1
|
Qin Y, Zhu Y, Lu L, Wu H, Hu J, Wang F, Zhang B, Wang J, Yang X, Luo R, Chen J, Jiang Q, Yang L, Wang Y, Zhang X. Tailored extracellular matrix-mimetic coating facilitates reendothelialization and tissue healing of cardiac occluders. Biomaterials 2025; 313:122769. [PMID: 39208698 DOI: 10.1016/j.biomaterials.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.
Collapse
Affiliation(s)
- Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200302, China
| | - Haoshuang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Jinpeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Fan Wang
- Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Jian Wang
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan, 030032, China
| | - Xia Yang
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan, 030032, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Juan Chen
- Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Zhang W, Zheng Z, Wang T, Yang X, Zhao J, Zhong Y, Peng X, Zhou Y. Succinylated Type I Collagen Regulates Ferroptosis to Attenuate Skin Photoaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56744-56761. [PMID: 39392263 DOI: 10.1021/acsami.4c11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
During the process of photoaging in the skin, Succinylated type I collagen has a significant effect on reversing the damage caused by UVB radiation, with the regulation of cellular ferroptosis being one of its important pathophysiological mechanisms. Specifically, Succinylated type I collagen reduces the expression of key cell cycle regulators P16, P21, and P53, as well as the ferroptosis-related factor Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), induced by UVB radiation in cells and tissues. Meanwhile, it increases the expression of key factors Glutathione Peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11 (SLC7A11), which inhibit ferroptosis. Additionally, our study also reveals the impact of Succinylated type I collagen on the levels of malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) in cells and tissues, directly affecting the cells' ability to cope with oxidative stress. This further suggests that Succinylated type I collagen may improve skin photoaging through various pathways, including regulating ferroptosis, antioxidation, promoting collagen synthesis, protecting the skin barrier, reducing pigmentation, and inhibiting inflammatory responses, contributing to maintaining healthy and youthful skin.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Zetai Zheng
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Tingyu Wang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
| | - Xiangjie Yang
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Guangdong Medical University, Dongguan 523808, China
| | - Yuesong Zhong
- The Second Clinical Medical College of Guangdong Medical University, Dongguan 523808, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, China
- The Second Affiliated Hospital of Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
3
|
Wei B, Huang S, Li K, Wu H, Liu Y, Zhang J, Hou Y, Zhu L, Xu C, Wang L, Wang H. Recognition of MCF-7 breast cancer cells using native collagen probes: Collagen source effect. Int J Biol Macromol 2024; 282:136661. [PMID: 39423971 DOI: 10.1016/j.ijbiomac.2024.136661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Developing superior cancer cell recognition probes is crucial for the development of tumor therapy and cancer early screening materials. In this study, we first achieved effective recognition of MCF-7 breast cancer cells using natural collagen probes. Through cell adhesion, cancer cell selective capture, and flow cytometry techniques, the binding efficiency of mammalian-derived collagens (bovine Achilles tendon collagen, porcine skin collagen) and fish-derived collagens (turbot skin collagen, grass carp skin collagen, mandarin fish skin collagen) to cancer cells (MCF-7 breast cancer cells) and normal cells (human umbilical vein endothelial cells, HUVECs) was analyzed and compared. The feasibility of different source collagens as probes for recognition of MCF-7 cells was explored in vitro. The results indicated that mammalian-derived collagens had a superior advantage over fish-derived collagens in recognizing MCF-7 cells, with bovine Achilles tendon collagen achieving a capture rate of up to 64.7 % in a multicellular co-culture system. Furthermore, in vivo imaging of BALB/c tumor-bearing mice confirmed the high-efficiency targeted recognition performance of the bovine Achilles tendon collagen probe for MCF-7 cells.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Siying Huang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ke Li
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, PR China
| | - Hui Wu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yong Liu
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuanjing Hou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Linjie Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, PR China.
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, PR China.
| |
Collapse
|
4
|
Coelho NM, Riahi P, Wang Y, Ali A, Norouzi M, Kotlyar M, Jurisica I, McCulloch CA. The major vault protein integrates adhesion-driven signals to regulate collagen remodeling. Cell Signal 2024; 124:111447. [PMID: 39368789 DOI: 10.1016/j.cellsig.2024.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
DDR1 interacts with fibrillar collagen and can affect β1 integrin-dependent signaling, but the mechanism that mediates functional interactions between these two different receptors is not defined. We searched for molecules that link DDR1 and β1 integrin-dependent signaling in response to collagen binding. The activation of DDR1 by binding to fibrillar collagen reduced by 5-fold, β1 integrin-dependent ERK phosphorylation that leads to MMP1 expression. In contrast, pharmacological inhibition of DDR1 or culturing cells on fibronectin restored ERK phosphorylation and MMP1 expression mediated by the β1 integrin. A phospho-site screen indicated that collagen-induced DDR1 activation inhibited β1 integrin-dependent ERK signaling by regulating autophosphorylation of focal adhesion kinase (FAK). Immunoprecipitation, mass spectrometry, and protein-protein interaction mapping showed that while DDR1 and FAK do not interact directly, the major vault protein (MVP) binds DDR1 and FAK depending on the substrate. MVP associated with DDR1 in cells expressing β1 integrin that were cultured on collagen. Knockdown of MVP restored ERK activation and MMP1 expression in DDR1-expressing cells cultured on collagen. Immunostaining of invasive cancers in human colon showed colocalization of DDR1 with MVP. These data indicate that MVP interactions with DDR1 and FAK contribute to the regulation of β1 integrin-dependent signaling pathways that drive collagen degradation.
Collapse
Affiliation(s)
- Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Pardis Riahi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Aiman Ali
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Masoud Norouzi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, UHN, Toronto, ON, Canada
| | - Igor Jurisica
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Osteoarthritis Research Program, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, UHN, Toronto, ON, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, ON, Canada
| | | |
Collapse
|
5
|
Walther RF, Lancaster C, Burden JJ, Pichaud F. A dystroglycan-laminin-integrin axis coordinates cell shape remodeling in the developing Drosophila retina. PLoS Biol 2024; 22:e3002783. [PMID: 39226305 PMCID: PMC11398702 DOI: 10.1371/journal.pbio.3002783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
Cell shape remodeling is a principal driver of epithelial tissue morphogenesis. While progress continues to be made in our understanding of the pathways that control the apical (top) geometry of epithelial cells, we know comparatively little about those that control cell basal (bottom) geometry. To examine this, we used the Drosophila ommatidium, which is the basic visual unit of the compound eye. The ommatidium is shaped as a hexagonal prism, and generating this 3D structure requires ommatidial cells to adopt specific apical and basal polygonal geometries. Using this model system, we find that generating cell type-specific basal geometries starts with patterning of the basal extracellular matrix, whereby Laminin accumulates at discrete locations across the basal surface of the retina. We find the Dystroglycan receptor complex (DGC) is required for this patterning by promoting localized Laminin accumulation at the basal surface of cells. Moreover, our results reveal that localized accumulation of Laminin and the DGC are required for directing Integrin adhesion. This induces cell basal geometry remodeling by anchoring the basal surface of cells to the extracellular matrix at specific, Laminin-rich locations. We propose that patterning of a basal extracellular matrix by generating discrete Laminin domains can direct Integrin adhesion to induce cell shape remodeling in epithelial morphogenesis.
Collapse
Affiliation(s)
- Rhian F Walther
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Courtney Lancaster
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Jemima J Burden
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| | - Franck Pichaud
- Cell Biology of Tissue Architecture and Physiology. Laboratory for Molecular Cell Biology (LMCB), University College London, London, United Kingdom
| |
Collapse
|
6
|
Bhuket PRN, Li Y, Yu SM. From Collagen Mimetics to Collagen Hybridization and Back. Acc Chem Res 2024; 57:1649-1657. [PMID: 38795029 PMCID: PMC11472642 DOI: 10.1021/acs.accounts.3c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
ConspectusFacilitated by the unique triple-helical protein structure, fibrous collagens, the principal proteins in animals, demonstrate a dual function of serving as building blocks for tissue scaffolds and as a bioactive material capable of swift renewal in response to environmental changes. While studies of triple-helical collagen mimetic peptides (CMPs) have been instrumental in understanding the molecular forces responsible for the folding and assembly of triple helices, as well as identifying bioactive regions of fibrous collagen molecules, single-strand CMPs that can specifically target and hybridize to denatured collagens (i.e., collagen hybridizing peptides, CHPs) have proven useful in identifying the remodeling activity of collagen-rich tissues related to development, homeostasis, and pathology. Efforts to improve the utility of CHPs have resulted in the development of new skeletal structures, such as dimeric and cyclic CHPs, as well as the incorporation of artificial amino acids, including fluorinated proline and N-substituted glycines (peptoid residues). In particular, dimeric CHPs were used to capture collagen fragments from biological fluid for biomarker study, and the introduction of peptoid-based collagen mimetics has sparked renewed interest in peptidomimetic research because peptoids enable a stable triple-helical structure and the presentation of an extensive array of side chain structures offering a versatile platform for the development of new collagen mimetics.This Account will cover the evolution of our research from CMPs as biomaterials to ongoing efforts in developing triple-helical peptides with practical theranostic potential in targeting denatured and damaged collagens. Our early efforts in functionalizing natural collagen scaffolds via noncovalent modifications led to the discovery of an entirely new use of CMPs. This discovery resulted in the development of CHPs that are now used by many different laboratories for the investigation of pathologies associated with changes in the structures of extracellular matrices including fibrosis, cancer, and mechanical damage to collagen-rich, load-bearing tissues. Here, we delve into the essential design features of CHPs contributing to their collagen binding properties and practical usage and explore the necessity for further mechanistic understanding of not only the binding processes (e.g., binding domain and stoichiometry of the hybridized complex) but also the biology of collagen degradation, from proteolytic digestion of fibrils to cellular processing of collagen fragments. We also discuss the strengths and weaknesses of peptoid-based triple-helical peptides as applied to collagen hybridization touching on thermodynamic and kinetic aspects of triple-helical folding. Finally, we highlight current limitations and future directions in the use of peptoid building blocks to develop bioactive collagen mimetics as new functional biomaterials.
