1
|
Zhang Z, Zhong C, Guo M, Yin Y, Ye H, Lu X, Liu Z, Yu G. Cryo-EM structures of ABCC1 revealing new conformational dynamics in the resting state. Biochem Biophys Res Commun 2024; 738:150953. [PMID: 39515093 DOI: 10.1016/j.bbrc.2024.150953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
ABCC1/MRP1 in the C branch of Adenosine triphosphate binding cassette (ABC) transporters superfamily, is directly linked to multiple drug resistance in chemotherapy. Here, to further understand the conformational dynamics of ABCC1, we performed single-particle cryo-electron microscopy analysis of purified bovine ABCC1. Two conformational states were found coexisted with nearly equal population. While one state has a wider substrate transporting pathway, akin to the previously reported apo structure, the other is narrower, despite the empty substrate pocket. In addition, multiple lipid-binding interfaces were identified based on the presence of rod-shaped, unmodeled, non-protein densities in the resolved density maps, potentially contributing to the stabilization of TMD0 domain and activity regulation of ABCC1. Further, we found that three asparagine residues in bovine ABCC1 are glycosylated. Together, our study provides fresh insights into the structural features and conformational dynamics of bovine ABCC1, offering a new framework for understanding the function and regulatory mechanisms of ABCC1.
Collapse
Affiliation(s)
- Zhengtian Zhang
- College of Life Sciences, Nanyang Normal University, Nanyang, China
| | - Chunhui Zhong
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Menghui Guo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongyou Yin
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Heng Ye
- Shenzhen Focalon Applied Academy, Shenzhen Practical Scientific Research Co., Ltd., Shenzhen, China
| | - Xiting Lu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Guimei Yu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
2
|
Elbahnsi A, Dudas B, Cisternino S, Declèves X, Miteva MA. Mechanistic insights into P-glycoprotein ligand transport and inhibition revealed by enhanced molecular dynamics simulations. Comput Struct Biotechnol J 2024; 23:2548-2564. [PMID: 38989058 PMCID: PMC11233806 DOI: 10.1016/j.csbj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
P-glycoprotein (P-gp) plays a crucial role in cellular detoxification and drug efflux processes, transitioning between inward-facing (IF) open, occluded, and outward-facing (OF) states to facilitate substrate transport. Its role is critical in cancer therapy, where P-gp contributes to the multidrug resistance phenotype. In our study, classical and enhanced molecular dynamics (MD) simulations were conducted to dissect the structural and functional features of the P-gp conformational states. Our advanced MD simulations, including kinetically excited targeted MD (ketMD) and adiabatic biasing MD (ABMD), provided deeper insights into state transition and translocation mechanisms. Our findings suggest that the unkinking of TM4 and TM10 helices is a prerequisite for correctly achieving the outward conformation. Simulations of the IF-occluded conformations, characterized by kinked TM4 and TM10 helices, consistently demonstrated altered communication between the transmembrane domains (TMDs) and nucleotide binding domain 2 (NBD2), suggesting the implication of this interface in inhibiting P-gp's efflux function. A particular emphasis was placed on the unstructured linker segment connecting the NBD1 to TMD2 and its role in the transporter's dynamics. With the linker present, we specifically noticed a potential entrance of cholesterol (CHOL) through the TM4-TM6 portal, shedding light on crucial residues involved in accommodating CHOL. We therefore suggest that this entry mechanism could be employed for some P-gp substrates or inhibitors. Our results provide critical data for understanding P-gp functioning and developing new P-gp inhibitors for establishing more effective strategies against multidrug resistance.
Collapse
Affiliation(s)
- Ahmad Elbahnsi
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France
| | - Balint Dudas
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France
| | - Salvatore Cisternino
- Université Paris Cité, Inserm UMRS 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Xavier Declèves
- Université Paris Cité, Inserm UMRS 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Maria A. Miteva
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France
| |
Collapse
|
3
|
Lu XY, Jin H. MiRNAs function in the development of resistance against doxorubicin in cancer cells: targeting ABC transporters. Front Pharmacol 2024; 15:1486783. [PMID: 39679367 PMCID: PMC11638538 DOI: 10.3389/fphar.2024.1486783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024] Open
Abstract
Resistance to chemotherapeutic agents poses a significant challenge in cancer treatment, particularly with doxorubicin, a widely used drug for various cancers, including breast cancer, leukaemia, osteosarcoma, and gastrointestinal cancers. This review aims to elucidate the critical role of microRNAs (miRNAs) in the development of doxorubicin resistance, focusing on their interactions with ATP-binding cassette (ABC) transporters. Despite extensive research, the molecular mechanisms governing doxorubicin resistance still need to be completed, particularly regarding the regulatory influence of miRNAs on ABC transporter expression. By analyzing current literature, this review identifies a notable gap: the lack of comprehensive insight into how specific miRNAs modulate the expression and activity of ABC transporters in cancer cells, contributing to doxorubicin resistance. We systematically examine recent findings on the interplay between miRNAs and ABC transporters, providing a detailed assessment of potential therapeutic strategies that leverage miRNA modulation to overcome drug resistance. Ultimately, this review underscores the significance of integrating miRNA research into existing therapeutic frameworks to enhance the efficacy of doxorubicin in cancer treatment.
Collapse
Affiliation(s)
- Xin-Yan Lu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Yan J, Li Z, Shu Y, Chen H, Wang T, Li X, Zhang Y, Li L, Zhang Y. The Unveiled Novel regulator of Adeno-associated virus production in HEK293 cells. Gene 2024; 938:149122. [PMID: 39581356 DOI: 10.1016/j.gene.2024.149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The field of gene therapy using Adeno-associated viral (AAV) vector delivery is rapidly advancing in the biotherapeutics industry. Despite its successes, AAV manufacturing remains a challenge due to limited production yields. The triple plasmid transfection of HEK293 cells represents the most extensively utilized system for AAV production. The regulatory factors and mechanisms underlying viral production in HEK293 cells are largely unknown. In this study, we isolated high-titer AAV production clones from a parental HEK293 population using a single limiting dilution step, and subsequently elucidating their underlying molecular mechanisms through whole transcriptome analysis. LncRNA TCONS_00160397 was upregulated in clones and shown to promoted HEK293 cells proliferation and improved the titer of AAV production. Mechanistically, results from proteomics and metabolomics indicated that TCONS_00160397 regulated the ABC transporters pathway. These findings furnish a rich repository of knowledge and actionable targets for the rational optimization of HEK293-based producer lines, thereby paving the way for tangible improvements in AAV vector output and expediting the broad implementation of gene therapies.
Collapse
Affiliation(s)
- Junyu Yan
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Ziqian Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yue Shu
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Hui Chen
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Tianxingzi Wang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Xin Li
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - Yuhang Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China
| | - LiLi Li
- Beijing Institute of Biological Products Company Limited, Beijing, China.
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing, China; China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
5
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
6
|
Ho YC, Chiu WC, Chen JY, Huang YH, Teng YN. Reversal potentials of Tween 20 in ABC transporter-mediated multidrug-resistant cancer and treatment-resistant depression through interacting with both drug-binding and ATP-binding areas on MDR proteins. J Drug Target 2024:1-14. [PMID: 39530732 DOI: 10.1080/1061186x.2024.2429006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Drug efflux transporters, especially those belonging to the ATP-binding cassette (ABC) transporter superfamily, play a crucial role in various drug resistance issues, including multidrug resistance (MDR) in cancer and treatment-resistant depression (TRD) in individuals with major depressive disorder. Key transporters in this context include P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). This study aimed to investigate the modulatory effects of polyoxyethylene (20) sorbitan monolaurate (Tween 20) on these efflux transporters in vitro and to evaluate its potential for overcoming drug resistance in two models: an in vitro cancer MDR model and an in vivo TRD model. The findings indicated that 0.001% Tween 20 significantly inhibited the efflux actions of all three transporters. Additionally, 0.005% Tween 20 effectively reversed resistance to paclitaxel, vincristine, doxorubicin, and mitoxantrone in various cancer MDR cell lines. In the in vivo depression-like behaviour model, 0.01% Tween 20 markedly enhanced the antidepressant and anxiolytic effects of fluoxetine. Given its strong inhibitory effects on P-gp, MRP1, and BCRP, along with its capacity to reverse drug resistance both in vitro and in vivo, Tween 20 is a compelling candidate for tackling transporter-mediated drug resistance.
