1
|
Song M, Qiang Y, Zhao X, Song F. Cyclin-dependent Kinase 5 and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:7287-7302. [PMID: 38378992 DOI: 10.1007/s12035-024-04047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Neurodegenerative diseases are a group of diseases characterized by the progressive loss of neurons, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. These diseases have a high incidence and mortality rate globally, placing a heavy burden on patients and their families. The pathogenesis of neurodegenerative diseases is complex, and there are no effective treatments at present. Cyclin-dependent kinase 5 is a proline-directed serine/threonine protein kinase that is closely related to the development and function of the nervous system. Under physiological conditions, it is involved in regulating the process of neuronal proliferation, differentiation, migration, and synaptic plasticity. Moreover, there is increasing evidence that cyclin-dependent kinase 5 also plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we address the biological characteristics of cyclin-dependent kinase 5 and its role in neurodegenerative diseases. In particular, this review highlights the underlying mechanistic linkages between cyclin-dependent kinase 5 and mitochondrial dysfunction, oxidative stress and neuroinflammation in the context of neurodegeneration. Finally, we also summarize the currently available cyclin-dependent kinase 5 inhibitors and their prospects for the treatment of neurodegenerative diseases. Taken together, a better understanding of the molecular mechanisms of cyclin-dependent kinase 5 involved in neurodegenerative diseases can lead to the development of new strategies for the prevention and treatment of these devastating diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Cheng A, Wang J, Li J, Wang J, Xu M, Chen H, Zhang P. S-Nitrosylation of p39 promotes its degradation and contributes to synaptic dysfunction induced by β-amyloid peptide. Commun Biol 2024; 7:1113. [PMID: 39256547 PMCID: PMC11387606 DOI: 10.1038/s42003-024-06832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive decline, is increasingly recognized as a disorder marked by synaptic loss and dysfunction. Despite this understanding, the underlying pathophysiological mechanisms contributing to synaptic impairment remain largely unknown. In this study, we elucidate a previously undiscovered signaling pathway wherein the S-nitrosylation of the Cdk5 activator p39, a post-translational modification involving the addition of nitric oxide to protein cysteine residues, plays a crucial role in synaptic dysfunction associated with AD. Our investigation reveals heightened p39 S-nitrosylation in the brain of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. Additionally, soluble amyloid-β oligomers (Aβ), implicated in synaptic loss in AD, induce p39 S-nitrosylation in cultured neurons. Notably, we uncover that p39 protein level is regulated by S-nitrosylation, with nitric oxide S-nitrosylating p39 at Cys265 and subsequently promoting its degradation. Furthermore, our study demonstrates that S-nitrosylation of p39 at Cys265 significantly contributes to amyloid-β (Aβ) peptide-induced dendrite retraction and spine loss. Collectively, our findings highlight S-nitrosylation of p39 as a novel aberrant redox protein modification involved in the pathogenesis of AD, suggesting its potential as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Aobing Cheng
- Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jingyi Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mufan Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Emotions and Affective Disorders(LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Oduro-Kwateng E, Ali M, Kehinde IO, Zhang Z, Soliman MES. De Novo Rational Design of Peptide-Based Protein-Protein Inhibitors (Pep-PPIs) Approach by Mapping the Interaction Motifs of the PP Interface and Physicochemical Filtration: A Case on p25-Cdk5-Mediated Neurodegenerative Diseases. J Cell Biochem 2024; 125:e30633. [PMID: 39148280 DOI: 10.1002/jcb.30633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Protein-protein interactions, or PPIs, are a part of every biological activity and have been linked to a number of diseases, including cancer, infectious diseases, and neurological disorders. As such, targeting PPIs is considered a strategic and vital approach in the development of new medications. Nonetheless, the wide and flat contact interface makes it difficult to find small-molecule PP inhibitors. An alternative strategy would be to use the PPI interaction motifs as building blocks for the design of peptide-based inhibitors. Herein, we designed 12-mer peptide inhibitors to target p25-inducing-cyclin-dependent kinase (Cdk5) hyperregulation, a PPI that has been shown to perpetuate neuroinflammation, which is one of the major causal implications of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. We generated a library of 5 062 500 peptide combination sequences (PCS) derived from the interaction motif of Cdk5/p25 PP interface. The 20 amino acids were differentiated into six groups, namely, hydrophobic (aliphatic), aromatic, basic, acidic, unique, and polar uncharged, on the basis of their physiochemical properties. To preserve the interaction motif necessary for ideal binding, de novo modeling of all possible peptide sequence substitutions was considered. A set of filters, backed by the Support Vector Machine (SVM) algorithm, was then used to create a shortlisted custom peptide library that met specific bioavailability, toxicity, and therapeutic relevance, leading to a refined library of 15 PCS. A greedy algorithm and coarse-grained force field were used to predict peptide structure and folding before subsequent modeling studies. Molecular docking was performed to estimate the relative binding affinities, and out of the top hits, Pep15 was subjected to molecular dynamics simulations and binding free-energy calculations in comparison to a known peptide inhibitor with experimental data (template peptide). Interestingly, the identified peptide through our protocol, Pep15, was found to show a significantly higher binding affinity than the reference template peptide (-48.10 ± 0.23 kcal/mol and -17.53 ± 0.27 kcal/mol, respectively). In comparison to the template peptide, Pep15 was found to possess a more compact and buried surface area, tighter binding landscape, and reduced conformational variability, leading to enhanced structural and kinetic stability of the Cdk5/p25 complex. Notably, both peptide inhibitors were found to have a minimal impact on the architectural integrity of the Cdk5/p25 secondary structure. Herein, we propose Pep15 as a novel and potentially disruptive peptide drug for Cdk5/p25-mediated neurodegenerative phenotypes that require further clinical investigation. The systematic protocol and findings of this report would serve as a valuable tool in the identification of critical PPI interface reactive residues, designing of analogs, and identification of more potent peptide-based PPI inhibitors.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Musab Ali
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Ibrahim Oluwatobi Kehinde
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban, South Africa
| |
Collapse
|
5
|
Song M, Qiang Y, Wang S, Shan S, Zhang L, Liu C, Song F, Zhao X. High-fat diet exacerbates 1-Bromopropane-induced loss of dopaminergic neurons in the substantia nigra of mice through mitochondrial damage associated necroptotic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116280. [PMID: 38574648 DOI: 10.1016/j.ecoenv.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD. However, whether there is a synergistic effect between a high-fat diet and 1-BP exposure remains unclear. In this study, adult C57BL/6 mice were fed either a chow or a high-fat diet for 18 weeks prior to 12-week 1-BP treatment. Subsequent neurobehavioral and neuropathological examinations were conducted to assess the effects of 1-BP exposure on parkinsonian pathology. The results demonstrated that 1-BP exposure produced obvious neurobehavioral abnormalities and dopaminergic degeneration in the nigral region of mice. Importantly, a high-fat diet further exacerbated the impact of 1-BP on motor and cognitive abnormalities in mice. Mechanistic investigation revealed that mitochondrial damage and mtDNA release induced by 1-BP and high-fat diet activate NLRP3 and cGAS-STING pathway- mediated neuroinflammatory response, and ultimately lead to necroptosis of dopaminergic neurons. In summary, our study unveils a potential link between chronic 1-BP exposure and PD-like pathology with motor and no-motor defects in experimental animals, and long-term high-fat diet can further promote 1-BP neurotoxicity, which underscores the pivotal role of environmental factors in the etiology of PD.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yalong Qiang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Wang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shan Shan
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liwen Zhang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Caipei Liu
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fuyong Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiulan Zhao
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Osawa J, Karakawa M, Taniguchi A, Inui Y, Usuki C, Ishida A, Kameshita I, Sueyoshi N. Functional regulation of the protein phosphatase PPM1M by phosphorylation at multiple sites with Ser/Thr-Pro motifs. Arch Biochem Biophys 2024; 753:109887. [PMID: 38224862 DOI: 10.1016/j.abb.2024.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The imbalance in the phosphorylation and the dephosphorylation of proteins leads to various diseases. Therefore, in vivo, the functions of protein kinases and protein phosphatases are strictly regulated. Mg2+/Mn2+-dependent protein phosphatase PPM1M has been implicated in immunity and cancer; however, the regulation mechanism remains unknown. In this study, we show that PPM1M is regulated in different ways by multiple phosphorylation. PPM1M has four Ser/Thr-Pro motifs (Ser27, Ser43, Ser60, and Thr254) that are recognized by proline-directed kinases, and Ser60 was found to be phosphorylated by cyclin-dependent kinase 5 (CDK5) in the cell. The phospho-mimetic mutation of Ser27 and Ser43 in the N-terminal domain suppresses the nuclear localization of PPM1M and promotes its accumulation in the cytoplasm. The phospho-mimetic mutation of Ser60 decreases PPM1M activity; conversely, the phospho-mimetic mutation of Thr254 increases PPM1M activity. These results suggest that the subcellular localization and phosphatase activity of PPM1M are regulated by protein kinases, including CDK5, via phosphorylation at multiple sites. Thus, PPM1M is differentially regulated by proline-directed kinases, including CDK5.
