1
|
Birtles D, Lee J. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochem Soc Trans 2024; 52:2593-2602. [PMID: 39700018 DOI: 10.1042/bst20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Membrane fusion is an essential component of the viral lifecycle that allows the delivery of the genetic information of the virus into the host cell. Specialized viral glycoproteins exist on the surface of mature virions where they facilitate fusion through significant conformational changes, ultimately bringing opposing membranes into proximity until they eventually coalesce. This process can be positively influenced by a number of specific cellular factors such as pH, enzymatic cleavage, divalent ions, and the composition of the host cell membrane. In this review, we have summarized how anionic lipids have come to be involved in viral fusion and how the endosomal resident anionic lipid BMP has become increasingly implicated as an important cofactor for those viruses that fuse via the endocytic pathway.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| |
Collapse
|
2
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
3
|
Shen Z, Qi Y, Yu W, Li S, Liu Z, Li L, Zhu M, Gong C, Hu X. Grass Carp Reovirus (GCRV) infection activates the PERK-eIF2α pathway to promote the viral replication. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110020. [PMID: 39528019 DOI: 10.1016/j.fsi.2024.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Grass carp reovirus (GCRV) belongs to the genus Aquareovirus and is responsible for causing serious hemorrhagic disease in grass carp (Ctenopharyngodon idella), characterized by high mortality rates. Numerous animal viruses have been shown to activate endoplasmic reticulum stress (ERS). However, the potential for GCRV infection to induce ERS and its implications for viral infection remain unclear. In this study, we demonstrated that GCRV infection induces ERS, activates the protein kinase R-like ER kinase (PERK) pathway, and inhibits both the inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6) pathways within the unfolded protein response (UPR). Additionally, we modulated the levels of ERS and UPR pathways in CIK cells through drug treatment and small interfering RNAs (siRNAs). Our findings revealed that the onset of ERS accelerated GCRV infection, while the ATF6 and IRE1 pathways within the UPR negatively regulated GCRV infection. Conversely, the PERK pathway facilitated GCRV infection. Furthermore, we showed that GCRV infection induced oxidative stress, with the production of reactive oxygen species (ROS) being positively regulated by the PERK pathway and the downstream gene endoplasmic reticulum oxidoreductase-1α (ERO1α). Notably, ROS promoted GCRV infection. Collectively, our findings indicate that GCRV infection activates ERS, which in turn promotes viral infection through the PERK-ERO1α-ROS signaling pathway. Thus, the PERK pathway may serve as a novel antiviral target for the prevention of GCRV infection.
Collapse
Affiliation(s)
- Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yanling Qi
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Wenbin Yu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Song Li
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zhuo Liu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Liuyang Li
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology, and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology, and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Golushko IY, Roshal DS, Konevtsova OV, Rochal SB, Podgornik R. Electrostatic interactions and structural transformations in viral shells. NANOSCALE 2024; 16:20182-20193. [PMID: 39380336 DOI: 10.1039/d4nr02612h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Structural transformations occurring in proteinaceous viral shells (capsids) can be induced by changing the pH of bathing solution, thus modifying the dissociation equilibrium of ionizable amino acids in proteins. To analyze the effects of electrostatic interactions on viral capsids, we construct a model of 2D isotropic elastic shells with embedded point charges located in the centers of mass of individual proteins. We find that modification of the electrostatic interactions between proteins affects not only the size and shape of capsids, but in addition induces substantial deformations of hexamers in capsid structures. Using bacteriophage P22 and Nudarelia capensis omega virus (NωV) as examples, we analyze the capsid faceting and propose an explanation as to why the hexamers in spherical procapsid are skewed, while they acquire a regular shape in the faceted state. Also, we examine the electrostatic and elastic effects that can explain different shapes of coronavirus shells decorated with spikes, which are often localized in compact areas over the shell surface. The proposed mechanism of local curvature generation is supported by the remarkable correspondence between the shell shape and the distribution of spikes in model and observed shells.
Collapse
Affiliation(s)
- Ivan Yu Golushko
- Faculty of Physics, Southern Federal University, Rostov-on-Don, Russia.
| | - Daria S Roshal
- Faculty of Physics, Southern Federal University, Rostov-on-Don, Russia.
| | - Olga V Konevtsova
- Faculty of Physics, Southern Federal University, Rostov-on-Don, Russia.
| | - Sergei B Rochal
- Faculty of Physics, Southern Federal University, Rostov-on-Don, Russia.
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Wenzhou Institute of the University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Theoretical Physics, Jozef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Aparna M, Saravanan P, Dhanesh VV, Selvaraj DPR, Shreya G, Adwitiya D, Madhusudan H, Sreenivasa BP, Tamilselvan RP, Sanyal A, Goyal S, Thiyagarajan S, Chaudhuri P. Diagnostic and prophylactic potential of a stabilized foot-and-mouth disease serotype Asia1 virus like particles designed through a structure guided approach. Int J Biol Macromol 2024; 277:134366. [PMID: 39098702 DOI: 10.1016/j.ijbiomac.2024.134366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Intact capsids of foot-and-mouth disease virus (FMDV) play a vital role in eliciting a protective immune response. Any change in the physico-chemical environment of the capsids results in dissociation and poor immunogenicity. Structural bioinfomatics studies have been carried out to predict the amino acids at the interpentameric region that resulted in the identification of mutant virus-like particles(VLPs) of FMDV serotype Asia1/IND/63/1972. The insect cell expressed VLPs were evaluated for their stability by sandwich ELISA. Among 10 mutants, S93H showed maximum retention of antigenicity at different temperatures, indicating its higher thermal stability as revealed by the in-silico analysis and retained the antigenic sites of the virus demonstrated by Sandwich ELISA. The concordant results of the liquid phase blocking ELISA for estimation of antibody titre of known sera with stable mutant VLP as antigen in place of virus antigen demonstrate its diagnostic potential. The stable mutant VLP elicited a robust immune response with 85.6 % protection in guinea pigs against virus challenge. The stabilized VLP based antigen requires minimum biosafety and cold storage for production and transit besides, complying with differentiation of infected from vaccinated animals. It can effectively replace the conventional virus handling during antigen production for prophylactic and diagnostic use.
Collapse
Affiliation(s)
- Madhavan Aparna
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | | - V V Dhanesh
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | | - Gopinath Shreya
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - Das Adwitiya
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | | - B P Sreenivasa
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - R P Tamilselvan
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - Aniket Sanyal
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - Samta Goyal
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru 560100, India
| | - Saravanamuthu Thiyagarajan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru 560100, India
| | - Pallab Chaudhuri
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| |
Collapse
|
6
|
Konevtsova OV, Chalin DV, Rochal SB. Theory of density waves and organization of proteins in icosahedral virus capsids. Phys Chem Chem Phys 2023; 26:569-580. [PMID: 38086647 DOI: 10.1039/d3cp05384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Understanding the physical principles underlying the structural organization of the proteinaceous viral shells is of major importance to advance antiviral strategies. Here, we develop a phenomenological thermodynamic theory, which considers structures of small and middle-size icosahedral viral shells as a result of condensation of a minimum number of protein density waves on a spherical surface. Each of these irreducible critical waves has icosahedral symmetry and can be expressed as a specific series of the spherical harmonics Ylm with the same wave number l. As we demonstrate, in small viral shells self-assembled from individual proteins, the maxima of one critical density wave determine the positions of proteins, while the spatial derivatives of the second one control the protein orientations on the shell surface. In contrast to the small shells, the middle-size ones are always formed from pentamers and hexamers (referred to as capsomers). Considering all such structures deposited in the Protein Data Bank, we unexpectedly found that the positions of capsomeres in these shells correspond to the maxima of interference patterns produced by no more than two critical waves with close wave numbers. This fact allows us to explain the observed limit size of the icosahedral shells assembled from pentamers and hexamers. We also construct nonequilibrium thermodynamic potentials describing the protein crystallization and discuss the reasons behind the specific handedness of the viral shells.