Collapse
Affiliation(s)
- Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Wen-Chin Chiu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Jing-Yi Chen
- Department of Medical Laboratory Science, College of medical science and technology, I-Shou University, Kaohsiung, Taiwan, R.O.C
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Yu-Hsin Huang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C
- Department of Pharmacy, E-Da Cancer Hospital, Kaohsiung, Taiwan, R.O.C
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung City, Taiwan, R.O.C
| |
Collapse
|
7
|
Wei H, Zhu H, Ying W, Janssens H, Kvasnica M, Winne JM, Gao Y, Friml J, Ma Q, Tan S, Liu X, Russinova E, Sun L. Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1. PLANT COMMUNICATIONS 2024:101181. [PMID: 39497419 DOI: 10.1016/j.xplc.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
Brassinosteroids (BRs) are steroidal phytohormones indispensable for plant growth, development, and responses to environmental stresses. The export of bioactive BRs to the apoplast is essential for BR signaling initiation, which requires binding of a BR molecule to the extracellular domains of the plasma membrane-localized receptor complex. We have previously shown that the Arabidopsis thaliana ATP-binding cassette (ABC) transporter ABCB19 functions as a BR exporter and, together with its close homolog ABCB1, positively regulates BR signaling. Here, we demonstrate that ABCB1 is another BR transporter. The ATP hydrolysis activity of ABCB1 can be stimulated by bioactive BRs, and its transport activity was confirmed in proteoliposomes and protoplasts. Structures of ABCB1 were determined in substrate-unbound (apo), brassinolide (BL)-bound, and ATP plus BL-bound states. In the BL-bound structure, BL is bound to the hydrophobic cavity formed by the transmembrane domain and triggers local conformational changes. Together, our data provide additional insights into ABC transporter-mediated BR export.
Collapse
Affiliation(s)
- Hong Wei
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Heyuan Zhu
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wei Ying
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Qian Ma
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Shutang Tan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xin Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Eugenia Russinova
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Linfeng Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
8
|
Yang X, Li M, Jia ZC, Liu Y, Wu SF, Chen MX, Hao GF, Yang Q. Unraveling the secrets: Evolution of resistance mediated by membrane proteins. Drug Resist Updat 2024; 77:101140. [PMID: 39244906 DOI: 10.1016/j.drup.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, Jiangsu 210095, China.
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
9
|
Xin L, Zou YH, Liu CX, Lu H, Fan LJ, Xu HS, Zhou Q, Liu J, Yue ZQ, Gan JH. Methionine restriction promotes cisplatin sensitivity of gastric cancer resistant cells by down-regulating circ-CDK13 level. Exp Cell Res 2024; 443:114315. [PMID: 39488295 DOI: 10.1016/j.yexcr.2024.114315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Methionine restriction (MR) is a research direction in the treatment of gastric cancer (GC). The aim of this study was to investigate the molecular mechanism of MR on enhancing cisplatin (DDP) sensitivity of drug-resistant GC cells. METHODS Twenty pairs of GC tissues and adjacent normal gastric mucosa tissues were collected. DDP-resistant cell lines (KATO/DDP and MKN45/DDP), mouse model of GC and GC patient-derived organoid (PDO) models were established. Lentivirus-mediated METase overexpression was used for MR. Cell viability and apoptosis were detected by MTT assay and flow cytometry. Western blotting was used to detect multi-drug resistance-1 (MDR1), MDR-associated protein 1 (MRP1) eukaryotic initiation factor 4A-Ⅲ (EIF4A3), and METase protein expressions. The levels of circRNAs were detected by qRT-PCR. Tumor volume and weight were measured. The proliferation of tumor cells was detected by immunohistochemical staining. RESULTS The differentially expressed circRNAs of GC were screened in Gene Expression Omnibus database. MR in KATO/DDP and MKN45/DDP cells significantly down-regulated circ-CDK13 level. Overexpression of circ-CDK13 significantly inhibited apoptosis of sensitive cells (KATO III and MKN45). Interference with circ-CDK13 significantly promoted apoptosis of drug-resistant cells (KATO/DDP and MKN45/DDP). MR enhanced the DDP sensitivity of GC resistant cells, GC PDO and GC mice by down-regulating circ-CDK13. EIF4A3 binds to the downstream flanking sequence of circ-CDK13, and interference with EIF4A3 reduces circ-CDK13 levels, but does not affect CDK13. The expressions of circ-CDK13 and EIF4A3 in GC clinical samples were increased and positively correlated. Simultaneously overexpression of METase and EIF4A3 in resistant cells inhibited apoptosis, and further interference with circ-CDK13 reversed this effect. CONCLUSION MR inhibits circ-CDK13 level by down-regulating EIF4A3, thereby increasing the sensitivity of GC drug-resistant cells to DDP.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| | - Yong-Hui Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Chen-Xi Liu
- Excellent Ophthalmology Class 221, School of Ophthalmology & Optometry, Nanchang University, China
| | - Hao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Luo-Jun Fan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - He-Song Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jiang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhen-Qi Yue
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jin-Heng Gan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| |
Collapse
|
10
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Zhou G, Shimura T, Yoneima T, Nagamachi A, Kanai A, Doi K, Sasatani M. Age-Dependent Differences in Radiation-Induced DNA Damage Responses in Intestinal Stem Cells. Int J Mol Sci 2024; 25:10213. [PMID: 39337697 PMCID: PMC11431935 DOI: 10.3390/ijms251810213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Age at exposure is a critical modifier of the risk of radiation-induced cancer. However, the effects of age on radiation-induced carcinogenesis remain poorly understood. In this study, we focused on tissue stem cells using Lgr5-eGFP-ires-CreERT2 mice to compare radiation-induced DNA damage responses between Lgr5+ and Lgr5- intestinal stem cells. Three-dimensional immunostaining analyses demonstrated that radiation induced apoptosis and the mitotic index more efficiently in adult Lgr5- stem cells than in adult Lgr5+ stem cells but not in infants, regardless of Lgr5 expression. Supporting this evidence, rapid and transient p53 activation occurred after irradiation in adult intestinal crypts but not in infants. RNA sequencing revealed greater variability in gene expression in adult Lgr5+ stem cells than in infant Lgr5+ stem cells after irradiation. Notably, the cell cycle and DNA repair pathways were more enriched in adult stem cells than in infant stem cells after irradiation. Our findings suggest that radiation-induced DNA damage responses in mouse intestinal crypts differ between infants and adults, potentially contributing to the age-dependent susceptibility to radiation carcinogenesis.
Collapse
Grants
- none Research project on the Health Effects of Radiation organized by Ministry of the Environment, Japan.
- 23K25008 Japan Society for the Promotion of Science, JSPS KAKENHI
- 22H03754 Japan Society for the Promotion of Science, JSPS KAKENHI
- 23K28232 Japan Society for the Promotion of Science, JSPS KAKENHI
- 23H03542 Japan Society for the Promotion of Science, JSPS KAKENHI
- 20K21846 Japan Society for the Promotion of Science, JSPS KAKENHI
- NIFS20KOCA004 National Institute for Fusion Science Collaborative Research Program
- NIFS23HDCF005 National Institute for Fusion Science Collaborative Research Program
- none QST Research Collaboration
- none the Program of the Network-Type Joint Usage/Research Center for Radiation Disaster Medical Science at Hiroshima University, Nagasaki University, and Fukushima Medical University.