Collapse
Affiliation(s)
- Jin Osawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Masataka Karakawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Aoi Taniguchi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Yuiko Inui
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Chika Usuki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan.
| |
Collapse
|
7
|
Huang L, Xia L, Nie T, Cui B, Lu J, Lu F, Fan F, Ren D, Lu Y, Gao G, Yang Q. Maintaining Drosha expression with Cdk5 inhibitors as a potential therapeutic strategy for early intervention after TBI. Exp Mol Med 2024; 56:210-219. [PMID: 38200156 PMCID: PMC10834983 DOI: 10.1038/s12276-023-01152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/23/2023] [Accepted: 10/26/2023] [Indexed: 01/12/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in adults. The pathological process of TBI involves a multifactorial cascade in which kinases have been proven contribute to interactions between relevant factors and amplification of signaling cascades. Cyclin-dependent kinase 5 (Cdk5) is a promising kinase that has been implicated in various brain disorders, including TBI. However, the mechanism by which Cdk5 induces neuronal damage remains unclear. Here, we show for the first time that Drosha, a key enzyme in microRNA biogenesis, is a pivotal substrate of abnormally activated Cdk5. Cdk5-mediated phosphorylation decreases Drosha expression and exacerbates nerve injury in TBI. We proved that maintaining Drosha expression via the administration of repurposed Cdk5 inhibitors that were previously studied in clinical trials is a promising approach for the early treatment of TBI. Together, our work identifies Drosha as a novel target for neuroprotective strategies after TBI and suggests Cdk5-mediated regulation of Drosha expression as a potential therapeutic strategy for early TBI intervention.
Collapse
Affiliation(s)
- Lu Huang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Xia
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jianjun Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Feiyan Fan
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Dongni Ren
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yuan Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
8
|
Ai H, Li M, Fang W, Wang X, Liu X, Wu L, Zhang B, Lu W. Disruption of Cdk5-GluN2B complex by a small interfering peptide attenuates social isolation-induced escalated intermale attack behavior and hippocampal oxidative stress in mice. Free Radic Biol Med 2024; 210:54-64. [PMID: 37979890 DOI: 10.1016/j.freeradbiomed.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/04/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Social isolation has emerged as a significant issue during the COVID-19 pandemic that can adversely impact human mental health and potentially lead to pathological aggression. Given the lack of effective therapeutic interventions for aggressive behavior, alternative approaches are necessary. In this study, we utilized a genetic method combined with a pharmacological approach to identify and demonstrate the crucial role of Cdk5 in escalated intermale attack behavior induced by 2-week social isolation. Moreover, we developed a small peptide that effectively disrupts the interaction between Cdk5 and GluN2B, given the known involvement of this complex in various neuropsychiatric disorders. Administration of the peptide, either systemically or via intrahippocampal injection, significantly reduced oxidative stress in the hippocampus and attenuated intermale attack behavior induced by 2-week social isolation. These findings highlight the previously unknown role of the hippocampal Cdk5-GluN2B complex in social isolation-induced aggressive behavior in mice and propose the peptide as a promising therapeutic strategy for regulating attack behavior and oxidative stress.
Collapse
Affiliation(s)
- Heng Ai
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Minghao Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiqing Fang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Xuemeng Wang
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Xinxin Liu
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Lihui Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bin Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, China.
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China; Key Laboratory of Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
9
|
Miller N, Xu Z, Quinlan KA, Ji A, McGivern JV, Feng Z, Shi H, Ko CP, Tsai LH, Heckman CJ, Ebert AD, Ma YC. Mitigating aberrant Cdk5 activation alleviates mitochondrial defects and motor neuron disease symptoms in spinal muscular atrophy. Proc Natl Acad Sci U S A 2023; 120:e2300308120. [PMID: 37976261 PMCID: PMC10666147 DOI: 10.1073/pnas.2300308120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/31/2023] [Indexed: 11/19/2023] Open
Abstract
Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Nimrod Miller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Zhaofa Xu
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Katharina A. Quinlan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI02881
| | - Amy Ji
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jered V. McGivern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Han Shi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Charles J. Heckman
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Yongchao C. Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
10
|
Jabeur R, Corbel C, Loyer P, Le Parc A, Le Grand A, Comte A, Bach S, André-Leroux G, Sire O, Ben Mansour H, Le Tilly V. Identification of Novel Compounds Inhibiting the Kinase Activity of the CDK5/p25 Complex via Direct Binding to p25. Biochemistry 2023; 62:1452-1463. [PMID: 37074084 DOI: 10.1021/acs.biochem.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Tamoxifen, the gold standard drug for endocrine therapy for breast cancer, modulates the phosphorylation status of the TAU protein in Alzheimer's disease by inhibiting CDK5 kinase activity. Its binding to p25 prevents CDK5/p25 complexation and hence a decrease of CDK5 activity. In breast tumors, this complex is involved in the proliferation and survival of cancer cells, as well as in the disease's prognosis. Still, the molecular stability of the CDK5/p25 complex following tamoxifen exposure in this cancer type has not yet been clearly deciphered. Here, we report the functional characterization of CDK5 and its p25 regulatory subunit in the absence and presence of tamoxifen. In addition, two novel inhibitors of the kinase activity of the CDK5/p25 complex are identified, both of which would reduce the risk of recurrence of estrogen receptor-positive (ER+) breast cancers and prevent drawbacks induced by tamoxifen exposure. Accordingly, 6His-CDK5 and 6His-p25 have been expressed and purified. Fluorescence anisotropy measurements have been used to assess that the two proteins do form an active complex, and thermodynamic parameters of their interaction were measured. It was also confirmed that tamoxifen directly binds to p25 and inhibits CDK5 kinase activity. Similar observations were obtained using 4-hydroxytamoxifen, an active metabolized form of tamoxifen. Two novel compounds have been identified here that harbor a benzofuran moiety and were shown to target directly p25, and their bindings resulted in decreased CDK5 kinase activity. This encouraging alternative opens the way to the ensuing chemical optimization of this scaffold. It also promises a more specific therapeutic approach that may both tackle the pathological signaling in breast cancer and provide a potential new drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Riheb Jabeur
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | - Caroline Corbel
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Pascal Loyer
- Univ Rennes, INSERM, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, F-35000 Rennes, France
| | | | | | - Arnaud Comte
- Compound Library, ICBMS UMR 5246 CNRS-Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
- Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, 2520 Potchefstroom, South Africa
| | | | - Olivier Sire
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | | |
Collapse
|
11
|
Pao PC, Seo J, Lee A, Kritskiy O, Patnaik D, Penney J, Raju RM, Geigenmuller U, Silva MC, Lucente DE, Gusella JF, Dickerson BC, Loon A, Yu MX, Bula M, Yu M, Haggarty SJ, Tsai LH. A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes. Proc Natl Acad Sci U S A 2023; 120:e2217864120. [PMID: 37043533 PMCID: PMC10120002 DOI: 10.1073/pnas.2217864120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023] Open
Abstract
Aberrant activity of cyclin-dependent kinase (Cdk5) has been implicated in various neurodegenerative diseases. This deleterious effect is mediated by pathological cleavage of the Cdk5 activator p35 into the truncated product p25, leading to prolonged Cdk5 activation and altered substrate specificity. Elevated p25 levels have been reported in humans and rodents with neurodegeneration, and the benefit of genetically blocking p25 production has been demonstrated previously in rodent and human neurodegenerative models. Here, we report a 12-amino-acid-long peptide fragment derived from Cdk5 (Cdk5i) that is considerably smaller than existing peptide inhibitors of Cdk5 (P5 and CIP) but shows high binding affinity toward the Cdk5/p25 complex, disrupts the interaction of Cdk5 with p25, and lowers Cdk5/p25 kinase activity. When tagged with a fluorophore (FITC) and the cell-penetrating transactivator of transcription (TAT) sequence, the Cdk5i-FT peptide exhibits cell- and brain-penetrant properties and confers protection against neurodegenerative phenotypes associated with Cdk5 hyperactivity in cell and mouse models of neurodegeneration, highlighting Cdk5i's therapeutic potential.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jinsoo Seo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain Sciences, Daegu Gyeongbuk Institute for Science and Technology, Daegu42988, South Korea
| | - Audrey Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ravikiran M. Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ute Geigenmuller
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - M. Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Diane E. Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Massachusetts General Hospital Frontotemporal Disorders Unit, Gerontology Research Unit, and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02114
| | - Bradford C. Dickerson
- Massachusetts General Hospital Frontotemporal Disorders Unit, Gerontology Research Unit, and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Margaret X. Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Michael Bula
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Melody Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
12
|
A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int J Biol Macromol 2023; 230:123259. [PMID: 36641018 DOI: 10.1016/j.ijbiomac.2023.123259] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cyclin-dependent kinase 5 (CDK5) is the serine/threonine-directed kinase mainly found in the brain and plays a significant role in developing the central nervous system. Recent evidence suggests that CDK5 is activated by specific cyclins regulating its expression and activity. P35 and p39 activate CDK5, and their proteolytic degradation produces p25 and p29, which are stable products involved in the hyperphosphorylation of tau protein, a significant hallmark of various neurological diseases. Numerous high-affinity inhibitors of CDK5 have been designed, and some are marketed drugs. Roscovitine, like other drugs, is being used to minimize neurological symptoms. Here, we performed an extensive literature analysis to highlight the role of CDK5 in neurons, synaptic plasticity, DNA damage repair, cell cycle, etc. We have investigated the structural features of CDK5, and their binding mode with the designed inhibitors is discussed in detail to develop attractive strategies in the therapeutic targeting of CDK5 for neurodegenerative diseases. This review provides deeper mechanistic insights into the therapeutic potential of CDK5 inhibitors and their implications in the clinical management of neurodegenerative diseases.