Collapse
Affiliation(s)
- Olga V Konevtsova
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| | - Dmitrii V Chalin
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| | - Sergei B Rochal
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| |
Collapse
|
7
|
Zhao H, Tang L. Electron microscopic and crystallographic studies of bacteriophage Sf6 procapsid-like particles assembled from heterologously expressed capsid protein gp5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546888. [PMID: 37425895 PMCID: PMC10327121 DOI: 10.1101/2023.06.28.546888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Many double-stranded DNA (dsDNA) viruses undergo a capsid maturation process during assembly of infectious virus particles, which involves transformation of a metastable capsid precursor called procapsid into a stable, DNA-filled capsid usually with a larger size and a more angular shape. Sf6 is a tailed dsDNA bacteriophage that infects Shigella flexneri . The phage Sf6 capsid protein gp5 was heterologously expressed and purified. Electron microscopy showed that the gp5 spontaneously assembled into spherical, procapsid-like particles. We also observed tube-like and cone-shaped particles reminiscent of human immunodeficiency virus. The gp5 procapsid-like particles were crystallized and crystals diffracted beyond 4.3 Å resolution. X-ray data at 5.9 Å resolution were collected with a completeness of 31.1% and an overall R merge of 15.0%. The crystals belong to the space group C 2 with unit cell dimensions of a=973.326 Å, b=568.234 Å, c=565.567 Å, and β=120.540°. Self-rotation function showed the 532 symmetry, confirming formation of icosahedral particles. The particle was situated at the origin of the crystal unit cell with the icosahedral 2-fold axis coinciding with the crystallographic b axis, and there is a half of the icosahedral particle in the crystallographic asymmetric unit.
Collapse
|
8
|
Cortes-Galvez D, Dangerfield JA, Metzner C. Extracellular Vesicles and Their Membranes: Exosomes vs. Virus-Related Particles. MEMBRANES 2023; 13:397. [PMID: 37103824 PMCID: PMC10146078 DOI: 10.3390/membranes13040397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Cells produce nanosized lipid membrane-enclosed vesicles which play important roles in intercellular communication. Interestingly, a certain type of extracellular vesicle, termed exosomes, share physical, chemical, and biological properties with enveloped virus particles. To date, most similarities have been discovered with lentiviral particles, however, other virus species also frequently interact with exosomes. In this review, we will take a closer look at the similarities and differences between exosomes and enveloped viral particles, with a focus on events taking place at the vesicle or virus membrane. Since these structures present an area with an opportunity for interaction with target cells, this is relevant for basic biology as well as any potential research or medical applications.
Collapse
Affiliation(s)
- Daniela Cortes-Galvez
- AG Histology and Embryology, Institute of Morphology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | | |
Collapse
|
9
|
Luque D, Ortega-Esteban A, Valbuena A, Luis Vilas J, Rodríguez-Huete A, Mateu MG, Castón JR. Equilibrium Dynamics of a Biomolecular Complex Analyzed at Single-amino Acid Resolution by Cryo-electron Microscopy. J Mol Biol 2023; 435:168024. [PMID: 36828271 DOI: 10.1016/j.jmb.2023.168024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
The biological function of macromolecular complexes depends not only on large-scale transitions between conformations, but also on small-scale conformational fluctuations at equilibrium. Information on the equilibrium dynamics of biomolecular complexes could, in principle, be obtained from local resolution (LR) data in cryo-electron microscopy (cryo-EM) maps. However, this possibility had not been validated by comparing, for a same biomolecular complex, LR data with quantitative information on equilibrium dynamics obtained by an established solution technique. In this study we determined the cryo-EM structure of the minute virus of mice (MVM) capsid as a model biomolecular complex. The LR values obtained correlated with crystallographic B factors and with hydrogen/deuterium exchange (HDX) rates obtained by mass spectrometry (HDX-MS), a gold standard for determining equilibrium dynamics in solution. This result validated a LR-based cryo-EM approach to investigate, with high spatial resolution, the equilibrium dynamics of biomolecular complexes. As an application of this approach, we determined the cryo-EM structure of two mutant MVM capsids and compared their equilibrium dynamics with that of the wild-type MVM capsid. The results supported a previously suggested linkage between mechanical stiffening and impaired equilibrium dynamics of a virus particle. Cryo-EM is emerging as a powerful approach for simultaneously acquiring information on the atomic structure and local equilibrium dynamics of biomolecular complexes.
Collapse
Affiliation(s)
- Daniel Luque
- Spanish National Microbiology Centre, Institute of Health Carlos III, Madrid, Spain
| | - Alvaro Ortega-Esteban
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Luis Vilas
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
10
|
Rafeeq MM, Habib AH, Nahhas AF, Binothman N, Aljadani M, Almulhim J, Sain ZM, Alam MZ, Alturki NA, Alam Q, Manish M, Singh RK. Targeting Kaposi's sarcoma associated herpesvirus encoded protease (ORF17) by a lysophosphatidic acid molecule for treating KSHV associated diseases. Front Cell Dev Biol 2023; 11:1060156. [PMID: 36733461 PMCID: PMC9888664 DOI: 10.3389/fcell.2023.1060156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) is causative agent of Kaposi's sarcoma, Multicentric Castleman Disease and Pleural effusion lymphoma. KSHV-encoded ORF17 encodes a protease which cleaves -Ala-Ala-, -Ala-Ser- or -Ala-Thr-bonds. The protease plays an important role in assembly and maturation of new infective virions. In the present study, we investigated expression pattern of KSHV-encoded protease during physiologically allowed as well as chemically induced reactivation condition. The results showed a direct and proportionate relationship between ORF17 expression with reactivation time. We employed virtual screening on a large database of natural products to identify an inhibitor of ORF17 for its plausible targeting and restricting Kaposi's sarcoma associated herpesvirus assembly/maturation. A library of 307,814 compounds of biological origin (A total 481,799 structures) has been used as a screen library. 1-oleoyl-2-hydroxy-sn-glycero-3-phospho-(1'-myo-inositol) was highly effective against ORF17 in in-vitro experiments. The screened compound was tested for the cytotoxic effect and potential for inhibiting Kaposi's sarcoma associated herpesvirus production upon induced reactivation by hypoxia, TPA and butyric acid. Treatment of reactivated KSHV-positive cells with 1-oleoyl-2-hydroxy-sn-glycero-3-phospho-(1'-myo-inositol) resulted in significant reduction in the production of Kaposi's sarcoma associated herpesvirus. The study identified a lysophosphatidic acid molecule for alternate strategy to inhibit KSHV-encoded protease and target Kaposi's sarcoma associated herpesvirus associated malignancies.
Collapse
Affiliation(s)
- Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, KSA
| | - Alaa Hamed Habib
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, KSA
| | - Alaa F. Nahhas
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, KSA
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa, KSA
| | - Ziaullah M Sain
- Department of Microbiology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, KSA
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Qamre Alam
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Manish Manish
- School of Computer and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajnish Kumar Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India,*Correspondence: Rajnish Kumar Singh,
| |
Collapse
|
11
|
Mizrahi I, Bruinsma R, Rudnick J. Packaging contests between viral RNA molecules and kinetic selectivity. PLoS Comput Biol 2022; 18:e1009913. [PMID: 35363785 PMCID: PMC9022832 DOI: 10.1371/journal.pcbi.1009913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/21/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
The paper presents a statistical-mechanics model for the kinetic selection of viral RNA molecules by packaging signals during the nucleation stage of the assembly of small RNA viruses. The effects of the RNA secondary structure and folding geometry of the packaging signals on the assembly activation energy barrier are encoded by a pair of characteristics: the wrapping number and the maximum ladder distance. Kinetic selection is found to be optimal when assembly takes place under conditions of supersaturation and also when the concentration ratio of capsid protein and viral RNA concentrations equals the stoichiometric ratio of assembled viral particles. As a function of the height of the activation energy barrier, there is a form of order-disorder transition such that for sufficiently low activation energy barriers, kinetic selectivity is erased by entropic effects associated with the number of assembly pathways.