- none Initiative for Realizing Diversity in the Research Environment (Specific Correspondence Type), a support project for the Development of Human Resources in Science and Technology conducted by the Ministry of Education, Culture, Sports, Science and Technolo
- NIFS17KOCA002 National Institute for Fusion Science Collaborative Research Program
Collapse
Affiliation(s)
- Guanyu Zhou
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 754-8553, Japan;
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama 351-0197, Japan
| | - Taiki Yoneima
- School of Medicine, Hiroshima University, Hiroshima 754-8551, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 754-8553, Japan
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, Institute for Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 754-8553, Japan;
| |
Collapse
|
12
|
Ji N, Li H, Zhang Y, Li Y, Wang P, Chen X, Liu YN, Wang JQ, Yang Y, Chen ZS, Li Y, Wang R, Kong D. Lansoprazole (LPZ) reverses multidrug resistance (MDR) in cancer through impeding ATP-binding cassette (ABC) transporter-mediated chemotherapeutic drug efflux and lysosomal sequestration. Drug Resist Updat 2024; 76:101100. [PMID: 38885537 DOI: 10.1016/j.drup.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
AIMS Lansoprazole is one of the many proton pump inhibitors (PPIs) that acts more strongly with ABCB1 and ABCG2. The present study is to investigate the potential of lansoprazole on reversal of ABCB1/G2-mediated MDR in cancer, in vitro and in vivo. METHODS Reversal studies and combination evaluation were conducted to determine the synergistic anti-MDR effects on lansoprazole. Lysosomal staining was used to determination of lansoprazole on ABCB1-mediated lysosomal sequestration. Substrate accumulation and efflux assays, ATPase activity, and molecular docking were conducted to evaluate lansoprazole on ABCB1/G2 functions. Western blot and immunofluorescence were used to detect lansoprazole on ABCB1/G2 expression and subcellular localization. MDR nude mice models were established to evaluate the effects of lansoprazole on MDR in vivo. RESULTS Lansoprazole attenuated ABCB1/G2-mediated MDR and exhibited synergistic effects with substrate drugs in MDR cells. In vivo experiments demonstrated that lansoprazole attenuated ABCB1/G2-mediated MDR and exhibited synergistic effects that augmented the sensitivity of substrate anticancer drugs in ABCB1/G2-mediated settings without obvious toxicity. Lansoprazole impeded lysosomal sequestration mediated by ABCB1, leading to a substantial increase in intracellular accumulation of substrate drugs. The effects of lansoprazole were not attributable to downregulation or alterations in subcellular localization of ABCB1/G2. Lansoprazole promoted the ATPase activity of ABCB1/G2 and competitively bound to the substrate-binding region of ABCB1/G2. CONCLUSIONS These findings present novel therapeutic avenues whereby the combination of lansoprazole and chemotherapeutic agents mitigates MDR mediated by ABCB1/G2 overexpression.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antineoplastic Agents/pharmacology
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Lansoprazole/pharmacology
- Lysosomes/metabolism
- Lysosomes/drug effects
- Mice, Nude
- Molecular Docking Simulation
- Neoplasm Proteins
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Proton Pump Inhibitors/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ning Ji
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China
| | - Hui Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Yixuan Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Yuelin Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Peiyu Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Xin Chen
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Yi-Nan Liu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yueguo Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China.
| | - Ran Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China.
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China; Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
13
|
Belhadj Z, Akther T, Wang Z, Xie J. Characterization of a deazaflavin analog as a potent inhibitor of multidrug resistance-associated protein 1. Biomed Pharmacother 2024; 178:117167. [PMID: 39032285 DOI: 10.1016/j.biopha.2024.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Selective inhibition of overexpressed ATP binding cassette (ABC) transporters is an attractive approach to enhancing the efficacy of chemotherapeutics in multidrug resistant cancers. Previously, we reported that the cancer sensitizing effect of deazaflavin analogs, an important chemotype for developing combination treatments with topoisomerase II (TOP2) poisons, is associated with increased intracellular drug accumulation. Here we report the characterization of ZW-1226, a deazaflavin analog, as a potent inhibitor of multidrug resistance-associated protein 1 (MRP1). Specifically, ZW-1226 inhibited MRP1 with a 16-fold higher potency than the most widely used positive control MK-571 in vesicular transport assay and displayed excellent selectivity indices exceeding 100 over other major ABC transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), MRP2 and MRP3. Mechanistically, we revealed that its MRP1 inhibitory action requires the participation of GSH. In chemo-sensitization test, ZW-1226 fully reversed the MRP1-mediated drug resistance to TOP2 poisons etoposide (ETP) and doxorubicin (DOX) in H69AR cells and conferred CC50s comparable to those in the sensitive parental NCI-H69 cells. The sensitization was associated with boosted intracellular accumulation of ETP and DOX and elevated endogenous GSH. Moreover, ZW-1226 showed potential to occupy the leukotriene C4 binding site in molecular docking with bovine MRP1, presumably with the help of GSH. Lastly, ZW-1226 exhibited high tissue to plasma partitions in mice but did not alter ETP distribution to normal tissues, suggesting it could be a viable lead with desirable pharmacokinetic properties to warrant further investigation.
Collapse
Affiliation(s)
- Zakia Belhadj
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thamina Akther
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Scortecci JF, Garces FA, Mahto JK, Molday LL, Van Petegem F, Molday RS. Structural and functional characterization of the nucleotide-binding domains of ABCA4 and their role in Stargardt disease. J Biol Chem 2024; 300:107666. [PMID: 39128720 PMCID: PMC11405800 DOI: 10.1016/j.jbc.2024.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
ABCA4 is an ATP-binding cassette (ABC) transporter that prevents the buildup of toxic retinoid compounds by facilitating the transport of N-retinylidene-phosphatidylethanolamine across membranes of rod and cone photoreceptor cells. Over 1500 missense mutations in ABCA4, many in the nucleotide-binding domains (NBDs), have been genetically linked to Stargardt disease. Here, we show by cryo-EM that ABCA4 is converted from an open outward conformation to a closed conformation upon the binding of adenylyl-imidodiphosphate. Structural information and biochemical studies were used to further define the role of the NBDs in the functional properties of ABCA4 and the mechanisms by which mutations lead to the loss in activity. We show that ATPase activity in both NBDs is required for the functional activity of ABCA4. Mutations in Walker A asparagine residues cause a severe reduction in substrate-activated ATPase activity due to the loss in polar interactions with residues within the D-loops of the opposing NBD. The structural basis for how disease mutations in other NBD residues, including the R1108C, R2077W, R2107H, and L2027F, affect the structure and function of ABCA4 is described. Collectively, our studies provide insight into the structure and function of ABCA4 and mechanisms underlying Stargardt disease.
Collapse
Affiliation(s)
- Jessica Fernandes Scortecci
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jai K Mahto
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
15
|
De Vecchis D, Schäfer LV. Coupling the role of lipids to the conformational dynamics of the ABC transporter P-glycoprotein. Biophys J 2024; 123:2522-2536. [PMID: 38909280 PMCID: PMC11365111 DOI: 10.1016/j.bpj.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) is a multidrug efflux pump that is overexpressed in a variety of cancers and associated with the drug-resistance phenomenon. P-gp structures were previously determined in detergent and in nanodiscs, in which different transmembrane helix conformations were found, "straight" and "kinked," respectively, indicating a possible role of the lipid environment on the P-gp structural ensemble. Here, we investigate the dynamic conformational ensembles and protein-lipid interactions of two human P-gp inward-open conformers, straight and kinked, employing all-atom molecular dynamics (MD) simulations in asymmetric multicomponent lipid bilayers that mimic the highly specialized hepatocyte membrane in which P-gp is expressed. The two conformers are found to differ in terms of the accessibility of the substrate cavity. The MD simulations show how cholesterol and different lipid species wedge, snorkel, and partially enter into the cavity of the straight P-gp conformer solved in detergent. However, access to the cavity of the kinked P-gp conformer solved in nanodiscs is restricted. Furthermore, the volume and dynamic fluctuations of the substrate cavity largely differ between the two P-gp conformers and are modulated by the presence (or absence) of cholesterol in the membrane and/or of ATP. From the mechanistic perspective, the findings indicate that the straight conformer likely precedes the kinked conformer in the functional working cycle of P-gp, with the latter conformation representing a post substrate-bound state. The inaccessibility of the main transmembrane cavity in the kinked conformer might be crucial in preventing substrate disengagement and transport withdrawal. Remarkably, in our unbiased MD simulations, one transmembrane helix (TM10) of the straight conformer underwent a spontaneous transition to a kinked conformation, underlining the relevance of both conformations in a native phospholipid environment and revealing structural descriptors defining the transition between the two P-gp conformers.
