1
|
Amalla BLD, Kumeta H, Nagao S, Ishimori K. Dynamic properties of isotropic DMPC/DHPC bicelles: Insights from solution NMR and MD simulations. Biochem Biophys Res Commun 2024; 745:151199. [PMID: 39721313 DOI: 10.1016/j.bbrc.2024.151199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Bicelles, an artificial disk-shaped lipid bilayer, are commonly used for the structural and functional characterization of membrane-bound proteins in an environment similar to that in intracellular membranes. Because the dynamics of the lipids that constitute bicelles exert a significant impact on the structure and function of the inserted proteins, we investigated the mobility of lipid molecules in bicelles composed of DMPC (14:0 PC) and DHPC (06:0 PC) using solution NMR and MD calculations. 13C R1 relaxation experiments for the acyl groups demonstrated that increasing bicelle sizes limit the rotational diffusion of acyl chain H-C bonds in DMPC. Such a limited local motion around H-C bonds was also predicted in the MD simulations of DMPC bilayers with decreased area per lipid, indicating that the limited mobility of the hydrophobic core in larger bicelles is due to the tighter lipid packing. The downfield shifts of the 13C NMR signals of the acyl groups supported the restricted mobility, corresponding to the conformational changes of the acyl chains from the flexible gauche rotamers to the less mobile trans rotamers with increase in bicelle size. These data suggest that larger bicelles pack lipids more densely, leading to increased trans conformation of the acyl chains and, consequently, less lipid motility, which can dynamically modulate the structure and function of membrane-bound proteins inserted into the bicelles.
Collapse
Affiliation(s)
- Bon Leif Dominguez Amalla
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13, W8, Sapporo, 060-8628, Japan
| | - Hiroyuki Kumeta
- Frontier Research Center for Advanced Material and Life Science, Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21, W11, Sapporo, 001-0021, Japan
| | - Satoshi Nagao
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13, W8, Sapporo, 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, N8, W5, Sapporo, 060-0810, Japan.
| |
Collapse
|
2
|
Bachler ZT, Brown MF. Hidden water's influence on rhodopsin activation. Biophys J 2024; 123:4167-4179. [PMID: 39550612 DOI: 10.1016/j.bpj.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
Structural biology relies on several powerful techniques, but these tend to be limited in their ability to characterize protein fluctuations and mobility. Overreliance on structural approaches can lead to omission of critical information regarding biological function. Currently there is a need for complementary biophysical methods to visualize these mobile aspects of protein function. Here, we review hydrostatic and osmotic pressure-based techniques to address this shortcoming for the paradigm of rhodopsin. Hydrostatic and osmotic pressure data contribute important examples, which are interpreted in terms of an energy landscape for hydration-mediated protein dynamics. We find that perturbations of rhodopsin conformational equilibria by force-based methods are not unrelated phenomena; rather they probe various hydration states involving functional proton reactions. Hydrostatic pressure acts on small numbers of strongly interacting structural or solvent-shell water molecules with relatively high energies, while osmotic pressure acts on large numbers of weakly interacting bulk-like water molecules with low energies. Local solvent fluctuations due to the hydration shell and collective water interactions affect hydrogen-bonded networks and domain motions that are explained by a hierarchical energy landscape model for protein dynamics.
Collapse
Affiliation(s)
- Zachary T Bachler
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
3
|
Vergoz D, Schaumann A, Schmitz I, van Agthoven M, Martí S, Vila J, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Direct analysis by ultra-high-resolution mass spectrometry of lipid A and phospholipids from Acinetobacter baumannii cells. Biochimie 2024; 227:3-11. [PMID: 39326489 DOI: 10.1016/j.biochi.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Acinetobacter baumannii, classified as priority number one by the World Health Organization (WHO), is an opportunistic pathogen responsible for infection and is able to develop antibiotic resistance easily. Membranes are bacteria's first line of defense against external aggression, such as antibiotics. A chemical modification of a lipid family or a change in lipid composition can lead to resistance to antibiotics. In this work, we analyzed different A. baumannii strains from various environments with different antibiotic resistance profiles, using matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FT-ICR MS). This study shows that it is possible to describe the main lipidome (phospholipids and lipid A) from the simple preparation of lysed cells, and that despite the complexity of the mixture. This ultra-high resolution mass spectrometry technique enables the separation of isobaric ion, to report a new class of lipids. Given its performance, this technique can be used to quickly and reliably characterize the lipidome of clinical strains from different environments.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France.
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France
| | - Isabelle Schmitz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Maria van Agthoven
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Sara Martí
- Department of Microbiology, Hospital Universitari de Bellvitge, CIBERes, IDIBELL, Barcelona, Spain
| | - Jordi Vila
- Servei de Microbiologia, Centre de Diagnòstic Biomèdic, Hospital Clínic, ISGLOBAL, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France
| | - Corinne Loutelier-Bourhis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Stéphane Alexandre
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., 76000, Rouen, France
| |
Collapse
|
4
|
Scott HL, Burns-Casamayor V, Dixson AC, Standaert RF, Stanley CB, Stingaciu LR, Carrillo JMY, Sumpter BG, Katsaras J, Qiang W, Heberle FA, Mertz B, Ashkar R, Barrera FN. Neutron spin echo shows pHLIP is capable of retarding membrane thickness fluctuations. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184349. [PMID: 38815687 PMCID: PMC11365786 DOI: 10.1016/j.bbamem.2024.184349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.
Collapse
Affiliation(s)
- Haden L Scott
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America
| | - Violeta Burns-Casamayor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States of America
| | - Andrew C Dixson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America
| | - Robert F Standaert
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States of America; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Christopher B Stanley
- Shull Wollan Center - a Joint Institute for Neutron Sciences, Oak Ridge, TN 37831, United States of America; Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Laura-Roxana Stingaciu
- Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; JCNS1, FZJ outstation at SNS, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Jan-Michael Y Carrillo
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, United States of America
| | - Bobby G Sumpter
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, United States of America
| | - John Katsaras
- Shull Wollan Center - a Joint Institute for Neutron Sciences, Oak Ridge, TN 37831, United States of America; Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Wei Qiang
- Department of Chemistry, the State University of New York, Binghamton, NY 13902, United States of America
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37920, United States of America
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States of America; West Virginia University Cancer Institute, Morgantown, WV 26506, United States of America
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, United States of America; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, United States of America.
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America.
| |
Collapse
|
5
|
Vergoz D, Schaumann A, Schmitz I, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Lipidome of Acinetobacter baumannii antibiotic persister cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159539. [PMID: 39067686 DOI: 10.1016/j.bbalip.2024.159539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Persister cells constitute a bacterial subpopulation able to survive to high concentrations of antibiotics. This phenotype is temporary and reversible, and thus could be involved in the recurrence of infections and emergence of antibiotic resistance. To better understand how persister cells survive to such high antibiotic concentration, we examined changes in their lipid composition. We thus compared the lipidome of Acinetobacter baumannii ATCC 19606T persister cells formed under ciprofloxacin treatment with the lipidome of control cells grown without antibiotic. Using matrix assisted laser desorption ionisation-Fourier transform ion cyclotron resonance mass spectrometry, we observed a higher abundance of short chains and secondary chains without hydroxylation for lipid A in persister cells. Using liquid chromatography-tandem mass spectrometry, we found that persister cells produced particular phosphatidylglycerols, as LPAGPE and PAGPE, but also lipids with particular acyl chains containing additional hydroxyl group or uncommon di-unsaturation on C18 and C16 acyl chains. In order to determine the impact of these multiple lipidome modifications on membrane fluidity, fluorescence anisotropy assays were performed. They showed an increase of rigidity for the membrane of persister cells, inducing likely a decrease membrane permeability to protect cells during dormancy. Finally, we highlighted that A. baumannii persister cells also produced particular wax esters, composed of two fatty acids and a fatty diol. These uncommon storage lipids are key metabolites allowing a rapid bacterial regrow when antibiotic pressure disappears. These overall changes in persister lipidome may constitute new therapeutic targets to combat these particular dormant cells.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Isabelle Schmitz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Corinne Loutelier-Bourhis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Stéphane Alexandre
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France.
| |
Collapse
|
6
|
Ghosh A, Spakowitz AJ. Local changes in protein filament properties drive large-scale membrane transformations involved in endosome tethering and fusion. SOFT MATTER 2024; 20:6332-6342. [PMID: 38881306 DOI: 10.1039/d4sm00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Large-scale cellular transformations are triggered by subtle physical and structural changes to individual biomacromolecular and membrane components. A prototypical example of such an event is the orchestrated fusion of membranes within an endosome that enables transport of cargo and processing of biochemical moieties. In this work, we demonstrate how protein filaments on the endosomal membrane surface can leverage a rigid-to-flexible transformation to elicit a large-scale change in membrane flexibility to enable membrane fusion. We develop a polymer field-theoretic model that captures molecular alignment arising from nematic interactions with varying surface density and fraction of flexible filaments, which are biologically controlled within the endosomal membrane. We then predict the collective elasticity of the filament brush in response to changes in the filament alignment, predicting a greater than 20-fold increase of the effective membrane elasticity over the bare membrane elasticity that is triggered by filament alignment. These results show that the endosome can modulate the filament properties to orchestrate membrane fluidization that facilitates vesicle fusion, providing an example of how active processes that modulate local molecular properties can result in large-scale transformations that are essential to cellular survival.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, USA
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, USA
- Biophysics Program, Stanford University, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Huster D, Maiti S, Herrmann A. Phospholipid Membranes as Chemically and Functionally Tunable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312898. [PMID: 38456771 DOI: 10.1002/adma.202312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/12/2024] [Indexed: 03/09/2024]
Abstract
The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.