Collapse
|
13
|
Sharma A, Rahman G, Gorelik J, Bhargava A. Voltage-Gated T-Type Calcium Channel Modulation by Kinases and Phosphatases: The Old Ones, the New Ones, and the Missing Ones. Cells 2023; 12:461. [PMID: 36766802 PMCID: PMC9913649 DOI: 10.3390/cells12030461] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.
Collapse
Affiliation(s)
- Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Ghazala Rahman
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| | - Julia Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi 502284, Telangana, India
| |
Collapse
|
14
|
Yang Z, Gong M, Yang C, Chen C, Zhang K. Applications of Induced Pluripotent Stem Cell-Derived Glia in Brain Disease Research and Treatment. Handb Exp Pharmacol 2023; 281:103-140. [PMID: 37735301 DOI: 10.1007/164_2023_697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Glia are integral components of neural networks and are crucial in both physiological functions and pathological processes of the brain. Many brain diseases involve glial abnormalities, including inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. Induced pluripotent stem cell (iPSC)-derived glia provide opportunities to study the contributions of glia in human brain diseases. These cells have been used for human disease modeling as well as generating new therapies. This chapter introduces glial involvement in brain diseases, then summarizes different methods of generating iPSC-derived glia disease models of these cells. Finally, strategies for treating disease using iPSC-derived glia are discussed. The goal of this chapter is to provide an overview and shed light on the applications of iPSC-derived glia in brain disease research and treatment.
Collapse
Affiliation(s)
- Zhiqi Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Mingyue Gong
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chuanyan Yang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China.
| |
Collapse
|
15
|
Tian Z, Feng B, Wang XQ, Tian J. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Front Mol Neurosci 2022; 15:1030639. [PMID: 36438186 PMCID: PMC9687395 DOI: 10.3389/fnmol.2022.1030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/20/2023] Open
Abstract
Cyclin-dependent kinases 5 (Cdk5) is a special member of proline-directed serine threonine kinase family. Unlike other Cdks, Cdk5 is not directly involved in cell cycle regulation but plays important roles in nervous system functions. Under physiological conditions, the activity of Cdk5 is tightly controlled by p35 or p39, which are specific activators of Cdk5 and highly expressed in post-mitotic neurons. However, they will be cleaved into the corresponding truncated forms namely p25 and p29 under pathological conditions, such as neurodegenerative diseases and neurotoxic insults. The binding to truncated co-activators results in aberrant Cdk5 activity and contributes to the initiation and progression of multiple neurological disorders through affecting the down-stream targets. Although Cdk5 kinase activity is mainly regulated through combining with co-activators, it is not the only way. Post-translational modifications of Cdk5 including phosphorylation, S-nitrosylation, sumoylation, and acetylation can also affect its kinase activity and then participate in physiological and pathological processes of nervous system. In this review, we focus on the regulatory mechanisms of Cdk5 and its roles in a series of common neurological disorders such as neurodegenerative diseases, stroke, anxiety/depression, pathological pain and epilepsy.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Xing-Qin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines On Public Health in Chongqing, Chongqing, China
| |
Collapse
|
16
|
Hansen AH, Pauler FM, Riedl M, Streicher C, Heger A, Laukoter S, Sommer C, Nicolas A, Hof B, Tsai LH, Rülicke T, Hippenmeyer S. Tissue-Wide Effects Override Cell-Intrinsic Gene Function in Radial Neuron Migration. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac009. [PMID: 38596707 PMCID: PMC10939316 DOI: 10.1093/oons/kvac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
The mammalian neocortex is composed of diverse neuronal and glial cell classes that broadly arrange in six distinct laminae. Cortical layers emerge during development and defects in the developmental programs that orchestrate cortical lamination are associated with neurodevelopmental diseases. The developmental principle of cortical layer formation depends on concerted radial projection neuron migration, from their birthplace to their final target position. Radial migration occurs in defined sequential steps, regulated by a large array of signaling pathways. However, based on genetic loss-of-function experiments, most studies have thus far focused on the role of cell-autonomous gene function. Yet, cortical neuron migration in situ is a complex process and migrating neurons traverse along diverse cellular compartments and environments. The role of tissue-wide properties and genetic state in radial neuron migration is however not clear. Here we utilized mosaic analysis with double markers (MADM) technology to either sparsely or globally delete gene function, followed by quantitative single-cell phenotyping. The MADM-based gene ablation paradigms in combination with computational modeling demonstrated that global tissue-wide effects predominate cell-autonomous gene function albeit in a gene-specific manner. Our results thus suggest that the genetic landscape in a tissue critically affects the overall migration phenotype of individual cortical projection neurons. In a broader context, our findings imply that global tissue-wide effects represent an essential component of the underlying etiology associated with focal malformations of cortical development in particular, and neurological diseases in general.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michael Riedl
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Heger
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Armel Nicolas
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Björn Hof
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Li Huei Tsai
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
17
|
Zhou H, Zhang J, Shi H, Li P, Sui X, Wang Y, Wang L. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. Mol Brain 2022; 15:53. [PMID: 35701839 PMCID: PMC9195255 DOI: 10.1186/s13041-022-00939-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment and Parkinson’s disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) negatively regulates dopamine signaling in the striatum, suggesting a critical role of CDK5 in circadian and sleep disorders. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to produce mice with a dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene (referred to as DS-CDK5-KD mice) and investigate its role in vivo. DS-CDK5-KD mice exhibited deficits in locomotor activity and disturbances in activity/rest behavior. Additionally, Golgi staining of neurons in the DS revealed that CDK5 deletion reduced dendrite length and the number of functional synapses, which was confirmed by significant downregulation of MAP2, PSD-95, and synapsin I. Correlated with this, DS-CDK5-KD mice displayed reduced phosphorylation of Tau at Thr181. Furthermore, whole-cell patch-clamp recordings of green fluorescent protein-tagged neurons in the striatum of DS-CDK5-KD mice revealed a decreased frequency of spontaneous inhibitory postsynaptic currents and altered excitatory/inhibitory synaptic balance. Notably, anterograde labeling showed that CDK5 KD in the DS disrupted long-range projections to the secondary motor cortex, dorsal and ventral thalamic nuclei, and basolateral amygdala, which are involved in the regulation of motor and circadian rhythms in the brain. These findings support a critical role of CDK5 in the DS in maintaining the striatal neural circuitry underlying motor functions and activity/rest associated with circadian rhythms that are perturbed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hu Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingxin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huaxiang Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengfei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
18
|
Takahashi M, Takasugi T, Kawakami A, Wei R, Ando K, Ohshima T, Hisanaga SI. Valproic Acid-Induced Anxiety and Depression Behaviors are Ameliorated in p39 Cdk5 Activator-Deficient Mice. Neurochem Res 2022; 47:2773-2779. [PMID: 35674931 DOI: 10.1007/s11064-022-03642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Valproic acid (VPA) is a drug used for the treatment of epilepsy, seizures, migraines, and bipolar disorders. Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase activated by p35 or p39 in neurons and plays a role in a variety of neuronal functions, including psychiatric behaviors. We previously reported that VPA suppressed Cdk5 activity by reducing the expression of p35 in cultured cortical neurons, leaving p39 unchanged. In this study, we asked for the role of Cdk5 in VPA-induced anxiety and depression behaviors. Wild-type (WT) mice displayed increased anxiety and depression after chronic administration of VPA for 14 days, when the expression of p35 was decreased. To clarify their relationship, we used p39 knockout (KO) mice, in which p35 is the only Cdk5 activator. When p39 KO mice were treated chronically with VPA, unexpectedly, they exhibited fewer anxiety and depression behaviors than WT mice. The effects were p39 cdk5r2 gene-dosage dependent. Together, these results indicate that Cdk5-p39 plays a specific role in VPA-induced anxiety and depression behaviors.
