1
|
Li F, Liu R, Li W, Xie M, Qin S. Synchrotron Radiation: A Key Tool for Drug Discovery. Bioorg Med Chem Lett 2024; 114:129990. [PMID: 39406298 DOI: 10.1016/j.bmcl.2024.129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Synchrotron radiation is extensively utilized in the domains of materials science, physical chemistry, and life science, resulting from its high intensity, exceptional monochromaticity, superior collimation, and broad wave spectrum. This top-notch light source has also made significant contributions to the progress of biomedicine. The advancement of synchrotron radiation-based X-ray and protein crystallography technologies has created new prospects for drug discovery. These innovative techniques have opened up exciting avenues in the field. The investigation of protein crystal structures and the elucidation of the spatial configuration of biological macromolecules have revealed intricate details regarding the modes of protein binding. Furthermore, the screening of crystal polymorphs and ligands has laid the groundwork for rational drug modification and the improvement of drug physicochemical properties. As science and technology continue to advance, the techniques for analyzing structures using synchrotron radiation sources and the design of corresponding crystallographic beamline stations are undergoing continuous enhancement. These cutting-edge tools and facilities are expected to expedite the drug development process and rectify the current situation of a lack of targeted drugs.
Collapse
Affiliation(s)
- Fengcheng Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingyuan Xie
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, China.
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
Kordylewski SK, Bugno R, Bojarski AJ, Podlewska S. Uncovering the unique characteristics of different groups of 5-HT 5AR ligands with reference to their interaction with the target protein. Pharmacol Rep 2024; 76:1130-1146. [PMID: 38971919 PMCID: PMC11387456 DOI: 10.1007/s43440-024-00622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The serotonin 5-HT5A receptor has attracted much more research attention, due to the therapeutic potential of its ligands being increasingly recognized, and the possibilities that lie ahead of these findings. There is a growing body of evidence indicating that these ligands have procognitive, pro-social, and anti-depressant properties, which offers new avenues for the development of treatments that could address socially important conditions related to the malfunctioning of the central nervous system. The aim of our study was to unravel the molecular determinants for 5-HT5AR ligands that govern their activity towards the receptor. METHODS In response to the need for identification of molecular determinants for 5-HT5AR activity, we prepared a comprehensive collection of 5-HT5AR ligands, carefully gathering literature and patent data. Leveraging molecular modeling techniques, such as pharmacophore hypothesis development, docking, and molecular dynamics simulations enables to gain valuable insights into the specific interactions of 5-HT5AR ligand groups with the receptor. RESULTS The obtained comprehensive set of 2160 compounds was divided into dozens of subsets, and a pharmacophore model was developed for each group. The results from the docking and molecular dynamics simulations have enabled the identification of crucial ligand-protein interactions that are essential for the compound's activity towards 5-HT5AR. CONCLUSIONS The findings from the molecular modeling study provide valuable insights that can guide medicinal chemists in the development of new 5-HT5AR ligands. Considering the pharmacological significance of these compounds, they have the potential to become impactful treatments for individuals and communities in the future. Understanding how different crystal/cryo-EM structures of 5-HT5AR affect molecular modeling experiments could have major implications for future computational studies on this receptor.
Collapse
Affiliation(s)
- Szymon K Kordylewski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Ryszard Bugno
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
3
|
Grieco A, Quereda-Moraleda I, Martin-Garcia JM. Innovative Strategies in X-ray Crystallography for Exploring Structural Dynamics and Reaction Mechanisms in Metabolic Disorders. J Pers Med 2024; 14:909. [PMID: 39338163 PMCID: PMC11432794 DOI: 10.3390/jpm14090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Enzymes are crucial in metabolic processes, and their dysfunction can lead to severe metabolic disorders. Structural biology, particularly X-ray crystallography, has advanced our understanding of these diseases by providing 3D structures of pathological enzymes. However, traditional X-ray crystallography faces limitations, such as difficulties in obtaining suitable protein crystals and studying protein dynamics. X-ray free-electron lasers (XFELs) have revolutionized this field with their bright and brief X-ray pulses, providing high-resolution structures of radiation-sensitive and hard-to-crystallize proteins. XFELs also enable the study of protein dynamics through room temperature structures and time-resolved serial femtosecond crystallography, offering comprehensive insights into the molecular mechanisms of metabolic diseases. Understanding these dynamics is vital for developing effective therapies. This review highlights the contributions of protein dynamics studies using XFELs and synchrotrons to metabolic disorder research and their application in designing better therapies. It also discusses G protein-coupled receptors (GPCRs), which, though not enzymes, play key roles in regulating physiological systems and are implicated in many metabolic disorders.
Collapse
Affiliation(s)
| | | | - Jose Manuel Martin-Garcia
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), 28006 Madrid, Spain; (A.G.); (I.Q.-M.)
| |
Collapse
|
4
|
Khusainov G, Standfuss J, Weinert T. The time revolution in macromolecular crystallography. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:020901. [PMID: 38616866 PMCID: PMC11015943 DOI: 10.1063/4.0000247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Macromolecular crystallography has historically provided the atomic structures of proteins fundamental to cellular functions. However, the advent of cryo-electron microscopy for structure determination of large and increasingly smaller and flexible proteins signaled a paradigm shift in structural biology. The extensive structural and sequence data from crystallography and advanced sequencing techniques have been pivotal for training computational models for accurate structure prediction, unveiling the general fold of most proteins. Here, we present a perspective on the rise of time-resolved crystallography as the new frontier of macromolecular structure determination. We trace the evolution from the pioneering time-resolved crystallography methods to modern serial crystallography, highlighting the synergy between rapid detection technologies and state-of-the-art x-ray sources. These innovations are redefining our exploration of protein dynamics, with high-resolution crystallography uniquely positioned to elucidate rapid dynamic processes at ambient temperatures, thus deepening our understanding of protein functionality. We propose that the integration of dynamic structural data with machine learning advancements will unlock predictive capabilities for protein kinetics, revolutionizing dynamics like macromolecular crystallography revolutionized structural biology.
Collapse
Affiliation(s)
- Georgii Khusainov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|
5
|
Addis P, Bali U, Baron F, Campbell A, Harborne S, Jagger L, Milne G, Pearce M, Rosethorne EM, Satchell R, Swift D, Young B, Unitt JF. Key aspects of modern GPCR drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:1-22. [PMID: 37625784 DOI: 10.1016/j.slasd.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most versatile cell surface receptor family with a broad repertoire of ligands and functions. We've learned an enormous amount about discovering drugs of this receptor class since the first GPCR was cloned and expressed in 1986, such that it's now well-recognized that GPCRs are the most successful target class for approved drugs. Here we take the reader through a GPCR drug discovery journey from target to the clinic, highlighting the key learnings, best practices, challenges, trends and insights on discovering drugs that ultimately modulate GPCR function therapeutically in patients. The future of GPCR drug discovery is inspiring, with more desirable drug mechanisms and new technologies enabling the delivery of better and more successful drugs.