Collapse
Affiliation(s)
- Daniel Huster
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, D-04107, Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Andreas Herrmann
- Freie Universität Berlin, Department Chemistry and Biochemistry, SupraFAB, Altensteinstr. 23a, D-14195, Berlin, Germany
| |
Collapse
|
8
|
Struts AV, Barmasov AV, Fried SDE, Hewage KSK, Perera SMDC, Brown MF. Osmotic stress studies of G-protein-coupled receptor rhodopsin activation. Biophys Chem 2024; 304:107112. [PMID: 37952496 DOI: 10.1016/j.bpc.2023.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
We summarize and critically review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Although small amounts of structural water are present in these receptors, the effect of bulk water on their function remains uncertain. Studies of the influences of osmotic stress on the GPCR archetype rhodopsin have given insights into the functional role of water in receptor activation. Experimental work has discovered that osmolytes shift the metarhodopsin equilibrium after photoactivation, either to the active or inactive conformations according to their molar mass. At least 80 water molecules are found to enter rhodopsin in the transition to the photoreceptor active state. We infer that this movement of water is both necessary and sufficient for receptor activation. If the water influx is prevented, e.g., by large polymer osmolytes or by dehydration, then the receptor functional transition is back shifted. These findings imply a new paradigm in which rhodopsin becomes solvent swollen in the activation mechanism. Water thus acts as an allosteric modulator of function for rhodopsin-like receptors in lipid membranes.
Collapse
Affiliation(s)
- Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Laboratory of Biomolecular NMR, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Alexander V Barmasov
- Department of Biophysics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia; Department of Physics, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Steven D E Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kushani S K Hewage
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
9
|
Mishra S, Rout M, Singh MK, Dehury B, Pati S. Illuminating the structural basis of human neurokinin 1 receptor (NK1R) antagonism through classical all-atoms molecular dynamics simulations. J Cell Biochem 2023; 124:1848-1869. [PMID: 37942587 DOI: 10.1002/jcb.30493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Advances in structural biology have bestowed insights into the pleiotropic effects of neurokinin 1 receptors (NK1R) in diverse patho-physiological processes, thereby highlighting the potential therapeutic value of antagonists directed against NK1R. Herein, we investigate the mode of antagonist recognition to discern the obscure atomic facets germane for the function and molecular determinants of NK1R. To commence discernment of potent antagonists and the conformational changes in NK1R, induced upon antagonist binding, state-of-the-art classical all-atoms molecular dynamics (MD) simulations in lipid mimetic bilayers have been utilized. MD simulations of structural ensembles reveals the involvement of TM5 and TM6 in tight anchoring of antagonists through a network of interhelical hydrogen-bonds, while, the extracellular loop 2 (ECL2) governs the overall size and nature of the pocket, thereby modulating NK1R. Consistent comparison between experiments and MD simulation results discerns the predominant role of TM3, TM4, and TM6 in lipid-NK1R interaction. Correlation between hydrophobic index and helicity of TM domains elucidates their importance in maintaining the structural stability in addition to regulating NK1R antagonism. Taken together, we anticipate that our computational study marks a comprehensive structural basis of NK1R antagonism in lipid bilayers, which may facilitate designing of new therapeutics against associated diseases targeting human neurokinin receptors.
Collapse
Affiliation(s)
- Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| |
Collapse
|
10
|
Zhang G, Odenkirk MT, Janczak CM, Lee R, Richardson K, Wang Z, Aspinwall CA, Marty MT. Identifying Membrane Protein-Lipid Interactions with Lipidomic Lipid Exchange-Mass Spectrometry. J Am Chem Soc 2023; 145:20859-20867. [PMID: 37700579 PMCID: PMC10540470 DOI: 10.1021/jacs.3c05883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane proteins on a lipidomic scale. We first mix membrane protein nanodiscs with empty nanodiscs that have no embedded membrane proteins. After allowing lipids to passively exchange between the two populations, we separate the two types of nanodiscs and perform lipidomic analysis on each with liquid chromatography and MS. Enrichment of lipids in the membrane protein nanodiscs reveals the affinity of individual lipids for binding the target membrane protein. We apply this approach to study three membrane proteins. With the Escherichia coli ammonium transporter AmtB and aquaporin AqpZ in nanodiscs with E. coli polar lipid extracts, we detected binding of cardiolipin and phosphatidyl-glycerol lipids to the proteins. With the acetylcholine receptor in nanodiscs with brain polar lipid extracts, we discovered a complex set of lipid interactions that depended on the head group and tail composition. Overall, lipidomic LX-MS provides a detailed understanding of the lipid-binding affinity and thermodynamics for membrane proteins in complex bilayers and provides a unique perspective on the chemical environment surrounding membrane proteins.
Collapse
Affiliation(s)
- Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Melanie T. Odenkirk
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Ray Lee
- Scintillation Nanotechnologies, Inc., Tucson, AZ, 85721, USA
| | | | - Zhihan Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Craig A. Aspinwall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
11
|
Fan Q, Li M, Zhao W, Zhang K, Li M, Li W. Hyper α2,6-Sialylation Promotes CD4 + T-Cell Activation and Induces the Occurrence of Ulcerative Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302607. [PMID: 37424034 PMCID: PMC10502867 DOI: 10.1002/advs.202302607] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Indexed: 07/11/2023]
Abstract
α2,6-sialylation, catalyzed by α2,6-sialyltransferase (ST6GAL1), plays a pivotal role in immune responses. However, the role of ST6GAL1 in the pathogenesis of ulcerative colitis (UC) remains unknown. ST6GAL1 mRNA is highly expressed in UC tissues compared with the corresponding adjacent normal tissues, and α2,6-sialylation is significantly increased in the colon tissues of patients with UC. The expression of ST6GAL1 and proinflammatory cytokines, such as interleukin (IL)-2, IL-6, IL-17, and interferon-gamma, is also increased. The number of CD4+ T cells increases in UC patients. St6gal1 gene knockout (St6gal1-/- ) rats are established by clustered regularly interspaced short palindromic repeats (CRISPR)-associated gene knockout system. St6gal1 deficiency reduces the levels of pro-inflammatory cytokines and alleviates colitis symptoms in UC model rats. Ablation of α2,6-sialylation inhibits the transport of the TCR to lipid rafts and suppresses CD4+ T-cell activation. The attenuation of TCR signaling downregulates the expression of NF-κB in ST6GAL1-/- CD4+ T-cells. Moreover, NF-κB could bind to the ST6GAL1 promoter to increase its transcription. Ablation of ST6GAL1 downregulates the expression of NF-κB and reduces the production of proinflammatory cytokines to relieve UC pathogenesis, which is a potential novel target for the clinical treatment of UC.
Collapse
Affiliation(s)
- Qingjie Fan
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouGuangdong515041China
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Mechou Li
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Weiwei Zhao
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Kaixin Zhang
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Ming Li
- College of Basic Medical ScienceDalian Medical University9‐Western Section, Lvshun South RoadDalianLiaoning116044China
| | - Wenzhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouGuangdong515041China
| |
Collapse
|
12
|
Zakany F, Mándity IM, Varga Z, Panyi G, Nagy P, Kovacs T. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides. Cells 2023; 12:1700. [PMID: 37443733 PMCID: PMC10340183 DOI: 10.3390/cells12131700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Every cell biological textbook teaches us that the main role of the plasma membrane is to separate cells from their neighborhood to allow for a controlled composition of the intracellular space. The mostly hydrophobic nature of the cell membrane presents an impenetrable barrier for most hydrophilic molecules larger than 1 kDa. On the other hand, cell-penetrating peptides (CPPs) are capable of traversing this barrier without compromising membrane integrity, and they can do so on their own or coupled to cargos. Coupling biologically and medically relevant cargos to CPPs holds great promise of delivering membrane-impermeable drugs into cells. If the cargo is able to interact with certain cell types, uptake of the CPP-drug complex can be tailored to be cell-type-specific. Besides outlining the major membrane penetration pathways of CPPs, this review is aimed at deciphering how properties of the membrane influence the uptake mechanisms of CPPs. By summarizing an extensive body of experimental evidence, we argue that a more ordered, less flexible membrane structure, often present in the very diseases planned to be treated with CPPs, decreases their cellular uptake. These correlations are not only relevant for understanding the cellular biology of CPPs, but also for rationally improving their value in translational or clinical applications.