Collapse
Affiliation(s)
- Miyuki Takahashi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan. .,Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku, Tokyo, 162-0056, Japan.
| | - Toshiyuki Takasugi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.,Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Asahimachi, Niigata, 951-8510, Japan
| | - Arisa Kawakami
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ran Wei
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.,Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku, Tokyo, 162-0056, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku, Tokyo, 162-0056, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
19
|
Im DS, Joselin A, Svoboda D, Takano T, Rousseaux MWC, Callaghan S, Slack RS, Hisanaga SI, Davis RJ, Park DS, Qu D. Cdk5-mediated JIP1 phosphorylation regulates axonal outgrowth through Notch1 inhibition. BMC Biol 2022; 20:115. [PMID: 35581583 PMCID: PMC9115922 DOI: 10.1186/s12915-022-01312-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.
Collapse
Affiliation(s)
- Doo Soon Im
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Devon Svoboda
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tesuya Takano
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Maxime W C Rousseaux
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Steve Callaghan
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01650, USA
| | - David S Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
20
|
In vivo analysis of the phosphorylation of tau and the tau protein kinases Cdk5-p35 and GSK3β by using Phos-tag SDS–PAGE. J Proteomics 2022; 262:104591. [DOI: 10.1016/j.jprot.2022.104591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
|
21
|
Desbois M, Opperman KJ, Amezquita J, Gaglio G, Crawley O, Grill B. Ubiquitin ligase activity inhibits Cdk5 to control axon termination. PLoS Genet 2022; 18:e1010152. [PMID: 35421092 PMCID: PMC9041834 DOI: 10.1371/journal.pgen.1010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 01/29/2023] Open
Abstract
The Cdk5 kinase plays prominent roles in nervous system development, plasticity, behavior and disease. It also has important, non-neuronal functions in cancer, the immune system and insulin secretion. At present, we do not fully understand negative regulatory mechanisms that restrict Cdk5. Here, we use Caenorhabditis elegans to show that CDK-5 is inhibited by the RPM-1/FSN-1 ubiquitin ligase complex. This atypical RING ubiquitin ligase is conserved from C. elegans through mammals. Our finding originated from unbiased, in vivo affinity purification proteomics, which identified CDK-5 as a putative RPM-1 substrate. CRISPR-based, native biochemistry showed that CDK-5 interacts with the RPM-1/FSN-1 ubiquitin ligase complex. A CRISPR engineered RPM-1 substrate ‘trap’ enriched CDK-5 binding, which was mediated by the FSN-1 substrate recognition module. To test the functional genetic relationship between the RPM-1/FSN-1 ubiquitin ligase complex and CDK-5, we evaluated axon termination in mechanosensory neurons and motor neurons. Our results indicate that RPM-1/FSN-1 ubiquitin ligase activity restricts CDK-5 to control axon termination. Collectively, these proteomic, biochemical and genetic results increase our understanding of mechanisms that restrain Cdk5 in the nervous system. Cdk5 is an atypical cyclin dependent kinase and an important player in nervous system development, plasticity, and disease. Decades of research has focused on understanding how Cdk5 is activated. In contrast, we know much less about the genetic and molecular mechanisms that restrict Cdk5 activity. Here, we examined how Cdk5 is inhibited in the nervous system using the model organism C. elegans. Our results indicate that the RPM-1/FSN-1 E3 ubiquitin ligase complex inhibits Cdk5 to control termination of axon growth. Our finding that ubiquitin ligase activity restricts Cdk5 in the nervous system in vivo now opens up the interesting possibility that ubiquitin ligase activity might regulate Cdk5 in other cellular contexts and disease settings.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Gabriel Gaglio
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Oliver Crawley
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington M1-A303/305 Behnke Conference Room, Arnold building, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
22
|
Nandi N, Zaidi Z, Tracy C, Krämer H. A phospho-switch at Acinus-Serine 437 controls autophagic responses to Cadmium exposure and neurodegenerative stress. eLife 2022; 11:72169. [PMID: 35037620 PMCID: PMC8794470 DOI: 10.7554/elife.72169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 12/09/2022] Open
Abstract
Neuronal health depends on quality control functions of autophagy, but mechanisms regulating neuronal autophagy are poorly understood. Previously, we showed that in Drosophila starvation-independent quality control autophagy is regulated by acinus (acn) and the Cdk5-dependent phosphorylation of its serine437 (Nandi et al., 2017). Here, we identify the phosphatase that counterbalances this activity and provides for the dynamic nature of acinus-serine437 (acn-S437) phosphorylation. A genetic screen identified six phosphatases that genetically interacted with an acn gain-of-function model. Among these, loss of function of only one, the PPM-type phosphatase Nil (CG6036), enhanced pS437-acn levels. Cdk5-dependent phosphorylation of acn-S437 in nil1 animals elevates neuronal autophagy and reduces the accumulation of polyQ proteins in a Drosophila Huntington’s disease model. Consistent with previous findings that Cd2+ inhibits PPM-type phosphatases, Cd2+ exposure elevated acn-S437 phosphorylation which was necessary for increased neuronal autophagy and protection against Cd2+-induced cytotoxicity. Together, our data establish the acn-S437 phosphoswitch as critical integrator of multiple stress signals regulating neuronal autophagy.
Collapse
Affiliation(s)
- Nilay Nandi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Zuhair Zaidi
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Charles Tracy
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Helmut Krämer
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
23
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Inhibition of Cdk5 in PV Neurons Reactivates Experience-Dependent Plasticity in Adult Visual Cortex. Int J Mol Sci 2021; 23:ijms23010186. [PMID: 35008611 PMCID: PMC8745415 DOI: 10.3390/ijms23010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) has been shown to play a critical role in brain development, learning, memory and neural processing in general. Cdk5 is widely distributed in many neuron types in the central nervous system, while its cell-specific role is largely unknown. Our previous study showed that Cdk5 inhibition restored ocular dominance (OD) plasticity in adulthood. In this study, we specifically knocked down Cdk5 in different types of neurons in the visual cortex and examined OD plasticity by optical imaging of intrinsic signals. Downregulation of Cdk5 in parvalbumin-expressing (PV) inhibitory neurons, but not other neurons, reactivated adult mouse visual cortical plasticity. Cdk5 knockdown in PV neurons reduced the evoked firing rate, which was accompanied by an increment in the threshold current for the generation of a single action potential (AP) and hyperpolarization of the resting membrane potential. Moreover, chemogenetic activation of PV neurons in the visual cortex can attenuate the restoration of OD plasticity by Cdk5 inhibition. Taken together, our results suggest that Cdk5 in PV interneurons may play a role in modulating the excitation and inhibition balance to control the plasticity of the visual cortex.