Collapse
Affiliation(s)
- Phil Addis
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Utsav Bali
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Frank Baron
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Adrian Campbell
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Steven Harborne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Liz Jagger
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Gavin Milne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Martin Pearce
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Elizabeth M Rosethorne
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Rupert Satchell
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Denise Swift
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Barbara Young
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - John F Unitt
- Bioscience, Medicinal Chemistry, Pharmacology and Protein Science Departments, Sygnature Discovery Ltd, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK.
| |
Collapse
|
6
|
Safari C, Ghosh S, Andersson R, Johannesson J, Båth P, Uwangue O, Dahl P, Zoric D, Sandelin E, Vallejos A, Nango E, Tanaka R, Bosman R, Börjesson P, Dunevall E, Hammarin G, Ortolani G, Panman M, Tanaka T, Yamashita A, Arima T, Sugahara M, Suzuki M, Masuda T, Takeda H, Yamagiwa R, Oda K, Fukuda M, Tosha T, Naitow H, Owada S, Tono K, Nureki O, Iwata S, Neutze R, Brändén G. Time-resolved serial crystallography to track the dynamics of carbon monoxide in the active site of cytochrome c oxidase. SCIENCE ADVANCES 2023; 9:eadh4179. [PMID: 38064560 PMCID: PMC10708180 DOI: 10.1126/sciadv.adh4179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.
Collapse
Affiliation(s)
- Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Owens Uwangue
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Doris Zoric
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Toshi Arima
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mamoru Suzuki
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Hanae Takeda
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Raika Yamagiwa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| |
Collapse
|
7
|
Botha S, Fromme P. Review of serial femtosecond crystallography including the COVID-19 pandemic impact and future outlook. Structure 2023; 31:1306-1319. [PMID: 37898125 PMCID: PMC10842180 DOI: 10.1016/j.str.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
Serial femtosecond crystallography (SFX) revolutionized macromolecular crystallography over the past decade by enabling the collection of X-ray diffraction data from nano- or micrometer sized crystals while outrunning structure-altering radiation damage effects at room temperature. The serial manner of data collection from millions of individual crystals coupled with the femtosecond duration of the ultrabright X-ray pulses enables time-resolved studies of macromolecules under near-physiological conditions to unprecedented temporal resolution. In 2020 the rapid spread of the coronavirus SARS-CoV-2 resulted in a global pandemic of coronavirus disease-2019. This led to a shift in how serial femtosecond experiments were performed, along with rapid funding and free electron laser beamtime availability dedicated to SARS-CoV-2-related studies. This review outlines the current state of SFX research, the milestones that were achieved, the impact of the global pandemic on this field as well as an outlook into exciting future directions.
Collapse
Affiliation(s)
- Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
8
|
Abstract
Proteins guide the flows of information, energy, and matter that make life possible by accelerating transport and chemical reactions, by allosterically modulating these reactions, and by forming dynamic supramolecular assemblies. In these roles, conformational change underlies functional transitions. Time-resolved X-ray diffraction methods characterize these transitions either by directly triggering sequences of functionally important motions or, more broadly, by capturing the motions of which proteins are capable. To date, most successful have been experiments in which conformational change is triggered in light-dependent proteins. In this review, I emphasize emerging techniques that probe the dynamic basis of function in proteins lacking natively light-dependent transitions and speculate about extensions and further possibilities. In addition, I review how the weaker and more distributed signals in these data push the limits of the capabilities of analytical methods. Taken together, these new methods are beginning to establish a powerful paradigm for the study of the physics of protein function.
Collapse
Affiliation(s)
- Doeke R Hekstra
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
9
|
Thorne RE. Determining biomolecular structures near room temperature using X-ray crystallography: concepts, methods and future optimization. Acta Crystallogr D Struct Biol 2023; 79:78-94. [PMID: 36601809 PMCID: PMC9815097 DOI: 10.1107/s2059798322011652] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2022] [Indexed: 01/05/2023] Open
Abstract
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
Collapse
Affiliation(s)
- Robert E. Thorne
- Physics Department, Cornell University, Ithaca, NY 14853, USA
- MiTeGen LLC, PO Box 3867, Ithaca, NY 14850, USA
| |
Collapse
|
10
|
Sonker M, Doppler D, Egatz-Gomez A, Zaare S, Rabbani MT, Manna A, Cruz Villarreal J, Nelson G, Ketawala GK, Karpos K, Alvarez RC, Nazari R, Thifault D, Jernigan R, Oberthür D, Han H, Sierra R, Hunter MS, Batyuk A, Kupitz CJ, Sublett RE, Poitevin F, Lisova S, Mariani V, Tolstikova A, Boutet S, Messerschmidt M, Meza-Aguilar JD, Fromme R, Martin-Garcia JM, Botha S, Fromme P, Grant TD, Kirian RA, Ros A. Electrically stimulated droplet injector for reduced sample consumption in serial crystallography. BIOPHYSICAL REPORTS 2022; 2:100081. [PMID: 36425668 PMCID: PMC9680787 DOI: 10.1016/j.bpr.2022.100081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
With advances in X-ray free-electron lasers (XFELs), serial femtosecond crystallography (SFX) has enabled the static and dynamic structure determination for challenging proteins such as membrane protein complexes. In SFX with XFELs, the crystals are typically destroyed after interacting with a single XFEL pulse. Therefore, thousands of new crystals must be sequentially introduced into the X-ray beam to collect full data sets. Because of the serial nature of any SFX experiment, up to 99% of the sample delivered to the X-ray beam during its "off-time" between X-ray pulses is wasted due to the intrinsic pulsed nature of all current XFELs. To solve this major problem of large and often limiting sample consumption, we report on improvements of a revolutionary sample-saving method that is compatible with all current XFELs. We previously reported 3D-printed injection devices coupled with gas dynamic virtual nozzles (GDVNs) capable of generating samples containing droplets segmented by an immiscible oil phase for jetting crystal-laden droplets into the path of an XFEL. Here, we have further improved the device design by including metal electrodes inducing electrowetting effects for improved control over droplet generation frequency to stimulate the droplet release to matching the XFEL repetition rate by employing an electrical feedback mechanism. We report the improvements in this electrically triggered segmented flow approach for sample conservation in comparison with a continuous GDVN injection using the microcrystals of lysozyme and 3-deoxy-D-manno-octulosonate 8-phosphate synthase and report the segmented flow approach for sample injection applied at the Macromolecular Femtosecond Crystallography instrument at the Linear Coherent Light Source for the first time.
Collapse
Affiliation(s)
- Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sahba Zaare
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Mohammad T. Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Abhik Manna
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Gihan K. Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Roberto C. Alvarez
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Reza Nazari
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Darren Thifault
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Rebecca Jernigan
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | | | - Raymond Sierra
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Mark S. Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Christopher J. Kupitz
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Robert E. Sublett
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Frederic Poitevin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Stella Lisova
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Valerio Mariani
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Sebastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, California
| | - Marc Messerschmidt
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - J. Domingo Meza-Aguilar
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jose M. Martin-Garcia
- Institute Physical-Chemistry Rocasolano, Spanish National Research Council, Madrid, Spain
| | - Sabine Botha
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York
| | - Richard A. Kirian
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
11
|
Barends TR, Stauch B, Cherezov V, Schlichting I. Serial femtosecond crystallography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:59. [PMID: 36643971 PMCID: PMC9833121 DOI: 10.1038/s43586-022-00141-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.
Collapse
Affiliation(s)
- Thomas R.M. Barends
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Stauch
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Ilme Schlichting
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,
| |
Collapse
|
12
|
Peck A, Chang HY, Dujardin A, Ramalingam D, Uervirojnangkoorn M, Wang Z, Mancuso A, Poitevin F, Yoon CH. Skopi: a simulation package for diffractive imaging of noncrystalline biomolecules. J Appl Crystallogr 2022; 55:1002-1010. [PMID: 35974743 PMCID: PMC9348890 DOI: 10.1107/s1600576722005994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
X-ray free-electron lasers (XFELs) have the ability to produce ultra-bright femtosecond X-ray pulses for coherent diffraction imaging of biomolecules. While the development of methods and algorithms for macromolecular crystallography is now mature, XFEL experiments involving aerosolized or solvated biomolecular samples offer new challenges in terms of both experimental design and data processing. Skopi is a simulation package that can generate single-hit diffraction images for reconstruction algorithms, multi-hit diffraction images of aggregated particles for training machine learning classifiers using labeled data, diffraction images of randomly distributed particles for fluctuation X-ray scattering algorithms, and diffraction images of reference and target particles for holographic reconstruction algorithms. Skopi is a resource to aid feasibility studies and advance the development of algorithms for noncrystalline experiments at XFEL facilities.