Collapse
Affiliation(s)
- Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary;
- TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| |
Collapse
|
13
|
Angerer N, Piller P, Semeraro EF, Keller S, Pabst G. Interaction of detergent with complex mimics of bacterial membranes. Biophys Chem 2023; 296:107002. [PMID: 36921495 DOI: 10.1016/j.bpc.2023.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Detergents are valuable tools to extract membrane proteins for biophysical, biochemical, and structural scrutiny. The detergent-driven solubilization of bilayers made from a single lipid species is commonly described in terms of pseudo-phase diagrams and a three-stage model accounting for three ranges comprising (i) intact vesicles, (ii) vesicle/micelle co-existence, or (iii) mixed micelles. Moreover, the pseudo-phase boundaries thus determined can often be quantitatively rationalized in terms of the molecular shapes of the lipid and the detergent used. Yet, it has remained unclear to what extent this approach can be applied to multi-component lipid membranes that more closely mimic the compositional complexity of cellular membranes. Here, we studied how lipid mixtures composed of palmitoyl oleoyl phosphatidylethanolamine (POPE), palmitoyl oleoyl phosphatidylglycerol (POPG), and tetraoleoyl cardiolipin (TOCL) are solubilized by the commonly used zwitterionic detergent lauryldimethylamine N-oxide using isothermal titration calorimetry. While phase diagrams of the diverse lipid mixtures showed the typical ranges of the three-stage model, we found that POPG-rich POPE/POPG bilayers are more difficult to solubilize than POPG-poor POPE/POPG bilayers. In turn, POPE/POPG/TOCL bilayers became increasingly resistant to detergent with increasing TOCL content. Since POPG is nearly cylindrically shaped and TOCL adopts inverted cone-like shapes under current buffer conditions, our solubilization data do not align with shape-based arguments. Instead, additional electrostatic interactions between lipids and detergents lead to non-additive mixing behavior affecting the resilience of complex lipid bilayers against solubilization.
Collapse
Affiliation(s)
- Nadine Angerer
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Paulina Piller
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Enrico F Semeraro
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Sandro Keller
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Georg Pabst
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria.
| |
Collapse
|
14
|
Soubias O, Sodt AJ, Teague WE, Hines KG, Gawrisch K. Physiological changes in bilayer thickness induced by cholesterol control GPCR rhodopsin function. Biophys J 2023; 122:973-983. [PMID: 36419350 PMCID: PMC10111215 DOI: 10.1016/j.bpj.2022.11.2937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
We monitored the effect on function of the G-protein-coupled receptor (GPCR) rhodopsin from small, stepwise changes in bilayer thickness induced by cholesterol. Over a range of phosphatidylcholine bilayers with hydrophobic thickness from ≈21 Å to 38 Å, the metarhodopsin-I (MI)/metarhodopsin-II (MII) equilibrium was monitored with UV-visible spectroscopy while ordering of hydrocarbon chains was probed by 2H-NMR. Addition of cholesterol shifted equilibrium toward MII for bilayers thinner than the average length of hydrophobic transmembrane helices (27 Å) and to MI for thicker bilayers, while small bilayer thickness changes within the range of the protein hydrophobic thickness drastically up- or downregulated MII formation. The cholesterol-induced shifts toward MII for thinner membranes correlated with the cholesterol-induced increase of bilayer hydrophobic thickness measured by NMR, consistent with continuum elastic modeling. The energetic penalty of adding cholesterol to thick bilayers caused rhodopsin oligomerization and a shift toward MI. In membranes of physiological thickness, changes in bilayer mechanical properties induced by cholesterol potentiated the interplay between bilayer and protein thickness resulting in large swings of the MI-MII equilibrium. In membrane containing cholesterol, elastic deformations near the protein are a dominant energetic contribution to the functional equilibrium of the model GPCR rhodopsin.
Collapse
Affiliation(s)
- Olivier Soubias
- Macromolecular NMR Section, Center for Structural Biology, Center for Cancer Research, NCI, NIH, Frederick, Maryland.
| | - Alexander J Sodt
- Unit on Membrane Chemical Physics, Eunice Kennedy Shriver NICHD, NIH, Bethesda, Maryland
| | - Walter E Teague
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland
| | - Kirk G Hines
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland
| | - Klaus Gawrisch
- Section of NMR, Laboratory of Membrane Biochemistry and Biophysics, NIAAA, NIH, Bethesda, Maryland
| |
Collapse
|
15
|
Doktorova M, Khelashvili G, Ashkar R, Brown MF. Molecular simulations and NMR reveal how lipid fluctuations affect membrane mechanics. Biophys J 2023; 122:984-1002. [PMID: 36474442 PMCID: PMC10111610 DOI: 10.1016/j.bpj.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Lipid bilayers form the main matrix of functional cell membranes, and their dynamics underlie a host of physical and biological processes. Here we show that elastic membrane properties and collective molecular dynamics (MD) are related by the mean-square amplitudes (order parameters) and relaxation rates (correlation times) of lipid acyl chain motions. We performed all-atom MD simulations of liquid-crystalline bilayers that allow direct comparison with carbon-hydrogen (CH) bond relaxations measured with NMR spectroscopy. Previous computational and theoretical approaches have assumed isotropic relaxation, which yields inaccurate description of lipid chain dynamics and incorrect data interpretation. Instead, the new framework includes a fixed bilayer normal (director axis) and restricted anisotropic motion of the CH bonds in accord with their segmental order parameters, enabling robust validation of lipid force fields. Simulated spectral densities of thermally excited CH bond fluctuations exhibited well-defined spin-lattice (Zeeman) relaxations analogous to those in NMR measurements. Their frequency signature could be fit to a simple power-law function, indicative of nematic-like collective dynamics. Moreover, calculated relaxation rates scaled as the squared order parameters yielding an apparent κC modulus for bilayer bending. Our results show a strong correlation with κC values obtained from solid-state NMR studies of bilayers without and with cholesterol as validated by neutron spin-echo measurements of membrane elasticity. The simulations uncover a critical role of interleaflet coupling in membrane mechanics and thus provide important insights into molecular sites of emerging elastic properties within lipid bilayers.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York; Institute of Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona; Program in Applied Mathematics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
16
|
Moss FR, Lincoff J, Tucker M, Mohammed A, Grabe M, Frost A. Brominated lipid probes expose structural asymmetries in constricted membranes. Nat Struct Mol Biol 2023; 30:167-175. [PMID: 36624348 PMCID: PMC9935397 DOI: 10.1038/s41594-022-00898-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/11/2022] [Indexed: 01/11/2023]
Abstract
Lipids in biological membranes are thought to be functionally organized, but few experimental tools can probe nanoscale membrane structure. Using brominated lipids as contrast probes for cryo-EM and a model ESCRT-III membrane-remodeling system composed of human CHMP1B and IST1, we observed leaflet-level and protein-localized structural lipid patterns within highly constricted and thinned membrane nanotubes. These nanotubes differed markedly from protein-free, flat bilayers in leaflet thickness, lipid diffusion rates and lipid compositional and conformational asymmetries. Simulations and cryo-EM imaging of brominated stearoyl-docosahexanenoyl-phosphocholine showed how a pair of phenylalanine residues scored the outer leaflet with a helical hydrophobic defect where polyunsaturated docosahexaenoyl tails accumulated at the bilayer surface. Combining cryo-EM of halogenated lipids with molecular dynamics thus enables new characterizations of the composition and structure of membranes on molecular length scales.
Collapse
Affiliation(s)
- Frank R Moss
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Altos Labs, Redwood City, CA, USA
| | - James Lincoff
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Maxwell Tucker
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Arshad Mohammed
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- University of California Berkeley, Berkeley, CA, USA
- Altos Labs, Redwood City, CA, USA
| | - Michael Grabe
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California San Francisco (UCSF), San Francisco, CA, USA.