Collapse
|
25
|
Fame RM, Lehtinen MK. Mitochondria in Early Forebrain Development: From Neurulation to Mid-Corticogenesis. Front Cell Dev Biol 2021; 9:780207. [PMID: 34888312 PMCID: PMC8650308 DOI: 10.3389/fcell.2021.780207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
Function of the mature central nervous system (CNS) requires a substantial proportion of the body’s energy consumption. During development, the CNS anlage must maintain its structure and perform stage-specific functions as it proceeds through discrete developmental stages. While key extrinsic signals and internal transcriptional controls over these processes are well appreciated, metabolic and mitochondrial states are also critical to appropriate forebrain development. Specifically, metabolic state, mitochondrial function, and mitochondrial dynamics/localization play critical roles in neurulation and CNS progenitor specification, progenitor proliferation and survival, neurogenesis, neural migration, and neurite outgrowth and synaptogenesis. With the goal of integrating neurodevelopmental biologists and mitochondrial specialists, this review synthesizes data from disparate models and processes to compile and highlight key roles of mitochondria in the early development of the CNS with specific focus on forebrain development and corticogenesis.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
26
|
Chen W, Zhou Y, Wu G, Sun P. CCNI2 promotes the progression of human gastric cancer through HDGF. Cancer Cell Int 2021; 21:661. [PMID: 34895232 PMCID: PMC8665640 DOI: 10.1186/s12935-021-02352-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignant tumor with heterogeneity and is still a global health problem. The present study aimed to investigate the role of Cyclin I-like (CCNI2) in the regulation of phenotype and tumorigenesis, as well as its underlying mechanisms. METHOD The expression profile of CCNI2 in gastric cancer was determined based on The Cancer Genome Atlas (TCGA) database and immunohistochemical staining. The effects of altered CCNI2 expression on the biological phenotypes such as proliferation, clone formation, apoptosis and migration of gastric cancer cell lines BGC-823 and SGC-7901 were investigated. Mice xenograft models were established to reveal the role of CCNI2 knockdown on tumorigenesis. The potential mechanism of CCNI2 regulating gastric cancer was preliminarily determined by RNA sequencing. RESULT CCNI2 was abundantly expressed in gastric cancer and was positively correlated with pathological stage. Knockdown of CCNI2 slowed down the malignant progression of gastric cancer by inhibiting tumor cell proliferation, increasing the susceptibility to apoptosis and suppressing migration. Moreover, downregulation of CCNI2 attenuated the ability of gastric cancer cells to form tumors in mice. Additionally, there was an interaction between CCNI2 and transcription factor hepatoma-derived growth factor (HDGF) in SGC-7901 cells. Knockdown of CCNI2 alleviated the promoting effects of HDGF overexpression in gastric cancer cells. CONCLUSIONS CCNI2 promoted the progression of human gastric cancer through HDGF, which drew further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
27
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
28
|
Terse A, Amin N, Hall B, Bhaskar M, Binukumar B, Utreras E, Pareek TK, Pant H, Kulkarni AB. Protocols for Characterization of Cdk5 Kinase Activity. Curr Protoc 2021; 1:e276. [PMID: 34679246 PMCID: PMC8555461 DOI: 10.1002/cpz1.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinases (Cdks) are generally known to be involved in controlling the cell cycle, but Cdk5 is a unique member of this protein family for being most active in post-mitotic neurons. Cdk5 is developmentally important in regulating neuronal migration, neurite outgrowth, and axon guidance. Cdk5 is enriched in synaptic membranes and is known to modulate synaptic activity. Postnatally, Cdk5 can also affect neuronal processes such as dopaminergic signaling and pain sensitivity. Dysregulated Cdk5, in contrast, has been linked to neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite primarily being implicated in neuronal development and activity, Cdk5 has lately been linked to non-neuronal functions including cancer cell growth, immune responses, and diabetes. Since Cdk5 activity is tightly regulated, a method for measuring its kinase activity is needed to fully understand the precise role of Cdk5 in developmental and disease processes. This article includes methods for detecting Cdk5 kinase activity in cultured cells or tissues, identifying new substrates, and screening for new kinase inhibitors. Furthermore, since Cdk5 shares homology and substrate specificity with Cdk1 and Cdk2, the Cdk5 kinase assay can be used, with modification, to measure the activity of other Cdks as well. © 2021 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Measuring Cdk5 activity from protein lysates Support Protocol 1: Immunoprecipitation of Cdk5 using Dynabeads Alternate Protocol: Non-radioactive protocols to measure Cdk5 kinase activity Support Protocol 2: Western blot analysis for the detection of Cdk5, p35, and p39 Support Protocol 3: Immunodetection analysis for Cdk5, p35, and p39 Support Protocol 4: Genetically engineered mice (+ and - controls) Basic Protocol 2: Identifying new Cdk5 substrates and kinase inhibitors.
Collapse
Affiliation(s)
- Anita Terse
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Bradford Hall
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - B.K Binukumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Elias Utreras
- Department of Biology, Universidad de Chile, Santiago, Chile
| | | | - Harish Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ashok B. Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Gao GB, Sun Y, Fang RD, Wang Y, Wang Y, He QY. Post-translational modifications of CDK5 and their biological roles in cancer. MOLECULAR BIOMEDICINE 2021; 2:22. [PMID: 35006426 PMCID: PMC8607427 DOI: 10.1186/s43556-021-00029-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) of Cyclin-dependent kinase 5 (CDK5) have emerged as important regulatory mechanisms that modulate cancer development in patients. Though CDK5 is an atypical member of the cyclin-dependent kinase family, its aberrant expression links to cell proliferation, DNA damage response, apoptosis, migration and angiogenesis in cancer. Current studies suggested that, new PTMs on CDK5, including S-nitrosylation, sumoylation, and acetylation, serve as molecular switches to control the kinase activity of CDK5 in the cell. However, a majority of these modifications and their biological significance in cancer remain uncharacterized. In this review, we discussed the role of PTMs on CDK5-mediated signaling cascade, and their possible mechanisms of action in malignant tumors, as well as the challenges and future perspectives in this field. On the basis of the newly identified regulatory signaling pathways of CDK5 related to PTMs, researchers have investigated the cancer therapeutic potential of chemical compounds, small-molecule inhibitors, and competitive peptides by targeting CDK5 and its PTMs. Results of these preclinical studies demonstrated that targeting PTMs of CDK5 yields promising antitumor effects and that clinical translation of these therapeutic strategies is warranted.
Collapse
Affiliation(s)
- Gui-Bin Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yue Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Run-Dong Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
30
|
Etman AM, Abdel Mageed SS, Ali MA, El Hassab MAEM. Cyclin-Dependent Kinase as a Novel Therapeutic Target: An Endless Story. CURRENT CHEMICAL BIOLOGY 2021; 15:139-162. [DOI: 10.2174/2212796814999201123194016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 09/02/2023]
Abstract
Cyclin-Dependent Kinases (CDKs) are a family of enzymes that, along with their Cyclin
partners, play a crucial role in cell cycle regulation at many biological functions such as proliferation,
differentiation, DNA repair, and apoptosis. Thus, they are tightly regulated by a number of inhibitory
and activating enzymes. Deregulation of these kinases’ activity either by amplification,
overexpression or mutation of CDKs or Cyclins leads to uncontrolled proliferation of cancer cells.
Hyperactivity of these kinases has been reported in a wide variety of human cancers. Hence, CDKs
have been established as one of the most attractive pharmacological targets in the development of
promising anticancer drugs. The elucidated structural features and the well-characterized molecular
mechanisms of CDKs have been the guide in designing inhibitors to these kinases. Yet, they remain
a challenging therapeutic class as they share conserved structure similarity in their active site.
Several inhibitors have been discovered from natural sources or identified through high throughput
screening and rational drug design approaches. Most of these inhibitors target the ATP binding
pocket, therefore, they suffer from a number of limitations. Here, a growing number of ATP noncompetitive
peptides and small molecules has been reported.
Collapse
Affiliation(s)
- Ahmed Mohamed Etman
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta, 31111,Egypt
| | - Sherif Sabry Abdel Mageed
- Department of Pharmacology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mohamed Ahmed Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mahmoud Abd El Monem El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| |
Collapse
|
31
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
32
|
A Study to Decipher the Potential Effects of Butylphthalide against Central Nervous System Diseases Based on Network Pharmacology and Molecular Docking Integration Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6694698. [PMID: 34035826 PMCID: PMC8116153 DOI: 10.1155/2021/6694698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Background Butylphthalide (NBP), approved by the China National Medical Products Administration (NMPA) for the treatment of ischemic stroke (IS), showed pleiotropic potentials against central nervous system (CNS) diseases, including neuroprotection and cognitive deficits improvement. However, the effects and corresponding modes of action were not fully explored. This study was designed to investigate the potential of NBP against IS-associated CNS diseases based on network pharmacology (NP) and molecular docking (MD). Methods IS was inputted as the index disease to retrieve the “associated diseases” in DisGeNET. Three-database-based IS genes were obtained and integrated (DisGeNET, Malacards, and OMIM). Then, IS-associated genes were identified by combining these genes. Meanwhile, PubMed references and online databases were applied to identify NBP target genes. The IS-related disease-disease association (DDA) network and NBP-disease regulation network were constructed and analyzed in Cytoscape. In silico MD and references were used to validate the binding affinity of NBP with critical targets and the potential of NBP against certain IS-related CNS disease regulation. Results 175 NBP target genes were obtained, while 312 IS-related disease genes were identified. 36 NBP target genes were predicted to be associated with IS-related CNS diseases, including Alzheimer's disease (AD), epilepsy, major depressive disorder (MDD), amyotrophic lateral sclerosis (ALS), and dementia. Six target genes (i.e., GRIN1, PTGIS, PTGES, ADRA1A, CDK5, and SULT1E1) indicating disease specificity index (DSI) >0.5 showed certain to good degree binding affinity with NBP, ranging from −9.2 to −6.7 kcal/mol. And the binding modes may be mainly related to hydrogen bonds and hydrophobic “bonds.” Further literature validations inferred that these critical NBP targets had a tight association with AD, epilepsy, ALS, and depression. Conclusions Our study proposed a drug-target-disease integrated method to predict the drug repurposing potentials to associated diseases by application of NP and MD, which could be an attractive alternative to facilitate the development of CNS disease therapies. NBP may be promising and showed potentials to be repurposed for treatments for AD, epilepsy, ALS, and depression, and further investigations are warranted to be carefully designed and conducted.