Collapse
Affiliation(s)
- Inbal Mizrahi
- Department of Physics and Astronomy, University of California, Los Angeles, California, United States of America
| | - Robijn Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, United States of America
- * E-mail:
| | - Joseph Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, California, United States of America
| |
Collapse
|
12
|
Witeof AE, McClary W, Rea LT, Yang Q, Davis MM, Funke H, Catalano C, Randolph T. Atomic-Layer Deposition Processes Applied to Phage λ and a Phage-Like Particle Platform Yield Thermostable, Single-Shot Vaccines. J Pharm Sci 2022; 111:1354-1362. [DOI: 10.1016/j.xphs.2022.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
|
13
|
Mechanical Capsid Maturation Facilitates the Resolution of Conflicting Requirements for Herpesvirus Assembly. J Virol 2021; 96:e0183121. [PMID: 34878808 PMCID: PMC8865421 DOI: 10.1128/jvi.01831-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most viruses undergo a maturation process from a weakly self-assembled, noninfectious particle to a stable, infectious virion. For herpesviruses, this maturation process resolves several conflicting requirements: (i) assembly must be driven by weak, reversible interactions between viral particle subunits to reduce errors and minimize the energy of self-assembly, and (ii) the viral particle must be stable enough to withstand tens of atmospheres of DNA pressure resulting from its strong confinement in the capsid. With herpes simplex virus 1 (HSV-1) as a prototype of human herpesviruses, we demonstrated that this mechanical capsid maturation is mainly facilitated through capsid binding auxiliary protein UL25, orthologs of which are present in all herpesviruses. Through genetic manipulation of UL25 mutants of HSV-1 combined with the interrogation of capsid mechanics with atomic force microscopy nano-indentation, we suggested the mechanism of stepwise binding of distinct UL25 domains correlated with capsid maturation and DNA packaging. These findings demonstrate another paradigm of viruses as elegantly programmed nano-machines where an intimate relationship between mechanical and genetic information is preserved in UL25 architecture. IMPORTANCE The minor capsid protein UL25 plays a critical role in the mechanical maturation of the HSV-1 capsid during virus assembly and is required for stable DNA packaging. We modulated the UL25 capsid interactions by genetically deleting different UL25 regions and quantifying the effect on mechanical capsid stability using an atomic force microscopy (AFM) nanoindentation approach. This approach revealed how UL25 regions reinforced the herpesvirus capsid to stably package and retain pressurized DNA. Our data suggest a mechanism of stepwise binding of two main UL25 domains timed with DNA packaging.
Collapse
|
14
|
Adams MC, Schiltz CJ, Heck ML, Chappie JS. Crystal structure of the potato leafroll virus coat protein and implications for viral assembly. J Struct Biol 2021; 214:107811. [PMID: 34813955 DOI: 10.1016/j.jsb.2021.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Luteoviruses, poleroviruses, and enamoviruses are insect-transmitted, agricultural pathogens that infect a wide array of plants, including staple food crops. Previous cryo-electron microscopy studies of virus-like particles show that luteovirid viral capsids are built from a structural coat protein that organizes with T = 3 icosahedral symmetry. Here, we present the crystal structure of a truncated version of the coat protein monomer from potato leafroll virus at 1.80-Å resolution. In the crystal lattice, monomers pack into flat sheets that preserve the two-fold and three-fold axes of icosahedral symmetry and show minimal structural deviations when compared to the full-length subunits of the assembled virus-like particle. These observations have important implications in viral assembly and maturation and suggest that the CP N-terminus and its interactions with RNA play an important role in generating capsid curvature.
Collapse
Affiliation(s)
- Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Carl J Schiltz
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michelle L Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA; Robert W. Holley Center for Agriculture and Health, Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, NY 14853, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
UL25 capsid binding facilitates mechanical maturation of the Herpesvirus capsid and allows retention of pressurized DNA. J Virol 2021; 95:e0075521. [PMID: 34346766 DOI: 10.1128/jvi.00755-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The maturation process that occurs in most viruses is evolutionarily driven as it resolves several conflicting virion assembly requirements. During herpesvirus assembly in a host cell nucleus, micron-long double-stranded herpes DNA is packaged into a nanometer-sized procapsid. This leads to strong confinement of the viral genome with resulting tens of atmospheres of intra-capsid DNA pressure. Yet, the procapsid is unstable due to weak, reversible interactions between its protein subunits, which ensures free energy minimization and reduces assembly errors. In this work we show that herpesviruses resolve these contradictory capsid requirements through a mechanical capsid maturation process facilitated by multi-functional auxiliary protein UL25. Through mechanical interrogation of herpes simplex virus type 1 (HSV-1) capsid with atomic force microscopy nano-indentation, we show that UL25 binding at capsid vertices post-assembly provides the critical capsid reinforcement required for stable DNA encapsidation; the absence of UL25 binding leads to capsid rupture. Furthermore, we demonstrate that gradual capsid reinforcement is a feasible maturation mechanism facilitated by progressive UL25 capsid binding, which is likely correlated with DNA packaging progression. This work provides insight into elegantly programmed viral assembly machinery where targeting of capsid assembly mechanics presents a new antiviral strategy that is resilient to development of drug resistance. Importance: Most viruses undergo a maturation process from a weakly assembled particle to a stable virion. Herpesvirus capsid undergoes mechanical maturation to withstand tens of atmospheres of DNA pressure. We demonstrate that this mechanical capsid maturation is mainly facilitated through binding of auxiliary protein UL25 in HSV-1 capsid vertices. We show that UL25 binding provides the critical capsid reinforcement required for stable DNA encapsidation. Our data also suggests that gradual capsid reinforcement by progressive UL25 binding is a feasible capsid maturation mechanism, correlated with DNA packaging progression.
Collapse
|
16
|
Castells-Graells R, Ribeiro JRS, Domitrovic T, Hesketh EL, Scarff CA, Johnson JE, Ranson NA, Lawson DM, Lomonossoff GP. Plant-expressed virus-like particles reveal the intricate maturation process of a eukaryotic virus. Commun Biol 2021; 4:619. [PMID: 34031522 PMCID: PMC8144610 DOI: 10.1038/s42003-021-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Many virus capsids undergo exquisitely choreographed maturation processes in their host cells to produce infectious virions, and these remain poorly understood. As a tool for studying virus maturation, we transiently expressed the capsid protein of the insect virus Nudaurelia capensis omega virus (NωV) in Nicotiana benthamiana and were able to purify both immature procapsids and mature capsids from infiltrated leaves by varying the expression time. Cryo-EM analysis of the plant-produced procapsids and mature capsids to 6.6 Å and 2.7 Å resolution, respectively, reveals that in addition to large scale rigid body motions, internal regions of the subunits are extensively remodelled during maturation, creating the active site required for autocatalytic cleavage and infectivity. The mature particles are biologically active in terms of their ability to lyse membranes and have a structure that is essentially identical to authentic virus. The ability to faithfully recapitulate and visualize a complex maturation process in plants, including the autocatalytic cleavage of the capsid protein, has revealed a ~30 Å translation-rotation of the subunits during maturation as well as conformational rearrangements in the N and C-terminal helical regions of each subunit.