Collapse
Affiliation(s)
- Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
16
|
Wang C, Zhu Q, Li Y, Guo J, Li L. Alterations in the Intestinal Microbiome and Metabolic Profile of British Shorthair Kittens Fed with Milk Replacer. Animals (Basel) 2024; 14:2346. [PMID: 39199879 PMCID: PMC11350904 DOI: 10.3390/ani14162346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
With the rising popularity of pet cats as companion animals, the survival of newborn kittens is often threatened by factors such as inadequate nursing, maternal behavior and blood incompatibility. These challenges require the use of milk replacers for nurturing. To investigate the effects that feeding kittens with an experimental milk replacer (EMR) have on growth and development, intestinal microbiota, immune response and nutrient metabolism, 12 British shorthair kittens were randomly divided into two groups after nursing for the first week of life. Kittens were fed queen's milk or EMR, whereby kittens fed queen's milk served as the control (CON) group. The findings revealed that the CON group exhibited superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) (p < 0.01) on day 7. However, the EMR group had better growth performance during the later stage of the experiment (p < 0.05); the immunocompetence and antioxidant capacity of the EMR group were not significantly different from those of the CON group in the middle and late stages of the experiment, and the mean values of all the indexes were slightly better than those of the control group. Sequencing of the 16S rRNA gene in microbiota demonstrated that EMR increased the colonization of bacterial genera, including Lachnospiraceae, Enterococcus, Rothia and Ligilactobacillus. Compared to the CON group, acetate acid (p < 0.05), propionate acid (p < 0.01) and total SCFAs (p < 0.01) in the EMR group were significantly increased. Moreover, the intake of the EMR resulted in the production of distinct metabolites implicated in the metabolism of lipids and amino acids, among other nutrients, thus invigorating the associated metabolic pathways. These results elucidate the impact of administering a milk replacer on gastrointestinal health and nutrient assimilation in kittens. The study provides insights into the use of milk powder alternatives and sets the stage for future research on the formulation and effectiveness of kitten milk replacers.
Collapse
Affiliation(s)
| | | | | | | | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Liu Y, Sun T, Yang J, Luo J, Zhou H. Fractionated irradiation induces radioresistant oral carcinoma cells with enhanced malignant phenotypes. Arch Oral Biol 2024; 164:105988. [PMID: 38788293 DOI: 10.1016/j.archoralbio.2024.105988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE The fact that certain oral carcinoma patients experience radiotherapy failure implies that a more radioresistant and aggressive phenotype of surviving cancer cells potentially occurs during treatment. Our study aimed to establish radioresistant oral cancer cells through a fractionated irradiation protocol that mimics clinically relevant radiotherapy dosing strategies and to investigate all-round alterations in the malignant phenotype. METHODS Radioresistant oral carcinoma cells were generated by exposing Cal27 and Detroit 562 cells to 60 Gy radiation in 10 dose-escalating fractions and verified by cell immunofluorescence. Specific markers related to the epithelial-mesenchymal transition (EMT) process and the cancer stem cell (CSC) phenotype were assessed by Western blotting. Cell invasion and migration were evaluated using Matrigel-coated transwell and wound healing assays, respectively. Nontargeted metabolomics was used to mechanistically delineate the potential metabolic patterns linked to EMT and CSCs; the CSC phenotype was also examined by sphere formation assays and cell immunofluorescence. RESULTS Radioresistant oral carcinoma cell lines were successfully established and validated. These cells exhibited enhanced EMT and increase in both cell invasion and migration. These radioresistant cells further demonstrated a high metabolic profile, notably marked by lipid metabolism reprogramming and functional enrichment of ATP-binding cassette (ABC) transporters. Consistently, enhanced CSC phenotype in radioresistant cells was confirmed by elevated expression of stemness markers and increased sphere-forming capacity. CONCLUSION Radioresistant oral carcinoma cells subjected to fractionated radiation exhibit an augmented malignant phenotype. The metabolic characteristics linked to enhanced EMT and CSC phenotypes provide potential targets for improving radiotherapy in oral carcinoma.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tongxu Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
18
|
Zhu Y, Xing X, Wang F, Chen L, Zhong C, Lu X, Yu Z, Yang Y, Yao Y, Song Q, Han S, Liu Z, Zhang P. The ATP-bound inward-open conformation of ABCC4 reveals asymmetric ATP binding for substrate transport. FEBS Lett 2024; 598:1967-1980. [PMID: 38886124 DOI: 10.1002/1873-3468.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The multidrug resistance-associated protein (MRP) ABCC4 facilitates substrate transport across the cytoplasmic membrane, crucial for normal physiology and mediating multidrug resistance in tumor cells. Despite intensive studies on MRPs, ABCC4's transport mechanism remains incompletely understood. In this study, we unveiled an inward-open conformation with an ATP bound to degenerate NBD1. Additionally, we captured the structure with both ATP and substrate co-bound in the inward-open state. Our findings uncover the asymmetric ATP binding in ABCC4 and provide insights into substrate binding and transport mechanisms. ATP binding to NBD1 is parallel to substrate binding to ABCC4, and is a prerequisite for ATP-bound NBD2-induced global conformational changes. Our findings shed new light on targeting ABCC4 in combination with anticancer therapy.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Fuxing Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Chunhui Zhong
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Xiting Lu
- School of Applied Biology, Shenzhen Institute of Technology, China
| | - Zhanwang Yu
- School of Applied Biology, Shenzhen Institute of Technology, China
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
19
|
Wang Y, Tu MJ, Yu AM. Efflux ABC transporters in drug disposition and their posttranscriptional gene regulation by microRNAs. Front Pharmacol 2024; 15:1423416. [PMID: 39114355 PMCID: PMC11303158 DOI: 10.3389/fphar.2024.1423416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane proteins expressed commonly in metabolic and excretory organs to control xenobiotic or endobiotic disposition and maintain their homeostasis. Changes in ABC transporter expression may directly affect the pharmacokinetics of relevant drugs involving absorption, distribution, metabolism, and excretion (ADME) processes. Indeed, overexpression of efflux ABC transporters in cancer cells or bacteria limits drug exposure and causes therapeutic failure that is known as multidrug resistance (MDR). With the discovery of functional noncoding microRNAs (miRNAs) produced from the genome, many miRNAs have been revealed to govern posttranscriptional gene regulation of ABC transporters, which shall improve our understanding of complex mechanism behind the overexpression of ABC transporters linked to MDR. In this article, we first overview the expression and localization of important ABC transporters in human tissues and their clinical importance regarding ADME as well as MDR. Further, we summarize miRNA-controlled posttranscriptional gene regulation of ABC transporters and effects on ADME and MDR. Additionally, we discuss the development and utilization of novel bioengineered miRNA agents to modulate ABC transporter gene expression and subsequent influence on cellular drug accumulation and chemosensitivity. Findings on posttranscriptional gene regulation of ABC transporters shall not only improve our understanding of mechanisms behind variable ADME but also provide insight into developing new means towards rational and more effective pharmacotherapies.
Collapse
Affiliation(s)
| | | | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, United States
| |
Collapse
|
20
|
van der Sluijs P, Hoelen H, Schmidt A, Braakman I. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. J Mol Biol 2024; 436:168591. [PMID: 38677493 DOI: 10.1016/j.jmb.2024.168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.
Collapse
Affiliation(s)
- Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Hanneke Hoelen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Present address: GenDx, Yalelaan 48, 3584 CM Utrecht, The Netherlands
| | - Andre Schmidt
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; 3D-Pharmxchange, Tilburg, the Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
21
|
Theron CW, Salcedo-Sora JE, Grixti JM, Møller-Hansen I, Borodina I, Kell DB. Evidence for the Role of the Mitochondrial ABC Transporter MDL1 in the Uptake of Clozapine and Related Molecules into the Yeast Saccharomyces cerevisiae. Pharmaceuticals (Basel) 2024; 17:938. [PMID: 39065789 PMCID: PMC11279418 DOI: 10.3390/ph17070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Clozapine is an antipsychotic drug whose accumulation in white cells can sometimes prove toxic; understanding the transporters and alleles responsible is thus highly desirable. We used a strategy in which a yeast (Saccharomyces cerevisiae) CRISPR-Cas9 knock-out library was exposed to cytotoxic concentrations of clozapine to determine those transporters whose absence made it more resistant; we also recognised the structural similarity of the fluorescent dye safranin O (also known as safranin T) to clozapine, allowing it to be used as a surrogate marker. Strains lacking the mitochondrial ABC transporter MDL1 (encoded by YLR188W) showed substantial resistance to clozapine. MDL1 overexpression also conferred extra sensitivity to clozapine and admitted a massive increase in the cellular and mitochondrial uptake of safranin O, as determined using flow cytometry and microscopically. Yeast lacking mitochondria showed no such unusual accumulation. Mitochondrial MDL1 is thus the main means of accumulation of clozapine in S. cerevisiae. The closest human homologue of S. cerevisiae MDL1 is ABCB10.