Collapse
|
33
|
Chu C, Geng Y, Zhou Y, Sicinski P. Cyclin E in normal physiology and disease states. Trends Cell Biol 2021; 31:732-746. [PMID: 34052101 DOI: 10.1016/j.tcb.2021.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/17/2023]
Abstract
E-type cyclins, collectively called cyclin E, represent key components of the core cell cycle machinery. In mammalian cells, two E-type cyclins, E1 and E2, activate cyclin-dependent kinase 2 (CDK2) and drive cell cycle progression by phosphorylating several cellular proteins. Abnormally elevated activity of cyclin E-CDK2 has been documented in many human tumor types. Moreover, cyclin E overexpression mediates resistance of tumor cells to various therapeutic agents. Recent work has revealed that the role of cyclin E extends well beyond cell proliferation and tumorigenesis, and it may regulate a diverse array of physiological and pathological processes. In this review, we discuss these various cyclin E functions and the potential for therapeutic targeting of cyclin E and cyclin E-CDK2 kinase.
Collapse
Affiliation(s)
- Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yu Zhou
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Goel B, Tripathi N, Bhardwaj N, Jain SK. Small Molecule CDK Inhibitors for the Therapeutic Management of Cancer. Curr Top Med Chem 2021; 20:1535-1563. [PMID: 32416692 DOI: 10.2174/1568026620666200516152756] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 01/03/2023]
Abstract
Cyclin-dependent kinases (CDKs) are a group of multifunctional enzymes consisting of catalytic and regulatory subunits. The regulatory subunit, cyclin, remains dissociated under normal circumstances, and complexation of cyclin with the catalytic subunit of CDK leads to its activation for phosphorylation of protein substrates. The primary role of CDKs is in the regulation of the cell cycle. Retinoblastoma protein (Rb) is one of the widely investigated tumor suppressor protein substrates of CDK, which prevents cells from entering into cell-cycle under normal conditions. Phosphorylation of Rb by CDKs causes its inactivation and ultimately allows cells to enter a new cell cycle. Many cancers are associated with hyperactivation of CDKs as a result of mutation of the CDK genes or CDK inhibitor genes. Therefore, CDK modulators are of great interest to explore as novel therapeutic agents against cancer and led to the discovery of several CDK inhibitors to clinics. This review focuses on the current progress and development of anti-cancer CDK inhibitors from preclinical to clinical and synthetic to natural small molecules.
Collapse
Affiliation(s)
- Bharat Goel
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
35
|
Neuronal Nitric Oxide Synthase in Nucleus Accumbens Specifically Mediates Susceptibility to Social Defeat Stress through Cyclin-Dependent Kinase 5. J Neurosci 2021; 41:2523-2539. [PMID: 33500273 DOI: 10.1523/jneurosci.0422-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/18/2020] [Accepted: 01/16/2021] [Indexed: 11/21/2022] Open
Abstract
Stress-induced depression is common worldwide. NAc, a "reward" center, is recently reported to be critical to confer the susceptibility to chronic social defeat stress (CSDS) and the depression-related outcome. However, the underlying molecular mechanisms have not been well characterized. In this study, we induced depression-like behaviors with CSDS and chronic mild stress in male mice to mimic social and environmental factors, respectively, and observed animal behaviors with social interaction test, tail suspension test, and sucrose preference test. To determine the role of neuronal nitric oxide synthase (nNOS) and its product nitric oxide (NO), we used brain region-specifically nNOS overexpression and stereotaxic injection of NO inhibitor or donor. Moreover, the downstream molecular cyclin-dependent kinase 5 (CDK5) was explored by conditional KO and gene mutation. We demonstrate that nNOS-implicated mechanisms in NAc shell (NAcSh), including increased cell number, increased protein expression levels, and increased specific enzyme activity, contribute the susceptibility to social defeat and the following depression-like behaviors. NAcSh nNOS does not directly respond to chronic mild stress but facilitates the depression-like behaviors. The increased NAcSh nNOS expression after CSDS leads to the social avoidance and depression-like behaviors in defeated mice, which is dependent on the nNOS enzyme activity and NO production. Moreover, we identify the downstream signal in NAcSh. S-nitrosylation of CDK5 by NO contributes to enhanced CDK5 activity, leading to depression-related behaviors in susceptible mice. Therefore, NAcSh nNOS mediates susceptibility to social defeat stress and the depression-like behaviors through CDK5.SIGNIFICANCE STATEMENT Stress-induced depression is common worldwide, and chronic exposure to social and psychological stressors is important cause of human depression. Our study conducted with chronic social defeat stress mice models demonstrates that nNOS in NAcSh is crucial to regulate the susceptibility to social defeat stress and the following depression-like behaviors, indicating NAcSh nNOS as the responding molecule to social factors of depression. Moreover, we discover the downstream mechanism of NAcSh nNOS in mediating the susceptibility is NO and S-nitrosylation of CDK5. Thus, NAcSh nNOS mediates susceptibility to social defeat stress through CDK5 is a potential mechanism for depression, which may interpret how the brain transduces social stress exposure into depression.
Collapse
|
36
|
Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int J Mol Sci 2021; 22:ijms22062935. [PMID: 33805800 PMCID: PMC7998717 DOI: 10.3390/ijms22062935] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Michał Załuski
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
37
|
Gavrilovici C, Jiang Y, Kiroski I, Sterley TL, Vandal M, Bains J, Park SK, Rho JM, Teskey GC, Nguyen MD. Behavioral Deficits in Mice with Postnatal Disruption of Ndel1 in Forebrain Excitatory Neurons: Implications for Epilepsy and Neuropsychiatric Disorders. Cereb Cortex Commun 2021; 2:tgaa096. [PMID: 33615226 PMCID: PMC7876307 DOI: 10.1093/texcom/tgaa096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/11/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022] Open
Abstract
Dysfunction of nuclear distribution element-like 1 (Ndel1) is associated with schizophrenia, a neuropsychiatric disorder characterized by cognitive impairment and with seizures as comorbidity. The levels of Ndel1 are also altered in human and models with epilepsy, a chronic condition whose hallmark feature is the occurrence of spontaneous recurrent seizures and is typically associated with comorbid conditions including learning and memory deficits, anxiety, and depression. In this study, we analyzed the behaviors of mice postnatally deficient for Ndel1 in forebrain excitatory neurons (Ndel1 CKO) that exhibit spatial learning and memory deficits, seizures, and shortened lifespan. Ndel1 CKO mice underperformed in species-specific tasks, that is, the nest building, open field, Y maze, forced swim, and dry cylinder tasks. We surveyed the expression and/or activity of a dozen molecules related to Ndel1 functions and found changes that may contribute to the abnormal behaviors. Finally, we tested the impact of Reelin glycoprotein that shows protective effects in the hippocampus of Ndel1 CKO, on the performance of the mutant animals in the nest building task. Our study highlights the importance of Ndel1 in the manifestation of species-specific animal behaviors that may be relevant to our understanding of the clinical conditions shared between neuropsychiatric disorders and epilepsy.
Collapse
Affiliation(s)
- Cezar Gavrilovici
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, San Diego, CA 92123, USA
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Ivana Kiroski
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Toni-Lee Sterley
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Milene Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Jaideep Bains
- Departments of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jong M Rho
- Departments of Neurosciences & Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, San Diego, CA 92123, USA
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
38
|
Mechanisms and Therapeutic Implications of GSK-3 in Treating Neurodegeneration. Cells 2021; 10:cells10020262. [PMID: 33572709 PMCID: PMC7911291 DOI: 10.3390/cells10020262] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders are spreading worldwide and are one of the greatest threats to public health. There is currently no adequate therapy for these disorders, and therefore there is an urgent need to accelerate the discovery and development of effective treatments. Although neurodegenerative disorders are broad ranging and highly complex, they may share overlapping mechanisms, and thus potentially manifest common targets for therapeutic interventions. Glycogen synthase kinase-3 (GSK-3) is now acknowledged to be a central player in regulating mood behavior, cognitive functions, and neuron viability. Indeed, many targets controlled by GSK-3 are critically involved in progressing neuron deterioration and disease pathogenesis. In this review, we focus on three pathways that represent prominent mechanisms linking GSK-3 with neurodegenerative disorders: cytoskeleton organization, the mammalian target of rapamycin (mTOR)/autophagy axis, and mitochondria. We also consider the challenges and opportunities in the development of GSK-3 inhibitors for treating neurodegeneration.