Collapse
Affiliation(s)
- Roger Castells-Graells
- Department of Biological Chemistry, John Innes Centre, Colney, UK
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jonas R S Ribeiro
- Virology Department, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Domitrovic
- Virology Department, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Charlotte A Scarff
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Colney, UK
| | | |
Collapse
|
17
|
Tee HK, Zainol MI, Sam IC, Chan YF. Recent advances in the understanding of enterovirus A71 infection: a focus on neuropathogenesis. Expert Rev Anti Infect Ther 2021; 19:733-747. [PMID: 33183118 DOI: 10.1080/14787210.2021.1851194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Hand, foot, and mouth disease caused by enterovirus A71 (EV-A71) is more frequently associated with neurological complications and deaths compared to other enteroviruses.Areas covered: The authors discuss current understanding of the neuropathogenesis of EV-A71 based on various clinical, human, and animal model studies. The authors discuss the important advancements in virus entry, virus dissemination, and neuroinvasion. The authors highlight the role of host immune system, host genetic factors, viral quasispecies, and heparan sulfate in EV-A71 neuropathogenesis.Expert opinion: Comparison of EV-A71 with EV-D68 and PV shows similarity in primary target sites and dissemination to the central nervous system. More research is needed to understand cellular tropisms, persistence of EV-A71, and other possible invasion routes. EV-A71 infection has varied clinical manifestations which may be attributed to multiple receptors usage. Future development of antivirals and vaccines should target neurotropic enteroviruses. Repurposing drug and immunomodulators used in combination could reduce the severity of EV-A71 infection. Only a few drugs have been tested in clinical trials, and in the absence of antiviral and vaccines (except China), active virus surveillance, good hand hygiene, and physical distancing should be advocated. A better understanding of EV-A71 neuropathogenesis is critical for antiviral and multivalent vaccines development.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Izwan Zainol
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Abstract
Enveloped viruses exit producer cells and acquire their external lipid envelopes by budding through limiting cellular membranes. Most viruses encode multifunctional structural proteins that coordinate the processes of virion assembly, membrane envelopment, budding, and maturation. In many cases, the cellular ESCRT pathway is recruited to facilitate the membrane fission step of budding, but alternative strategies are also employed. Recently, many viruses previously considered to be non-enveloped have been shown to exit cells non-lytically within vesicles, adding further complexity to the intricacies of virus budding and egress.
Collapse
|
19
|
Bruinsma RF, Wuite GJL, Roos WH. Physics of viral dynamics. NATURE REVIEWS. PHYSICS 2021; 3:76-91. [PMID: 33728406 PMCID: PMC7802615 DOI: 10.1038/s42254-020-00267-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 05/12/2023]
Abstract
Viral capsids are often regarded as inert structural units, but in actuality they display fascinating dynamics during different stages of their life cycle. With the advent of single-particle approaches and high-resolution techniques, it is now possible to scrutinize viral dynamics during and after their assembly and during the subsequent development pathway into infectious viruses. In this Review, the focus is on the dynamical properties of viruses, the different physical virology techniques that are being used to study them, and the physical concepts that have been developed to describe viral dynamics.
Collapse
Affiliation(s)
- Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California, USA
| | - Gijs J. L. Wuite
- Fysica van levende systemen, Vrije Universiteit, Amsterdam, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| |
Collapse
|
20
|
Jana AK, May ER. Structural and dynamic asymmetry in icosahedrally symmetric virus capsids. Curr Opin Virol 2020; 45:8-16. [PMID: 32615360 PMCID: PMC7746594 DOI: 10.1016/j.coviro.2020.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
A common characteristic of virus capsids is icosahedral symmetry, yet these highly symmetric structures can display asymmetric features within their virions and undergo asymmetric dynamics. The fields of structural and computational biology have entered a new realm in the investigation of virus infection mechanisms, with the ability to observe symmetry-breaking features. This review will cover important studies on icosahedral virus structure and dynamics, covering both symmetric and asymmetric conformational changes. However, the main emphasis of the review will be towards recent studies employing cryo-electron microscopy or molecular dynamics simulations, which can uncover asymmetric aspects of these systems relevant to understanding viral physical-chemical properties and their biological impact.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
21
|
Mata CP, Rodríguez JM, Suzuki N, Castón JR. Structure and assembly of double-stranded RNA mycoviruses. Adv Virus Res 2020; 108:213-247. [PMID: 33837717 DOI: 10.1016/bs.aivir.2020.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycoviruses are a diverse group that includes ssRNA, dsRNA, and ssDNA viruses, with or without a protein capsid, as well as with a complex envelope. Most mycoviruses are transmitted by cytoplasmic interchange and are thought to lack an extracellular phase in their infection cycle. Structural analysis has focused on dsRNA mycoviruses, which usually package their genome in a 120-subunit T=1 icosahedral capsid, with a capsid protein (CP) dimer as the asymmetric unit. The atomic structure is available for four dsRNA mycovirus from different families: Saccharomyces cerevisiae virus L-A (ScV-L-A), Penicillium chrysogenum virus (PcV), Penicillium stoloniferum virus F (PsV-F), and Rosellinia necatrix quadrivirus 1 (RnQV1). Their capsids show structural variations of the same framework, with asymmetric or symmetric CP dimers respectively for ScV-L-A and PsV-F, dimers of similar domains of a single CP for PcV, or of two different proteins for RnQV1. The CP dimer is the building block, and assembly proceeds through dimers of dimers or pentamers of dimers, in which the genome is packed as ssRNA by interaction with CP and/or viral polymerase. These capsids remain structurally undisturbed throughout the viral cycle. The T=1 capsid participates in RNA synthesis, organizing the viral polymerase (1-2 copies) and a single loosely packaged genome segment. It also acts as a molecular sieve, to allow the passage of viral transcripts and nucleotides, but to prevent triggering of host defense mechanisms. Due to the close mycovirus-host relationship, CP evolved to allocate peptide insertions with enzyme activity, as reflected in a rough outer capsid surface.
Collapse
Affiliation(s)
- Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Javier M Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
22
|
Schlicksup CJ, Zlotnick A. Viral structural proteins as targets for antivirals. Curr Opin Virol 2020; 45:43-50. [PMID: 32777753 DOI: 10.1016/j.coviro.2020.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022]
Abstract
Viral structural proteins are emerging as effective targets for new antivirals. In a viral lifecycle, the capsid must assemble, disassemble, and respond to host proteins, all at the right time and place. These reactions work within a narrow range of conditions, making them susceptible to small molecule interference. In at least three specific viruses, this approach has had met with preliminary success. In rhinovirus and poliovirus, compounds like pleconaril bind capsid and block RNA release. Bevirimat binds to Gag protein in HIV, inhibiting maturation. In Hepatitis B virus, core protein allosteric modulators (CpAMs) promote spontaneous assembly of capsid protein leading to empty and aberrant particles. Despite the biological diversity between viruses and the chemical diversity between antiviral molecules, we observe common features in these antivirals' mechanisms of action. These approaches work by stabilizing protein-protein interactions.