Collapse
Affiliation(s)
- Ariana Peck
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hsing-Yin Chang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Antoine Dujardin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Deeban Ramalingam
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Monarin Uervirojnangkoorn
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Zhaoyou Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Adrian Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
13
|
Ono J, Okada C, Nakai H. Hydroxide Ion Mechanism for Long-Range Proton Pumping in the Third Proton Transfer of Bacteriorhodopsin. Chemphyschem 2022; 23:e202200109. [PMID: 35818319 DOI: 10.1002/cphc.202200109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/21/2022] [Indexed: 11/10/2022]
Abstract
In bacteriorhodopsin, representative light-driven proton pump, five proton transfers yield vectorial active proton translocation, resulting in a proton gradient in microbes. Third proton transfer occurs from Asp96 to the Schiff base on the photocycle, which is expected to be a long-range proton transfer via the Grotthuss mechanism through internal water molecules. Here, large-scale quantum molecular dynamics simulations are performed for the third proton transfer, where all the atoms (~50000 atoms) are treated quantum-mechanically. The simulations demonstrate that two reaction paths exist along the water wire, namely, via hydronium and via hydroxide ions. The free energy analysis confirms that the path via hydroxide ions is considerably favorable and consistent with the observed lifetime of the transient water wire. Therefore, the proposed hydroxide ion mechanism, as in the first proton transfer, is responsible for the third long-range proton transfer.
Collapse
Affiliation(s)
- Junichi Ono
- Kyoto University: Kyoto Daigaku, Elements Strategy Initiative for Catalysts & Batteries (ESICB), 1-30 Goryo-Ohara, 615-8245, Nishi-ku, JAPAN
| | - Chika Okada
- Waseda University: Waseda Daigaku, Department of Chemistry and Biochemistry, 3-4-1 Okubo, 169-8555, Shinjuku, JAPAN
| | - Hiromi Nakai
- Waseda University Faculty of Science and Engineering: Waseda Daigaku Riko Gakujutsuin, Department of Chemistry and Biochemistry, 3-4-1 Okubo, 169-8555, Shinjuku, JAPAN
| |
Collapse
|
14
|
Doppler D, Rabbani MT, Letrun R, Cruz Villarreal J, Kim DH, Gandhi S, Egatz-Gomez A, Sonker M, Chen J, Koua FHM, Yang J, Youssef M, Mazalova V, Bajt S, Shelby ML, Coleman MA, Wiedorn MO, Knoska J, Schön S, Sato T, Hunter MS, Hosseinizadeh A, Kuptiz C, Nazari R, Alvarez RC, Karpos K, Zaare S, Dobson Z, Discianno E, Zhang S, Zook JD, Bielecki J, de Wijn R, Round AR, Vagovic P, Kloos M, Vakili M, Ketawala GK, Stander NE, Olson TL, Morin K, Mondal J, Nguyen J, Meza-Aguilar JD, Kodis G, Vaiana S, Martin-Garcia JM, Mariani V, Schwander P, Schmidt M, Messerschmidt M, Ourmazd A, Zatsepin N, Weierstall U, Bruce BD, Mancuso AP, Grant T, Barty A, Chapman HN, Frank M, Fromme R, Spence JCH, Botha S, Fromme P, Kirian RA, Ros A. Co-flow injection for serial crystallography at X-ray free-electron lasers. J Appl Crystallogr 2022; 55:1-13. [PMID: 35153640 PMCID: PMC8805165 DOI: 10.1107/s1600576721011079] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023] Open
Abstract
Serial femtosecond crystallography (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macro-molecules at room temperature. Despite the impressive exposition of structural details with this novel crystallographic approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to additional sheathing liquids present during the injection. Proposed and characterized here is the use of an immiscible inert oil phase to supplement the flow of sample in a hybrid microfluidic 3D-printed co-flow device. Co-flow generation is reported with sample and oil phases flowing in parallel, resulting in stable injection conditions for two different resin materials experimentally. A numerical model is presented that adequately predicts these flow-rate conditions. The co-flow generating devices reduce crystal clogging effects, have the potential to conserve protein crystal samples up to 95% and will allow degradation-free light-induced time-resolved SFX.
Collapse
Affiliation(s)
- Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mohammad T. Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Dai Hyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sahir Gandhi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Joe Chen
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Faisal H. M. Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Jayhow Yang
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mohamed Youssef
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Victoria Mazalova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Saša Bajt
- Hamburg Center for Ultrafast Imaging, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Megan L. Shelby
- Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Matt A. Coleman
- Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Silvan Schön
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Ahmad Hosseinizadeh
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christopher Kuptiz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Reza Nazari
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Roberto C. Alvarez
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Sahba Zaare
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Zachary Dobson
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erin Discianno
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Shangji Zhang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James D. Zook
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | | | - Adam R. Round
- European XFEL, Schenefeld, Germany
- School of Chemical and Physical Sciences, Keele University, Staffordshire, UK
| | - Patrik Vagovic
- European XFEL, Schenefeld, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | | | - Gihan K. Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Natasha E. Stander
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Tien L. Olson
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Katherine Morin
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jyotirmory Mondal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jonathan Nguyen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - José Domingo Meza-Aguilar
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- European XFEL, Schenefeld, Germany
| | - Gerdenis Kodis
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Sara Vaiana
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Jose M. Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry ‘Rocasolano’, CSIC, Madrid, Spain
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marc Messerschmidt
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Uwe Weierstall
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Barry D. Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Adrian P. Mancuso
- European XFEL, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Thomas Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Center for Data and Computing in Natural Science CDCS, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Matthias Frank
- Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - John C. H. Spence
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Richard A. Kirian
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
15
|
Nass Kovacs G. Potential of X-ray free-electron lasers for challenging targets in structure-based drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:101-110. [PMID: 34906320 DOI: 10.1016/j.ddtec.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
X-ray crystallography has provided the vast majority of three-dimensional macromolecular structures. Most of these are high-resolution structures that enable a detailed understanding of the underlying molecular mechanisms. The standardized workflows and robust infrastructure of synchrotron-based macromolecular crystallography (MX) offer the high throughput essential to cost-conscious investigations in structure- and fragment-based drug discovery. Nonetheless conventional MX is limited by fundamental bottlenecks, in particular X-ray radiation damage, which limits the amount of data extractable from a crystal. While this limit can in principle be circumvented by using larger crystals, crystals of the requisite size often cannot be obtained in sufficient quality. That is especially true for membrane protein crystals, which constitute the majority of current drug targets. This conventional paradigm for MX-suitable samples changed dramatically with the advent of serial femtosecond crystallography (SFX) based on the ultra-short and extremely intense X-ray pulses of X-ray Free-Electron Lasers. SFX provides high-resolution structures from tiny crystals and does so with uniquely low levels of radiation damage. This has yielded a number of novel structures for G-protein coupled receptors, one of the most relevant membrane protein superfamilies for drug discovery, as well as tantalizing advances in time-resolved crystallography that elucidate protein dynamics. This article attempts to map the potential of SFX for drug discovery, while providing the reader with an overview of the yet remaining technical challenges associated with such a novel technique as SFX.