Collapse
Affiliation(s)
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - S. Michael Yu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key mediator of cell traction force generation in hyaluronic acid-rich extracellular matrices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563860. [PMID: 37961689 PMCID: PMC10634813 DOI: 10.1101/2023.10.24.563860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via integrin cell surface adhesion receptors. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA, an unsulfated GAG) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface adhesion receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
|
8
|
Watanabe-Asaka T, Hayashi M, Harada T, Uemura S, Takai J, Nakamura Y, Moriguchi T, Kawai Y. Perturbed collagen metabolism underlies lymphatic recanalization failure in Gata2 heterozygous deficient mice. J Biochem 2024; 175:551-560. [PMID: 38168819 DOI: 10.1093/jb/mvad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.
Collapse
Affiliation(s)
- Tomomi Watanabe-Asaka
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Moyuru Hayashi
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Takuya Harada
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Satoshi Uemura
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Yasuhiro Nakamura
- Division of Pathology, Tohoku Medical and Pharmaceutical University, School of Medicine 983-8536 Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, School of Medicine
| | - Yoshiko Kawai
- Division of Physiology, Tohoku Medical and Pharmaceutical University, School of Medicine
| |
Collapse
|
9
|
Luan Y, Zhang H, Liu Y, Xue J, Wang K, Ma B, Ma K, Lu H, Chen X, Liu Y, Zhang Z. UTX inhibition suppresses proliferation and promotes apoptosis in patient-derived glioblastoma stem cells by modulating periostin expression. J Cell Physiol 2024; 239:e31178. [PMID: 38214211 DOI: 10.1002/jcp.31178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Glioblastoma stem cells (GSCs) exert a crucial influence on glioblastoma (GBM) development, progression, resistance to therapy, and recurrence, making them an attractive target for drug discovery. UTX, a histone H3K27 demethylase, participates in regulating multiple cancer types. However, its functional role in GSCs remains insufficiently explored. This study aims to investigate the role and regulatory mechanism of UTX on GSCs. Analysis of TCGA data revealed heightened UTX expression in glioma, inversely correlating with overall survival. Inhibiting UTX suppressed GBM cell growth and induced apoptosis. Subsequently, we cultured primary GSCs from three patients, observing that UTX inhibition suppressed cell proliferation and induced apoptosis. RNA-seq was performed to analyze the gene expression changes after silencing UTX in GSCs. The results indicated that UTX-mediated genes were strongly correlated with GBM progression and regulatory tumor microenvironment. The transwell co-cultured experiment showed that silencing UTX in the transwell chamber GSCs inhibited the well plate cell proliferation. Protein-protein interaction analysis revealed that periostin (POSTN) played a role in the UTX-mediated transcriptional regulatory network. Replenishing POSTN reversed the effects of UTX inhibition on GSC proliferation and apoptosis. Our study demonstrated that UTX inhibition hindered POSTN expression by enhancing the H3K27me2/3 level, eventually resulting in inhibiting proliferation and promoting apoptosis of patient-derived GSCs. Our findings may provide a novel and effective strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Jingwen Xue
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Kaige Ma
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| |
Collapse
|
10
|
Meizlish ML, Kimura Y, Pope SD, Matta R, Kim C, Philip NH, Meyaard L, Gonzalez A, Medzhitov R. Mechanosensing regulates tissue repair program in macrophages. SCIENCE ADVANCES 2024; 10:eadk6906. [PMID: 38478620 PMCID: PMC10936955 DOI: 10.1126/sciadv.adk6906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024]
Abstract
Tissue-resident macrophages play important roles in tissue homeostasis and repair. However, how macrophages monitor and maintain tissue integrity is not well understood. The extracellular matrix (ECM) is a key structural and organizational component of all tissues. Here, we find that macrophages sense the mechanical properties of the ECM to regulate a specific tissue repair program. We show that macrophage mechanosensing is mediated by cytoskeletal remodeling and can be performed in three-dimensional environments through a noncanonical, integrin-independent mechanism analogous to amoeboid migration. We find that these cytoskeletal dynamics also integrate biochemical signaling by colony-stimulating factor 1 and ultimately regulate chromatin accessibility to control the mechanosensitive gene expression program. This study identifies an "amoeboid" mode of ECM mechanosensing through which macrophages may regulate tissue repair and fibrosis.
Collapse
Affiliation(s)
- Matthew L. Meizlish
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yoshitaka Kimura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Scott D. Pope
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rita Matta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Catherine Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Naomi H. Philip
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Huang Y, Sun M, Lu Z, Zhong Q, Tan M, Wei Q, Zheng L. Role of integrin β1 and tenascin C mediate TGF-SMAD2/3 signaling in chondrogenic differentiation of BMSCs induced by type I collagen hydrogel. Regen Biomater 2024; 11:rbae017. [PMID: 38525326 PMCID: PMC10960929 DOI: 10.1093/rb/rbae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/26/2024] Open
Abstract
Cartilage defects may lead to severe degenerative joint diseases. Tissue engineering based on type I collagen hydrogel that has chondrogenic potential is ideal for cartilage repair. However, the underlying mechanisms of chondrogenic differentiation driven by type I collagen hydrogel have not been fully clarified. Herein, we explored potential collagen receptors and chondrogenic signaling pathways through bioinformatical analysis to investigate the mechanism of collagen-induced chondrogenesis. Results showed that the super enhancer-related genes induced by collagen hydrogel were significantly enriched in the TGF-β signaling pathway, and integrin-β1 (ITGB1), a receptor of collagen, was highly expressed in bone marrow mesenchymal stem cells (BMSCs). Further analysis showed genes such as COL2A1 and Tenascin C (TNC) that interacted with ITGB1 were significantly enriched in extracellular matrix (ECM) structural constituents in the chondrogenic induction group. Knockdown of ITGB1 led to the downregulation of cartilage-specific genes (SOX9, ACAN, COL2A1), SMAD2 and TNC, as well as the downregulation of phosphorylation of SMAD2/3. Knockdown of TNC also resulted in the decrease of cartilage markers, ITGB1 and the SMAD2/3 phosphorylation but overexpression of TNC showed the opposite trend. Finally, in vitro and in vivo experiments confirmed the involvement of ITGB1 and TNC in collagen-mediated chondrogenic differentiation and cartilage regeneration. In summary, we demonstrated that ITGB1 was a crucial receptor for chondrogenic differentiation of BMSCs induced by collagen hydrogel. It can activate TGF-SMAD2/3 signaling, followed by impacting TNC expression, which in turn promotes the interaction of ITGB1 and TGF-SMAD2/3 signaling to enhance chondrogenesis. These may provide concernful support for cartilage tissue engineering and biomaterials development.
Collapse
Affiliation(s)
- Yuanjun Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Miao Sun
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
| | - Zhenhui Lu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Qiuling Zhong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, China
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
12
|
Trono P, Ottavi F, Rosano' L. Novel insights into the role of Discoidin domain receptor 2 (DDR2) in cancer progression: a new avenue of therapeutic intervention. Matrix Biol 2024; 125:31-39. [PMID: 38081526 DOI: 10.1016/j.matbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/12/2024]
Abstract
Discoidin domain receptors (DDRs), including DDR1 and DDR2, are a unique class of receptor tyrosine kinases (RTKs) activated by collagens at the cell-matrix boundary interface. The peculiar mode of activation makes DDRs as key cellular sensors of microenvironmental changes, with a critical role in all physiological and pathological processes governed by collagen remodeling. DDRs are widely expressed in fetal and adult tissues, and experimental and clinical evidence has shown that their expression is deregulated in cancer. Strong findings supporting the role of collagens in tumor progression and metastasis have led to renewed interest in DDRs. However, despite an increasing number of studies, DDR biology remains poorly understood, particularly the less studied DDR2, whose involvement in cancer progression mechanisms is undoubted. Thus, the understanding of a wider range of DDR2 functions and related molecular mechanisms is expected. To date, several lines of evidence support DDR2 as a promising target in cancer therapy. Its involvement in key functions in the tumor microenvironment makes DDR2 inhibition particularly attractive to achieve simultaneous targeting of tumor and stromal cells, and tumor regression, which is beneficial for improving the response to different types of anti-cancer therapies, including chemo- and immunotherapy. This review summarizes current research on DDR2, focusing on its role in cancer progression through its involvement in tumor and stromal cell functions, and discusses findings that support the rationale for future development of direct clinical strategies targeting DDR2.