Collapse
Affiliation(s)
- Chrispian W. Theron
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - J. Enrique Salcedo-Sora
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Justine M. Grixti
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| | - Douglas B. Kell
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
22
|
Koide E, Pietz HL, Beltran J, Chen J. Structural basis for the transport and regulation mechanism of the Multidrug resistance-associated protein 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600277. [PMID: 38979242 PMCID: PMC11230190 DOI: 10.1101/2024.06.24.600277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Multidrug resistance-associated protein 2 (MRP2) is an ATP-powered exporter important for maintaining liver homeostasis and a potential contributor to chemotherapeutic resistance. Deficiencies in MRP2 function are associated with Dubin-Johnson Syndrome and increased vulnerability to liver injury from cytotoxic drugs. Using cryogenic electron microscopy (cryo-EM), we determined the structures of human MRP2 in three conformational states: an autoinhibited state, a substrate-bound pre-translocation state, and an ATP-bound post-translocation state. These structures show that MRP2 functions through the classic alternating access model, driven by ATP binding and hydrolysis. Its cytosolic regulatory (R) domain serves as a selectivity gauge, wherein only sufficiently high concentrations of substrates can effectively compete with and disengage the R domain to initiate transport. Comparative structural analyses of MRP2 in complex with different substrates reveal how the transporter recognizes a diverse array of compounds, highlighting the transporter's role in multidrug resistance.
Collapse
|
23
|
Li Y, Mu L, Li Y, Mi Y, Hu Y, Li X, Tao D, Qin J. Golgi dispersal in cancer stem cells promotes chemoresistance of colorectal cancer via the Golgi stress response. Cell Death Dis 2024; 15:417. [PMID: 38879509 PMCID: PMC11180190 DOI: 10.1038/s41419-024-06817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/19/2024]
Abstract
Chemotherapy is a crucial treatment for colorectal tumors. However, its efficacy is restricted by chemoresistance. Recently, Golgi dispersal has been suggested to be a potential response to chemotherapy, particularly to drugs that induce DNA damage. However, the underlying mechanisms by which Golgi dispersal enhances the capacity to resist DNA-damaging agents remain unclear. Here, we demonstrated that DNA-damaging agents triggered Golgi dispersal in colorectal cancer (CRC), and cancer stem cells (CSCs) possessed a greater degree of Golgi dispersal compared with differentiated cancer cells (non-CSCs). We further revealed that Golgi dispersal conferred resistance against the lethal effects of DNA-damaging agents. Momentously, Golgi dispersal activated the Golgi stress response via the PKCα/GSK3α/TFE3 axis, resulting in enhanced protein and vesicle trafficking, which facilitated drug efflux through ABCG2. Identification of Golgi dispersal indicated an unexpected pathway regulating chemoresistance in CRC.
Collapse
Affiliation(s)
- Yangkun Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lei Mu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanqi Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yulong Mi
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Surgical Oncology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350013, Fujian, China
| | - Yibing Hu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, Guangdong, China
| | - Xiaolan Li
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Deding Tao
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jichao Qin
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
24
|
Ogunbileje JO, Harris N, Wynn T, Kashif R, Stover B, Osa-Andrews B. ATP-Binding Cassette Transporter of Clinical Significance: Sideroblastic Anemia. J Pers Med 2024; 14:636. [PMID: 38929857 PMCID: PMC11204910 DOI: 10.3390/jpm14060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The ATP-binding cassette (ABC) transporters are a vast group of 48 membrane proteins, some of which are of notable physiological and clinical importance. Some ABC transporters are involved in functions such as the transport of chloride ions, bilirubin, reproductive hormones, cholesterol, and iron. Consequently, genetic or physiological disruption in these functions is manifested in various disease processes like cystic fibrosis, Tangier disease, and sideroblastic anemia. Among other etiologies, primary sideroblastic anemia results from a genetic mutation in the ATP-binding cassette-7 (ABCB7), a member of the ABC transporter family. There are not many articles specifically tackling the disease processes caused by ABC transporters in detail. Some testing methodologies previously reported in the available literature for investigating sideroblastic anemia need updating. Here, we expound on the relevance of ABCB7 as a clinically important ABC transporter and a rare participant in the disease process of Sideroblastic anemia. The other genetic and secondary etiologies of sideroblastic anemia, which do not involve mutations in the ABCB7 protein, are also described. We review the pathophysiology, clinical course, symptoms, diagnosis, and treatment of sideroblastic anemia with a focus on modern technologies for laboratory testing.
Collapse
Affiliation(s)
| | - Neil Harris
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Tung Wynn
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Reema Kashif
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Brian Stover
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
25
|
Thévenod F, Lee WK. Cadmium transport by mammalian ATP-binding cassette transporters. Biometals 2024; 37:697-719. [PMID: 38319451 PMCID: PMC11101381 DOI: 10.1007/s10534-024-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Cellular responses to toxic metals depend on metal accessibility to intracellular targets, reaching interaction sites, and the intracellular metal concentration, which is mainly determined by uptake pathways, binding/sequestration and efflux pathways. ATP-binding cassette (ABC) transporters are ubiquitous in the human body-usually in epithelia-and are responsible for the transfer of indispensable physiological substrates (e.g. lipids and heme), protection against potentially toxic substances, maintenance of fluid composition, and excretion of metabolic waste products. Derailed regulation and gene variants of ABC transporters culminate in a wide array of pathophysiological disease states, such as oncogenic multidrug resistance or cystic fibrosis. Cadmium (Cd) has no known physiological role in mammalians and poses a health risk due to its release into the environment as a result of industrial activities, and eventually passes into the food chain. Epithelial cells, especially within the liver, lungs, gastrointestinal tract and kidneys, are particularly susceptible to the multifaceted effects of Cd because of the plethora of uptake pathways available. Pertinent to their broad substrate spectra, ABC transporters represent a major cellular efflux pathway for Cd and Cd complexes. In this review, we summarize current knowledge concerning transport of Cd and its complexes (mainly Cd bound to glutathione) by the ABC transporters ABCB1 (P-glycoprotein, MDR1), ABCB6, ABCC1 (multidrug resistance related protein 1, MRP1), ABCC7 (cystic fibrosis transmembrane regulator, CFTR), and ABCG2 (breast cancer related protein, BCRP). Potential detoxification strategies underlying ABC transporter-mediated efflux of Cd and Cd complexes are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology & ZBAF, Witten/Herdecke University, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| |
Collapse
|
26
|
Kasten A, Cascorbi I. Understanding the impact of ABCG2 polymorphisms on drug pharmacokinetics: focus on rosuvastatin and allopurinol. Expert Opin Drug Metab Toxicol 2024; 20:519-528. [PMID: 38809523 DOI: 10.1080/17425255.2024.2362184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION In addition to the well-established understanding of the pharmacogenetics of drug-metabolizing enzymes, there is growing data on the effects of genetic variation in drug transporters, particularly ATP-binding cassette (ABC) transporters. However, the evidence that these genetic variants can be used to predict drug effects and to adjust individual dosing to avoid adverse events is still limited. AREAS COVERED This review presents a summary of the current literature from the PubMed database as of February 2024 regarding the impact of genetic variants on ABCG2 function and their relevance to the clinical use of the HMG-CoA reductase inhibitor rosuvastatin and the xanthine oxidase inhibitor allopurinol. EXPERT OPINION Although there are pharmacogenetic guidelines for the ABCG2 missense variant Q141K, there is still some conflicting data regarding the clinical benefits of these recommendations. Some caution appears to be warranted in homozygous ABCG2 Q141K carriers when rosuvastatin is administered at higher doses and such information is already included in the drug label. The benefit of dose adaption to lower possible side effects needs to be evaluated in prospective clinical studies.