Collapse
Affiliation(s)
- Gabriela Nass Kovacs
- Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany.
| |
Collapse
|
16
|
Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, Johnson PJM, Kekilli D, Knopp G, Martiel I, Ozerov D, Tolstikova A, Vera L, Weinert T, Yefanov O, Standfuss J, Reiche S, Milne CJ. Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser. IUCRJ 2021; 8:905-920. [PMID: 34804544 PMCID: PMC8562661 DOI: 10.1107/s2052252521008046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.
Collapse
Affiliation(s)
- Karol Nass
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Florian Dworkowski
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Daniel James
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | | - Demet Kekilli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Laura Vera
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Tobias Weinert
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Jörg Standfuss
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Sven Reiche
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | |
Collapse
|
17
|
Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol 2021; 192:114673. [PMID: 34252409 DOI: 10.1016/j.bcp.2021.114673] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.
Collapse
Affiliation(s)
| | - Jana Sandori
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Halle, Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
18
|
Shaye H, Stauch B, Gati C, Cherezov V. Molecular mechanisms of metabotropic GABA B receptor function. SCIENCE ADVANCES 2021; 7:7/22/eabg3362. [PMID: 34049877 PMCID: PMC8163086 DOI: 10.1126/sciadv.abg3362] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Metabotropic γ-aminobutyric acid G protein-coupled receptors (GABAB) represent one of the two main types of inhibitory neurotransmitter receptors in the brain. These receptors act both pre- and postsynaptically by modulating the transmission of neuronal signals and are involved in a range of neurological diseases, from alcohol addiction to epilepsy. A series of recent cryo-EM studies revealed critical details of the activation mechanism of GABAB Structures are now available for the receptor bound to ligands with different modes of action, including antagonists, agonists, and positive allosteric modulators, and captured in different conformational states from the inactive apo to the fully active state bound to a G protein. These discoveries provide comprehensive insights into the activation of the GABAB receptor, which not only broaden our understanding of its structure, pharmacology, and physiological effects but also will ultimately facilitate the discovery of new therapeutic drugs and neuromodulators.
Collapse
Affiliation(s)
- Hamidreza Shaye
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Stauch
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Cornelius Gati
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Heim B, Handrick R, Hartmann MD, Kiefer H. Refolding and characterization of two G protein-coupled receptors purified from E. coli inclusion bodies. PLoS One 2021; 16:e0247689. [PMID: 33626080 PMCID: PMC7904181 DOI: 10.1371/journal.pone.0247689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Aiming at streamlining GPCR production from E. coli inclusion bodies for structural analysis, we present a generic approach to assess and optimize refolding yield through thermostability analysis. Since commonly used hydrophobic dyes cannot be applied as probes for membrane protein unfolding, we adapted a technique based on reacting cysteins exposed upon thermal denaturation with fluorescent 7-Diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM). Successful expression, purification and refolding is shown for two G protein-coupled receptors (GPCR), the sphingosine-1-phosphate receptor S1P1, and the orphan receptor GPR3. Refolded receptors were subjected to lipidic cubic phase crystallization screening.
Collapse
Affiliation(s)
- Bastian Heim
- Institute of Applied Biotechnology, University of Applied Sciences, Biberach, Germany
- * E-mail:
| | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences, Biberach, Germany
| | | | - Hans Kiefer
- Institute of Applied Biotechnology, University of Applied Sciences, Biberach, Germany
| |
Collapse
|
20
|
Abdelsattar AS, Mansour Y, Aboul-Ela F. The Perturbed Free-Energy Landscape: Linking Ligand Binding to Biomolecular Folding. Chembiochem 2021; 22:1499-1516. [PMID: 33351206 DOI: 10.1002/cbic.202000695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Indexed: 12/24/2022]
Abstract
The effects of ligand binding on biomolecular conformation are crucial in drug design, enzyme mechanisms, the regulation of gene expression, and other biological processes. Descriptive models such as "lock and key", "induced fit", and "conformation selection" are common ways to interpret such interactions. Another historical model, linked equilibria, proposes that the free-energy landscape (FEL) is perturbed by the addition of ligand binding energy for the bound population of biomolecules. This principle leads to a unified, quantitative theory of ligand-induced conformation change, building upon the FEL concept. We call the map of binding free energy over biomolecular conformational space the "binding affinity landscape" (BAL). The perturbed FEL predicts/explains ligand-induced conformational changes conforming to all common descriptive models. We review recent experimental and computational studies that exemplify the perturbed FEL, with emphasis on RNA. This way of understanding ligand-induced conformation dynamics motivates new experimental and theoretical approaches to ligand design, structural biology and systems biology.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Youssef Mansour
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| | - Fareed Aboul-Ela
- Center for X-Ray Determination of the Structure of Matter, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, 12578, Giza, Egypt
| |
Collapse
|
21
|
Isoprenoid-chained lipid EROCOC 17+4: a new matrix for membrane protein crystallization and a crystal delivery medium in serial femtosecond crystallography. Sci Rep 2020; 10:19305. [PMID: 33168855 PMCID: PMC7652841 DOI: 10.1038/s41598-020-76277-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
In meso crystallization of membrane proteins relies on the use of lipids capable of forming a lipidic cubic phase (LCP). However, almost all previous crystallization trials have used monoacylglycerols, with 1-(cis-9-octadecanoyl)-rac-glycerol (MO) being the most widely used lipid. We now report that EROCOC17+4 mixed with 10% (w/w) cholesterol (Fig. 1) serves as a new matrix for crystallization and a crystal delivery medium in the serial femtosecond crystallography of Adenosine A2A receptor (A2AR). The structures of EROCOC17+4-matrix grown A2AR crystals were determined at 2.0 Å resolution by serial synchrotron rotation crystallography at a cryogenic temperature, and at 1.8 Å by LCP-serial femtosecond crystallography, using an X-ray free-electron laser at 4 and 20 °C sample temperatures, and are comparable to the structure of the MO-matrix grown A2AR crystal (PDB ID: 4EIY). Moreover, X-ray scattering measurements indicated that the EROCOC17+4/water system did not form the crystalline LC phase at least down to - 20 °C, in marked contrast to the equilibrium MO/water system, which transforms into the crystalline LC phase below about 17 °C. As the LC phase formation within the LCP-matrix causes difficulties in protein crystallography experiments in meso, this feature of EROCOC17+4 will expand the utility of the in meso method.
Collapse
|
22
|
Zhu L, Chen X, Abola EE, Jing L, Liu W. Serial Crystallography for Structure-Based Drug Discovery. Trends Pharmacol Sci 2020; 41:830-839. [PMID: 32950259 PMCID: PMC7572805 DOI: 10.1016/j.tips.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Rational drug discovery has greatly accelerated the development of safer and more efficacious therapeutics, assisted significantly by insights from experimentally determined 3D structures of ligands in complex with their targets. Serial crystallography (SX) with X-ray free-electron lasers has enabled structural determination using micrometer- or nanometer-size crystals. This technology, applied in the past decade to solve structures of notoriously difficult-to-study drug targets at room temperature, has now been adapted for use in synchrotron radiation facilities. Ultrashort time scales allow time-resolved characterization of dynamic structural changes and pave the road to study the molecular mechanisms by 'molecular movie.' This article summarizes the latest progress in SX technology and deliberates its demanding applications in future structure-based drug discovery.