Collapse
Affiliation(s)
- Paola Trono
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, Via E. Ramarini, 32, Monterotondo Scalo 00015 Rome
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy
| | - Laura Rosano'
- Institute of Molecular Biology and Pathology (IBPM)-CNR, Via degli Apuli 4, Rome 00185, Italy.
| |
Collapse
|
13
|
Phan TN, Nguyen QM, Yang BS. Expression of the Discoidin Domain Receptor Family Depended on Glucose and Their High Expression in Arterial Tissues in the Rat Model of Type 2 Diabetes. Biol Pharm Bull 2024; 47:1288-1295. [PMID: 39010214 DOI: 10.1248/bpb.b24-00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The active form of discoidin domain receptors (DDRs) is expressed in cell surface and regulated post-translationally by glucose. The DDR2 and DDR1 transfected in HEK293 cells were expressed mainly in their active forms with sizes of 130 and 120 kDa, respectively. DDRs were observed predominantly as 100 kDa proteins in glucose-depleted culture conditions. However, transfection of endothelial growth factor receptor (EGFR) in HEK293 cells resulted in the expression of only one form regardless of glucose concentration. Vascular smooth muscle cells, HT1080s, and MDA-MB-231 cancer cells expressed DDRs in their active forms in high glucose concentrations, which did not occur with EGFR. In diabetic rats, DDRs were expressed at high levels in arterial tissue but EGFR was not highly expressed. Taken together, these results suggest that DDRs expression depends on glucose concentration it may cooperate in the development of atherosclerosis and kidney fibroblasts, promoting nephropathy in diabetic rats.
Collapse
Affiliation(s)
- Trong-Nhat Phan
- Institute of Applied Science and Technology, School of Technology, Van Lang University
- Faculty of Applied Technology, School of Technology, Van Lang University
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology
| | - Quynh-Mai Nguyen
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education
| | - Beom-Seok Yang
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology
| |
Collapse
|
14
|
Zeltz C, Kusche-Gullberg M, Heljasvaara R, Gullberg D. Novel roles for cooperating collagen receptor families in fibrotic niches. Curr Opin Cell Biol 2023; 85:102273. [PMID: 37918273 DOI: 10.1016/j.ceb.2023.102273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Recent data indicate that integrin and non-integrin collagen receptors cooperate in the fibrosis-specific microenvironment (i.e., the fibrotic niche). In certain tumor types, DDR1 can regulate the interaction with collagen III to regulate dormancy and metastasis, whereas in other tumor types, DDR1 can be shed and used to reorganize collagen. DDR1 expressed on tumor cells, together with DDR2 and α11β1 integrin expressed on cancer-associated fibroblasts, can increase tumor tissue stiffness. Integrin α1β1 and α2β1 are present on immune cells where they together with the immunosuppressive collagen receptor LAIR-1 can mediate binding to intratumor collagens. In summary, collagen-binding integrins together with DDRs, can create fibrillar collagen niches that act as traps to hinder immune cell trafficking into the tumor cell mass. Binding of collagens via LAIR-1 on immune cells in turn results in CD8+T-cell exhaustion. Continued studies of these complex interactions are needed for successful new stroma-based therapeutic interventions. In the current review, we will summarize recent data on collagen receptors with a special focus on their potential role in tumor fibrosis and highlight their collaborative roles in tumor fibrotic niches.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, 5009 Bergen, Norway
| | - Marion Kusche-Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, 5009 Bergen, Norway
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
15
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Role of Microenvironmental Components in Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:1616. [PMID: 38003931 PMCID: PMC10672525 DOI: 10.3390/jpm13111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix. It is known that HNSCC is characterized by complex relationships between cancer cells and TME components. TME components and their dynamic interactions with cancer cells enhance tumor adaptation to the environment, which provides the highly aggressive potential of HNSCC and resistance to antitumor therapy. Basic research aimed at studying the role of TME components in HNSCC carcinogenesis may serve as a key to the discovery of both new biomarkers-predictors of prognosis and targets for new antitumor drugs. This review article focuses on the role and interaction with cancer of TME components such as newly formed vessels, cancer-associated fibroblasts, and extracellular matrix.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
16
|
Tu Z, Han F, Zhu Z, Yu Q, Liu C, Bao Y, Li B, Zhou F. Sustained release of basic fibroblast growth factor in micro/nanofibrous scaffolds promotes annulus fibrosus regeneration. Acta Biomater 2023; 166:241-253. [PMID: 37230436 DOI: 10.1016/j.actbio.2023.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Tissue engineering has promising applications in the treatment of intervertebral disc degeneration (IDD). The annulus fibrosus (AF) is critical for maintaining the physiological function of the intervertebral disc (IVD), but the lack of vessels and nutrition in AF makes it difficult to repair. In this study, we used hyaluronan (HA) micro-sol electrospinning and collagen type I (Col-I) self-assembly techniques to fabricate layered biomimetic micro/nanofibrous scaffolds, which released basic fibroblast growth factor (bFGF) to promote AF repair and regeneration after discectomy and endoscopic transforaminal discectomy. The bFGF enveloped in the core of the poly-L-lactic-acid (PLLA) core-shell structure was released in a sustained manner and promoted the adhesion and proliferation of AF cells (AFCs). Col-I could self-assemble on the shell of the PLLA core-shell scaffold to mimic the extracellular matrix (ECM) microenvironment, providing structural and biochemical cues for the regeneration of AF tissue. The in vivo studies showed that the micro/nanofibrous scaffolds promoted the repair of AF defects by simulating the microstructure of native AF tissue and inducing endogenous regeneration mechanism. Taken together, the biomimetic micro/nanofibrous scaffolds have clinical potential for the treatment of AF defects caused by IDD. STATEMENT OF SIGNIFICANCE: The annulus fibrosus (AF) is essential for the intervertebral disc (IVD) physiological function, yet it lacks vascularity and nutrition, making repair difficult. Micro-sol electrospinning technology and collagen type I (Col-I) self-assembly technique were combined in this study to create a layered biomimetic micro/nanofibrous scaffold that releases basic fibroblast growth factor (bFGF) to promote AF repair and regeneration. Col-I could mimic the extracellular matrix (ECM) microenvironment, in vivo, offering structural and biochemical cues for AF tissue regeneration. This research indicates that micro/nanofibrous scaffolds have clinical potential for treating AF deficits induced by IDD.
Collapse
Affiliation(s)
- Zhengdong Tu
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhuang Zhu
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Changjiang Liu
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yu Bao
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Feng Zhou
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
17
|
Kolahdouzmohammadi M, Kolahdouz-Mohammadi R, Tabatabaei SA, Franco B, Totonchi M. Revisiting the Role of Autophagy in Cardiac Differentiation: A Comprehensive Review of Interplay with Other Signaling Pathways. Genes (Basel) 2023; 14:1328. [PMID: 37510233 PMCID: PMC10378789 DOI: 10.3390/genes14071328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Autophagy is a critical biological process in which cytoplasmic components are sequestered in autophagosomes and degraded in lysosomes. This highly conserved pathway controls intracellular recycling and is required for cellular homeostasis, as well as the correct functioning of a variety of cellular differentiation programs, including cardiomyocyte differentiation. By decreasing oxidative stress and promoting energy balance, autophagy is triggered during differentiation to carry out essential cellular remodeling, such as protein turnover and lysosomal degradation of organelles. When it comes to controlling cardiac differentiation, the crosstalk between autophagy and other signaling networks such as fibroblast growth factor (FGF), Wnt, Notch, and bone morphogenetic proteins (BMPs) is essential, yet the interaction between autophagy and epigenetic controls remains poorly understood. Numerous studies have shown that modulating autophagy and precisely regulating it can improve cardiac differentiation, which can serve as a viable strategy for generating mature cardiac cells. These findings suggest that autophagy should be studied further during cardiac differentiation. The purpose of this review article is not only to discuss the relationship between autophagy and other signaling pathways that are active during the differentiation of cardiomyocytes but also to highlight the importance of manipulating autophagy to produce fully mature cardiomyocytes, which is a tough challenge.
Collapse
Affiliation(s)
- Mina Kolahdouzmohammadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran P.O. Box 16635-148, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), 80138 Naples, Italy
- Medical Genetics, Department of Translational Medicine, University of Naples "Federico II", Via Sergio Pansini, 80131 Naples, Italy
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran P.O. Box 16635-148, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
18
|
Liu W, Xu Z, Qiu Y, Qiu X, Tan L, Song C, Sun Y, Liao Y, Liu X, Ding C. Single-Cell Transcriptome Atlas of Newcastle Disease Virus in Chickens Both In Vitro and In Vivo. Microbiol Spectr 2023; 11:e0512122. [PMID: 37191506 PMCID: PMC10269786 DOI: 10.1128/spectrum.05121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Newcastle disease virus (NDV) is an avian paramyxovirus that causes major economic losses to the poultry industry around the world, with NDV pathogenicity varying due to strain virulence differences. However, the impacts of intracellular viral replication and the heterogeneity of host responses among cell types are unknown. Here, we investigated the heterogeneity of lung tissue cells in response to NDV infection in vivo and that of the chicken embryo fibroblast cell line DF-1 in response to NDV infection in vitro using single-cell RNA sequencing. We characterized the NDV target cell types in the chicken lung at the single-cell transcriptome level and classified cells into five known and two unknown cell types. The five known cell types are the targets of NDV in the lungs with virus RNA detected. Different paths of infection in the putative trajectories of NDV infection were distinguished between in vivo and in vitro, or between virulent Herts/33 strain and nonvirulent LaSota strain. Gene expression patterns and the interferon (IFN) response in different putative trajectories were demonstrated. IFN responses were elevated in vivo, especially in myeloid and endothelial cells. We distinguished the virus-infected and non-infected cells, and the Toll-like receptor signaling pathway was the main pathway after virus infection. Cell-cell communication analysis revealed the potential cell surface receptor-ligand of NDV. Our data provide a rich resource for understanding NDV pathogenesis and open the way to interventions specifically targeting infected cells. IMPORTANCE Newcastle disease virus (NDV) is an avian paramyxovirus that causes major economic losses to the poultry industry around the world, with NDV pathogenicity varying due to strain virulence differences. However, the impacts of intracellular viral replication and the heterogeneity of host responses among cell types are unknown. Here, we investigated the heterogeneity of lung tissue cells in response to NDV infection in vivo and that of the chicken embryo fibroblast cell line DF-1 in response to NDV infection in vitro using single-cell RNA sequencing. Our results open the way to interventions specifically targeting infected cells, suggest principles of virus-host interactions applicable to NDV and other similar pathogens, and highlight the potential for simultaneous single-cell measurements of both host and viral transcriptomes for delineating a comprehensive map of infection in vitro and in vivo. Therefore, this study can be a useful resource for the further investigation and understanding of NDV.