Collapse
Affiliation(s)
- Anne Kasten
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
27
|
Zhang S, Huang L, Zeng Y, Gao G, Wu H, Li D, Guo R. SLC38A3 Promotes the Proliferation and Migration of Tumor Cells and Predicts Poor Prognosis in Colorectal Cancer. ACS OMEGA 2024; 9:21116-21126. [PMID: 38764627 PMCID: PMC11097367 DOI: 10.1021/acsomega.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have revealed that abnormal expressions of membrane transporters were associated with colorectal cancer (CRC). We herein performed a comprehensive bioinformatics analysis to identify the key transporter protein-related genes involved in CRC and potential mechanisms. Differentially expressed transporter protein-related genes (DE-TPRGs) were identified from CRC and normal samples using The Cancer Genome Atlas database. SLC38A3 expression was validated by immunohistochemistry and RT-qPCR, and the potential mechanism was explored. A total of 63 DE-TPRGs (29 up-regulated and 34 down-regulated) were screened. Inside, ABCC2, ABCG2, SLC4A4, SLC9A3, SLC15A1, and SLC38A3 were identified as hub genes. SLC38A3 is indeed upregulated in colorectal cancer patients. Furthermore, we found that knockdown of SLC38A3 inhibited the proliferation and migration of HCT116 cells, and Hsp70 ATPase activator could rescue it. Overall, SLC38A3 is a novel potential biomarker involved in CRC progression and promotes the proliferation and migration of tumor cells by positively regulating the function of Hsp70.
Collapse
Affiliation(s)
- Siyi Zhang
- Department
of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lingli Huang
- Department
of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youjie Zeng
- Department
of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ge Gao
- Department
of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hui Wu
- Department
of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Dai Li
- Phase
I Clinical Tria Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National
Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410005, China
| | - Ren Guo
- Department
of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
28
|
Nie P, Wen S, Wang M, Xu H. Exploration of Lactiplantibacillus plantarum P101 ameliorated the alcohol-induced testicular dysfunction based on metabolome analysis. Food Chem Toxicol 2024; 185:114463. [PMID: 38244668 DOI: 10.1016/j.fct.2024.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
The decline in male sperm quality caused by multiple factors has become a widespread concern. Alcohol excessive consumption is one of the factors that induce testicular dysfunction. Testicular dysfunction caused by alcohol abuse is related to oxidative stress and inflammation. Probiotics can ameliorate alcohol-induced testicular dysfunction. However, the specific mechanism is not explicit. This study aimed to elucidate the underlying mechanism by which Lactiplantibacillus plantarum P101 ameliorates the alcohol-induced testicular dysfunction. The model of alcohol-induced testicular dysfunction in C57B/6 male mice was established according to the National Institute on Alcohol Abuse and Alcoholism, and Lactiplantibacillus plantarum P101 supplementation was orally administered to mice during the experiment. The results showed that Lactiplantibacillus plantarum P101 promoted androgen production, reduced testis inflammation, and improved testis antioxidant capacity, thereby improving sperm quality and sperm motility and ultimately ameliorating alcohol-induced testicular disorder. Three key metabolite pathways and six key metabolites were identified by metabolome analysis.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Siyue Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330200, PR China.
| |
Collapse
|
29
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
30
|
Fan W, Shao K, Luo M. Structural View of Cryo-Electron Microscopy-Determined ATP-Binding Cassette Transporters in Human Multidrug Resistance. Biomolecules 2024; 14:231. [PMID: 38397468 PMCID: PMC10886794 DOI: 10.3390/biom14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-binding cassette (ABC) transporters, acting as cellular "pumps," facilitate solute translocation through membranes via ATP hydrolysis. Their overexpression is closely tied to multidrug resistance (MDR), a major obstacle in chemotherapy and neurological disorder treatment, hampering drug accumulation and delivery. Extensive research has delved into the intricate interplay between ABC transporter structure, function, and potential inhibition for MDR reversal. Cryo-electron microscopy has been instrumental in unveiling structural details of various MDR-causing ABC transporters, encompassing ABCB1, ABCC1, and ABCG2, as well as the recently revealed ABCC3 and ABCC4 structures. The newly obtained structural insight has deepened our understanding of substrate and drug binding, translocation mechanisms, and inhibitor interactions. Given the growing body of structural information available for human MDR transporters and their associated mechanisms, we believe it is timely to compile a comprehensive review of these transporters and compare their functional mechanisms in the context of multidrug resistance. Therefore, this review primarily focuses on the structural aspects of clinically significant human ABC transporters linked to MDR, with the aim of providing valuable insights to enhance the effectiveness of MDR reversal strategies in clinical therapies.
Collapse
Affiliation(s)
| | | | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; (W.F.); (K.S.)
| |
Collapse
|
31
|
Mao YX, Chen ZP, Wang L, Wang J, Zhou CZ, Hou WT, Chen Y. Transport mechanism of human bilirubin transporter ABCC2 tuned by the inter-module regulatory domain. Nat Commun 2024; 15:1061. [PMID: 38316776 PMCID: PMC10844203 DOI: 10.1038/s41467-024-45337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Bilirubin is mainly generated from the breakdown of heme when red blood cells reach the end of their lifespan. Accumulation of bilirubin in human body usually leads to various disorders, including jaundice and liver disease. Bilirubin is conjugated in hepatocytes and excreted to bile duct via the ATP-binding cassette transporter ABCC2, dysfunction of which would lead to Dubin-Johnson syndrome. Here we determine the structures of ABCC2 in the apo, substrate-bound and ATP/ADP-bound forms using the cryo-electron microscopy, exhibiting a full transporter with a regulatory (R) domain inserted between the two half modules. Combined with substrate-stimulated ATPase and transport activity assays, structural analysis enables us to figure out transport cycle of ABCC2 with the R domain adopting various conformations. At the rest state, the R domain binding to the translocation cavity functions as an affinity filter that allows the substrates of high affinity to be transported in priority. Upon substrate binding, the R domain is expelled from the cavity and docks to the lateral of transmembrane domain following ATP hydrolysis. Our findings provide structural insights into a transport mechanism of ABC transporters finely tuned by the R domain.
Collapse
Affiliation(s)
- Yao-Xu Mao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhi-Peng Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Liang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jie Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Wen-Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
32
|
Chaves JCS, Dando SJ, White AR, Oikari LE. Blood-brain barrier transporters: An overview of function, dysfunction in Alzheimer's disease and strategies for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166967. [PMID: 38008230 DOI: 10.1016/j.bbadis.2023.166967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The blood-brain-barrier (BBB) has a major function in maintaining brain homeostasis by regulating the entry of molecules from the blood to the brain. Key players in BBB function are BBB transporters which are highly expressed in brain endothelial cells (BECs) and critical in mediating the exchange of nutrients and waste products. BBB transporters can also influence drug delivery into the brain by inhibiting or facilitating the entry of brain targeting therapeutics for the treatment of brain disorders, such as Alzheimer's disease (AD). Recent studies have shown that AD is associated with a disrupted BBB and transporter dysfunction, although their roles in the development in AD are not fully understand. Modulation of BBB transporter activity may pose a novel approach to enhance the delivery of drugs to the brain for enhanced treatment of AD. In this review, we will give an overview of key functions of BBB transporters and known changes in AD. In addition, we will discuss current strategies for transporter modulation for enhanced drug delivery into the brain.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Samantha J Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
33
|
Duvivier L, Gerard L, Diaz A, Gillet JP. Linking ABC transporters to the hallmarks of cancer. Trends Cancer 2024; 10:124-134. [PMID: 37884430 DOI: 10.1016/j.trecan.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Human ATP-binding cassette (ABC) transporters are ubiquitously expressed and transport a broad range of endogenous and xenobiotic substrates across extra- and intracellular membranes. Mutations in ABC genes cause 21 monogenic diseases, and polymorphisms in these genes are associated with susceptibility to complex diseases. ABC transporters also play a major role in drug bioavailability, and they mediate multidrug resistance in cancer. At least 13 ABC transporters were shown to be involved in drug resistance in vitro. In the past decade, efforts have been made to elucidate their roles in tumor biology. Herein, we explore their involvement in tumorigenesis, focusing on the hallmarks of cells as they make their way from normalcy to neoplastic growth states.