Collapse
Affiliation(s)
- Lan Zhu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaoyu Chen
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Enrique E Abola
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Liang Jing
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
23
|
Lee MY, Geiger J, Ishchenko A, Han GW, Barty A, White TA, Gati C, Batyuk A, Hunter MS, Aquila A, Boutet S, Weierstall U, Cherezov V, Liu W. Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase. IUCRJ 2020; 7:976-984. [PMID: 33209312 PMCID: PMC7642783 DOI: 10.1107/s2052252520012701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 05/31/2023]
Abstract
Serial femtosecond crystallography (SFX) with X-ray free-electron lasers (XFELs) has proven highly successful for structure determination of challenging membrane proteins crystallized in lipidic cubic phase; however, like most techniques, it has limitations. Here we attempt to address some of these limitations related to the use of a vacuum chamber and the need for attenuation of the XFEL beam, in order to further improve the efficiency of this method. Using an optimized SFX experimental setup in a helium atmosphere, the room-temperature structure of the adenosine A2A receptor (A2AAR) at 2.0 Å resolution is determined and compared with previous A2AAR structures determined in vacuum and/or at cryogenic temperatures. Specifically, the capability of utilizing high XFEL beam transmissions is demonstrated, in conjunction with a high dynamic range detector, to collect high-resolution SFX data while reducing crystalline material consumption and shortening the collection time required for a complete dataset. The experimental setup presented herein can be applied to future SFX applications for protein nanocrystal samples to aid in structure-based discovery efforts of therapeutic targets that are difficult to crystallize.
Collapse
Affiliation(s)
- Ming-Yue Lee
- Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James Geiger
- Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Andrii Ishchenko
- Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, 1002 W. Childs Way, Los Angeles, CA 90089, USA
| | - Gye Won Han
- Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, 1002 W. Childs Way, Los Angeles, CA 90089, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Cornelius Gati
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Alexander Batyuk
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark S Hunter
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrew Aquila
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Uwe Weierstall
- Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Vadim Cherezov
- Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, 1002 W. Childs Way, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Liu
- Center for Applied Structural Discovery at the Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
24
|
Zhu L, Bu G, Jing L, Shi D, Lee MY, Gonen T, Liu W, Nannenga BL. Structure Determination from Lipidic Cubic Phase Embedded Microcrystals by MicroED. Structure 2020; 28:1149-1159.e4. [PMID: 32735770 PMCID: PMC7544639 DOI: 10.1016/j.str.2020.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Abstract
The lipidic cubic phase (LCP) technique has proved to facilitate the growth of high-quality crystals that are otherwise difficult to grow by other methods. However, the crystal size optimization process could be time and resource consuming, if it ever happens. Therefore, improved techniques for structure determination using these small crystals is an important strategy in diffraction technology development. Microcrystal electron diffraction (MicroED) is a technique that uses a cryo-transmission electron microscopy to collect electron diffraction data and determine high-resolution structures from very thin micro- and nanocrystals. In this work, we have used modified LCP and MicroED protocols to analyze crystals embedded in LCP converted by 2-methyl-2,4-pentanediol or lipase, including Proteinase K crystals grown in solution, cholesterol crystals, and human adenosine A2A receptor crystals grown in LCP. These results set the stage for the use of MicroED to analyze microcrystalline samples grown in LCP, especially for those highly challenging membrane protein targets.
Collapse
Affiliation(s)
- Lan Zhu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Guanhong Bu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Liang Jing
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Dan Shi
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ming-Yue Lee
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA.
| | - Brent L Nannenga
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
25
|
Shilova A, Lebrette H, Aurelius O, Nan J, Welin M, Kovacic R, Ghosh S, Safari C, Friel RJ, Milas M, Matej Z, Högbom M, Brändén G, Kloos M, Shoeman RL, Doak B, Ursby T, Håkansson M, Logan DT, Mueller U. Current status and future opportunities for serial crystallography at MAX IV Laboratory. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1095-1102. [PMID: 32876583 PMCID: PMC7467353 DOI: 10.1107/s1600577520008735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Over the last decade, serial crystallography, a method to collect complete diffraction datasets from a large number of microcrystals delivered and exposed to an X-ray beam in random orientations at room temperature, has been successfully implemented at X-ray free-electron lasers and synchrotron radiation facility beamlines. This development relies on a growing variety of sample presentation methods, including different fixed target supports, injection methods using gas-dynamic virtual-nozzle injectors and high-viscosity extrusion injectors, and acoustic levitation of droplets, each with unique requirements. In comparison with X-ray free-electron lasers, increased beam time availability makes synchrotron facilities very attractive to perform serial synchrotron X-ray crystallography (SSX) experiments. Within this work, the possibilities to perform SSX at BioMAX, the first macromolecular crystallography beamline at MAX IV Laboratory in Lund, Sweden, are described, together with case studies from the SSX user program: an implementation of a high-viscosity extrusion injector to perform room temperature serial crystallography at BioMAX using two solid supports - silicon nitride membranes (Silson, UK) and XtalTool (Jena Bioscience, Germany). Future perspectives for the dedicated serial crystallography beamline MicroMAX at MAX IV Laboratory, which will provide parallel and intense micrometre-sized X-ray beams, are discussed.
Collapse
Affiliation(s)
- Anastasya Shilova
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16 C, Stockholm 10691, Sweden
| | - Oskar Aurelius
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Jie Nan
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Martin Welin
- SARomics Biostructures, Medicon Village, Scheeletorget 1, Lund 22363, Sweden
| | - Rebeka Kovacic
- SARomics Biostructures, Medicon Village, Scheeletorget 1, Lund 22363, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Ross J. Friel
- School of Information Technology, Halmstad University, Halmstad 30118, Sweden
| | - Mirko Milas
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Zdenek Matej
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16 C, Stockholm 10691, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 40530, Sweden
| | - Marco Kloos
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Robert L. Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Bruce Doak
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Thomas Ursby
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
| | - Maria Håkansson
- SARomics Biostructures, Medicon Village, Scheeletorget 1, Lund 22363, Sweden
| | - Derek T. Logan
- SARomics Biostructures, Medicon Village, Scheeletorget 1, Lund 22363, Sweden
| | - Uwe Mueller
- MAX IV Laboratory, Lund University, Fotongatan 2, Lund 22484, Sweden
- Macromolecular Crystallography Group, Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| |
Collapse
|
26
|
Jastrzębski S, Szymczak M, Pocha A, Mordalski S, Tabor J, Bojarski AJ, Podlewska S. Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening. J Chem Inf Model 2020; 60:4246-4262. [DOI: 10.1021/acs.jcim.9b01202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stanisław Jastrzębski
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Maciej Szymczak
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Agnieszka Pocha
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Stefan Mordalski
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Jacek Tabor
- Faculty of Mathematics and Computer Science, Jagiellonian University, 6 Łojasiewicza Street, 30-348 Kraków, Poland
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
27
|
Membrane Protein Preparation for Serial Crystallography Using High-Viscosity Injectors: Rhodopsin as an Example. Methods Mol Biol 2020; 2127:321-338. [PMID: 32112331 DOI: 10.1007/978-1-0716-0373-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Membrane proteins are highly interesting targets due to their pivotal role in cell function and disease. They are inserted in cell membranes, are often intrinsically flexible, and can adopt several conformational states to carry out their function. Although most overall folds of membrane proteins are known, many questions remain about specific functionally relevant intramolecular rearrangements that require experimental structure determination. Here, using the example of rhodopsin, we describe how to prepare and analyze membrane protein crystals for serial crystallography at room temperature, a new technique allowing to merge diffraction data from thousands of injector-delivered crystals that are too tiny for classical single-crystal analysis even in cryogenic conditions. The application of serial crystallography for studying protein dynamics is mentioned.