Collapse
Affiliation(s)
- Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zejun Xu
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiufan Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
19
|
Batsalova T, Dzhambazov B. Significance of Type II Collagen Posttranslational Modifications: From Autoantigenesis to Improved Diagnosis and Treatment of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:9884. [PMID: 37373030 PMCID: PMC10298457 DOI: 10.3390/ijms24129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Collagen type II (COL2), the main structural protein of hyaline cartilage, is considerably affected by autoimmune responses associated with the pathogenesis of rheumatoid arthritis (RA). Posttranslational modifications (PTMs) play a significant role in the formation of the COL2 molecule and supramolecular fibril organization, and thus, support COL2 function, which is crucial for normal cartilage structure and physiology. Conversely, the specific PTMs of the protein (carbamylation, glycosylation, citrullination, oxidative modifications and others) have been implicated in RA autoimmunity. The discovery of the anti-citrullinated protein response in RA, which includes anti-citrullinated COL2 reactivity, has led to the development of improved diagnostic assays and classification criteria for the disease. The induction of immunological tolerance using modified COL2 peptides has been highlighted as a potentially effective strategy for RA therapy. Therefore, the aim of this review is to summarize the recent knowledge on COL2 posttranslational modifications with relevance to RA pathophysiology, diagnosis and treatment. The significance of COL2 PTMs as a source of neo-antigens that activate immunity leading to or sustaining RA autoimmunity is discussed.
Collapse
Affiliation(s)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
20
|
Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618:698-707. [PMID: 37344646 PMCID: PMC10649266 DOI: 10.1038/s41586-023-06002-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/23/2023] [Indexed: 06/23/2023]
Abstract
Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis-establishing stable spatial and functional relationships with specialized tissue cells-and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sergio Juarez-Carreño
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
21
|
Brichkina A, Polo P, Sharma SD, Visestamkul N, Lauth M. A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15092614. [PMID: 37174079 PMCID: PMC10177377 DOI: 10.3390/cancers15092614] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer represents one of the most desmoplastic malignancies and is characterized by an extensive deposition of extracellular matrix. The latter is provided by activated cancer-associated fibroblasts (CAFs), which are abundant cells in the pancreatic tumor microenvironment. Many recent studies have made it clear that CAFs are not a singular cellular entity but represent a multitude of potentially dynamic subgroups that affect tumor biology at several levels. As mentioned before, CAFs significantly contribute to the fibrotic reaction and the biomechanical properties of the tumor, but they can also modulate the local immune environment and the response to targeted, chemo or radiotherapy. As the number of known and emerging CAF subgroups is steadily increasing, it is becoming increasingly difficult to keep up with these developments and to clearly discriminate the cellular subsets identified so far. This review aims to provide a helpful overview that enables readers to quickly familiarize themselves with field of CAF heterogeneity and to grasp the phenotypic, functional and therapeutic distinctions of the various stromal subpopulations.
Collapse
Affiliation(s)
- Anna Brichkina
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Pierfrancesco Polo
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Shrey Dharamvir Sharma
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Nico Visestamkul
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Matthias Lauth
- Center for Tumor and Immune Biology, Clinics for Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| |
Collapse
|
22
|
De Martino D, Bravo-Cordero JJ. Collagens in Cancer: Structural Regulators and Guardians of Cancer Progression. Cancer Res 2023; 83:1386-1392. [PMID: 36638361 PMCID: PMC10159947 DOI: 10.1158/0008-5472.can-22-2034] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen is one of the most abundant proteins in animals and a major component of the extracellular matrix (ECM) in tissues. Besides playing a role as a structural building block of tissues, collagens can modulate the behavior of cells, and their deregulation can promote diseases such as cancer. In tumors, collagens and many other ECM molecules are mainly produced by fibroblasts, and recent evidence points toward a role of tumor-derived collagens in tumor progression and metastasis. In this review, we focus on the newly discovered functions of collagens in cancer. Novel findings have revealed the role of collagens in tumor dormancy and immune evasion, as well as their interplay with cancer cell metabolism. Collagens could serve as prognostic markers for patients with cancer, and therapeutic strategies targeting the collagen ECM have the potential to prevent tumor progression and metastasis.
Collapse
Affiliation(s)
- Daniela De Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
23
|
Fertala J, Wang ML, Rivlin M, Beredjiklian PK, Abboud J, Arnold WV, Fertala A. Extracellular Targets to Reduce Excessive Scarring in Response to Tissue Injury. Biomolecules 2023; 13:biom13050758. [PMID: 37238628 DOI: 10.3390/biom13050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive scar formation is a hallmark of localized and systemic fibrotic disorders. Despite extensive studies to define valid anti-fibrotic targets and develop effective therapeutics, progressive fibrosis remains a significant medical problem. Regardless of the injury type or location of wounded tissue, excessive production and accumulation of collagen-rich extracellular matrix is the common denominator of all fibrotic disorders. A long-standing dogma was that anti-fibrotic approaches should focus on overall intracellular processes that drive fibrotic scarring. Because of the poor outcomes of these approaches, scientific efforts now focus on regulating the extracellular components of fibrotic tissues. Crucial extracellular players include cellular receptors of matrix components, macromolecules that form the matrix architecture, auxiliary proteins that facilitate the formation of stiff scar tissue, matricellular proteins, and extracellular vesicles that modulate matrix homeostasis. This review summarizes studies targeting the extracellular aspects of fibrotic tissue synthesis, presents the rationale for these studies, and discusses the progress and limitations of current extracellular approaches to limit fibrotic healing.
Collapse
Affiliation(s)
- Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark L Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Pedro K Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Joseph Abboud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - William V Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Rapp AE, Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am J Physiol Cell Physiol 2023; 324:C377-C394. [PMID: 36571440 DOI: 10.1152/ajpcell.00464.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is among the most frequent diseases of the musculoskeletal system. Degradation of cartilage extracellular matrix (ECM) is a hallmark of OA. During the degradation process, intact/full-length proteins and proteolytic fragments are released which then might induce different downstream responses via diverse receptors, therefore leading to different biological consequences. Collagen type II and the proteoglycan aggrecan are the most abundant components of the cartilage ECM. However, over the last decades, a large number of minor components have been identified and for some of those, a role in the manifold processes associated with OA has already been demonstrated. To date, there is still no therapy able to halt or cure OA. A better understanding of the matrikine landscape occurring with or even preceding obvious degenerative changes in joint tissues is needed and might help to identify molecules that could serve as biomarkers, druggable targets, or even be blueprints for disease modifying drug OA drugs. For this narrative review, we screened PubMed for relevant literature in the English language and summarized the current knowledge regarding the function of selected ECM molecules and the derived matrikines in the context of cartilage and OA.
Collapse
Affiliation(s)
- Anna E Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Bai S, Wei Y, Liu R, Chen Y, Ma W, Wang M, Chen L, Luo Y, Du J. The role of transient receptor potential channels in metastasis. Biomed Pharmacother 2023; 158:114074. [PMID: 36493698 DOI: 10.1016/j.biopha.2022.114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the hallmark of failed tumor treatment and is typically associated with death due to cancer. Transient receptor potential (TRP) channels affect changes in intracellular calcium concentrations and participate at every stage of metastasis. Further, they increase the migratory ability of tumor cells, promote angiogenesis, regulate immune function, and promote the growth of tumor cells through changes in gene expression and function. In this review, we explore the potential mechanisms of action of TRP channels, summarize their role in tumor metastasis, compile inhibitors of TRP channels relevant in tumors, and discuss current challenges in research on TRP channels involved in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuan Wei
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Rong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuhua Chen
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wanling Ma
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Minghua Wang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li Chen
- Department of obstetrics and gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Rd, Guangming Dist., Shenzhen, Guangdong 518107, China
| | - Yumei Luo
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
26
|
Cadamuro F, Nicotra F, Russo L. 3D printed tissue models: From hydrogels to biomedical applications. J Control Release 2023; 354:726-745. [PMID: 36682728 DOI: 10.1016/j.jconrel.2023.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
The development of new advanced constructs resembling structural and functional properties of human organs and tissues requires a deep knowledge of the morphological and biochemical properties of the extracellular matrices (ECM), and the capacity to reproduce them. Manufacturing technologies like 3D printing and bioprinting represent valuable tools for this purpose. This review will describe how morphological and biochemical properties of ECM change in different tissues, organs, healthy and pathological states, and how ECM mimics with the required properties can be generated by 3D printing and bioprinting. The review describes and classifies the polymeric materials of natural and synthetic origin exploited to generate the hydrogels acting as "inks" in the 3D printing process, with particular emphasis on their functionalization allowing crosslinking and conjugation with signaling molecules to develop bio-responsive and bio-instructive ECM mimics.