Collapse
Affiliation(s)
- Christopher John Schlicksup
- Molecular and Cellular Biology Department, Indiana University-Bloomington, Bloomington, IN 47401, United States
| | - Adam Zlotnick
- Molecular and Cellular Biology Department, Indiana University-Bloomington, Bloomington, IN 47401, United States.
| |
Collapse
|
23
|
Khaykelson D, Raviv U. Studying viruses using solution X-ray scattering. Biophys Rev 2020; 12:41-48. [PMID: 32062837 PMCID: PMC7040123 DOI: 10.1007/s12551-020-00617-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
Viruses have been of interest to mankind since their discovery as small infectious agents in the nineteenth century. Because many viruses cause diseases to humans and agriculture, they were rigorously studied for biological and medical purposes. Viruses have remarkable properties such as the symmetry and self-assembly of their protein envelope, maturation into infectious virions, structural stability, and disassembly. Solution X-ray scattering can probe structures and reactions in solutions, down to subnanometer spatial resolution and millisecond temporal resolution. It probes the bulk solution and reveals the average shape and average mass of particles in solution and can be used to study kinetics and thermodynamics of viruses at different stages of their life cycle. Here we review recent work that demonstrates the capabilities of solution X-ray scattering to study in vitro the viral life cycle.
Collapse
Affiliation(s)
- Daniel Khaykelson
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
| |
Collapse
|
24
|
Hernando-Pérez M, Zeng C, Miguel MC, Dragnea B. Intermittency of Deformation and the Elastic Limit of an Icosahedral Virus under Compression. ACS NANO 2019; 13:7842-7849. [PMID: 31241887 DOI: 10.1021/acsnano.9b02133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Viruses undergo mesoscopic morphological changes as they interact with host interfaces and in response to chemical cues. The dynamics of these changes, over the entire temporal range relevant to virus processes, are unclear. Here, we report on creep compliance experiments on a small icosahedral virus under uniaxial constant stress. We find that even at small stresses, well below the yielding point and generally thought to induce a Hookean response, strain continues to develop in time via sparse, randomly distributed, relatively rapid plastic events. The intermittent character of mechanical compliance only appears above a loading threshold, similar to situations encountered in granular flows and the plastic deformation of crystalline solids. The threshold load is much smaller for the empty capsids of the brome mosaic virus than for the wild-type virions. The difference highlights the involvement of RNA in stabilizing the assembly interface. Numerical simulations of spherical crystal deformation suggest intermittency is mediated by lattice defect dynamics and identify the type of compression-induced defect that nucleates the transition to plasticity.
Collapse
Affiliation(s)
| | - Cheng Zeng
- Departament de Física de la Matèria Condensada, Facultat de Física , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain
- Harvard , John A. Paulson School of Applied Sciences , 29 Oxford Street Cambridge , Massachusetts 02138 , United States
| | - M Carmen Miguel
- Departament de Física de la Matèria Condensada, Facultat de Física , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain
| | - Bogdan Dragnea
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
25
|
Edwardson TGW, Hilvert D. Virus-Inspired Function in Engineered Protein Cages. J Am Chem Soc 2019; 141:9432-9443. [PMID: 31117660 DOI: 10.1021/jacs.9b03705] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and functional diversity of proteins combined with their genetic programmability has made them indispensable modern materials. Well-defined, hollow protein capsules have proven to be particularly useful due to their ability to compartmentalize macromolecules and chemical processes. To this end, viral capsids are common scaffolds and have been successfully repurposed to produce a suite of practical protein-based nanotechnologies. Recently, the recapitulation of viromimetic function in protein cages of nonviral origin has emerged as a strategy to both complement physical studies of natural viruses and produce useful scaffolds for diverse applications. In this perspective, we review recent progress toward generation of virus-like behavior in nonviral protein cages through rational engineering and directed evolution. These artificial systems can aid our understanding of the emergence of viruses from existing cellular components, as well as provide alternative approaches to tackle current problems, and open up new opportunities, in medicine and biotechnology.
Collapse
Affiliation(s)
| | - Donald Hilvert
- Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
26
|
López-Argüello S, Rincón V, Rodríguez-Huete A, Martínez-Salas E, Belsham GJ, Valbuena A, Mateu MG. Thermostability of the Foot-and-Mouth Disease Virus Capsid Is Modulated by Lethal and Viability-Restoring Compensatory Amino Acid Substitutions. J Virol 2019; 93:e02293-18. [PMID: 30867300 PMCID: PMC6498042 DOI: 10.1128/jvi.02293-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 11/20/2022] Open
Abstract
Infection by viruses depends on a balance between capsid stability and dynamics. This study investigated biologically and biotechnologically relevant aspects of the relationship in foot-and-mouth disease virus (FMDV) between capsid structure and thermostability and between thermostability and infectivity. In the FMDV capsid, a substantial number of amino acid side chains at the interfaces between pentameric subunits are charged at neutral pH. Here a mutational analysis revealed that the essential role for virus infection of most of the 8 tested charged groups is not related to substantial changes in capsid protein expression or processing or in capsid assembly or stability against a thermally induced dissociation into pentamers. However, the positively charged side chains of R2018 and H3141, located at the interpentamer interfaces close to the capsid 2-fold symmetry axes, were found to be critical both for virus infectivity and for keeping the capsid in a state of weak thermostability. A charge-restoring substitution (N2019H) that was repeatedly fixed during amplification of viral genomes carrying deleterious mutations reverted both the lethal and capsid-stabilizing effects of the substitution H3141A, leading to a double mutant virus with close to normal infectivity and thermolability. H3141A and other thermostabilizing substitutions had no detectable effect on capsid resistance to acid-induced dissociation into pentamers. The results suggest that FMDV infectivity requires limited local stability around the 2-fold axes at the interpentamer interfaces of the capsid. The implications for the mechanism of genome uncoating in FMDV and the development of thermostabilized vaccines against foot-and-mouth disease are discussed.IMPORTANCE This study provides novel insights into the little-known structural determinants of the balance between thermal stability and instability in the capsid of foot-and-mouth disease virus and into the relationship between capsid stability and virus infectivity. The results provide new guidelines for the development of thermostabilized empty capsid-based recombinant vaccines against foot-and-mouth disease, one of the economically most important animal diseases worldwide.
Collapse
Affiliation(s)
- Silvia López-Argüello
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Verónica Rincón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark
| | - Alejandro Valbuena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Newcomer RL, Schrad JR, Gilcrease EB, Casjens SR, Feig M, Teschke CM, Alexandrescu AT, Parent KN. The phage L capsid decoration protein has a novel OB-fold and an unusual capsid binding strategy. eLife 2019; 8:e45345. [PMID: 30945633 PMCID: PMC6449081 DOI: 10.7554/elife.45345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
The major coat proteins of dsDNA tailed phages (order Caudovirales) and herpesviruses form capsids by a mechanism that includes active packaging of the dsDNA genome into a precursor procapsid, followed by expansion and stabilization of the capsid. These viruses have evolved diverse strategies to fortify their capsids, such as non-covalent binding of auxiliary 'decoration' (Dec) proteins. The Dec protein from the P22-like phage L has a highly unusual binding strategy that distinguishes between nearly identical three-fold and quasi-three-fold sites of the icosahedral capsid. Cryo-electron microscopy and three-dimensional image reconstruction were employed to determine the structure of native phage L particles. NMR was used to determine the structure/dynamics of Dec in solution. The NMR structure and the cryo-EM density envelope were combined to build a model of the capsid-bound Dec trimer. Key regions that modulate the binding interface were verified by site-directed mutagenesis.