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
- Altos Labs, Redwood City, CA, USA.
| |
Collapse
|
17
|
Han CT, Nguyen KDQ, Berkow MW, Hussain S, Kiani A, Kinnebrew M, Idso MN, Baxter N, Chang E, Aye E, Winslow E, Rahman M, Seppälä S, O'Malley MA, Chmelka BF, Mertz B, Han S. Lipid membrane mimetics and oligomerization tune functional properties of proteorhodopsin. Biophys J 2023; 122:168-179. [PMID: 36352784 PMCID: PMC9822798 DOI: 10.1016/j.bpj.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR's function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E. coli membranes and synthetic liposomes. Compared with the monomers, the photocycle kinetics of PR oligomers is ∼2 and ∼4.5 times slower for transitions between the K and M and the M and N photointermediates, respectively, indicating that oligomerization significantly slows PR's rate of proton transport in liposomes. In contrast, the apparent pKa of the key proton acceptor residue D97 (pKaD97) of liposome-embedded PR persists at 6.2-6.6, regardless of cross-protomer modulation of D97, suggesting that the liposome environment helps maintain PR's functional activity at neutral pH. By comparison, when extracted directly from E. coli membranes into styrene-maleic acid lipid particles, the pKaD97 of monomer-enriched E50Q PR drastically increases to 8.9, implying that there is a very low active PR population at neutral pH to engage in PR's photocycle. These findings demonstrate that oligomerization impacts PR's photocycle kinetics, while lipid-based membrane mimetics strongly affect PR's active population via different mechanisms.
Collapse
Affiliation(s)
- Chung-Ta Han
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Khanh Dinh Quoc Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Maxwell W Berkow
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Sunyia Hussain
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Ahmad Kiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Maia Kinnebrew
- College of Creative Studies, Biology Department, University of California, Santa Barbara, Santa Barbara, California
| | - Matthew N Idso
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Naomi Baxter
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Evelyn Chang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Emily Aye
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Elsa Winslow
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California
| | - Mohammad Rahman
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California.
| |
Collapse
|
18
|
Doole FT, Gupta S, Kumarage T, Ashkar R, Brown MF. Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:61-85. [PMID: 36988877 DOI: 10.1007/978-3-031-21547-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cell membranes regulate a wide range of phenomena that are implicated in key cellular functions. Cholesterol, a critical component of eukaryotic cell membranes, is responsible for cellular organization, membrane elasticity, and other critical physicochemical parameters. Besides cholesterol, other lipid components such as phosphatidylinositol 4,5-bisphosphate (PIP2) are found in minor concentrations in cell membranes yet can also play a major regulatory role in various cell functions. In this chapter, we describe how solid-state deuterium nuclear magnetic resonance (2H NMR) spectroscopy together with neutron spin-echo (NSE) spectroscopy can inform synergetic changes to lipid molecular packing due to cholesterol and PIP2 that modulate the bending rigidity of lipid membranes. Fundamental structure-property relations of molecular self-assembly are illuminated and point toward a length and time-scale dependence of cell membrane mechanics, with significant implications for biological activity and membrane lipid-protein interactions.
Collapse
Affiliation(s)
- Fathima T Doole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sudipta Gupta
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Teshani Kumarage
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Rana Ashkar
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA.
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
19
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
20
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
21
|
Molugu TR, Thurmond RL, Alam TM, Trouard TP, Brown MF. Phospholipid headgroups govern area per lipid and emergent elastic properties of bilayers. Biophys J 2022; 121:4205-4220. [PMID: 36088534 PMCID: PMC9674990 DOI: 10.1016/j.bpj.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Phospholipid bilayers are liquid-crystalline materials whose intermolecular interactions at mesoscopic length scales have key roles in the emergence of membrane physical properties. Here we investigated the combined effects of phospholipid polar headgroups and acyl chains on biophysical functions of membranes with solid-state 2H NMR spectroscopy. We compared the structural and dynamic properties of phosphatidylethanolamine and phosphatidylcholine with perdeuterated acyl chains in the solid-ordered (so) and liquid-disordered (ld) phases. Our analysis of spectral lineshapes of 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-d62) and 1,2-diperdeuteriopalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62) in the so (gel) phase indicated an all-trans rotating chain structure for both lipids. Greater segmental order parameters (SCD) were observed in the ld (liquid-crystalline) phase for DPPE-d62 than for DPPC-d62 membranes, while their mixtures had intermediate values irrespective of the deuterated lipid type. Our results suggest the SCD profiles of the acyl chains are governed by methylation of the headgroups and are averaged over the entire system. Variations in the acyl chain molecular dynamics were further investigated by spin-lattice (R1Z) and quadrupolar-order relaxation (R1Q) measurements. The two acyl-perdeuterated lipids showed distinct differences in relaxation behavior as a function of the order parameter. The R1Z rates had a square-law dependence on SCD, implying collective mesoscopic dynamics, with a higher bending rigidity for DPPE-d62 than for DPPC-d62 lipids. Remodeling of lipid average and dynamic properties by methylation of the headgroups thus provides a mechanism to control the actions of peptides and proteins in biomembranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | | | - Todd M Alam
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, New Mexico
| | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
22
|
Doole FT, Kumarage T, Ashkar R, Brown MF. Cholesterol Stiffening of Lipid Membranes. J Membr Biol 2022; 255:385-405. [PMID: 36219221 PMCID: PMC9552730 DOI: 10.1007/s00232-022-00263-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Biomembrane order, dynamics, and other essential physicochemical parameters are controlled by cholesterol, a major component of mammalian cell membranes. Although cholesterol is well known to exhibit a condensing effect on fluid lipid membranes, the extent of stiffening that occurs with different degrees of lipid acyl chain unsaturation remains an enigma. In this review, we show that cholesterol locally increases the bending rigidity of both unsaturated and saturated lipid membranes, suggesting there may be a length-scale dependence of the bending modulus. We review our published data that address the origin of the mechanical effects of cholesterol on unsaturated and polyunsaturated lipid membranes and their role in biomembrane functions. Through a combination of solid-state deuterium NMR spectroscopy and neutron spin-echo spectroscopy, we show that changes in molecular packing cause the universal effects of cholesterol on the membrane bending rigidity. Our findings have broad implications for the role of cholesterol in lipid–protein interactions as well as raft-like mixtures, drug delivery applications, and the effects of antimicrobial peptides on lipid membranes.
Collapse
Affiliation(s)
- Fathima T Doole
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA
| | - Teshani Kumarage
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Michael F Brown
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85712, USA.
| |
Collapse
|
23
|
Scrima S, Tiberti M, Campo A, Corcelle-Termeau E, Judith D, Foged MM, Clemmensen KKB, Tooze SA, Jäättelä M, Maeda K, Lambrughi M, Papaleo E. Unraveling membrane properties at the organelle-level with LipidDyn. Comput Struct Biotechnol J 2022; 20:3604-3614. [PMID: 35860415 PMCID: PMC9283888 DOI: 10.1016/j.csbj.2022.06.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/22/2022] Open
Abstract
Cellular membranes are formed from different lipids in various amounts and proportions depending on the subcellular localization. The lipid composition of membranes is sensitive to changes in the cellular environment, and its alterations are linked to several diseases. Lipids not only form lipid-lipid interactions but also interact with other biomolecules, including proteins. Molecular dynamics (MD) simulations are a powerful tool to study the properties of cellular membranes and membrane-protein interactions on different timescales and resolutions. Over the last few years, software and hardware for biomolecular simulations have been optimized to routinely run long simulations of large and complex biological systems. On the other hand, high-throughput techniques based on lipidomics provide accurate estimates of the composition of cellular membranes at the level of subcellular compartments. Lipidomic data can be analyzed to design biologically relevant models of membranes for MD simulations. Similar applications easily result in a massive amount of simulation data where the bottleneck becomes the analysis of the data. In this context, we developed LipidDyn, a Python-based pipeline to streamline the analyses of MD simulations of membranes of different compositions. Once the simulations are collected, LipidDyn provides average properties and time series for several membrane properties such as area per lipid, thickness, order parameters, diffusion motions, lipid density, and lipid enrichment/depletion. The calculations exploit parallelization, and the pipeline includes graphical outputs in a publication-ready form. We applied LipidDyn to different case studies to illustrate its potential, including membranes from cellular compartments and transmembrane protein domains. LipidDyn is available free of charge under the GNU General Public License from https://github.com/ELELAB/LipidDyn.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Alessia Campo
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elisabeth Corcelle-Termeau
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Delphine Judith
- Institut Cochin, Inserm U1016-CNRS, UMR8104, Université de Paris, Paris, France
| | - Mads Møller Foged
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | | | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
24
|
Keener JE, Jayasekera HS, Marty MT. Investigating the Lipid Selectivity of Membrane Proteins in Heterogeneous Nanodiscs. Anal Chem 2022; 94:8497-8505. [PMID: 35621361 DOI: 10.1021/acs.analchem.2c01488] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structure and function of membrane proteins can be significantly impacted by the surrounding lipid environment, but membrane protein-lipid interactions in lipid bilayers are often difficult to study due to their transient and polydisperse nature. Here, we used two native mass spectrometry (MS) approaches to investigate how the Escherichia coli ammonium transporter trimer (AmtB) and aquaporin Z (AqpZ) selectively remodel their local lipid environment in heterogeneous lipoprotein nanodiscs. First, we used gas-phase ejection to isolate the membrane protein with bound lipids from heterogeneous nanodiscs with different combinations of lipids. Second, we used solution-phase detergent extraction as an orthogonal approach to study membrane protein remodeling of lipids in the nanodisc with native MS. Our results showed that Triton X-100 and lauryldimethylamine oxide retain lipid selectivity that agrees with gas-phase ejection, but C8E4 distorts some preferential lipid interactions. Both approaches reveal that AmtB has a few selective binding sites for phosphatidylcholine (PC) lipids, is selective for binding phosphatidylglycerols (PG) overall, and is nonselective for phosphatidylethanolamines (PE). In contrast, AqpZ prefers either PC or PG over PE and prefers PC over PG. Overall, these experiments provide a picture of how membrane proteins bind different lipid head groups in the context of mixed lipid bilayers.