Collapse
Affiliation(s)
- Francesca Cadamuro
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland.
| |
Collapse
|
27
|
Caron JM, Han X, Lary CW, Sathyanarayana P, Remick SC, Ernstoff MS, Herlyn M, Brooks PC. Targeting the secreted RGDKGE collagen fragment reduces PD‑L1 by a proteasome‑dependent mechanism and inhibits tumor growth. Oncol Rep 2023; 49:44. [PMID: 36633146 PMCID: PMC9868893 DOI: 10.3892/or.2023.8481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/16/2022] [Indexed: 01/13/2023] Open
Abstract
Structural alterations of collagen impact signaling that helps control tumor progression and the responses to therapeutic intervention. Integrins represent a class of receptors that include members that mediate collagen signaling. However, a strategy of directly targeting integrins to control tumor growth has demonstrated limited activity in the clinical setting. New molecular understanding of integrins have revealed that these receptors can regulate both pro‑ and anti‑tumorigenic functions in a cell type‑dependent manner. Therefore, designing strategies that block pro‑tumorigenic signaling, without impeding anti‑tumorigenic functions, may lead to development of more effective therapies. In the present study, evidence was provided for a novel signaling cascade in which β3‑integrin‑mediated binding to a secreted RGDKGE‑containing collagen fragment stimulates an autocrine‑like signaling pathway that differentially governs the activity of both YAP and (protein kinase‑A) PKA, ultimately leading to alterations in the levels of immune checkpoint molecule PD‑L1 by a proteasome dependent mechanism. Selectively targeting this collagen fragment, reduced nuclear YAP levels, and enhanced PKA and proteasome activity, while also exhibiting significant antitumor activity in vivo. The present findings not only provided new mechanistic insight into a previously unknown autocrine‑like signaling pathway that may provide tumor cells with the ability to regulate PD‑L1, but our findings may also help in the development of more effective strategies to control pro‑tumorigenic β3‑integrin signaling without disrupting its tumor suppressive functions in other cellular compartments.
Collapse
Affiliation(s)
- Jennifer M. Caron
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Xianghua Han
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Christine W. Lary
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Pradeep Sathyanarayana
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Scot C. Remick
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| | - Marc S. Ernstoff
- Division of Cancer Treatment and Diagnosis, Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Peter C. Brooks
- MaineHealth Institute for Research, Center for Molecular Medicine, Scarborough, ME 04074, USA
| |
Collapse
|
28
|
Abstract
Cholangiocarcinoma is the second most common primary liver cancer. Its incidence is low in the Western world but is rising globally. Surgery, chemotherapy and radiation therapy have been the only treatment options for decades. Progress in our molecular understanding of the disease and the identification of druggable targets, such as IDH1 mutations and FGFR2 fusions, has provided new treatment options. Immunotherapy has emerged as a potent strategy for many different types of cancer and has shown efficacy in combination with chemotherapy for cholangiocarcinoma. In this Review, we discuss findings related to key immunological aspects of cholangiocarcinoma, including the heterogeneous landscape of immune cells within the tumour microenvironment, the immunomodulatory effect of the microbiota and IDH1 mutations, and the association of immune-related signatures and patient outcomes. We introduce findings from preclinical immunotherapy studies, discuss future immune-mediated treatment options, and provide a summary of results from clinical trials testing immune-based approaches in patients with cholangiocarcinoma. This Review provides a thorough survey of our knowledge on immune signatures and immunotherapy in cholangiocarcinoma.
Collapse
|
29
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
30
|
Silva ME, Hernández-Andrade M, Abasolo N, Espinoza-Cruells C, Mansilla JB, Reyes CR, Aranda S, Esteban Y, Rodriguez-Calvo R, Martorell L, Muntané G, Rivera FJ, Vilella E. DDR1 and Its Ligand, Collagen IV, Are Involved in In Vitro Oligodendrocyte Maturation. Int J Mol Sci 2023; 24:ijms24021742. [PMID: 36675255 PMCID: PMC9866737 DOI: 10.3390/ijms24021742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor expressed in epithelial cells from different tissues in which collagen binding activates pleiotropic functions. In the brain, DDR1 is mainly expressed in oligodendrocytes (OLs), the function of which is unclear. Whether collagen can activate DDR1 in OLs has not been studied. Here, we assessed the expression of DDR1 during in vitro OL differentiation, including collagen IV incubation, and the capability of collagen IV to induce DDR1 phosphorylation. Experiments were performed using two in vitro models of OL differentiation: OLs derived from adult rat neural stem cells (NSCs) and the HOG16 human oligodendroglial cell line. Immunocytofluorescence, western blotting, and ELISA were performed to analyze these questions. The differentiation of OLs from NSCs was addressed using oligodendrocyte transcription factor 2 (Olig2) and myelin basic protein (MBP). In HOG16 OLs, collagen IV induced DDR1 phosphorylation through slow and sustained kinetics. In NSC-derived OLs, DDR1 was found in a high proportion of differentiating cells (MBP+/Olig2+), but its protein expression was decreased in later stages. The addition of collagen IV did not change the number of DDR1+/MBP+ cells but did accelerate OL branching. Here, we provide the first demonstration that collagen IV mediates the phosphorylation of DDR1 in HOG16 cells and that the in vitro co-expression of DDR1 and MBP is associated with accelerated branching during the differentiation of primary OLs.
Collapse
Affiliation(s)
- Maria Elena Silva
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Matías Hernández-Andrade
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Nerea Abasolo
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
| | - Cristóbal Espinoza-Cruells
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Josselyne B. Mansilla
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carolina R. Reyes
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Selena Aranda
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yaiza Esteban
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, “Sant Joan” University Hospital, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Ricardo Rodriguez-Calvo
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, “Sant Joan” University Hospital, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
- Translational Regenerative Neurobiology Group, Molecular and Integrative Biosciences Research Program (MIBS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: or (F.J.R.); (E.V.); Tel.: +358-50-598-8142 or +56-63-229-3011 (F.J.R.); +34-658-513-138 (E.V.)
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Institut d’Investigació Sanitària Pere Virgili-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, CIBERSAM-Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: or (F.J.R.); (E.V.); Tel.: +358-50-598-8142 or +56-63-229-3011 (F.J.R.); +34-658-513-138 (E.V.)
| |
Collapse
|
31
|
Kim K, Huang H, Parida PK, He L, Marquez-Palencia M, Reese TC, Kapur P, Brugarolas J, Brekken RA, Malladi S. Cell Competition Shapes Metastatic Latency and Relapse. Cancer Discov 2023; 13:85-97. [PMID: 36098678 PMCID: PMC9839468 DOI: 10.1158/2159-8290.cd-22-0236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 01/17/2023]
Abstract
Cell competition, a fitness-sensing process, is essential for tissue homeostasis. Using cancer metastatic latency models, we show that cell competition results in the displacement of latent metastatic (Lat-M) cells from the primary tumor. Lat-M cells resist anoikis and survive as residual metastatic disease. A memodeled extracellular matrix facilitates Lat-M cell displacement and survival in circulation. Disrupting cell competition dynamics by depleting secreted protein and rich in cysteine (SPARC) reduced displacement from orthotopic tumors and attenuated metastases. In contrast, depletion of SPARC after extravasation in lung-resident Lat-M cells increased metastatic outgrowth. Furthermore, multiregional transcriptomic analyses of matched primary tumors and metachronous metastases from patients with kidney cancer identified tumor subclones with Lat-M traits. Kidney cancer enriched for these Lat-M traits had a rapid onset of metachronous metastases and significantly reduced disease-free survival. Thus, an unexpected consequence of cell competition is the displacement of cells with Lat-M potential, thereby shaping metastatic latency and relapse. SIGNIFICANCE We demonstrate that cell competition within the primary tumor results in the displacement of Lat-M cells. We further show the impact of altering cell competition dynamics on metastatic incidence that may guide strategies to limit metastatic recurrences. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Pravat Kumar Parida
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Lan He
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mauricio Marquez-Palencia
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Tanner C Reese
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas.,Hematology-Oncology Division, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Srinivas Malladi
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
32
|
He J, Yang L, Zhou N, Zu L, Xu S. The role and underlying mechanisms of tumour-derived exosomes in lung cancer metastasis. Curr Opin Oncol 2023; 35:46-53. [PMID: 36321569 DOI: 10.1097/cco.0000000000000913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Lung cancer is one of the most common malignant tumours worldwide. Metastasis is a serious influencing factor for poor treatment effect and shortened survival in lung cancer. But the complicated underlying molecular mechanisms of tumour metastasis remain unclear. In this review, we aim to further summarize and explore the underlying mechanisms of tumour-derived exosomes (TDEs) in lung cancer metastasis. RECENT FINDINGS TDEs are actively produced and released by tumour cells and carry messages from tumour cells to normal or abnormal cells residing at close or distant sites. Many studies have shown that TDEs promote lung cancer metastasis and development through multiple mechanisms, including epithelial-mesenchymal transition, immunosuppression and the formation of a premetastatic niche. TDEs regulate these mechanisms to promote metastasis by carrying DNA, proteins, miRNA, mRNA, lncRNA and ceRNA. Further exploring TDEs related to metastasis may be a promising treatment strategy and deserve further investigation. SUMMARY Overall, TDEs play a critical role in metastatic of lung cancer. Further studies are needed to explore the underlying mechanisms of TDEs in lung cancer metastasis.