Collapse
|
28
|
Zhou Q, Yang D, Wu M, Guo Y, Guo W, Zhong L, Cai X, Dai A, Jang W, Shakhnovich EI, Liu ZJ, Stevens RC, Lambert NA, Babu MM, Wang MW, Zhao S. Common activation mechanism of class A GPCRs. eLife 2019; 8:e50279. [PMID: 31855179 PMCID: PMC6954041 DOI: 10.7554/elife.50279] [Citation(s) in RCA: 329] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Class A G-protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology. Understanding receptor activation mechanism is critical for discovering novel therapeutics since about one-third of all marketed drugs target members of this family. GPCR activation is an allosteric process that couples agonist binding to G-protein recruitment, with the hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6 movement and the key residue level changes of this movement remain less well understood. Here, we report a framework to quantify conformational changes. By analyzing the conformational changes in 234 structures from 45 class A GPCRs, we discovered a common GPCR activation pathway comprising of 34 residue pairs and 35 residues. The pathway unifies previous findings into a common activation mechanism and strings together the scattered key motifs such as CWxP, DRY, Na+ pocket, NPxxY and PIF, thereby directly linking the bottom of ligand-binding pocket with G-protein coupling region. Site-directed mutagenesis experiments support this proposition and reveal that rational mutations of residues in this pathway can be used to obtain receptors that are constitutively active or inactive. The common activation pathway provides the mechanistic interpretation of constitutively activating, inactivating and disease mutations. As a module responsible for activation, the common pathway allows for decoupling of the evolution of the ligand binding site and G-protein-binding region. Such an architecture might have facilitated GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.
Collapse
Affiliation(s)
- Qingtong Zhou
- iHuman InstituteShanghaiTech UniversityShanghaiChina
| | - Dehua Yang
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Meng Wu
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yu Guo
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Wanjing Guo
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Li Zhong
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Xiaoqing Cai
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Antao Dai
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Wonjo Jang
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Zhi-Jie Liu
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Raymond C Stevens
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - M Madan Babu
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Ming-Wei Wang
- The CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- The National Center for Drug ScreeningShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- School of PharmacyFudan UniversityShanghaiChina
| | - Suwen Zhao
- iHuman InstituteShanghaiTech UniversityShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
29
|
Stauch B, Johansson LC, Cherezov V. Structural insights into melatonin receptors. FEBS J 2019; 287:1496-1510. [PMID: 31693784 DOI: 10.1111/febs.15128] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
The long-anticipated high-resolution structures of the human melatonin G protein-coupled receptors MT1 and MT2 , involved in establishing and maintaining circadian rhythm, were obtained in complex with two melatonin analogs and two approved anti-insomnia and antidepression drugs using X-ray free-electron laser serial femtosecond crystallography. The structures shed light on the overall conformation and unusual structural features of melatonin receptors, as well as their ligand binding sites and the melatonergic pharmacophore, thereby providing insights into receptor subtype selectivity. The structures revealed an occluded orthosteric ligand binding site with a membrane-buried channel for ligand entry in both receptors, and an additional putative ligand entry path in MT2 from the extracellular side. This unexpected ligand entry mode contributes to facilitating the high specificity with which melatonin receptors bind their cognate ligand and exclude structurally similar molecules such as serotonin, the biosynthetic precursor of melatonin. Finally, the MT2 structure allowed accurate mapping of type 2 diabetes-related single-nucleotide polymorphisms, where a clustering of residues in helices I and II on the protein-membrane interface was observed which could potentially influence receptor oligomerization. The role of receptor oligomerization is further discussed in light of the differential interaction of MT1 and MT2 with GPR50, a regulatory melatonin coreceptor. The melatonin receptor structures will facilitate design of selective tool compounds to further dissect the specific physiological function of each receptor subtype as well as provide a structural basis for next-generation sleeping aids and other drugs targeting these receptors with higher specificity and fewer side effects.
Collapse
Affiliation(s)
- Benjamin Stauch
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Linda C Johansson
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Park SH, Park J, Lee SJ, Yang WS, Park S, Kim K, Park ZY, Song HK. A host dTMP-bound structure of T4 phage dCMP hydroxymethylase mutant using an X-ray free electron laser. Sci Rep 2019; 9:16316. [PMID: 31705139 PMCID: PMC6841964 DOI: 10.1038/s41598-019-52825-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023] Open
Abstract
The hydroxymethylation of cytosine bases plays a vital role in the phage DNA protection system inside the host Escherichia coli. This modification is known to be catalyzed by the dCMP hydroxymethylase from bacteriophage T4 (T4dCH); structural information on the complexes with the substrate, dCMP and the co-factor, tetrahydrofolate is currently available. However, the detailed mechanism has not been understood clearly owing to a lack of structure in the complex with a reaction intermediate. We have applied the X-ray free electron laser (XFEL) technique to determine a high-resolution structure of a T4dCH D179N active site mutant. The XFEL structure was determined at room temperature and exhibited several unique features in comparison with previously determined structures. Unexpectedly, we observed a bulky electron density at the active site of the mutant that originated from the physiological host (i.e., E. coli). Mass-spectrometric analysis and a cautious interpretation of an electron density map indicated that it was a dTMP molecule. The bound dTMP mimicked the methylene intermediate from dCMP to 5′-hydroxymethy-dCMP, and a critical water molecule for the final hydroxylation was convincingly identified. Therefore, this study provides information that contributes to the understanding of hydroxymethylation.
Collapse
Affiliation(s)
- Si Hoon Park
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jaehyun Park
- PAL-XFEL, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Jae Lee
- PAL-XFEL, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, South Korea
| | - Woo Seok Yang
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Sehan Park
- PAL-XFEL, Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, South Korea
| | - Kyungdo Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
31
|
Ishchenko A, Stauch B, Han GW, Batyuk A, Shiriaeva A, Li C, Zatsepin N, Weierstall U, Liu W, Nango E, Nakane T, Tanaka R, Tono K, Joti Y, Iwata S, Moraes I, Gati C, Cherezov V. Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCRJ 2019; 6:1106-1119. [PMID: 31709066 PMCID: PMC6830214 DOI: 10.1107/s2052252519013137] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Rational structure-based drug design (SBDD) relies on the availability of a large number of co-crystal structures to map the ligand-binding pocket of the target protein and use this information for lead-compound optimization via an iterative process. While SBDD has proven successful for many drug-discovery projects, its application to G protein-coupled receptors (GPCRs) has been limited owing to extreme difficulties with their crystallization. Here, a method is presented for the rapid determination of multiple co-crystal structures for a target GPCR in complex with various ligands, taking advantage of the serial femtosecond crystallography approach, which obviates the need for large crystals and requires only submilligram quantities of purified protein. The method was applied to the human β2-adrenergic receptor, resulting in eight room-temperature co-crystal structures with six different ligands, including previously unreported structures with carvedilol and propranolol. The generality of the proposed method was tested with three other receptors. This approach has the potential to enable SBDD for GPCRs and other difficult-to-crystallize membrane proteins.