Collapse
Affiliation(s)
- James E Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Hiruni S Jayasekera
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States.,Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
25
|
Abstract
Although G-protein–coupled receptors (GPCRs) control vast physiological pathways, their activation remains chemically and physically enigmatic. Our osmotic stress studies of the visual receptor rhodopsin have redefined the standard model of GPCR signaling by revealing the essential role of bulk water. We show results consistent with a large number of water molecules flooding the rhodopsin interior during activation to stabilize the effector binding conformation. These results suggest a model of GPCR activation in which the receptor becomes solvent-swollen upon formation of the active state. We thus demonstrate the mechanism whereby water acts as a powerful allosteric modulator of a pharmacologically important membrane protein family. The Rhodopsin family of G-protein–coupled receptors (GPCRs) comprises the targets of nearly a third of all pharmaceuticals. Despite structural water present in GPCR X-ray structures, the physiological relevance of these solvent molecules to rhodopsin signaling remains unknown. Here, we show experimental results consistent with the idea that rhodopsin activation in lipid membranes is coupled to bulk water movements into the protein. To quantify hydration changes, we measured reversible shifting of the metarhodopsin equilibrium due to osmotic stress using an extensive series of polyethylene glycol (PEG) osmolytes. We discovered clear evidence that light activation entails a large influx of bulk water (∼80–100 molecules) into the protein, giving insight into GPCR activation mechanisms. Various size polymer osmolytes directly control rhodopsin activation, in which large solutes are excluded from rhodopsin and dehydrate the protein, favoring the inactive state. In contrast, small osmolytes initially forward shift the activation equilibrium until a quantifiable saturation point is reached, similar to gain-of-function protein mutations. For the limit of increasing osmolyte size, a universal response of rhodopsin to osmotic stress is observed, suggesting it adopts a dynamic, hydrated sponge-like state upon photoactivation. Our results demand a rethinking of the role of water dynamics in modulating various intermediates in the GPCR energy landscape. We propose that besides bound water, an influx of bulk water plays a necessary role in establishing the active GPCR conformation that mediates signaling.
Collapse
|
26
|
Borcik C, Eason IR, Vanderloop B, Wylie BJ. 2H, 13C-Cholesterol for Dynamics and Structural Studies of Biological Membranes. ACS OMEGA 2022; 7:17151-17160. [PMID: 35647452 PMCID: PMC9134247 DOI: 10.1021/acsomega.2c00796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
We present a cost-effective means of 2H and 13C enrichment of cholesterol. This method exploits the metabolism of 2H,13C-acetate into acetyl-CoA, the first substrate in the mevalonate pathway. We show that growing the cholesterol producing strain RH6827 of Saccharomyces cerevisiae in 2H,13C-acetate-enriched minimal media produces a skip-labeled pattern of deuteration. We characterize this cholesterol labeling pattern by mass spectrometry and solid-state nuclear magnetic resonance spectroscopy. It is confirmed that most 2H nuclei retain their original 2H-13C bonds from acetate throughout the biosynthetic pathway. We then quantify the changes in 13C chemical shifts brought by deuteration and the impact upon 13C-13C spin diffusion. Finally, using adiabatic rotor echo short pulse irradiation cross-polarization (RESPIRATIONCP), we acquire the 2H-13C correlation spectra to site specifically quantify cholesterol dynamics in two model membranes as a function of temperature. These measurements show that cholesterol acyl chains at physiological temperatures in mixtures of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), sphingomyelin, and cholesterol are more dynamic than cholesterol in POPC. However, this overall change in motion is not uniform across the cholesterol molecule. This result establishes that this cholesterol labeling pattern will have great utility in reporting on cholesterol dynamics and orientation in a variety of environments and with different membrane bilayer components, as well as monitoring the mevalonate pathway product interactions within the bilayer. Finally, the flexibility and universality of acetate labeling will allow this technique to be widely applied to a large range of lipids and other natural products.
Collapse
|
27
|
It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14040944. [PMID: 35205690 PMCID: PMC8869822 DOI: 10.3390/cancers14040944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.
Collapse
|
28
|
Rajput S, Yao S, Keizer DW, Sani MA, Separovic F. NMR spectroscopy of lipidic cubic phases. Biophys Rev 2022; 14:67-74. [PMID: 35340611 PMCID: PMC8921435 DOI: 10.1007/s12551-021-00900-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Lipidic cubic phase (LCP) structures have been used for stabilisation and crystallisation of membrane proteins and show promising properties as drug carriers. In this mini-review, we present how NMR spectroscopy has played a major role in understanding the physico-chemical properties of LCPs and how recent advances in pulsed field gradient NMR techniques open new perspectives in characterising encapsulated molecules.
Collapse
Affiliation(s)
- Sunnia Rajput
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - David W. Keizer
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - Marc-Antoine Sani
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Frances Separovic
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052 Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
29
|
Insights into lipid-protein interactions from computer simulations. Biophys Rev 2022; 13:1019-1027. [PMID: 35047089 PMCID: PMC8724345 DOI: 10.1007/s12551-021-00876-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid-protein interactions play an important direct role in the function of many membrane proteins. We argue they are key players in membrane structure, modulate membrane proteins in more subtle ways than direct binding, and are important for understanding the mechanism of classes of hydrophobic drugs. By directly comparing membrane proteins from different families in the same, complex lipid mixture, we found a unique lipid environment for every protein. Extending this work, we identified both differences and similarities in the lipid environment of GPCRs, dependent on which family they belong to and in some cases their conformational state, with particular emphasis on the distribution of cholesterol. More recently, we have been studying modes of coupling between protein conformation and local membrane properties using model proteins. In more applied approaches, we have used similar methods to investigate specific hypotheses on interactions of lipid and lipid-like molecules with ion channels. We conclude this perspective with some considerations for future work, including a new more sophisticated coarse-grained force field (Martini 3), an interactive visual exploration framework, and opportunities to improve sampling.