Collapse
Affiliation(s)
- Jinling He
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingqi Yang
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Zhou
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
33
|
Role of Collagen in Vascular Calcification. J Cardiovasc Pharmacol 2022; 80:769-778. [PMID: 35998017 DOI: 10.1097/fjc.0000000000001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Vascular calcification is a pathological process characterized by ectopic calcification of the vascular wall. Medial calcifications are most often associated with kidney disease, diabetes, hypertension, and advanced age. Intimal calcifications are associated with atherosclerosis. Collagen can regulate mineralization by binding to apatite minerals and promoting their deposition, binding to collagen receptors to initiate signal transduction, and inducing cell transdifferentiation. In the process of vascular calcification, type I collagen is not only the scaffold for mineral deposition but also a signal entity, guiding the distribution, aggregation, and nucleation of vesicles and promoting the transformation of vascular smooth muscle cells into osteochondral-like cells. In recent years, collagen has been shown to affect vascular calcification through collagen disc-domain receptors, matrix vesicles, and transdifferentiation of vascular smooth muscle cells.
Collapse
|
34
|
Li X, Dai B, Guo J, Zhu Y, Xu J, Xu S, Yao Z, Chang L, Li Y, He X, Chow DHK, Zhang S, Yao H, Tong W, Ngai T, Qin L. Biosynthesized Bandages Carrying Magnesium Oxide Nanoparticles Induce Cortical Bone Formation by Modulating Endogenous Periosteal Cells. ACS NANO 2022; 16:18071-18089. [PMID: 36108267 DOI: 10.1021/acsnano.2c04747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bone grafting is frequently conducted to treat bone defects caused by trauma and tumor removal, yet with significant medical and socioeconomic burdens. Space-occupying bone substitutes remain challenging in the control of osteointegration, and meanwhile activation of endogenous periosteal cells by using non-space-occupying implants to promote new bone formation becomes another therapeutic strategy. Here, we fabricated a magnesium-based artificial bandage with optimal micropatterns for activating periosteum-associated biomineralization. Collagen was self-assembled on the surface of magnesium oxide nanoparticles embedded electrospun fibrous membranes as a hierarchical bandage structure to facilitate the integration with periosteum in situ. After the implantation on the surface of cortical bone in vivo, magnesium ions were released to generate a pro-osteogenic immune microenvironment by activating the endogenous periosteal macrophages into M2 phenotype and, meanwhile, promote blood vessel formation and neurite outgrowth. In a cortical bone defect model, magnesium-based artificial bandage guided the surrounding newly formed bone tissue to cover the defected area. Taken together, our study suggests that the strategy of stimulating bone formation can be achieved with magnesium delivery to periosteum in situ and the proposed periosteal bandages act as a bioactive media for accelerating bone healing.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Shian Zhang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong999077, China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong999077, China
| |
Collapse
|
35
|
Li J, Tian Z, Yang H, Duan L, Liu Y. Infiltration of laponite: An effective approach to improve the mechanical properties and thermostability of collagen hydrogel. J Appl Polym Sci 2022. [DOI: 10.1002/app.53366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jiao Li
- Stomatological Hospital of Chongqing Medical University Chongqing People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing People's Republic of China
| | - Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an People's Republic of China
| | - Huan Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences Southwest University Chongqing People's Republic of China
| | - Yunfei Liu
- Stomatological Hospital of Chongqing Medical University Chongqing People's Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences Chongqing People's Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing People's Republic of China
| |
Collapse
|
36
|
Alkmin S, Patankar MS, Campagnola PJ. Assessing the roles of collagen fiber morphology and matrix stiffness on ovarian cancer cell migration dynamics using multiphoton fabricated orthogonal image-based models. Acta Biomater 2022; 153:342-354. [PMID: 36152908 PMCID: PMC10324295 DOI: 10.1016/j.actbio.2022.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/01/2022]
Abstract
Ovarian cancer remains the deadliest of the gynecological cancers, where this arises from poor screening and imaging tools that can detect early disease, and also limited understanding of the structural and functional aspects of the tumor microenvironment. To gain insight into the underlying cellular dynamics, we have used multiphoton excited fabrication to create Second Harmonic Generation (SHG) image-based orthogonal models from collagen/GelMA that represent both the collagen matrix morphology and stiffness (∼2-8 kPa) of normal ovarian stroma and high grade serous ovarian cancers (HGSOC). These scaffolds are used to study migration/cytoskeletal dynamics of normal (IOSE) and ovarian cancer (OVCA433) cell lines. We found that the highly aligned fiber morphology of HGSOC promotes aspects of motility (motility coefficient, motility, and focal adhesion expression) through a contact guidance mechanism and that stiffer matrix further promotes these same processes through a mechanosensitive mechanism, where these trends were similar for both normal and cancer cells. However, cell specific differences were found on these orthogonal models relative to those providing only morphology, showing the importance of presenting both morphology and stiffness cues. Moreover, we found increased cadherin expression and decreased cell alignment only for cancer cells on scaffolds of intermediate modulus suggesting different stiffness-dependent mechanotransduction mechanisms are engaged. This overall approach affords decoupling the roles of matrix morphology, stiffness and cell genotype and affords hypothesis testing of the factors giving rise to disease progression and metastasis. Further, more established fabrication techniques cannot simultaneously reproduce both the 3D collagen fiber morphology and stiffness. STATEMENT OF SIGNIFICANCE: Ovarian cancer metastasizes when lesions are small, where cells exfoliate from the surface of the ovary and reattach at distal sites in the peritoneum. The adhesion/migration dynamics are not well understood and there is a need for new 3D in vitro models of the extracellular matrix to study the biology. Here we use multiphoton excited crosslinking to fabricate ECM orthogonal models that represent the collagen morphology and stiffness in human ovarian tissues. These are then used to study ovarian cancer cell migration dynamics and we found that contact guidance and a mechanosensitive response and cell genotype all combine to affect the behavior. These models provide insight into disease etiology and progression not readily possible by other fabrication methods.
Collapse
Affiliation(s)
- Samuel Alkmin
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul J Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Prasad Shenoy G, Pal R, Gurubasavaraja Swamy P, Singh E, Manjunathaiah Raghavendra N, Sanjay Dhiwar P. Discoidin Domain Receptor Inhibitors as Anticancer Agents: A Systematic Review on Recent Development of DDRs Inhibitors, their Resistance and Structure Activity Relationship. Bioorg Chem 2022; 130:106215. [DOI: 10.1016/j.bioorg.2022.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/02/2022]
|
38
|
Chen Y, Yang S, Tavormina J, Tampe D, Zeisberg M, Wang H, Mahadevan KK, Wu CJ, Sugimoto H, Chang CC, Jenq RR, McAndrews KM, Kalluri R. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell 2022; 40:818-834.e9. [PMID: 35868307 PMCID: PMC9831277 DOI: 10.1016/j.ccell.2022.06.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 01/12/2023]
Abstract
In contrast to normal type I collagen (Col1) heterotrimer (α1/α2/α1) produced by fibroblasts, pancreatic cancer cells specifically produce unique Col1 homotrimer (α1/α1/α1). Col1 homotrimer results from epigenetic suppression of the Col1a2 gene and promotes oncogenic signaling, cancer cell proliferation, tumor organoid formation, and growth via α3β1 integrin on cancer cells, associated with tumor microbiome enriched in anaerobic Bacteroidales in hypoxic and immunosuppressive tumors. Deletion of Col1 homotrimers increases overall survival of mice with pancreatic ductal adenocarcinoma (PDAC), associated with reprograming of the tumor microbiome with increased microaerophilic Campylobacterales, which can be reversed with broad-spectrum antibiotics. Deletion of Col1 homotrimers enhances T cell infiltration and enables efficacy of anti-PD-1 immunotherapy. This study identifies the functional impact of Col1 homotrimers on tumor microbiome and tumor immunity, implicating Col1 homotrimer-α3β1 integrin signaling axis as a cancer-specific therapeutic target.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sujuan Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jena Tavormina
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Desiree Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Robert R Jenq
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; James P. Allison Institute, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
40
|
Malcor JD, Mallein-Gerin F. Biomaterial functionalization with triple-helical peptides for tissue engineering. Acta Biomater 2022; 148:1-21. [PMID: 35675889 DOI: 10.1016/j.actbio.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
In the growing field of tissue engineering, providing cells in biomaterials with the adequate biological cues represents an increasingly important challenge. Yet, biomaterials with excellent mechanical properties often are often biologically inert to many cell types. To address this issue, researchers resort to functionalization, i.e. the surface modification of a biomaterial with active molecules or substances. Functionalization notably aims to replicate the native cellular microenvironment provided by the extracellular matrix, and in particular by collagen, its major component. As our understanding of biological processes regulating cell behaviour increases, functionalization with biomolecules binding cell surface receptors constitutes a promising strategy. Amongst these, triple-helical peptides (THPs) that reproduce the architectural and biological properties of collagen are especially attractive. Indeed, THPs containing binding sites from the native collagen sequence have successfully been used to guide cell response by establishing cell-biomaterial interactions. Notably, the GFOGER motif recognising the collagen-binding integrins is extensively employed as a cell adhesive peptide. In biomaterials, THPs efficiently improved cell adhesion, differentiation and function on biomaterials designed for tissue repair (especially for bone, cartilage, tendon and heart), vascular graft fabrication, wound dressing, drug delivery or immunomodulation. This review describes the key characteristics of THPs, their effect on cells when combined to biomaterials and their strong potential as biomimetic tools for regenerative medicine. STATEMENT OF SIGNIFICANCE: This review article describes how triple-helical peptides constitute efficient tools to improve cell-biomaterial interactions in tissue engineering. Triple helical peptides are bioactive molecules that mimic the architectural and biological properties of collagen. They have been successfully used to specifically recognize cell-surface receptors and provide cells seeded on biomaterials with controlled biological cues. Functionalization with triple-helical peptides has enabled researchers to improve cell function for regenerative medicine applications, such as tissue repair. However, despite encouraging results, this approach remains limited and under-exploited, and most functionalization strategies reported in the literature rely on biomolecules that are unable to address collagen-binding receptors. This review will assist researchers in selecting the correct tools to functionalize biomaterials in efforts to guide cellular response.