Collapse
|
39
|
CDK5 inhibition protects against OGDR induced mitochondrial fragmentation and apoptosis through regulation of Drp1S616 phosphorylation. Life Sci 2021; 269:119062. [PMID: 33476635 DOI: 10.1016/j.lfs.2021.119062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022]
Abstract
AIMS Cyclin-dependent kinase 5 (CDK5) is a potential target for the treatment of cerebral ischemia. CDK5 is one of the upstream regulators for Dynamin-related protein 1 (Drp1) phosphorylation. This study intends to discuss whether CDK5 inhibition conferring neuroprotection in cerebral ischemia through regulating Drp1 phosphorylation. MATERIALS AND METHODS Mouse neuroblastoma N2a cells and N1E-115 cells were cultured and subjected to oxygen-glucose deprivation/reperfusion (OGDR). N2a cells and N1E-115 cells were treated with Roscovitine, a pharmacological inhibitor of CDK5, or transfected with CDK5 siRNA to knock down CDK5 expression. N2a cells were transfected with different plasmids (Drp1-Myc, the dephosphorylation-mimic mutant Drp1S616A-Myc and the phosphorylation-mimic mutant Drp1S616D-Myc). The expression of CDK5 and its activator p35, Drp1 and phosphorylated Drp1 on S616 was determined by western blot. The morphology of mitochondria was detected by immunofluorescence staining and the proportion of N2a cells with apoptosis was detected by flow cytometry analysis. KEY FINDINGS Expression of CDK5, p35 and phosphorylated Drp1 on S616 was strongly upregulated after 4 h and 12 h reperfusion following 4 h oxygen-glucose deprivation (OGD) at protein level. CDK5 inhibition by pre-treated with Roscovitine or transfection with CDK5 siRNA significantly ameliorated OGDR induced mitochondrial fragmentation and apoptosis. Overexpression of the phosphorylation-mimic mutant Drp1S616D abrogated the protective effect of CDK5 inhibition against OGDR induced mitochondrial fragmentation and apoptosis. SIGNIFICANCE Our data indicate that the neuroprotective effect of CDK5 inhibition against OGDR induced neuronal damage is Drp1S616 phosphorylation dependent. A better understanding of the neuroprotective mechanisms of CDK5 inhibition in cerebral ischemia will help to develop safe and efficacious drugs targeting CDK5 signaling for clinical use.
Collapse
|
40
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
41
|
CCL5 promotion of bioenergy metabolism is crucial for hippocampal synapse complex and memory formation. Mol Psychiatry 2021; 26:6451-6468. [PMID: 33931731 PMCID: PMC8760051 DOI: 10.1038/s41380-021-01103-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
Glucoregulatory efficiency and ATP production are key regulators for neuronal plasticity and memory formation. Besides its chemotactic and neuroinflammatory functions, the CC chemokine--CCL5 displays neurotrophic activity. We found impaired learning-memory and cognition in CCL5-knockout mice at 4 months of age correlated with reduced hippocampal long-term potentiation and impaired synapse structure. Re-expressing CCL5 in knockout mouse hippocampus restored synaptic protein expression, neuronal connectivity and cognitive function. Using metabolomics coupled with FDG-PET imaging and seahorse analysis, we found that CCL5 participates in hippocampal fructose and mannose degradation, glycolysis, gluconeogenesis as well as glutamate and purine metabolism. CCL5 additionally supports mitochondrial structural integrity, purine synthesis, ATP generation, and subsequent aerobic glucose metabolism. Overexpressing CCL5 in WT mice also enhanced memory-cognition performance as well as hippocampal neuronal activity and connectivity through promotion of de novo purine and glutamate metabolism. Thus, CCL5 actions on glucose aerobic metabolism are critical for mitochondrial function which contribute to hippocampal spine and synapse formation, improving learning and memory.
Collapse
|
42
|
Burlando B, Milanese M, Giordano G, Bonifacino T, Ravera S, Blanchini F, Bonanno G. A multistationary loop model of ALS unveils critical molecular interactions involving mitochondria and glucose metabolism. PLoS One 2020; 15:e0244234. [PMID: 33332476 PMCID: PMC7746301 DOI: 10.1371/journal.pone.0244234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/05/2020] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a poor-prognosis disease with puzzling pathogenesis and inconclusive treatments. We develop a mathematical model of ALS based on a system of interactive feedback loops, focusing on the mutant SOD1G93A mouse. Misfolded mutant SOD1 aggregates in motor neuron (MN) mitochondria and triggers a first loop characterized by oxidative phosphorylation impairment, AMP kinase over-activation, 6-phosphofructo-2-kinase (PFK3) rise, glucose metabolism shift from pentose phosphate pathway (PPP) to glycolysis, cell redox unbalance, and further worsening of mitochondrial dysfunction. Oxidative stress then triggers a second loop, involving the excitotoxic glutamatergic cascade, with cytosolic Ca2+ overload, increase of PFK3 expression, and further metabolic shift from PPP to glycolysis. Finally, cytosolic Ca2+ rise is also detrimental to mitochondria and oxidative phosphorylation, thus closing a third loop. These three loops are overlapped and positive (including an even number of inhibitory steps), hence they form a candidate multistationary (bistable) system. To describe the system dynamics, we model the interactions among the functional agents with differential equations. The system turns out to admit two stable equilibria: the healthy state, with high oxidative phosphorylation and preferential PPP, and the pathological state, with AMP kinase activation, PFK3 over expression, oxidative stress, excitotoxicity and MN degeneration. We demonstrate that the loop system is monotone: all functional agents consistently act toward the healthy or pathological condition, depending on low or high mutant SOD1 input. We also highlight that molecular interactions involving PFK3 are crucial, as their deletion disrupts the system's bistability leading to a single healthy equilibrium point. Hence, our mathematical model unveils that promising ALS management strategies should be targeted to mechanisms that keep low PFK3 expression and activity within MNs.
Collapse
Affiliation(s)
- Bruno Burlando
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, Italy
- Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
- * E-mail:
| | | | - Silvia Ravera
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Franco Blanchini
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, University of Udine, Udine, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, University of Genova, Genova, Italy
- IRCCS—Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
43
|
Ageta-Ishihara N, Kinoshita M. Developmental and postdevelopmental roles of septins in the brain. Neurosci Res 2020; 170:6-12. [PMID: 33159992 DOI: 10.1016/j.neures.2020.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Morphogenetic processes during brain development and postdevelopmental remodeling of neural architecture depend on the exquisite interplay between the microtubule- and actin-based cytoskeletal systems. Accumulation of evidence indicates cooperative roles of another cytoskeletal system composed of the septin family. Here we overview experimental findings on mammalian septins and their hypothetical roles in the proliferation of neural progenitor cells, neurite development, synapse formation and regulations. The diverse, mostly unexpected phenotypes obtained from gain- and loss-of-function mutants point to unknown molecular network to be elucidated, which may underlie pathogenetic processes of infectious diseases and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Division of Biological Science, Nagoya University Graduate School of Science, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Makoto Kinoshita
- Division of Biological Science, Nagoya University Graduate School of Science, Furo, Chikusa, Nagoya 464-8602, Japan.
| |
Collapse
|
44
|
Loss of PHF6 leads to aberrant development of human neuron-like cells. Sci Rep 2020; 10:19030. [PMID: 33149206 PMCID: PMC7642390 DOI: 10.1038/s41598-020-75999-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Pathogenic variants in PHD finger protein 6 (PHF6) cause Borjeson-Forssman-Lehmann syndrome (BFLS), a rare X-linked neurodevelopmental disorder, which manifests variably in both males and females. To investigate the mechanisms behind overlapping but distinct clinical aspects between genders, we assessed the consequences of individual variants with structural modelling and molecular techniques. We found evidence that de novo variants occurring in females are more severe and result in loss of PHF6, while inherited variants identified in males might be hypomorph or have weaker effects on protein stability. This might contribute to the different phenotypes in male versus female individuals with BFLS. Furthermore, we used CRISPR/Cas9 to induce knockout of PHF6 in SK-N-BE (2) cells which were then differentiated to neuron-like cells in order to model nervous system related consequences of PHF6 loss. Transcriptome analysis revealed a broad deregulation of genes involved in chromatin and transcriptional regulation as well as in axon and neuron development. Subsequently, we could demonstrate that PHF6 is indeed required for proper neuron proliferation, neurite outgrowth and migration. Impairment of these processes might therefore contribute to the neurodevelopmental and cognitive dysfunction in BFLS.