Collapse
Affiliation(s)
- Laurent Duvivier
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Adriana Diaz
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium.
| |
Collapse
|
34
|
Stockmann P, Kuhnert L, Krajnović T, Mijatović S, Maksimović-Ivanić D, Honscha W, Hey-Hawkins E. Carboranes as Potent Phenyl Mimetics: A Comparative Study on the Reversal of ABCG2-Mediated Drug Resistance by Carboranylquinazolines and Their Organic Isosteres. ChemMedChem 2024; 19:e202300506. [PMID: 38012078 DOI: 10.1002/cmdc.202300506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Multidrug resistance is a major challenge in clinical cancer therapy. In particular, overexpression of certain ATP-binding cassette (ABC) transporter proteins, like the efflux transporter ABCG2, also known as breast cancer resistance protein (BCRP), has been associated with the development of resistance to applied chemotherapeutic agents in cancer therapies, and therefore targeted inhibition of BCRP-mediated transport might lead to reversal of this (multidrug) resistance (MDR). In a previous study, we have described the introduction of a boron-carbon cluster, namely closo-dicarbadodecaborane or carborane, as an inorganic pharmacophore into a polymethoxylated 2-phenylquinazolin-4-amine backbone. In this work, the scope was extended to the corresponding amide derivatives. As most of the amide derivatives suffered from poor solubility, only the amide derivative QCe and the two amine derivatives DMQCc and DMQCd were further investigated. Carboranes are often considered as sterically demanding phenyl mimetics or isosteres. Therefore, the organic phenyl and sterically demanding adamantyl analogues of the most promising carborane derivatives were also investigated. The studies showed that the previously described DMQCd, a penta-methoxylated N-carboranyl-2-phenylquinazolin-4-amine, was by far superior to its organic analogues in terms of cytotoxicity, inhibition of the human ABCG2 transporter, as well as the ability to reverse BCRP-mediated mitoxantrone resistance in MDCKII-hABCG2 and HT29 colon cancer cells. Our results indicate that DMQCd is a promising candidate for further in vitro as well as in vivo studies in combination therapy for ABCG2-overexpressing cancers.
Collapse
Affiliation(s)
- Philipp Stockmann
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Lydia Kuhnert
- Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Tamara Krajnović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11108, Belgrade, Serbia
| | - Sanja Mijatović
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11108, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bul. despota Stefana 142, 11108, Belgrade, Serbia
| | - Walther Honscha
- Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
35
|
Orsini Delgado ML, Gamelas Magalhaes J, Morra R, Cultrone A. Muropeptides and muropeptide transporters impact on host immune response. Gut Microbes 2024; 16:2418412. [PMID: 39439228 PMCID: PMC11509177 DOI: 10.1080/19490976.2024.2418412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
In bacteria, the cell envelope is the key element surrounding and protecting the bacterial content from mechanical or osmotic damages. It allows the selective interchanges of solutes, ions, cellular debris, and drugs between the cellular compartments and the external environment, thanks to the presence of transmembrane proteins called transporters. The major component of the cell envelope is the peptidoglycan, consisting of long linear glycan strands cross-linked by short peptide stems. During cell growth or under stress conditions, peptidoglycan fragments, the muropeptides, are released by bacteria and recognized by the host Pattern Recognition Receptor, promoting the activation of their innate defense mechanisms. The review sums up the salient aspects of microbiota-host interaction with a focus on the NOD-dependent immune response to bacterial peptidoglycan and on the accountability of muropeptide transporters in the crosstalk with the host and in antibiotic resistance. Furthermore, it retraces the discoveries and applications of microorganisms-derived components such as vaccines or vaccine adjuvants.
Collapse
|
36
|
Bydlowski SP, Levy D. Association of ABCG5 and ABCG8 Transporters with Sitosterolemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:31-42. [PMID: 38036873 DOI: 10.1007/978-3-031-43883-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Sitosterolemia is a rare genetic lipid disorder, mainly characterized by the accumulation of dietary xenosterols in plasma and tissues. It is caused by inactivating mutations in either ABCG5 or ABCG8 subunits, a subfamily-G ATP-binding cassette (ABCG) transporters. ABCG5/G8 encodes a pair of ABC half transporters that form a heterodimer (G5G8). This heterodimeric ATP-binding cassette (ABC) sterol transporter, ABCG5/G8, is responsible for the hepatobiliary and transintestinal secretion of cholesterol and dietary plant sterols to the surface of hepatocytes and enterocytes, promoting the secretion of cholesterol and xenosterols into the bile and the intestinal lumen. In this way, ABCG5/G8 function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Here, we review the biological characteristics and function of ABCG5/G8, and how the mutations of ABCG5/G8 can cause sitosterolemia, a loss-of-function disorder characterized by plant sterol accumulation and premature atherosclerosis, among other features.
Collapse
Affiliation(s)
- Sergio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera) CNPq, Rio de Janeiro, Brazil.
| | - Debora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
37
|
Poustforoosh A, Moosavi F. Evaluation of the FDA-approved kinase inhibitors to uncover the potential repurposing candidates targeting ABC transporters in multidrug-resistant cancer cells: an in silico approach. J Biomol Struct Dyn 2023; 42:13650-13662. [PMID: 37942620 DOI: 10.1080/07391102.2023.2277848] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
Multiple drug resistance (MDR) is characterized by the resistance of cancer cells to a broad spectrum of anticancer drugs. The main mechanism underlying the MDR phenotype is the overexpression of ATP-binding cassette (ABC) transporters by promoting active drug efflux from cancer cells. Some small-molecule protein kinase inhibitors have been found to overcome MDR by inhibiting ABC transporters as substrates or modulators. This study investigated the chemical activity of 58 FDA-approved anticancer kinase inhibitors against three multidrug resistance-related proteins. The studied proteins are ATP-Binding Cassette Sub-Family B Member 1 (ABCB1), ATP-Binding Cassette Subfamily C Member 1 (ABCC1), and ATP-binding cassette superfamily G member 2 (ABCG2). The drug-binding domain and ATP binding sites of the proteins were considered the kinase inhibitors' probable target. High-throughput virtual screening and molecular docking were employed to find the hit drugs, and the drugs with the highest binding affinity were further evaluated using the molecular dynamics (MD) simulation. The virtual screening revealed that several kinase inhibitors could be considered potential inhibitors of ABCB1, ABCC1, and ABCG2, among which larotrectinib, entrectinib, and infigratinib showed the highest binding affinity, respectively. Based on the obtained results from MD simulation, these drugs can form strong interactions with the essential residues of the target proteins. In silico investigation revealed that larotrectinib, entrectinib, and infigratinib can target the key residues of the studied proteins. Therefore, these approved kinase inhibitors could be considered potential therapies for MDR cancers by targeting these transporters.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Tang Q, Sinclair M, Hasdemir HS, Stein RA, Karakas E, Tajkhorshid E, Mchaourab HS. Asymmetric conformations and lipid interactions shape the ATP-coupled cycle of a heterodimeric ABC transporter. Nat Commun 2023; 14:7184. [PMID: 37938578 PMCID: PMC10632425 DOI: 10.1038/s41467-023-42937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Here we used cryo-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy (DEER), and molecular dynamics (MD) simulations, to capture and characterize ATP- and substrate-bound inward-facing (IF) and occluded (OC) conformational states of the heterodimeric ATP binding cassette (ABC) multidrug exporter BmrCD in lipid nanodiscs. Supported by DEER analysis, the structures reveal that ATP-powered isomerization entails changes in the relative symmetry of the BmrC and BmrD subunits that propagates from the transmembrane domain to the nucleotide binding domain. The structures uncover asymmetric substrate and Mg2+ binding which we hypothesize are required for triggering ATP hydrolysis preferentially in one of the nucleotide-binding sites. MD simulations demonstrate that multiple lipid molecules differentially bind the IF versus the OC conformation thus establishing that lipid interactions modulate BmrCD energy landscape. Our findings are framed in a model that highlights the role of asymmetric conformations in the ATP-coupled transport with general implications to the mechanism of ABC transporters.