Collapse
Affiliation(s)
- Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France.
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France
| |
Collapse
|
41
|
Sugioka K, Nishida T, Kodama-Takahashi A, Murakami J, Mano F, Okada K, Fukuda M, Kusaka S. Urokinase-type plasminogen activator (uPA) negatively regulates α-smooth muscle actin expression via Endo180 and the uPA receptor in corneal fibroblasts. Am J Physiol Cell Physiol 2022; 323:C104-C115. [PMID: 35649252 DOI: 10.1152/ajpcell.00432.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corneal fibroblasts are embedded within an extracellular matrix composed largely of collagen type 1, proteoglycans, and other proteins in the corneal stroma, and their morphology and function are subject to continuous regulation by collagen. During wound healing and in various pathological conditions, corneal fibroblasts differentiate into myofibroblasts characterized by the expression of α-smooth muscle actin (α-SMA). Endo180, also known as urokinase-type plasminogen activator (uPA) receptor-associated protein (uPARAP), is a collagen receptor. Here we investigated whether targeting of Endo180 and the uPA receptor (uPAR) by uPA might play a role in the regulation of α-SMA expression by culturing corneal fibroblasts derived from uPA-deficient (uPA-/-) or wild-type (uPA+/+) mice in a collagen gel or on plastic. The expression of α-SMA was upregulated, the amounts of full-length Endo180 and uPAR were increased, and the levels of both transforming growth factor-b (TGF-β) expression and Smad3 phosphorylation were higher in uPA-/- corneal fibroblasts compared with uPA+/+ cells under the collagen gel culture condition. Antibodies to Endo180 inhibited these effects of uPA deficiency on a-SMA and TGF-b expression, whereas a TGF-b signaling inhibitor blocked the effects on Smad3 phosphorylation and a-SMA expression. Our results suggest that uPA deficiency might promote the interaction between collagen and Endo180 and thereby increase a-SMA expression in a manner dependent on TGF-β signaling. Expression of α-SMA is thus negatively regulated by uPA through targeting of Endo180 and uPAR.
Collapse
Affiliation(s)
- Koji Sugioka
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma City, Nara, Japan.,Department of Ophthalmology, Kindai University Hospital, Osakasayama City, Osaka, Japan
| | - Teruo Nishida
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma City, Nara, Japan.,Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi, Japan.,Division of Cornea and Ocular Surface, Ohshima Eye Hospital, Fukuoka City, Fukuoka, Japan
| | - Aya Kodama-Takahashi
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma City, Nara, Japan
| | | | - Fukutaro Mano
- Department of Ophthalmology, Kindai University Hospital, Osakasayama City, Osaka, Japan
| | - Kiyotaka Okada
- Department of Arts and Science, Kindai University Faculty of Medicine, Osakasayama City, Osaka, Japan
| | - Masahiko Fukuda
- Department of Ophthalmology, Kindai University Nara Hospital, Ikoma City, Nara, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Hospital, Osakasayama City, Osaka, Japan
| |
Collapse
|
42
|
Gallo-Pineda G, Ortiz-Prieto A, Villegas-Romero I, Navarro-Navarro I, Linares-Barrios M. DDR2 mutation in a spilus-type giant congenital melanocytic nevus. J Eur Acad Dermatol Venereol 2022; 36:e793-e794. [PMID: 35620941 DOI: 10.1111/jdv.18273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Affiliation(s)
- G Gallo-Pineda
- Department of Dermatology. Puerta del Mar University Hospital, Cádiz, Spain
| | - A Ortiz-Prieto
- Department of Dermatology. Puerta del Mar University Hospital, Cádiz, Spain
| | - I Villegas-Romero
- Department of Dermatology. Puerta del Mar University Hospital, Cádiz, Spain
| | - I Navarro-Navarro
- Department of Dermatology. Puerta del Mar University Hospital, Cádiz, Spain
| | - M Linares-Barrios
- Department of Dermatology. Puerta del Mar University Hospital, Cádiz, Spain
| |
Collapse
|
43
|
Wang Q, Tang B, Sun D, Dong Y, Ji Y, Shi H, Zhou L, Yang Y, Luo M, Tan Q, Chen L, Dong Y, Li C, Xie R, Zang Y, Shen J, Xiong B, Li J, Chen D. Discovery of 4-cyclopropyl-3-(2-((1-cyclopropyl-1H-pyrazol-4-yl) amino) quinazolin-6-yl)-N-(3-(trifluoromethyl) phenyl) benzamides as potent discoidin domain receptor inhibitors for the treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 2022; 12:1943-1962. [PMID: 35847490 PMCID: PMC9279635 DOI: 10.1016/j.apsb.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease with a median survival time of 3–5 years. Inaccurate diagnosis, limited clinical therapy and high mortality together indicate that the development of effective therapeutics for IPF is an urgent need. In recent years, it was reported that DDRs are potential targets in anti-fibrosis treatment. Based on previous work we carried out further structure modifications and led to a more selective inhibitor 47 by averting some fibrosis-unrelated kinases, such as RET, AXL and ALK. Extensive profiling of compound 47 has demonstrated that it has potent DDR1/2 inhibitory activities, low toxicity, good pharmacokinetic properties and reliable in vivo anti-fibrosis efficacy. Therefore, we confirmed that discoidin domain receptors are promising drug targets for IPF, and compound 47 would be a promising candidate for further drug development.
Collapse
Affiliation(s)
- Qi Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bixi Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dandan Sun
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinchun Ji
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huanyu Shi
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yueyue Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menglan Luo
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Dong
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Cong Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rongrong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jingkang Shen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel: +86 21 50806600 5412, fax: +86 21 50807088.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Corresponding authors. Tel: +86 21 50806600 5412, fax: +86 21 50807088.
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Corresponding authors. Tel: +86 21 50806600 5412, fax: +86 21 50807088.