Collapse
|
30
|
Xu Y, Phoon CKL, Ren M, Schlame M. A simple mechanistic explanation for Barth syndrome and cardiolipin remodeling. J Inherit Metab Dis 2022; 45:51-59. [PMID: 34611930 DOI: 10.1002/jimd.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
Barth syndrome is a multisystem disorder caused by an abnormal metabolism of the mitochondrial lipid cardiolipin. In this review, we discuss physical properties, biosynthesis, membrane assembly, and function of cardiolipin. We hypothesize that cardiolipin reduces packing stress in the inner mitochondrial membrane, which arises as a result of protein crowding. According to this hypothesis, patients with Barth syndrome are unable to meet peak energy demands because they fail to concentrate the proteins of oxidative phosphorylation to a high surface density in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, New York, USA
| | - Colin K L Phoon
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
31
|
Xu Y, Erdjument‐Bromage H, Phoon CKL, Neubert TA, Ren M, Schlame M. Cardiolipin remodeling enables protein crowding in the inner mitochondrial membrane. EMBO J 2021; 40:e108428. [PMID: 34661298 PMCID: PMC8634138 DOI: 10.15252/embj.2021108428] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial cristae are extraordinarily crowded with proteins, which puts stress on the bilayer organization of lipids. We tested the hypothesis that the high concentration of proteins drives the tafazzin-catalyzed remodeling of fatty acids in cardiolipin, thereby reducing bilayer stress in the membrane. Specifically, we tested whether protein crowding induces cardiolipin remodeling and whether the lack of cardiolipin remodeling prevents the membrane from accumulating proteins. In vitro, the incorporation of large amounts of proteins into liposomes altered the outcome of the remodeling reaction. In yeast, the concentration of proteins involved in oxidative phosphorylation (OXPHOS) correlated with the cardiolipin composition. Genetic ablation of either remodeling or biosynthesis of cardiolipin caused a substantial drop in the surface density of OXPHOS proteins in the inner membrane of the mouse heart and Drosophila flight muscle mitochondria. Our data suggest that OXPHOS protein crowding induces cardiolipin remodelling and that remodeled cardiolipin supports the high concentration of these proteins in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Yang Xu
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Hediye Erdjument‐Bromage
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Colin K L Phoon
- Department of PediatricsNew York University Grossman School of MedicineNew YorkNYUSA
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Mindong Ren
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| | - Michael Schlame
- Department of AnesthesiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Department of Cell BiologyNew York University Grossman School of MedicineNew YorkNYUSA
| |
Collapse
|
32
|
Kaltenegger M, Kremser J, Frewein MPK, Ziherl P, Bonthuis DJ, Pabst G. Intrinsic lipid curvatures of mammalian plasma membrane outer leaflet lipids and ceramides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183709. [PMID: 34332987 DOI: 10.1016/j.bbamem.2021.183709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023]
Abstract
We developed a global X-ray data analysis method to determine the intrinsic curvatures of lipids hosted in inverted hexagonal phases. In particular, we combined compositional modelling with molecular shape-based arguments to account for non-linear mixing effects of guest-in-host lipids on intrinsic curvature. The technique was verified by all-atom molecular dynamics simulations and applied to sphingomyelin and a series of phosphatidylcholines and ceramides with differing composition of the hydrocarbon chains. We report positive lipid curvatures for sphingomyelin and all phosphatidylcholines with disaturated and monounsaturated hydrocarbons. Phosphatidylcholines with diunsaturated hydrocarbons in turn yielded intrinsic lipid curvatures with negative values. All ceramides, with chain lengths varying between C2:0 and C24:0, displayed significant negative lipid curvature values. Moreover, we report non-additive mixing for C2:0 ceramide and sphingomyelin. This suggests for sphingolipids that in addition to lipid headgroup and hydrocarbon chain volumes also lipid-specific interactions are important contributors to membrane curvature stress.
Collapse
Affiliation(s)
- Michael Kaltenegger
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Johannes Kremser
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Moritz P K Frewein
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria; Institut Laue-Langevin, 38043 Grenoble, France
| | - Primož Ziherl
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia
| | - Douwe J Bonthuis
- Graz University of Technology, Institute of Theoretical and Computational Physics, NAWI Graz, 8010 Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, NAWI Graz, 8010 Graz, Austria; BioTechMed Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
33
|
Soubias O. Squaring off with G protein-coupled receptors function in polymer nanoscale lipid bilayers. Biophys J 2021; 120:4299-4300. [PMID: 34537110 DOI: 10.1016/j.bpj.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Olivier Soubias
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
34
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
35
|
Solid state NMR of membrane proteins: methods and applications. Biochem Soc Trans 2021; 49:1505-1513. [PMID: 34397082 DOI: 10.1042/bst20200070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022]
Abstract
Membranes of cells are active barriers, in which membrane proteins perform essential remodelling, transport and recognition functions that are vital to cells. Membrane proteins are key regulatory components of cells and represent essential targets for the modulation of cell function and pharmacological intervention. However, novel folds, low molarity and the need for lipid membrane support present serious challenges to the characterisation of their structure and interactions. We describe the use of solid state NMR as a versatile and informative approach for membrane and membrane protein studies, which uniquely provides information on structure, interactions and dynamics of membrane proteins. High resolution approaches are discussed in conjunction with applications of NMR methods to studies of membrane lipid and protein structure and interactions. Signal enhancement in high resolution NMR spectra through DNP is discussed as a tool for whole cell and interaction studies.
Collapse
|
36
|
Javanainen M, Martinez-Seara H, Kelly CV, Jungwirth P, Fábián B. Anisotropic diffusion of membrane proteins at experimental timescales. J Chem Phys 2021; 155:015102. [PMID: 34241397 DOI: 10.1063/5.0054973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single-particle tracking (SPT) experiments of lipids and membrane proteins provide a wealth of information about the properties of biomembranes. Careful analysis of SPT trajectories can reveal deviations from ideal Brownian behavior. Among others, this includes confinement effects and anomalous diffusion, which are manifestations of both the nanoscale structure of the underlying membrane and the structure of the diffuser. With the rapid increase in temporal and spatial resolution of experimental methods, a new aspect of the motion of the particle, namely, anisotropic diffusion, might become relevant. This aspect that so far received only little attention is the anisotropy of the diffusive motion and may soon provide an additional proxy to the structure and topology of biomembranes. Unfortunately, the theoretical framework for detecting and interpreting anisotropy effects is currently scattered and incomplete. Here, we provide a computational method to evaluate the degree of anisotropy directly from molecular dynamics simulations and also point out a way to compare the obtained results with those available from SPT experiments. In order to probe the effects of anisotropic diffusion, we performed coarse-grained molecular dynamics simulations of peripheral and integral membrane proteins in flat and curved bilayers. In agreement with the theoretical basis, our computational results indicate that anisotropy can persist up to the rotational relaxation time [τ=(2Dr)-1], after which isotropic diffusion is observed. Moreover, the underlying topology of the membrane bilayer can couple with the geometry of the particle, thus extending the spatiotemporal domain over which this type of motion can be detected.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, 666 W Hancock Street, Detroit, Michigan 48201, USA
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 542/2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
37
|
Perczyk P, Gawlak R, Broniatowski M. Interactions of fungal phospholipase Lecitase ultra with phospholipid Langmuir monolayers - Search for substrate specificity and structural factors affecting the activity of the enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183687. [PMID: 34175298 DOI: 10.1016/j.bbamem.2021.183687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Inoculation of selected microbial species into the soils is one of the most effective means of bioremediation of soils polluted by persistent organic pollutants as well as of biocontrol of plant pests. However, this procedure turns out frequently to be ineffective due to the membrane-destructive enzymes secreted to the soil by the autochthonous microorganisms. Especial role play here phospholipases and among them phospholipase A1 (PLA1), Therefore, to explain the interactions of microbial membranes and PLA1 at molecular level and to find the correlation between the composition of the membrane and its resistance to PLA1 action we applied phospholipid Langmuir monolayers as model microbial membranes. As a representative soil extracellular PLA1 we applied Lecitase ultra which is a commercially available hybrid enzyme of PLA1 activity. With the application of specific sn1-ether-sn2-ester phospholipids we proved that Lecitase ultra has solely PLA1 activity; thus, can be applied as an effective model of soil PLA1s. Our studies proved that this enzyme has vast substrate specificity and can hydrolyze structural phospholipids regardless the structure of their polar headgroup. It turned out that the hydrolysis rate was controlled by the condensation of the model membranes. These built of the phospholipids with long saturated fatty acid chains were especially resistant to the action of this enzyme, whereas these formed by the 1-saturated-2-unsaturated-sn-glycero-3-phospholipids were readily degraded. Regarding the polar headgroup we proposed the following row of substrate preference of Lecitase ultra: phosphatidylglycerols > phosphatidylcholines > phosphatidylethanolamines > cardiolipins.
Collapse
Affiliation(s)
- Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Roksana Gawlak
- Department of Environmental Chemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, the Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
38
|
Lee AG. Interfacial binding sites for cholesterol on GABA A receptors and competition with neurosteroids. Biophys J 2021; 120:2710-2722. [PMID: 34022235 DOI: 10.1016/j.bpj.2021.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 01/17/2023] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors in the brain are located in the outer membranes of brain cells where the concentration of cholesterol is high. Of the 25 available high-resolution structures available for GABAA receptors, none were determined in the presence of cholesterol, but four include resolved molecules of cholesterol hemisuccinate (CHS). Here, a molecular docking procedure is used to sweep the transmembrane (TM) surfaces of the receptors for cholesterol binding sites. Cholesterol docking poses determined in this way match 89% of the resolved CHS when CHS molecules deemed unlikely to represent typical bound cholesterols are excluded. The receptors are pentameric, and their TM surfaces consist of a set of five facets, each including pairs of TM helices from two adjacent subunits. Each facet contains hydrophobic hollows running from one side of the membrane to the other, within which are six potential binding sites for cholesterol, three on each side of the membrane. High-resolution structures of GABAA receptors with bound neurosteroids show that neurosteroids bind in these cholesterol binding sites, so the binding of neurosteroids and cholesterol will be competitive.