Collapse
Affiliation(s)
- Qingyu Tang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hale S Hasdemir
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
39
|
Stewart GW, Gibson JS, Rees DC. The cation-leaky hereditary stomatocytosis syndromes: A tale of six proteins. Br J Haematol 2023; 203:509-522. [PMID: 37679660 DOI: 10.1111/bjh.19093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
This review concerns a series of dominantly inherited haemolytic anaemias in which the membrane of the erythrocyte 'leaks' the univalent cations, compromising the osmotic stability of the cell. The majority of the conditions are explained by mutations in one of six genes, coding for multispanning membrane proteins of different structure and function. These are: RhAG, coding for an ammonium carrier; SLC4A1, coding for the band 3 anion exchanger; PIEZO1, coding for a mechanosensitive cation channel; GLUT1, coding for a glucose transporter; KCNN4, coding for an internal-calcium-activated potassium channel; and ABCB6, coding for a porphyrin transporter. This review describes the five clinical syndromes associated with genetic defects in these genes and their variable genotype/phenotype relationships.
Collapse
Affiliation(s)
- Gordon W Stewart
- Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| | - John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Haematological Medicine, Kings College London, London, UK
| |
Collapse
|
40
|
Chen JY, Sung CJ, Chen SC, Hsiang YP, Hsu YC, Teng YN. Redefine the role of d-α-Tocopheryl polyethylene glycol 1000 succinate on P-glycoprotein, multidrug resistance protein 1, and breast cancer resistance protein mediated cancer multidrug resistance. Eur J Pharm Sci 2023; 190:106579. [PMID: 37689120 DOI: 10.1016/j.ejps.2023.106579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/22/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Cancer drug resistance is an ever-changing problem that most patients need to face in their later stages of treatment, especially the multidrug resistant (MDR) type. The drug efflux transporters, including P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP), play the crucial roles in this sophisticated battle. In recent decades, researchers try to find potential inhibitors to impede the drug efflux function of above transporters. d-α-Tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) is a prevalently used excipient in the formulation design. In the present study, the modulatory effects and mechanisms of vitamin E TPGS on the efflux transporters were investigated. And the cancer MDR reversing ability of vitamin E TPGS was evaluated as well. Stable-cloned transporter over-expressed cell lines were used for mechanisms study, while several types of MDR cancer cell lines were adopted as reversing evaluation models. The results exhibited that vitamin E TPGS significantly inhibited the efflux function of P-gp, MRP1, and BCRP under non-cytotoxic concentrations, but not influencing the protein expression levels. Through efflux assay and molecular docking, vitamin E TPGS was found to be an uncompetitive, non-competitive, and competitive inhibitor on chemotherapeutic drug doxorubicin efflux in P-gp, MRP1, and BCRP over-expressing cell lines, respectively. Furthermore, the basal ATPase activity of three transporters were significantly inhibited by vitamin E TPGS at 10 μM. And the cell membrane fluidity of P-gp over-expressing cell line was enhanced by 22.58% with 5 μM vitamin E TPGS treatment, compared to the parental Flp-In™-293 cell line (without P-gp). The resistance reversing ability of vitamin E TPGS was prominent in MCF-7/DOX MDR breast cancer cell line, which over-expressed P-gp, MRP1, and BCRP. These significant results suggested that vitamin E TPGS is a promising modulator on transporters mediated cancer MDR. Vitamin E TPGS is not an inert excipient, but possesses MDR-reversing pharmacological effects, and deserves a re-purposing application on the future combinatorial regimen design for MDR cancer treatment.
Collapse
Affiliation(s)
- Jing-Yi Chen
- Department of Medical Laboratory Science, College of medical science and technology, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan, R.O.C; School of Medicine for International Students, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan, R.O.C
| | - Chieh-Ju Sung
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No.1 Jen Ai road section 1, Taipei 100233, Taiwan, R.O.C
| | - Ssu-Chi Chen
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan, R.O.C
| | - Yi-Ping Hsiang
- Department of Pharmacy, E-Da Hospital, 1 Yida Road, Kaohsiung 82445, Taiwan, R.O.C
| | - Yung-Chia Hsu
- Department of Pharmacy, E-Da Cancer Hospital, 21 Yida Road, Kaohsiung 82445, Taiwan, R.O.C
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan, R.O.C; Department of Pharmacy, E-Da Cancer Hospital, 21 Yida Road, Kaohsiung 82445, Taiwan, R.O.C.
| |
Collapse
|
41
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
42
|
Balasubramanian A, Sundrud MS. ATP-dependent transporters: emerging players at the crossroads of immunity and metabolism. Front Immunol 2023; 14:1286696. [PMID: 38022644 PMCID: PMC10644303 DOI: 10.3389/fimmu.2023.1286696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Nearly 50 ATP-binding cassette (ABC) transporters are encoded by mammalian genomes. These transporters are characterized by conserved nucleotide-binding and hydrolysis (i.e., ATPase) domains, and power directional transport of diverse substrate classes - ions, small molecule metabolites, xenobiotics, hydrophobic drugs, and even polypeptides - into or out of cells or subcellular organelles. Although immunological functions of ABC transporters are only beginning to be unraveled, emerging literature suggests these proteins have under-appreciated roles in the development and function of T lymphocytes, including many of the key effector, memory and regulatory subsets that arise during responses to infection, inflammation or cancers. One transporter in particular, MDR1 (Multidrug resistance-1; encoded by the ABCB1 locus in humans), has taken center stage as a novel player in immune regulation. Although MDR1 remains widely viewed as a simple drug efflux pump in tumor cells, recent evidence suggests that this transporter fills key endogenous roles in enforcing metabolic fitness of activated CD4 and CD8 T cells. Here, we summarize current understanding of the physiological functions of ABC transporters in immune regulation, with a focus on the anti-oxidant functions of MDR1 that may shape both the magnitude and repertoires of antigen-specific effector and memory T cell compartments. While much remains to be learned about the functions of ABC transporters in immunobiology, it is already clear that they represent fertile new ground, both for the definition of novel immunometabolic pathways, and for the discovery of new drug targets that could be leveraged to optimize immune responses to vaccines and cancer immunotherapies.
Collapse
Affiliation(s)
- Akshaya Balasubramanian
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Mark S. Sundrud
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Center for Digestive Health, Dartmouth Health, Lebanon, NH, United States
- Dartmouth Cancer Center, Lebanon, NH, United States
| |
Collapse
|
43
|
Díaz-Anaya AM, Gerard L, Albert M, Gaussin JF, Boonen M, Gillet JP. The β Isoform of Human ATP-Binding Cassette B5 Transporter, ABCB5β, Localizes to the Endoplasmic Reticulum. Int J Mol Sci 2023; 24:15847. [PMID: 37958830 PMCID: PMC10649157 DOI: 10.3390/ijms242115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
ABCB5β is a member of the ABC transporter superfamily cloned from melanocytes. It has been reported as a marker of skin progenitor cells and melanoma stem cells. ABCB5β has also been shown to exert an oncogenic activity and promote cancer metastasis. However, this protein remains poorly characterized. To elucidate its subcellular localization, we tested several anti-ABCB5 antibodies and prepared several tagged ABCB5β cDNA constructs. We then used a combination of immunofluorescence and biochemical analyses to investigate the presence of ABCB5β in different subcellular compartments of HeLa and MelJuSo cell lines. Treatment of the cells with the proteasome inhibitor MG132 showed that part of the population of newly synthesized ABCB5β is degraded by the proteasome system. Interestingly, treatment with SAHA, a molecule that promotes chaperone-assisted folding, largely increased the expression of ABCB5β. Nevertheless, the overall protein distribution in the cells remained similar to that of control conditions; the protein extensively colocalized with the endoplasmic reticulum marker calnexin. Taken together with cell surface biotinylation studies demonstrating that the protein does not reach the plasma membrane (even after SAHA treatment), the data indicate that ABCB5β is a microsomal protein predominantly localized to the ER.
Collapse
Affiliation(s)
- Adriana María Díaz-Anaya
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (A.M.D.-A.); (L.G.)
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium (J.-F.G.)
| | - Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (A.M.D.-A.); (L.G.)
| | - Martine Albert
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium (J.-F.G.)
| | - Jean-François Gaussin
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium (J.-F.G.)
| | - Marielle Boonen
- Laboratory of Intracellular Trafficking Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium (J.-F.G.)
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, 5000 Namur, Belgium; (A.M.D.-A.); (L.G.)
| |
Collapse
|
44
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|