeted probe for prostate cancer imaging in the NIR-II window. Insights into the interaction of the imaging probes with the biological targets from single cell to whole organ are obtained by transient absorption (TA) microscopy and photoacoustic (PA) tomography. At single-cell level, TA microscopy reveals the targeting efficiency, kinetics, and specificity of BTII-DUPA SPN to PSMA-positive prostate cancer. At organ level, PA tomographic imaging of BTII-DUPA SPN in the NIR-II window demonstrates superior imaging depth and contrast. By intravenous administration, BTII-DUPA SPN demonstrates selective accumulation and retention in the PSMA-positive tumor, allowing noninvasive PA detection of PSMA overexpressing prostate tumors in vivo. The distribution of nanoparticles inside the tumor tissue is further analyzed through TA microscopy. These results collectively demonstrate BTII-DUPA SPN as a promising probe for prostate cancer diagnosis by PA tomography.
Collapse
Affiliation(s)
- Jiayingzi Wu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Hyeon Jeong Lee
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Xuyi Luo
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Tsukasa Hasegawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kai-Chih Huang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Peng Lin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Timothy Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Minoru Ashizawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Photonics Center, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
50
|
Tang Y, Qian X, Lee DJ, Zhou Q, Yao J. From Light to Sound: Photoacoustic and Ultrasound Imaging in Fundamental Research of Alzheimer's Disease. OBM NEUROBIOLOGY 2020; 4:10.21926/obm.neurobiol.2002056. [PMID: 33083711 PMCID: PMC7571611 DOI: 10.21926/obm.neurobiol.2002056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) causes severe cognitive dysfunction and has long been studied for the underlining physiological and pathological mechanisms. Several biomedical imaging modalities have been applied, including MRI, PET, and high-resolution optical microscopy, for research purposes. However, there is still a strong need for imaging tools that can provide high spatiotemporal resolutions with relatively deep penetration to enhance our understanding of AD pathology and monitor treatment progress in fundamental research. Photoacoustic (PA) imaging and ultrasound (US) imaging can potentially address these unmet needs in AD research. PA imaging provides functional information with endogenous and/or exogenous contrast, while US imaging provides structural information. Recent studies have demonstrated the ability to monitor physiological parameters in small-animal brains with PA and US imaging as well as the feasibility of using US imaging as a therapeutic tool for AD. This concise review aims to introduce recent advances in AD research using PA and US imaging, provide the fundamentals, and discuss the potentials and challenges for future advances.
Collapse
Affiliation(s)
- Yuqi Tang
- Department of Biomedical Engineering, Duke University,
Durham, NC, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of
Southern California, Los Angeles, CA, USA
- USC Roski Eye institute, University of Southern California,
Los Angeles, CA, USA
| | - Darrin J. Lee
- Department of Neurological Surgery, University of Southern
California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of
Southern California, Los Angeles, CA, USA
- USC Roski Eye institute, University of Southern California,
Los Angeles, CA, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University,
Durham, NC, USA
| |
Collapse
|