Collapse
Affiliation(s)
- Anthony G Lee
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
39
|
Chadda R, Bernhardt N, Kelley EG, Teixeira SC, Griffith K, Gil-Ley A, Öztürk TN, Hughes LE, Forsythe A, Krishnamani V, Faraldo-Gómez JD, Robertson JL. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states. eLife 2021; 10:63288. [PMID: 33825681 PMCID: PMC8116059 DOI: 10.7554/elife.63288] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Over two-thirds of integral membrane proteins of known structure assemble into oligomers. Yet, the forces that drive the association of these proteins remain to be delineated, as the lipid bilayer is a solvent environment that is both structurally and chemically complex. In this study, we reveal how the lipid solvent defines the dimerization equilibrium of the CLC-ec1 Cl-/H+ antiporter. Integrating experimental and computational approaches, we show that monomers associate to avoid a thinned-membrane defect formed by hydrophobic mismatch at their exposed dimerization interfaces. In this defect, lipids are strongly tilted and less densely packed than in the bulk, with a larger degree of entanglement between opposing leaflets and greater water penetration into the bilayer interior. Dimerization restores the membrane to a near-native state and therefore, appears to be driven by the larger free-energy cost of lipid solvation of the dissociated protomers. Supporting this theory, we demonstrate that addition of short-chain lipids strongly shifts the dimerization equilibrium toward the monomeric state, and show that the cause of this effect is that these lipids preferentially solvate the defect. Importantly, we show that this shift requires only minimal quantities of short-chain lipids, with no measurable impact on either the macroscopic physical state of the membrane or the protein's biological function. Based on these observations, we posit that free-energy differentials for local lipid solvation define membrane-protein association equilibria. With this, we argue that preferential lipid solvation is a plausible cellular mechanism for lipid regulation of oligomerization processes, as it can occur at low concentrations and does not require global changes in membrane properties. A cell’s outer membrane is made of molecules called lipids, which band together to form a flexible thin film, just two molecules thick. This membrane is dotted with proteins that transport materials in to and out of cells. Most of these membrane proteins join with other proteins to form structures known as oligomers. Except, how membrane-bound proteins assemble into oligomers – the physical forces driving these molecules to take shape – remains unclear. This is partly because the structural, physical and chemical properties of fat-like lipid membranes are radically different to the cell’s watery interior. Consequently, the conditions under which membrane oligomers form are distinct from those surrounding proteins inside cells. Membrane proteins are also more difficult to study and characterize than water-soluble proteins inside the cell, and yet many therapeutic drugs such as antibiotics specifically target membrane proteins. Overall, our understanding of how the unique properties of lipid membranes affect the formation of protein structures embedded within, is lacking and warrants further investigation. Now, Chadda, Bernhardt et al. focused on one membrane protein, known as CLC, which tends to exist in pairs – or dimers. To understand why these proteins form dimers (a process called dimerization) Chadda, Bernhardt et al. first used computer simulations, and then validated the findings in experimental tests. These complementary approaches demonstrated that the main reason CLC proteins ‘dimerize’ lies in their interaction with the lipid membrane, and not the attraction of one protein to its partner. When CLC proteins are on their own, they deform the surrounding membrane and create structural defects that put the membrane under strain. But when two CLC proteins join as a dimer, this membrane strain disappears – making dimerization the more stable and energetically favorable option. Chadda, Bernhardt et al. also showed that with the addition of a few certain lipids, specifically smaller lipids, cell membranes become more tolerant of protein-induced structural changes. This might explain how cells could use various lipids to fine-tune the activity of membrane proteins by controlling how oligomers form. However, the theory needs to be examined further. Altogether, this work has provided fundamental insights into the physical forces shaping membrane-bound proteins, relevant to researchers studying cell biology and pharmacology alike.
Collapse
Affiliation(s)
- Rahul Chadda
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States
| | - Nathan Bernhardt
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute for Standards and Technology, Gaithersburg, United States
| | - Susana Cm Teixeira
- NIST Center for Neutron Research, National Institute for Standards and Technology, Gaithersburg, United States.,Center for Neutron Science, Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
| | - Kacie Griffith
- Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, United States
| | - Alejandro Gil-Ley
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States.,Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, United States
| | - Tuğba N Öztürk
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States
| | - Lauren E Hughes
- Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, United States
| | - Ana Forsythe
- Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, United States
| | - Venkatramanan Krishnamani
- Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Janice L Robertson
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
40
|
Chawla U, Perera SMDC, Fried SDE, Eitel AR, Mertz B, Weerasinghe N, Pitman MC, Struts AV, Brown MF. Activation of the G‐Protein‐Coupled Receptor Rhodopsin by Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | | | - Steven D. E. Fried
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Anna R. Eitel
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Blake Mertz
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Nipuna Weerasinghe
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Michael C. Pitman
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Andrey V. Struts
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russia
| | - Michael F. Brown
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
- Department of Physics University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
41
|
Valentine ML, Waterland MK, Fathizadeh A, Elber R, Baiz CR. Interfacial Dynamics in Lipid Membranes: The Effects of Headgroup Structures. J Phys Chem B 2021; 125:1343-1350. [DOI: 10.1021/acs.jpcb.0c08755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mason L. Valentine
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Maya K. Waterland
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Arman Fathizadeh
- Oden Institute for Computational Science and Engineering, Austin, Texas 78712, United States
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
- Oden Institute for Computational Science and Engineering, Austin, Texas 78712, United States
| | - Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
42
|
Stieger B, Steiger J, Locher KP. Membrane lipids and transporter function. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166079. [PMID: 33476785 DOI: 10.1016/j.bbadis.2021.166079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Transport proteins are essential for cells in allowing the exchange of substances between cells and their environment across the lipid bilayer forming a tight barrier. Membrane lipids modulate the function of transmembrane proteins such as transporters in two ways: Lipids are tightly and specifically bound to transport proteins and in addition they modulate from the bulk of the lipid bilayer the function of transport proteins. This overview summarizes currently available information at the ultrastructural level on lipids tightly bound to transport proteins and the impact of altered bulk membrane lipid composition. Human diseases leading to altered lipid homeostasis will lead to altered membrane lipid composition, which in turn affect the function of transporter proteins.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Julia Steiger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kaspar P Locher
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
43
|
Chawla U, Perera SMDC, Fried SDE, Eitel AR, Mertz B, Weerasinghe N, Pitman MC, Struts AV, Brown MF. Activation of the G-Protein-Coupled Receptor Rhodopsin by Water. Angew Chem Int Ed Engl 2020; 60:2288-2295. [PMID: 32596956 DOI: 10.1002/anie.202003342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Indexed: 12/31/2022]
Abstract
Visual rhodopsin is an important archetype for G-protein-coupled receptors, which are membrane proteins implicated in cellular signal transduction. Herein, we show experimentally that approximately 80 water molecules flood rhodopsin upon light absorption to form a solvent-swollen active state. An influx of mobile water is necessary for activating the photoreceptor, and this finding is supported by molecular dynamics (MD) simulations. Combined force-based measurements involving osmotic and hydrostatic pressure indicate the expansion occurs by changes in cavity volumes, together with greater hydration in the active metarhodopsin-II state. Moreover, we discovered that binding and release of the C-terminal helix of transducin is coupled to hydration changes as may occur in visual signal amplification. Hydration-dehydration explains signaling by a dynamic allosteric mechanism, in which the soft membrane matter (lipids and water) has a pivotal role in the catalytic G-protein cycle.
Collapse
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Steven D E Fried
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Anna R Eitel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Blake Mertz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Nipuna Weerasinghe
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael C Pitman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Department of Physics, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
44
|
Vogel A, Bosse M, Gauglitz M, Wistuba S, Schmidt P, Kaiser A, Gurevich VV, Beck-Sickinger AG, Hildebrand PW, Huster D. The Dynamics of the Neuropeptide Y Receptor Type 1 Investigated by Solid-State NMR and Molecular Dynamics Simulation. Molecules 2020; 25:E5489. [PMID: 33255213 PMCID: PMC7727705 DOI: 10.3390/molecules25235489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.