| |
Collapse
|
44
|
Bai S, Wang Z, Wang M, Li J, Wei Y, Xu R, Du J. Tumor-Derived Exosomes Modulate Primary Site Tumor Metastasis. Front Cell Dev Biol 2022; 10:752818. [PMID: 35309949 PMCID: PMC8924426 DOI: 10.3389/fcell.2022.752818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived exosomes (TDEs) are actively produced and released by tumor cells and carry messages from tumor cells to healthy cells or abnormal cells, and they participate in tumor metastasis. In this review, we explore the underlying mechanism of action of TDEs in tumor metastasis. TDEs transport tumor-derived proteins and non-coding RNA to tumor cells and promote migration. Transport to normal cells, such as vascular endothelial cells and immune cells, promotes angiogenesis, inhibits immune cell activation, and improves chances of tumor implantation. Thus, TDEs contribute to tumor metastasis. We summarize the function of TDEs and their components in tumor metastasis and illuminate shortcomings for advancing research on TDEs in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zunyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Minghua Wang
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Junai Li
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Yuan Wei
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Ruihuan Xu
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
45
|
Wang Y, Han B, Liu K, Wang X. Effects of DDR1 on migration and adhesion of periodontal ligament cells and the underlying mechanism. J Periodontal Res 2022; 57:568-577. [PMID: 35297053 DOI: 10.1111/jre.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE As one of the widely expressed cell surface receptors binding to collagen, the most abundant component of the extracellular matrix (ECM), knowledge of the expression, functions, and mechanisms underlying the role of discoidin domain receptor 1 (DDR1) in human periodontal ligament cells (hPDLCs) is incomplete. This study determined the expression of DDR1 in hPDLCs and the effect of DDR1 upon migration and adhesion to hPDLCs, as well as the related regulatory mechanisms. MATERIALS AND METHODS The expression of DDR1 and the DDR1 isoforms in hPDLCs from six donors were tested. The migratory ability (horizontal and vertical) and adhesive capacity of hPDLCs with or without specific knockdown of DDR1 were evaluated. After treatment with MEK-ERK1/2 inhibitors (PD98059 and U0126) with or without RNAi, the migratory and adhesive capacity of hPDLCs were re-tested. Western blotting was performed to verify p-MEK1/2 and p-ERK1/2, the key factors of the MEK-ERK1/2 signaling pathways. RESULTS DDR1 was detected in hPDLCs in the mRNA and protein level; DDR1b was the dominant isoform. Knockdown of DDR1 almost halved the migratory capacity and significantly downregulated the adhesive capacity of hPDLCs. The use of MEK-ERK1/2 inhibitors caused declined migratory and adhesive capacity of hPDLCs as well. After DDR1 was knocked down, the expression of p-MEK and p-ERK protein declined significantly while total MEK and ERK showed no obvious change, which means the ratio of p-MEK/MEK and p-ERK/ERK was markedly reduced. CONCLUSIONS DDR1 plays an important role in the migration and adhesion of hPDLCs and might be regulated via the MEK-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Bing Han
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Kaining Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
46
|
Mesenchymal Stem-Cell Remodeling of Adsorbed Type-I Collagen-The Effect of Collagen Oxidation. Int J Mol Sci 2022; 23:ijms23063058. [PMID: 35328478 PMCID: PMC8953637 DOI: 10.3390/ijms23063058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
This study describes the effect of collagen type I (Col I) oxidation on its physiological remodeling by adipose tissue-derived mesenchymal stem cells (ADMSCs), both mechanical and proteolytic, as an in vitro model for the acute oxidative stress that may occur in vivo upon distinct environmental changes. Morphologically, remodeling was interpreted as the mechanical rearrangement of adsorbed FITC-labelled Col I into a fibril-like pattern. This process was strongly abrogated in cells cultured on oxidized Col I albeit without visible changes in cell morphology. Proteolytic activity was quantified utilizing fluorescence de-quenching (FRET effect). The presence of ADMSCs caused a significant increase in native FITC-Col I fluorescence, which was almost absent in the oxidized samples. Parallel studies in a cell-free system confirmed the enzymatic de-quenching of native FITC-Col I by Clostridial collagenase with statistically significant inhibition occurring in the oxidized samples. Structural changes to the oxidized Col I were further studied by differential scanning calorimetry. In the oxidized samples, an additional endotherm with sustained enthalpy (∆H) was observed at 33.6 °C along with Col I’s typical one at 40.5 °C. Collectively, these data support that the remodeling of Col I by ADMSCs is altered upon oxidation due to intrinsic changes to the protein’s structure, which represents a novel mechanism for the control of stem cell behavior.
Collapse
|
47
|
Borza CM, Bolas G, Zhang X, Browning Monroe MB, Zhang MZ, Meiler J, Skwark MJ, Harris RC, Lapierre LA, Goldenring JR, Hook M, Rivera J, Brown KL, Leitinger B, Tyska MJ, Moser M, Böttcher RT, Zent R, Pozzi A. The Collagen Receptor Discoidin Domain Receptor 1b Enhances Integrin β1-Mediated Cell Migration by Interacting With Talin and Promoting Rac1 Activation. Front Cell Dev Biol 2022; 10:836797. [PMID: 35309920 PMCID: PMC8928223 DOI: 10.3389/fcell.2022.836797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 01/17/2023] Open
Abstract
Integrins and discoidin domain receptors (DDRs) 1 and 2 promote cell adhesion and migration on both fibrillar and non fibrillar collagens. Collagen I contains DDR and integrin selective binding motifs; however, the relative contribution of these two receptors in regulating cell migration is unclear. DDR1 has five isoforms (DDR1a-e), with most cells expressing the DDR1a and DDR1b isoforms. We show that human embryonic kidney 293 cells expressing DDR1b migrate more than DDR1a expressing cells on DDR selective substrata as well as on collagen I in vitro. In addition, DDR1b expressing cells show increased lung colonization after tail vein injection in nude mice. DDR1a and DDR1b differ from each other by an extra 37 amino acids in the DDR1b cytoplasmic domain. Interestingly, these 37 amino acids contain an NPxY motif which is a central control module within the cytoplasmic domain of β integrins and acts by binding scaffold proteins, including talin. Using purified recombinant DDR1 cytoplasmic tail proteins, we show that DDR1b directly binds talin with higher affinity than DDR1a. In cells, DDR1b, but not DDR1a, colocalizes with talin and integrin β1 to focal adhesions and enhances integrin β1-mediated cell migration. Moreover, we show that DDR1b promotes cell migration by enhancing Rac1 activation. Mechanistically DDR1b interacts with the GTPase-activating protein (GAP) Breakpoint cluster region protein (BCR) thus reducing its GAP activity and enhancing Rac activation. Our study identifies DDR1b as a major driver of cell migration and talin and BCR as key players in the interplay between integrins and DDR1b in regulating cell migration.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Gema Bolas
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Xiuqi Zhang
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | | | - Ming-Zhi Zhang
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Leipzig University Medical School, Institute for Drug Discovery, Leipzig, Germany
| | - Marcin J. Skwark
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Lynne A. Lapierre
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Magnus Hook
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, United States
| | - Jose Rivera
- Texas A&M Health Science Center Institute of Biosciences and Technology, Houston, TX, United States
| | - Kyle L. Brown
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
| | - Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Markus Moser
- Department for Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Ralph T. Böttcher
- Department for Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN, United States
- Veterans Affairs Hospital, Nashville, TN, United States
| |
Collapse
|
48
|
Wang AY, Coelho NM, Arora PD, Wang Y, Eymael D, Ji C, Wang Q, Lee W, Xu J, Kapus A, Carneiro KMM, McCulloch CA. DDR1 associates with TRPV4 in cell-matrix adhesions to enable calcium-regulated myosin activity and collagen compaction. J Cell Physiol 2022; 237:2451-2468. [PMID: 35150133 DOI: 10.1002/jcp.30696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Tissue fibrosis manifests as excessive deposition of compacted, highly aligned collagen fibrils, which interfere with organ structure and function. Cells in collagen-rich lesions often exhibit marked overexpression of discoidin domain receptor 1 (DDR1), which is linked to increased collagen compaction through the association of DDR1 with the Ca2+ -dependent nonmuscle myosin IIA (NMIIA). We examined the functional relationship between DDR1 and the transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable ion channel that is implicated in collagen compaction. Fibroblasts expressing high levels of DDR1 were used to model cells in lesions with collagen compaction. In these cells, the expression of the β1 integrin was deleted to simplify studies of DDR1 function. Compared with DDR1 wild-type cells, high DDR1 expression was associated with increased Ca2+ influx through TRPV4, enrichment of TRPV4 in collagen adhesions, and enhanced contractile activity mediated by NMIIA. At cell adhesion sites to collagen, DDR1 associated with TRPV4, which enhanced DDR1-mediated collagen alignment and compaction. We conclude that DDR1 regulates Ca2+ influx through the TRPV4 channel to promote critical, DDR1-mediated processes that are important in lesions with collagen compaction and alignment.
Collapse
Affiliation(s)
- Andrew Y Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Pamma D Arora
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Denise Eymael
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Qin Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Wilson Lee
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Xu
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital and Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karina M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Christopher A McCulloch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Mohamed FF, Ge C, Cowling RT, Lucas D, Hallett SA, Ono N, Binrayes AA, Greenberg B, Franceschi RT. The collagen receptor, discoidin domain receptor 2, functions in Gli1-positive skeletal progenitors and chondrocytes to control bone development. Bone Res 2022; 10:11. [PMID: 35140200 PMCID: PMC8828874 DOI: 10.1038/s41413-021-00182-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 08/31/2021] [Accepted: 10/24/2021] [Indexed: 01/02/2023] Open
Abstract
Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor kinase that, together with integrins, is required for cells to respond to the extracellular matrix. Ddr2 loss-of-function mutations in humans and mice cause severe defects in skeletal growth and development. However, the cellular functions of Ddr2 in bone are not understood. Expression and lineage analysis showed selective expression of Ddr2 at early stages of bone formation in the resting zone and proliferating chondrocytes and periosteum. Consistent with these findings, Ddr2+ cells could differentiate into hypertrophic chondrocytes, osteoblasts, and osteocytes and showed a high degree of colocalization with the skeletal progenitor marker, Gli1. A conditional deletion approach showed a requirement for Ddr2 in Gli1-positive skeletal progenitors and chondrocytes but not mature osteoblasts. Furthermore, Ddr2 knockout in limb bud chondroprogenitors or purified marrow-derived skeletal progenitors inhibited chondrogenic or osteogenic differentiation, respectively. This work establishes a cell-autonomous function for Ddr2 in skeletal progenitors and cartilage and emphasizes the critical role of this collagen receptor in bone development.
Collapse
Affiliation(s)
- Fatma F Mohamed
- Department of Periodontics & Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Chunxi Ge
- Department of Periodontics & Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Randy T Cowling
- Division of Cardiovascular Medicine, University of California at San Diego, San Diego, CA, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Shawn A Hallett
- Department of Periodontics & Oral Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Noriaki Ono
- Department of Orthodontics & Pediatric Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Abdul-Aziz Binrayes
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Barry Greenberg
- Division of Cardiovascular Medicine, University of California at San Diego, San Diego, CA, USA
| | - Renny T Franceschi
- Department of Periodontics & Oral Medicine, University of Michigan, Ann Arbor, MI, USA. .,Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|