Collapse
Affiliation(s)
- Rebecca L Newcomer
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Jason R Schrad
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Michael Feig
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Carolyn M Teschke
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Andrei T Alexandrescu
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Kristin N Parent
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| |
Collapse
|
28
|
San Martín C. Virus Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:129-158. [DOI: 10.1007/978-3-030-14741-9_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Rodríguez-Arco L, Poma A, Ruiz-Pérez L, Scarpa E, Ngamkham K, Battaglia G. Molecular bionics - engineering biomaterials at the molecular level using biological principles. Biomaterials 2018; 192:26-50. [PMID: 30419394 DOI: 10.1016/j.biomaterials.2018.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK.
| | - Alessandro Poma
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Kamolchanok Ngamkham
- Faculty of Engineering, King Mongkut's University of Technology Thonbury, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Giuseppe Battaglia
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
30
|
The RNA-Binding Protein of a Double-Stranded RNA Virus Acts like a Scaffold Protein. J Virol 2018; 92:JVI.00968-18. [PMID: 30021893 DOI: 10.1128/jvi.00968-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
Infectious bursal disease virus (IBDV), a nonenveloped, double-stranded RNA (dsRNA) virus with a T=13 icosahedral capsid, has a virion assembly strategy that initiates with a precursor particle based on an internal scaffold shell similar to that of tailed double-stranded DNA (dsDNA) viruses. In IBDV-infected cells, the assembly pathway results mainly in mature virions that package four dsRNA segments, although minor viral populations ranging from zero to three dsRNA segments also form. We used cryo-electron microscopy (cryo-EM), cryo-electron tomography, and atomic force microscopy to characterize these IBDV populations. The VP3 protein was found to act as a scaffold protein by building an irregular, ∼40-Å-thick internal shell without icosahedral symmetry, which facilitates formation of a precursor particle, the procapsid. Analysis of IBDV procapsid mechanical properties indicated a VP3 layer beneath the icosahedral shell, which increased the effective capsid thickness. Whereas scaffolding proteins are discharged in tailed dsDNA viruses, VP3 is a multifunctional protein. In mature virions, VP3 is bound to the dsRNA genome, which is organized as ribonucleoprotein complexes. IBDV is an amalgam of dsRNA viral ancestors and traits from dsDNA and single-stranded RNA (ssRNA) viruses.IMPORTANCE Structural analyses highlight the constraint of virus evolution to a limited number of capsid protein folds and assembly strategies that result in a functional virion. We report the cryo-EM and cryo-electron tomography structures and the results of atomic force microscopy studies of the infectious bursal disease virus (IBDV), a double-stranded RNA virus with an icosahedral capsid. We found evidence of a new inner shell that might act as an internal scaffold during IBDV assembly. The use of an internal scaffold is reminiscent of tailed dsDNA viruses, which constitute the most successful self-replicating system on Earth. The IBDV scaffold protein is multifunctional and, after capsid maturation, is genome bound to form ribonucleoprotein complexes. IBDV encompasses numerous functional and structural characteristics of RNA and DNA viruses; we suggest that IBDV is a modern descendant of ancestral viruses and comprises different features of current viral lineages.
Collapse
|
31
|
Rumlová M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv 2018; 36:557-576. [PMID: 29292156 PMCID: PMC7127693 DOI: 10.1016/j.biotechadv.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
Despite successful vaccination programs and effective treatments for some viral infections, humans are still losing the battle with viruses. Persisting human pandemics, emerging and re-emerging viruses, and evolution of drug-resistant strains impose continuous search for new antiviral drugs. A combination of detailed information about the molecular organization of viruses and progress in molecular biology and computer technologies has enabled rational antivirals design. Initial step in establishing efficacy of new antivirals is based on simple methods assessing inhibition of the intended target. We provide here an overview of biochemical and cell-based assays evaluating the activity of inhibitors of clinically important viruses.
Collapse
Affiliation(s)
- Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
| |
Collapse
|
32
|
Catalano CE. Bacteriophage lambda: The path from biology to theranostic agent. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [DOI: 10.1002/wnan.1517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos E. Catalano
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of ColoradoAuroraColorado
| |
Collapse
|
33
|
Wang JCY, Mukhopadhyay S, Zlotnick A. Geometric Defects and Icosahedral Viruses. Viruses 2018; 10:E25. [PMID: 29300359 PMCID: PMC5795438 DOI: 10.3390/v10010025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
We propose that viruses with geometric defects are not necessarily flawed viruses. A geometric defect may be a reactive site. Defects may facilitate assembly, dissociation, or accessibility of cellular proteins to virion components. In single molecule studies of hepadnavirus assembly, defects and overgrowth are common features. Icosahedral alphaviruses and flaviviruses, among others, have capsids with geometric defects. Similarly, immature retroviruses, which are non-icosahedral, have numerous "errors". In many viruses, asymmetric exposure of interior features allows for regulated genome release or supports intracellular trafficking. In these viruses, the defects likely serve a biological function. Commonly used approaches for spherical virus structure determination use symmetry averaging, which obscures defects. We suggest that there are three classes of asymmetry: regular asymmetry as might be found in a tailed phage, irregular asymmetry as found, for example, in defects randomly trapped during assembly, and dynamic asymmetry due to Brownian dynamics of virus capsids. Awareness of their presence and recent advances in electron microscopy will allow unprecedented investigation of capsid irregularities to investigate their biological relevance.
Collapse
Affiliation(s)
- Joseph Che-Yen Wang
- Indiana University Electron Microscopy Center, Indiana University, Bloomington, IN 47405, USA.
| | | | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
34
|
Mushegian A, Karin EL, Pupko T. Sequence analysis of malacoherpesvirus proteins: Pan-herpesvirus capsid module and replication enzymes with an ancient connection to "Megavirales". Virology 2018; 513:114-128. [PMID: 29065352 PMCID: PMC7172337 DOI: 10.1016/j.virol.2017.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022]
Abstract
The order Herpesvirales includes animal viruses with large double-strand DNA genomes replicating in the nucleus. The main capsid protein in the best-studied family Herpesviridae contains a domain with HK97-like fold related to bacteriophage head proteins, and several virion maturation factors are also homologous between phages and herpesviruses. The origin of herpesvirus DNA replication proteins is less well understood. While analyzing the genomes of herpesviruses in the family Malacohepresviridae, we identified nearly 30 families of proteins conserved in other herpesviruses, including several phage-related domains in morphogenetic proteins. Herpesvirus DNA replication factors have complex evolutionary history: some are related to cellular proteins, but others are closer to homologs from large nucleocytoplasmic DNA viruses. Phylogenetic analyses suggest that the core replication machinery of herpesviruses may have been recruited from the same pool as in the case of other large DNA viruses of eukaryotes.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA 22314, USA.