Collapse
|
45
|
Marlier Q, D'aes T, Verteneuil S, Vandenbosch R, Malgrange B. Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci 2020; 77:4553-4571. [PMID: 32476056 PMCID: PMC11105064 DOI: 10.1007/s00018-020-03548-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
Collapse
Affiliation(s)
- Quentin Marlier
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Tine D'aes
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Sébastien Verteneuil
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Renaud Vandenbosch
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium.
| |
Collapse
|
46
|
Ouyang L, Chen Y, Wang Y, Chen Y, Fu AKY, Fu WY, Ip NY. p39-associated Cdk5 activity regulates dendritic morphogenesis. Sci Rep 2020; 10:18746. [PMID: 33127972 PMCID: PMC7603351 DOI: 10.1038/s41598-020-75264-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Dendrites, branched structures extending from neuronal cell soma, are specialized for processing information from other neurons. The morphogenesis of dendritic structures is spatiotemporally regulated by well-orchestrated signaling cascades. Dysregulation of these processes impacts the wiring of neuronal circuit and efficacy of neurotransmission, which contribute to the pathogeneses of neurological disorders. While Cdk5 (cyclin-dependent kinase 5) plays a critical role in neuronal dendritic development, its underlying molecular control is not fully understood. In this study, we show that p39, one of the two neuronal Cdk5 activators, is a key regulator of dendritic morphogenesis. Pyramidal neurons deficient in p39 exhibit aberrant dendritic morphology characterized by shorter length and reduced arborization, which is comparable to dendrites in Cdk5-deficient neurons. RNA sequencing analysis shows that the adaptor protein, WDFY1 (WD repeat and FYVE domain-containing 1), acts downstream of Cdk5/p39 to regulate dendritic morphogenesis. While WDFY1 is elevated in p39-deficient neurons, suppressing its expression rescues the impaired dendritic arborization. Further phosphoproteomic analysis suggests that Cdk5/p39 mediates dendritic morphogenesis by modulating various downstream signaling pathways, including PI3K/Akt-, cAMP-, or small GTPase-mediated signaling transduction pathways, thereby regulating cytoskeletal organization, protein synthesis, and protein trafficking.
Collapse
Affiliation(s)
- Li Ouyang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Ye Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Yuewen Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Amy K Y Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China
| | - Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China. .,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China. .,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
47
|
Posada-Duque RA, Cardona-Gómez GP. CDK5 Targeting as a Therapy for Recovering Neurovascular Unit Integrity in Alzheimer's Disease. J Alzheimers Dis 2020; 82:S141-S161. [PMID: 33016916 DOI: 10.3233/jad-200730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
48
|
Hansen AH, Hippenmeyer S. Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Front Cell Dev Biol 2020; 8:574382. [PMID: 33102480 PMCID: PMC7545535 DOI: 10.3389/fcell.2020.574382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023] Open
Abstract
Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final target lamina, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating the specific sequential steps of radial neuronal migration in vivo are however still unclear, let alone the effects and interactions with the extracellular environment. In any in vivo context, cells will always be exposed to a complex extracellular environment consisting of (1) secreted factors acting as potential signaling cues, (2) the extracellular matrix, and (3) other cells providing cell–cell interaction through receptors and/or direct physical stimuli. Most studies so far have described and focused mainly on intrinsic cell-autonomous gene functions in neuronal migration but there is accumulating evidence that non-cell-autonomous-, local-, systemic-, and/or whole tissue-wide effects substantially contribute to the regulation of radial neuronal migration. These non-cell-autonomous effects may differentially affect cortical neuron migration in distinct cellular environments. However, the cellular and molecular natures of such non-cell-autonomous mechanisms are mostly unknown. Furthermore, physical forces due to collective migration and/or community effects (i.e., interactions with surrounding cells) may play important roles in neocortical projection neuron migration. In this concise review, we first outline distinct models of non-cell-autonomous interactions of cortical projection neurons along their radial migration trajectory during development. We then summarize experimental assays and platforms that can be utilized to visualize and potentially probe non-cell-autonomous mechanisms. Lastly, we define key questions to address in the future.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
49
|
Labus J, Röhrs KF, Ackmann J, Varbanov H, Müller FE, Jia S, Jahreis K, Vollbrecht AL, Butzlaff M, Schill Y, Guseva D, Böhm K, Kaushik R, Bijata M, Marin P, Chaumont-Dubel S, Zeug A, Dityatev A, Ponimaskin E. Amelioration of Tau pathology and memory deficits by targeting 5-HT7 receptor. Prog Neurobiol 2020; 197:101900. [PMID: 32841723 DOI: 10.1016/j.pneurobio.2020.101900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
Abstract
Tauopathies comprise a heterogeneous family of neurodegenerative diseases characterized by pathological accumulation of hyperphosphorylated Tau protein. Pathological changes in serotonergic signaling have been associated with tauopathy etiology, but the underlying mechanisms remain poorly understood. Here, we studied the role of the serotonin receptor 7 (5-HT7R), in a mouse model of tauopathy induced by overexpressing the human Tau[R406W] mutant associated with inherited forms of frontotemporal dementia. We showed that the constitutive 5-HT7R activity is required for Tau hyperphosphorylation and formation of highly bundled Tau structures (HBTS) through G-protein-independent, CDK5-dependent mechanism. We also showed that 5-HT7R physically interacts with CDK5. At the systemic level, 5-HT7R-mediated CDK5 activation induces HBTS leading to neuronal death, reduced long-term potentiation (LTP), and impaired memory in mice. Specific blockade of constitutive 5-HT7R activity in neurons that overexpressed Tau[R406W] prevents Tau hyperphosphorylation, aggregation, and neurotoxicity. Moreover, 5-HT7R knockdown in the prefrontal cortex fully abrogates Tau[R406W]-induced LTP deficits and memory impairments. Thus, 5-HT7R/CDK5 signaling emerged as a new, promising target for tauopathy treatments.
Collapse
Affiliation(s)
- Josephine Labus
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Kian-Fritz Röhrs
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Ackmann
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Hristo Varbanov
- Instituite of Neurophysiology, Hannover Medical School, Hannover, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Franziska E Müller
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Shaobo Jia
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Kathrin Jahreis
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Anna-Lena Vollbrecht
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Malte Butzlaff
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Yvonne Schill
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Katrin Böhm
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Monika Bijata
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany; Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Science, Warsaw, Poland
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Andre Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany; Institute of Neuroscience, Lobachevsky State University of Nizhni Novgorod, Russia.
| |
Collapse
|
50
|
Quan Q, Li X, Feng J, Hou J, Li M, Zhang B. Ginsenoside Rg1 reduces β‑amyloid levels by inhibiting CDΚ5‑induced PPARγ phosphorylation in a neuron model of Alzheimer's disease. Mol Med Rep 2020; 22:3277-3288. [PMID: 32945455 PMCID: PMC7453505 DOI: 10.3892/mmr.2020.11424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
The accumulation of β-amyloid peptides (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). Studies have indicated that ginsenoside Rg1, a primary component of ginseng (Panax ginseng), reduces brain Aβ levels in an AD model through peroxisome proliferator-activated receptor γ (PPARγ), thereby regulating the expression of insulin-degrading enzyme (Ide) and β-amyloid cleavage enzyme 1 (Bace1), which are PPARγ target genes. However, the effects of ginsenoside Rg1 on PPARγ remain unclear. Since cyclin-dependent kinase 5 (CDK5) mediates PPARγ phosphorylation in adipose tissue, this study aimed to investigate whether ginsenoside Rg1 regulates PPARγ target genes and reduces Aβ levels by inhibiting PPARγ phosphorylation through the CDK5 pathway. In the present study, a model of AD was established by treating primary cultured rat hippocampal neurons with Aβ1-42. The cells were pretreatment with ginsenoside Rg1 and roscovitine, a CDK5-inhibitor, prior to the treatment with Aβ1-42. Neuronal apoptosis was detected using TUNEL staining. PPARγ phosphorylation and protein expression levels of PPARγ, CDK5, IDE, BACE1, amyloid precursor protein (APP) and Aβ1-42 were measured by western blotting. The mRNA expression levels of PPARγ, CDK5, IDE, BACE1 and APP were assessed using reverse transcription-quantitative PCR. The results of the present study demonstrated that in an AD model induced by Aβ1-42, ginsenoside Rg1 significantly decreased CDK5 expression, inhibited PPARγ phosphorylation at serine 273, elevated IDE expression, downregulated BACE1 and APP expression, decreased Aβ1-42 levels and attenuated neuronal apoptosis. The CDK5 inhibitor, roscovitine, demonstrated similar effects. These results suggest that ginsenoside Rg1 has neuroprotective properties and has potential for use in the treatment of AD.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianjun Feng
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jixing Hou
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, P.R. China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bingwei Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|