Collapse
Affiliation(s)
- Alexander Vogel
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Mathias Bosse
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Marcel Gauglitz
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Sarah Wistuba
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Peter Schmidt
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Anette Kaiser
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Vsevolod V. Gurevich
- Vanderbilt University Medical Center, 2200 Pierce Avenue, Nashville, TN 37232, USA;
| | - Annette G. Beck-Sickinger
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany; (A.K.); (A.G.B.-S.)
| | - Peter W. Hildebrand
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany; (A.V.); (M.B.); (M.G.); (S.W.); (P.S.)
| |
Collapse
|
45
|
Membrane Curvature Revisited-the Archetype of Rhodopsin Studied by Time-Resolved Electronic Spectroscopy. Biophys J 2020; 120:440-452. [PMID: 33217383 DOI: 10.1016/j.bpj.2020.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise the largest and most pharmacologically targeted membrane protein family. Here, we used the visual receptor rhodopsin as an archetype for understanding membrane lipid influences on conformational changes involved in GPCR activation. Visual rhodopsin was recombined with lipids varying in their degree of acyl chain unsaturation and polar headgroup size using 1-palmitoyl-2-oleoyl-sn-glycero- and 1,2-dioleoyl-sn-glycerophospholipids with phosphocholine (PC) or phosphoethanolamine (PE) substituents. The receptor activation profile after light excitation was measured using time-resolved ultraviolet-visible spectroscopy. We discovered that more saturated POPC lipids back shifted the equilibrium to the inactive state, whereas the small-headgroup, highly unsaturated DOPE lipids favored the active state. Increasing unsaturation and decreasing headgroup size have similar effects that combine to yield control of rhodopsin activation, and necessitate factors beyond proteolipid solvation energy and bilayer surface electrostatics. Hence, we consider a balance of curvature free energy with hydrophobic matching and demonstrate how our data support a flexible surface model (FSM) for the coupling between proteins and lipids. The FSM is based on the Helfrich formulation of membrane bending energy as we previously first applied to lipid-protein interactions. Membrane elasticity and curvature strain are induced by lateral pressure imbalances between the constituent lipids and drive key physiological processes at the membrane level. Spontaneous negative monolayer curvature toward water is mediated by unsaturated, small-headgroup lipids and couples directly to GPCR activation upon light absorption by rhodopsin. For the first time to our knowledge, we demonstrate this modulation in both the equilibrium and pre-equilibrium evolving states using a time-resolved approach.
Collapse
|
46
|
Foreman-Ortiz IU, Liang D, Laudadio ED, Calderin JD, Wu M, Keshri P, Zhang X, Schwartz MP, Hamers RJ, Rotello VM, Murphy CJ, Cui Q, Pedersen JA. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proc Natl Acad Sci U S A 2020; 117:27854-27861. [PMID: 33106430 PMCID: PMC7668003 DOI: 10.1073/pnas.2004736117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms of nanoparticle interaction with cell membranes is essential for designing materials for applications such as bioimaging and drug delivery, as well as for assessing engineered nanomaterial safety. Much attention has focused on nanoparticles that bind strongly to biological membranes or induce membrane damage, leading to adverse impacts on cells. More subtle effects on membrane function mediated via changes in biophysical properties of the phospholipid bilayer have received little study. Here, we combine electrophysiology measurements, infrared spectroscopy, and molecular dynamics simulations to obtain insight into a mode of nanoparticle-mediated modulation of membrane protein function that was previously only hinted at in prior work. Electrophysiology measurements on gramicidin A (gA) ion channels embedded in planar suspended lipid bilayers demonstrate that anionic gold nanoparticles (AuNPs) reduce channel activity and extend channel lifetimes without disrupting membrane integrity, in a manner consistent with changes in membrane mechanical properties. Vibrational spectroscopy indicates that AuNP interaction with the bilayer does not perturb the conformation of membrane-embedded gA. Molecular dynamics simulations reinforce the experimental findings, showing that anionic AuNPs do not directly interact with embedded gA channels but perturb the local properties of lipid bilayers. Our results are most consistent with a mechanism in which anionic AuNPs disrupt ion channel function in an indirect manner by altering the mechanical properties of the surrounding bilayer. Alteration of membrane mechanical properties represents a potentially important mechanism by which nanoparticles induce biological effects, as the function of many embedded membrane proteins depends on phospholipid bilayer biophysical properties.
Collapse
Affiliation(s)
| | - Dongyue Liang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, Boston University, Boston, MA 02215
| | | | - Jorge D Calderin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Meng Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Michael P Schwartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Joel A Pedersen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
47
|
Engberg O, Bochicchio A, Brandner AF, Gupta A, Dey S, Böckmann RA, Maiti S, Huster D. Serotonin Alters the Phase Equilibrium of a Ternary Mixture of Phospholipids and Cholesterol. Front Physiol 2020; 11:578868. [PMID: 33192582 PMCID: PMC7645218 DOI: 10.3389/fphys.2020.578868] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Unsaturated and saturated phospholipids tend to laterally segregate, especially in the presence of cholesterol. Small molecules such as neurotransmitters, toxins, drugs etc. possibly modulate this lateral segregation. The small aromatic neurotransmitter serotonin (5-HT) has been found to bind to membranes. We studied the lipid structure and packing of a ternary membrane mixture consisting of palmitoyl-oleoyl-phosphatidylcholine, palmitoyl-sphingomyelin, and cholesterol at a molar ratio of 4/4/2 in the absence and in the presence of 5-HT, using a combination of solid-state 2H NMR, atomic force microscopy, and atomistic molecular dynamics (MD) simulations. Both NMR and MD report formation of a liquid ordered (L o ) and a liquid disordered (L d ) phase coexistence with small domains. Lipid exchange between the domains was fast such that single component 2H NMR spectra are detected over a wide temperature range. A drastic restructuring of the domains was induced when 5-HT is added to the membranes at a 9 mol% concentration relative to the lipids. 2H NMR spectra of all components of the mixture showed two prominent contributions indicative of molecules of the same kind residing both in the disordered and the ordered phase. Compared to the data in the absence of 5-HT, the lipid chain order in the disordered phase was further decreased in the presence of 5-HT. Likewise, addition of serotonin increased lipid chain order within the ordered phase. These characteristic lipid chain order changes were confirmed by MD simulations. The 5-HT-induced larger difference in lipid chain order results in more pronounced differences in the hydrophobic thickness of the individual membrane domains. The correspondingly enlarged hydrophobic mismatch between ordered and disordered phases is assumed to increase the line tension at the domain boundary, which drives the system into formation of larger size domains. These results not only demonstrate that small membrane binding molecules such as neurotransmitters have a profound impact on essential membrane properties. It also suggests a mechanism by which the interaction of small molecules with membranes can influence the function of membrane proteins and non-cognate receptors. Altered membrane properties may modify lateral sorting of membrane protein, membrane protein conformation, and thus influence their function as suspected for neurotransmitters, local anesthetics, and other small drug molecules.
Collapse
Affiliation(s)
- Oskar Engberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Anna Bochicchio
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Astrid F. Brandner
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ankur Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Simli Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
48
|
Jones AJY, Gabriel F, Tandale A, Nietlispach D. Structure and Dynamics of GPCRs in Lipid Membranes: Physical Principles and Experimental Approaches. Molecules 2020; 25:E4729. [PMID: 33076366 PMCID: PMC7587580 DOI: 10.3390/molecules25204729] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the vast amount of information generated through structural and biophysical studies of GPCRs has provided unprecedented mechanistic insight into the complex signalling behaviour of these receptors. With this recent information surge, it has also become increasingly apparent that in order to reproduce the various effects that lipids and membranes exert on the biological function for these allosteric receptors, in vitro studies of GPCRs need to be conducted under conditions that adequately approximate the native lipid bilayer environment. In the first part of this review, we assess some of the more general effects that a membrane environment exerts on lipid bilayer-embedded proteins such as GPCRs. This is then followed by the consideration of more specific effects, including stoichiometric interactions with specific lipid subtypes. In the final section, we survey a range of different membrane mimetics that are currently used for in vitro studies, with a focus on NMR applications.
Collapse
Affiliation(s)
| | | | | | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (A.J.Y.J.); (F.G.); (A.T.)
| |
Collapse
|
49
|
Schlame M. Protein crowding in the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148305. [PMID: 32916174 DOI: 10.1016/j.bbabio.2020.148305] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
The inner membrane of mitochondria is known for its low lipid-to-protein ratio. Calculations based on the size and the concentration of the principal membrane components, suggest about half of the hydrophobic volume of the membrane is occupied by proteins. Such high degree of crowding is expected to strain the hydrophobic coupling between proteins and lipids unless stabilizing mechanisms are in place. Both protein supercomplexes and cardiolipin are likely to be critical for the integrity of the inner mitochondrial membrane because they reduce the energy penalty of crowding.
Collapse
Affiliation(s)
- Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, NY 10016, USA.
| |
Collapse
|
50
|
Abstract
Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure-property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach-combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations-we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer's packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure-property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol's role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid-protein interactions.
Collapse
|