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
35
|
Serwer P, Wright ET, Demeler B, Jiang W. States of phage T3/T7 capsids: buoyant density centrifugation and cryo-EM. Biophys Rev 2017; 10:583-596. [PMID: 29243090 DOI: 10.1007/s12551-017-0372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Mature double-stranded DNA bacteriophages have capsids with symmetrical shells that typically resist disruption, as they must to survive in the wild. However, flexibility and associated dynamism assist function. We describe biochemistry-oriented procedures used to find previously obscure flexibility for capsids of the related phages, T3 and T7. The primary procedures are hydration-based buoyant density ultracentrifugation and purified particle-based cryo-electron microscopy (cryo-EM). We review the buoyant density centrifugation in detail. The mature, stable T3/T7 capsid is a shell flexibility-derived conversion product of an initially assembled procapsid (capsid I). During DNA packaging, capsid I expands and loses a scaffolding protein to form capsid II. The following are observations made with capsid II. (1) The in vivo DNA packaging of wild type T3 generates capsid II that has a slight (1.4%), cryo-EM-detected hyper-expansion relative to the mature phage capsid. (2) DNA packaging in some altered conditions generates more extensive hyper-expansion of capsid II, initially detected by hydration-based preparative buoyant density centrifugation in Nycodenz density gradients. (3) Capsid contraction sometimes occurs, e.g., during quantized leakage of DNA from mature T3 capsids without a tail.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Elena T Wright
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Wen Jiang
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
36
|
Pascual E, Mata CP, Carrascosa JL, Castón JR. Assembly/disassembly of a complex icosahedral virus to incorporate heterologous nucleic acids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:494001. [PMID: 29083994 PMCID: PMC7103166 DOI: 10.1088/1361-648x/aa96ec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hollow protein containers are widespread in nature, and include virus capsids as well as eukaryotic and bacterial complexes. Protein cages are studied extensively for applications in nanotechnology, nanomedicine and materials science. Their inner and outer surfaces can be modified chemically or genetically, and the internal cavity can be used to template, store and/or arrange molecular cargos. Virus capsids and virus-like particles (VLP, noninfectious particles) provide versatile platforms for nanoscale bioengineering. Study of capsid protein self-assembly into monodispersed particles, and of VLP structure and biophysics is necessary not only to understand natural processes, but also to infer how these platforms can be redesigned to furnish novel functional VLP. Here we address the assembly dynamics of infectious bursal disease virus (IBDV), a complex icosahedral virus. IBDV has a ~70 nm-diameter T = 13 capsid with VP2 trimers as the only structural subunits. During capsid assembly, VP2 is synthesized as a precursor (pVP2) whose C terminus is cleaved. The pVP2 C terminus has an amphipathic helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, necessary for control of assembly, 466/456-residue pVP2 intermediates bearing this helix assemble into VLP only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for genetic insertion of proteins (cargo space ~78 000 nm3). We established an in vitro assembly/disassembly system of HT-VP2-466-based VLP for heterologous nucleic acid packaging and/or encapsulation of drugs and other molecules. HT-VP2-466 (empty) capsids were disassembled and reassembled by dialysis against low-salt/basic pH and high-salt/acid pH buffers, respectively, thus illustrating the reversibility in vitro of IBDV capsid assembly. HT-VP2-466 VLP also packed heterologous DNA by non-specific confinement during assembly. These and previous results establish the bases for biotechnological applications based on the IBDV capsid and its ability to incorporate exogenous proteins and nucleic acids.
Collapse
Affiliation(s)
- Elena Pascual
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - Carlos P Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| |
Collapse
|
37
|
Mata CP, Luque D, Gómez-Blanco J, Rodríguez JM, González JM, Suzuki N, Ghabrial SA, Carrascosa JL, Trus BL, Castón JR. Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses. PLoS Pathog 2017; 13:e1006755. [PMID: 29220409 PMCID: PMC5738138 DOI: 10.1371/journal.ppat.1006755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/20/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface. Most fungal RNA viruses are transmitted by cytoplasmic interchange without leaving the host. We report the cryo-electron microscopy structure, at near-atomic resolution, of the double-stranded RNA Rosellinia necatrix quadrivirus 1 (RnQV1); this virus infects the fungus Rosellinia necatrix, a pathogenic ascomycete to a wide range of plants. At difference most dsRNA viruses, whose capsid is made of protein homodimers, RnQV1 is based on a single-shelled lattice built of 60 P2-P4 heterodimers. Despite a lack of sequence similarity, P2 and P4 have a similar α-helical domain, a structural signature shared with the dsRNA virus lineage. In addition to organizing the viral genome and replicative machinery, P2 and P4 have acquired new functions by inserting complex domains in preferential insertion sites. Whereas the P2 insertion domain has a fold like that of actin-binding proteins, the structure of the P4 insertion domain indicates proteolytic activity. Understanding the structure of a fungal virus capsid with enzyme activities could allow its development as nanoreactors for biotechnological application.
Collapse
Affiliation(s)
- Carlos P. Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | - Daniel Luque
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
- Centro Nacional de Microbiología/ISCIII, Majadahonda, Madrid, Spain
| | - Josué Gómez-Blanco
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | | | - José M. González
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | | | - Said A. Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - José L. Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
| | - Benes L. Trus
- Imaging Sciences Laboratory, CIT, NIH, Bethesda, MD, United States of America
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
38
|
Rochal SB, Konevtsova OV, Lorman VL. Static and dynamic hidden symmetries of icosahedral viral capsids. NANOSCALE 2017; 9:12449-12460. [PMID: 28809986 DOI: 10.1039/c7nr04020b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Viral shells self-assemble from identical proteins, which tend to form equivalent environments in the resulting assembly. However, in icosahedral capsids containing more than 60 proteins, they are enforced to occupy not only the symmetrically equivalent locations but also the quasi-equivalent ones. Due to this important fact, static and dynamic symmetries of viral shells can include additional hidden components. Here, developing the Caspar and Klug ideas concerning the quasi-equivalence of protein environments, we derive the simplest hexagonal tilings, that in principle could correspond to the local protein order in viral shells, and apply the resulting theory to nucleocytoplasmic large dsDNA viruses. In addition, analyzing the dynamic symmetry of the P22 viral shell, we demonstrate that the collective critical modes responsible for the protein reorganization during the procapsid maturation are approximately equivalent to the normal modes of the isotropic spherical membrane with O(3) symmetry. Furthermore, we establish the relationship between the dynamic symmetry of the P22 procapsid and the protein arrangement regularities that appear only in the mature capsid.
Collapse
Affiliation(s)
- Sergey B Rochal
- Faculty of Physics, Southern Federal University, 5 Zorge str., 344090 Rostov-on-Don, Russia.
| | | | | |
Collapse
|
39
|
Doerschuk PC. Statistical characterization of ensembles of symmetric virus particles: 3-D stochastic signal reconstruction from electron microscope images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:3977-3980. [PMID: 28269156 DOI: 10.1109/embc.2016.7591598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stochastic models of nano-biomachines have been studied by 3-D reconstruction from cryo electron microscopy images in recent years. The image data is the projection of many heterogeneous instances of the object under study (e.g., a virus). Initial reconstruction algorithms require different instances of the object, while still heterogeneous, to have the same symmetry. This paper presents a maximum likelihood reconstruction approach which allows each object to lack symmetry while constraining the statistics of the ensemble of objects to have symmetry. This algorithm is demonstrated on bacteriophage HK97 and is contrasted with the former algorithm. Reconstruction results show that the proposed algorithm provides estimates that make more biological sense.
Collapse
|
40
|
Abstract
The assembly line is a commonly invoked example of allopoiesis, the process whereby a system produces a different system than itself. In this sense, virus production in plants is an instance of bio-enabled bottom-up allopoiesis because the plant host can be regarded as a programmable assembly line for the virus. Reprogramming this assembly line and integrating it into a larger lineup of chemical manipulations has seen a flurry of activity recently, with more sophisticated systems emerging every year. The field of virus nanomaterials now has several subdisciplines that focus on virus shells as assemblers, scaffolds for molecular circuitry, chemical reactors, magnetic and photonic beacons, and therapeutic carriers. A case in point is the work reported by Brillault et al. in this issue of ACS Nano. They show how two types of animal virus coat proteins can be simultaneously expressed and efficiently assembled in plants into a complex virus-like particle of well-defined stoichiometry and composition. Such advances, combined with the promise of scalability and sustainability afforded by plants, paint a bright picture for the future of high-performance virus-based nanomaterials.