Collapse
Affiliation(s)
- Andrii Ishchenko
- Bridge Institute, Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Benjamin Stauch
- Bridge Institute, Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Gye Won Han
- Bridge Institute, Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Anna Shiriaeva
- Bridge Institute, Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chufeng Li
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Nadia Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Isabel Moraes
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, England
| | - Cornelius Gati
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
- Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Vadim Cherezov
- Bridge Institute, Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
32
|
Luginina A, Gusach A, Marin E, Mishin A, Brouillette R, Popov P, Shiriaeva A, Besserer-Offroy É, Longpré JM, Lyapina E, Ishchenko A, Patel N, Polovinkin V, Safronova N, Bogorodskiy A, Edelweiss E, Hu H, Weierstall U, Liu W, Batyuk A, Gordeliy V, Han GW, Sarret P, Katritch V, Borshchevskiy V, Cherezov V. Structure-based mechanism of cysteinyl leukotriene receptor inhibition by antiasthmatic drugs. SCIENCE ADVANCES 2019; 5:eaax2518. [PMID: 31633023 PMCID: PMC6785256 DOI: 10.1126/sciadv.aax2518] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/18/2019] [Indexed: 05/30/2023]
Abstract
The G protein-coupled cysteinyl leukotriene receptor CysLT1R mediates inflammatory processes and plays a major role in numerous disorders, including asthma, allergic rhinitis, cardiovascular disease, and cancer. Selective CysLT1R antagonists are widely prescribed as antiasthmatic drugs; however, these drugs demonstrate low effectiveness in some patients and exhibit a variety of side effects. To gain deeper understanding into the functional mechanisms of CysLTRs, we determined the crystal structures of CysLT1R bound to two chemically distinct antagonists, zafirlukast and pranlukast. The structures reveal unique ligand-binding modes and signaling mechanisms, including lateral ligand access to the orthosteric pocket between transmembrane helices TM4 and TM5, an atypical pattern of microswitches, and a distinct four-residue-coordinated sodium site. These results provide important insights and structural templates for rational discovery of safer and more effective drugs.
Collapse
Affiliation(s)
- Aleksandra Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Anastasiia Gusach
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Rebecca Brouillette
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Petr Popov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Anna Shiriaeva
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Élie Besserer-Offroy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Elizaveta Lyapina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Andrii Ishchenko
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Nilkanth Patel
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Vitaly Polovinkin
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble 38000, France
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Nadezhda Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Evelina Edelweiss
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble 38000, France
| | - Hao Hu
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble 38000, France
- Juelich Center for Structural Biology, Research Center Juelich, Juelich, Germany
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Gye Won Han
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Quebec J1H 5N4, Canada
| | - Vsevolod Katritch
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Research Centre Juelich, Juelich, Germany
- Juelich Center for Structural Biology, Research Center Juelich, Juelich, Germany
| | - Vadim Cherezov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
33
|
Shelby ML, He W, Dang AT, Kuhl TL, Coleman MA. Cell-Free Co-Translational Approaches for Producing Mammalian Receptors: Expanding the Cell-Free Expression Toolbox Using Nanolipoproteins. Front Pharmacol 2019; 10:744. [PMID: 31333463 PMCID: PMC6616253 DOI: 10.3389/fphar.2019.00744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/28/2022] Open
Abstract
Membranes proteins make up more than 60% of current drug targets and account for approximately 30% or more of the cellular proteome. Access to this important class of proteins has been difficult due to their inherent insolubility and tendency to aggregate in aqueous solutions. Understanding membrane protein structure and function demands novel means of membrane protein production that preserve both their native conformational state as well as function. Over the last decade, cell-free expression systems have emerged as an important complement to cell-based expression of membrane proteins due to their simple and customizable experimental parameters. One approach to overcome the solubility and stability limitations of purified membrane proteins is to support them in stable, native-like states within nanolipoprotein particles (NLPs), aka nanodiscs. This has become common practice to facilitate biochemical and biophysical characterization of proteins of interest. NLP technology can be easily coupled with cell-free systems to achieve functional membrane protein production for this purpose. Our approach involves utilizing cell-free expression systems in the presence of NLPs or using co-translation techniques to perform one-pot expression and self-assembly of membrane protein/NLP complexes. We describe how cell-free reactions can be modified to render control over nanoparticle size and monodispersity in support of membrane protein production. These modifications have been exploited to facilitate co-expression of full-length functional membrane proteins such as G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In particular, we summarize the state of the art in NLP-assisted cell-free coexpression of these important classes of membrane proteins as well as evaluate the advances in and prospects for this technology that will drive drug discovery against these targets. We conclude with a prospective on the use of NLPs to produce as well as deliver functional mammalian membrane-bound proteins for a range of applications.
Collapse
Affiliation(s)
- Megan L Shelby
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Amanda T Dang
- University of California at Davis, Davis, CA, United States
| | - Tonya L Kuhl
- University of California at Davis, Davis, CA, United States
| | - Matthew A Coleman
- Lawrence Livermore National Laboratory, Livermore, CA, United States.,University of California at Davis, Davis, CA, United States
| |
Collapse
|
34
|
Echelmeier A, Sonker M, Ros A. Microfluidic sample delivery for serial crystallography using XFELs. Anal Bioanal Chem 2019; 411:6535-6547. [PMID: 31250066 DOI: 10.1007/s00216-019-01977-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022]
Abstract
Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) is an emerging field for structural biology. One of its major impacts lies in the ability to reveal the structure of complex proteins previously inaccessible with synchrotron-based crystallography techniques and allowing time-resolved studies from femtoseconds to seconds. The nature of this serial technique requires new approaches for crystallization, data analysis, and sample delivery. With continued advancements in microfabrication techniques, various developments have been reported in the past decade for innovative and efficient microfluidic sample delivery for crystallography experiments using XFELs. This article summarizes the recent developments in microfluidic sample delivery with liquid injection and fixed-target approaches, which allow exciting new research with XFELs. Graphical abstract.
Collapse
Affiliation(s)
- Austin Echelmeier
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Box 875001, Tempe, AZ, 85287-7401, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, AZ, 85287-1604, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Box 875001, Tempe, AZ, 85287-7401, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Box 871604, Tempe, AZ, 85287-1604, USA. .,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Box 875001, Tempe, AZ, 85287-7401, USA.
| |
Collapse
|
35
|
Abstract
X-ray free-electron lasers provide femtosecond-duration pulses of hard X-rays with a peak brightness approximately one billion times greater than is available at synchrotron radiation facilities. One motivation for the development of such X-ray sources was the proposal to obtain structures of macromolecules, macromolecular complexes, and virus particles, without the need for crystallization, through diffraction measurements of single noncrystalline objects. Initial explorations of this idea and of outrunning radiation damage with femtosecond pulses led to the development of serial crystallography and the ability to obtain high-resolution structures of small crystals without the need for cryogenic cooling. This technique allows the understanding of conformational dynamics and enzymatics and the resolution of intermediate states in reactions over timescales of 100 fs to minutes. The promise of more photons per atom recorded in a diffraction pattern than electrons per atom contributing to an electron micrograph may enable diffraction measurements of single molecules, although challenges remain.
Collapse
Affiliation(s)
- Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, 22761 Hamburg, Germany
- Centre for Ultrafast Imaging, University of Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
36
|
Mishin A, Gusach A, Luginina A, Marin E, Borshchevskiy V, Cherezov V. An outlook on using serial femtosecond crystallography in drug discovery. Expert Opin Drug Discov 2019; 14:933-945. [PMID: 31184514 DOI: 10.1080/17460441.2019.1626822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: X-ray crystallography has made important contributions to modern drug development but its application to many important drug targets has been extremely challenging. The recent emergence of X-ray free electron lasers (XFELs) and advancements in serial femtosecond crystallography (SFX) have offered new opportunities to overcome limitations of traditional crystallography to accelerate the structure-based drug discovery (SBDD) process. Areas covered: In this review, the authors describe the general principles of X-ray generation and the main properties of XFEL beams, outline details of SFX data collection and processing, and summarize the progress in the development of associated instrumentation for sample delivery and X-ray detection. An overview of the SFX applications to various important drug targets such as membrane proteins is also provided. Expert opinion: While SFX has already made clear advancements toward the understanding of the structure and dynamics of several major drug targets, its robust application in SBDD still needs further developments of new high-throughput techniques for sample production, automation of crystal delivery and data collection, as well as for processing and storage of large amounts of data. The expansion of the available XFEL beamtime is a key to the success of SFX in SBDD.