Collapse
Affiliation(s)
- Bogdan Dragnea
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
41
|
van de Waterbeemd M, Llauró A, Snijder J, Valbuena A, Rodríguez-Huete A, Fuertes MA, de Pablo PJ, Mateu MG, Heck AJR. Structural Analysis of a Temperature-Induced Transition in a Viral Capsid Probed by HDX-MS. Biophys J 2017; 112:1157-1165. [PMID: 28355543 PMCID: PMC5375139 DOI: 10.1016/j.bpj.2017.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/30/2023] Open
Abstract
Icosahedral viral capsids are made of a large number of symmetrically organized protein subunits whose local movements can be essential for infection. In the capsid of the minute virus of mice, events required for infection that involve translocation of peptides through capsid pores are associated with a subtle conformational change. In vitro, this change can be reversibly induced by overcoming the energy barrier through mild heating of the capsid, but little is known about the capsid regions involved in the process. Here, we use hydrogen-deuterium exchange coupled to mass spectrometry to analyze the dynamics of the minute virus of mice capsid at increasing temperatures. Our results indicate that the transition associated with peptide translocation involves the structural rearrangement of regions distant from the capsid pores. These alterations are reflected in an increased dynamics of some secondary-structure elements in the capsid shell from which spikes protrude, and a decreased dynamics in the long intertwined loops that form the large capsid spikes. Thus, the translocation events through capsid pores involve a global conformational rearrangement of the capsid and a complex alteration of its equilibrium dynamics. This study additionally demonstrates the potential of hydrogen-deuterium exchange coupled to mass spectrometry to explore in detail temperature-dependent structural dynamics in large macromolecular protein assemblies. Most importantly, it paves the way for undertaking novel studies of the relationship between structure, dynamics, and biological function in virus particles and other large protein cages.
Collapse
Affiliation(s)
- Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Aida Llauró
- Department of Physics of the Condensed Matter, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Angel Fuertes
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Pedro J de Pablo
- Department of Physics of the Condensed Matter, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Centre, Utrecht, the Netherlands.
| |
Collapse
|
42
|
Roshal DS, Konevtsova OV, Myasnikova AE, Rochal SB. Assembly of the most topologically regular two-dimensional micro and nanocrystals with spherical, conical, and tubular shapes. Phys Rev E 2016; 94:052605. [PMID: 27967001 DOI: 10.1103/physreve.94.052605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 06/06/2023]
Abstract
We consider how to control the extension of curvature-induced defects in the hexagonal order covering different curved surfaces. In these frames we propose a physical mechanism for improving structures of two-dimensional spherical colloidal crystals (SCCs). For any SCC comprising of about 300 or less particles the mechanism transforms all extended topological defects (ETDs) in the hexagonal order into the point disclinations. Perfecting the structure is carried out by successive cycles of the particle implantation and subsequent relaxation of the crystal. The mechanism is potentially suitable for obtaining colloidosomes with better selective permeability. Our approach enables modeling the most topologically regular tubular and conical two-dimensional nanocrystals including various possible polymorphic forms of the HIV viral capsid. Different HIV-like shells with an arbitrary number of structural units (SUs) and desired geometrical parameters are easily formed. Faceting of the obtained structures is performed by minimizing the suggested elastic energy.
Collapse
Affiliation(s)
- D S Roshal
- Faculty of Physics, Southern Federal University, 5 Zorge strasse, 344090 Rostov-on-Don, Russia
| | - O V Konevtsova
- Faculty of Physics, Southern Federal University, 5 Zorge strasse, 344090 Rostov-on-Don, Russia
| | - A E Myasnikova
- Faculty of Physics, Southern Federal University, 5 Zorge strasse, 344090 Rostov-on-Don, Russia
| | - S B Rochal
- Faculty of Physics, Southern Federal University, 5 Zorge strasse, 344090 Rostov-on-Don, Russia
| |
Collapse
|
43
|
Marchetti M, Wuite GJL, Roos WH. Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr Opin Virol 2016; 18:82-8. [DOI: 10.1016/j.coviro.2016.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 11/15/2022]
|
44
|
Taylor NMI, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM, Browning C, Goldie KN, Stahlberg H, Leiman PG. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 2016; 533:346-52. [DOI: 10.1038/nature17971] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022]
|
45
|
Abstract
During the life cycle of a virus, viral proteins and other components self-assemble to form an ordered protein shell called a capsid. This assembly process is subject to multiple competing constraints, including the need to form a thermostable shell while avoiding kinetic traps. It has been proposed that viral assembly satisfies these constraints through allosteric regulation, including the interconversion of capsid proteins among conformations with different propensities for assembly. In this article, we use computational and theoretical modeling to explore how such allostery affects the assembly of icosahedral shells. We simulate assembly under a wide range of protein concentrations, protein binding affinities, and two different mechanisms of allosteric control. We find that above a threshold strength of allosteric control, assembly becomes robust over a broad range of subunit binding affinities and concentrations, allowing the formation of highly thermostable capsids. Our results suggest that allostery can significantly shift the range of protein binding affinities that lead to successful assembly and thus should be taken into account in models that are used to estimate interaction parameters from experimental data.
Collapse
Affiliation(s)
- Guillermo R Lazaro
- Martin Fisher School of Physics, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
46
|
Freire JM, Veiga AS, de la Torre BG, Santos NC, Andreu D, Da Poian AT, Castanho MARB. Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid. Biopolymers 2016; 100:325-36. [PMID: 23868207 DOI: 10.1002/bip.22266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/11/2013] [Accepted: 04/19/2013] [Indexed: 12/24/2022]
Abstract
The structural organization of viral particles is among the most astonishing examples of molecular self-assembly in nature, involving proteins, nucleic acids, and, sometimes, lipids. Proper assembly is essential to produce well structured infectious virions. A great variety of structural arrangements can be found in viral particles. Nucleocapsids, for instance, may display highly ordered geometric shapes or consist in macroscopically amorphous packs of the viral genome. Alphavirus and flavivirus are viral genera that exemplify these extreme cases, the former comprising viral particles structured with a T = 4 icosahedral symmetry, whereas flavivirus capsids have no regular geometry. Dengue virus is a member of flavivirus genus and is used in this article to illustrate how viral protein-derived peptides can be used advantageously over full-length proteins to unravel the foundations of viral supramolecular assemblies. Membrane- and viral RNA-binding data of capsid protein-derived dengue virus peptides are used to explain the amorphous organization of the viral capsid. Our results combine bioinformatic and spectroscopic approaches using two- or three-component peptide and/or nucleic acid and/or lipid systems.
Collapse
Affiliation(s)
- João Miguel Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
47
|
Ruiz-Pérez L, Messager L, Gaitzsch J, Joseph A, Sutto L, Gervasio FL, Battaglia G. Molecular engineering of polymersome surface topology. SCIENCE ADVANCES 2016; 2:e1500948. [PMID: 27152331 PMCID: PMC4846435 DOI: 10.1126/sciadv.1500948] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/21/2016] [Indexed: 05/03/2023]
Abstract
Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions. We report polymersomes with patterns that emerge by engineering interfacial tension within the polymersome surface. This allows the formation of domains whose topology is tailored by chemical synthesis, paving the avenue to complex supramolecular designs functionally similar to those found in viruses and trafficking vesicles.
Collapse
|
48
|
Rincón V, Rodríguez-Huete A, Mateu MG. Different functional sensitivity to mutation at intersubunit interfaces involved in consecutive stages of foot-and-mouth disease virus assembly. J Gen Virol 2015; 96:2595-2606. [DOI: 10.1099/vir.0.000187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Verónica Rincón
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez-Huete
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G. Mateu
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
49
|
Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 2015; 31:64-74. [PMID: 25845770 DOI: 10.1016/j.sbi.2015.03.007] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/11/2022]
Abstract
Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone.
Collapse
|
50
|
Castellanos M, Carrillo PJP, Mateu MG. Quantitatively probing propensity for structural transitions in engineered virus nanoparticles by single-molecule mechanical analysis. NANOSCALE 2015; 7:5654-5664. [PMID: 25744136 DOI: 10.1039/c4nr07046a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.
Collapse
Affiliation(s)
- Milagros Castellanos
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | | | | |
Collapse
|