Collapse
Affiliation(s)
- Alexey Mishin
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Anastasiia Gusach
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Aleksandra Luginina
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Egor Marin
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Valentin Borshchevskiy
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia
| | - Vadim Cherezov
- a Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology , Dolgoprudny , Russia.,b Bridge Institute, Departments of Chemistry and Biological Sciences, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
37
|
Structural basis for ion selectivity and engineering in channelrhodopsins. Curr Opin Struct Biol 2019; 57:176-184. [PMID: 31174050 DOI: 10.1016/j.sbi.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/03/2023]
Abstract
Channelrhodopsins have become an integral part of modern neuroscience approaches due to their ability to control neuronal activity in targeted cell populations. The recent determination of several channelrhodopsin X-ray structures now enables us to study their function with unprecedented molecular precision. We will discuss how these insights can guide the engineering of the ion conducting pathway to increase its selectivity for Cl-, Ca2+, and K+ ions and improve the overall conductance. Engineering such channelrhodopsins would further increase their utility in neuroscience research and beyond by controlling a wider range of physiological events. To thoroughly address this issue, we compare channelrhodopsin structures with structural features of voltage and ligand-gated K+, Cl- and Ca2+ channels and discuss how these could be implemented in channelrhodopsins.
Collapse
|
38
|
Stauch B, Johansson LC, McCorvy JD, Patel N, Han GW, Huang XP, Gati C, Batyuk A, Slocum ST, Ishchenko A, Brehm W, White TA, Michaelian N, Madsen C, Zhu L, Grant TD, Grandner JM, Shiriaeva A, Olsen RHJ, Tribo AR, Yous S, Stevens RC, Weierstall U, Katritch V, Roth BL, Liu W, Cherezov V. Structural basis of ligand recognition at the human MT 1 melatonin receptor. Nature 2019; 569:284-288. [PMID: 31019306 PMCID: PMC6696938 DOI: 10.1038/s41586-019-1141-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 03/25/2019] [Indexed: 11/08/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.
Collapse
MESH Headings
- Acetamides/chemistry
- Acetamides/metabolism
- Amino Acid Sequence
- Antidepressive Agents/chemistry
- Antidepressive Agents/metabolism
- Crystallization
- Electrons
- Humans
- Indenes/chemistry
- Indenes/metabolism
- Lasers
- Ligands
- Melatonin/analogs & derivatives
- Melatonin/chemistry
- Models, Molecular
- Molecular Docking Simulation
- Mutation
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Serotonin, 5-HT2C/chemistry
- Structure-Activity Relationship
- Substrate Specificity
Collapse
Affiliation(s)
- Benjamin Stauch
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Linda C Johansson
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nilkanth Patel
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Gye Won Han
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cornelius Gati
- SLAC National Accelerator Laboratory, Bioscience Division, Menlo Park, CA, USA
- Stanford University, Department of Structural Biology, Stanford, CA, USA
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrii Ishchenko
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - Thomas A White
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - Nairie Michaelian
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Caleb Madsen
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Lan Zhu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Thomas D Grant
- Hauptman-Woodward Institute, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessica M Grandner
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra R Tribo
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saïd Yous
- Univ Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Lille, France
| | - Raymond C Stevens
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Vsevolod Katritch
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wei Liu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Vadim Cherezov
- Bridge Institute,USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Wierman JL, Paré-Labrosse O, Sarracini A, Besaw JE, Cook MJ, Oghbaey S, Daoud H, Mehrabi P, Kriksunov I, Kuo A, Schuller DJ, Smith S, Ernst OP, Szebenyi DME, Gruner SM, Miller RJD, Finke AD. Fixed-target serial oscillation crystallography at room temperature. IUCRJ 2019; 6:305-316. [PMID: 30867928 PMCID: PMC6400179 DOI: 10.1107/s2052252519001453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/25/2019] [Indexed: 05/18/2023]
Abstract
A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1-5° of data per crystal at room temperature with fast (10° s-1) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement - up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.
Collapse
Affiliation(s)
| | - Olivier Paré-Labrosse
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Antoine Sarracini
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Jessica E. Besaw
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | | | - Saeed Oghbaey
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Hazem Daoud
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
| | - Pedram Mehrabi
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | | - Anling Kuo
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Scott Smith
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
| | - Oliver P. Ernst
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Sol M. Gruner
- MacCHESS, Cornell University, Ithaca, NY 14853, USA
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON Canada
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | | |
Collapse
|
40
|
Apel AK, Cheng RK, Tautermann CS, Brauchle M, Huang CY, Pautsch A, Hennig M, Nar H, Schnapp G. Crystal Structure of CC Chemokine Receptor 2A in Complex with an Orthosteric Antagonist Provides Insights for the Design of Selective Antagonists. Structure 2019; 27:427-438.e5. [DOI: 10.1016/j.str.2018.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 12/23/2022]
|
41
|
Lan Z, Lee MY, Chun E, Liu B, Liu W. Overview of Biochemical Assays in Lipidic Cubic Phase. Trends Biochem Sci 2018; 44:295-299. [PMID: 30243833 DOI: 10.1016/j.tibs.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/25/2018] [Accepted: 08/22/2018] [Indexed: 11/15/2022]
Abstract
The development of novel biochemical methods to efficiently characterize membrane protein (MP) properties in lipidic cubic phase (LCP) is important for studying complicated MPs and their multimeric complexes. Here, we summarize recent LCP-related assays and provide an outlook on their applications in structure and function studies of MPs.
Collapse
Affiliation(s)
- Zhu Lan
- School of Molecular Sciences, and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Ming-Yue Lee
- School of Molecular Sciences, and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Eugene Chun
- School of Molecular Sciences, and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Bin Liu
- School of Molecular Sciences, and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Wei Liu
- School of Molecular Sciences, and Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
42
|
Carmona-Rosas G, Alcántara-Hernández R, Hernández-Espinosa DA. The role of β-arrestins in G protein-coupled receptor heterologous desensitization: A brief story. Methods Cell Biol 2018; 149:195-204. [PMID: 30616820 DOI: 10.1016/bs.mcb.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that have an important impact in a myriad of cellular functions. Posttranslational modifications on GPCRs are a key processes that allow these proteins to recruit other intracellular molecules. Among these modifications, phosphorylation is the most important way of desensitization of these receptors. Several research groups have described two different desensitization mechanisms: heterologous and homologous desensitization. The first one involves the phosphorylation of the receptors by protein kinases, such as PKC, following the desensitization and internalization of the receptor, while the second one involves the phosphorylation of the receptors by GRKs, allowing for the receptor to recruit β-arrestins to be desensitized and internalized. Interestingly, a few number of studies have described the participation of β-arrestins during the heterologous desensitization process. Hence, the aim of this review is to briefly explore the role that β-arrestins play during the heterologous desensitization of several GPCRs.
Collapse
|
43
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|